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CHANGING-LOOK SEYFERT GALAXIES WITH OPTICAL LINEAR POLARIZATION
MEASUREMENTS

F. Marin1, D. Hutsemékers2 and B. Agı́s González2

Abstract. In this lecture note, we make the case for new (spectro)polarimetric measurements of “changing-look” AGNs
(CLAGNs), a subclass of the AGN family tree that shows long-term (months to years) large flux variability associated with
the appearance or disappearance of optical broad emission lines. We discuss how polarization measurements could help
to distinguish which of the several scenarios proposed to explain such variations is/are the most likely. We collected all the
past polarization measurements of nearby, Seyfert-like CLAGNs and take stock that almost all polarimetric information
we have on those fascinating objects dates from the 80’s and 90’s. We thus explain how polarization could help us
understanding the physical processes happening in the first parsecs of CLAGNs and why new polarization monitoring
campaigns are strongly needed.
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1 Introduction

Among active galactic nuclei (AGNs), a new class of object is nowadays recognized. Those specific AGNs have time-
dependent spectroscopic signatures that makes them appear as type-1 AGNs for a certain period and then as type-2 AGNs
after a while(see, e.g., Khachikian & Weedman 1971; Cohen et al. 1986; Goodrich 1989). Type-1 AGN are characterized
by large optical fluxes associated with broad (> 1000 km.s−1) and narrow (≤ 1000 km.s−1) emission lines, while type-2s
only shownarrow emission lines and lower optical fluxes. The large Doppler widths result from photo-ionization of an
equatorial reservoir of gas composed of many cloudlets that have large Keplerian velocities and densities (Gaskell 2009).
Depending on the inclination of the system with respect to the observer, this broad emission line region (BELR) may
be hidden by an optically thick, equatorial, circumnuclear layer of dust. This orientation dependence has been used to
explain the observational differences between the two AGN types for decades now and is still a very robust interpretation
(Antonucci 1993). However, there are rogue AGNs that have shown type transitions on timescales of months to years.
Examples of such objects are Mrk 1018, which varied between type-2 and type-1 between 1979 and 1984 (Cohen et al.
1986), NGC 4151 that changed from type-1 to type-2 between 1974 and 1984 (Penston & Perez 1984), or 3C 390.3 that
followed the same type transition between 1975 and 1984 (Penston & Perez 1984). From dynamical timescale arguments,
it is physically impossible that a parsec-sized object has changed its whole inclination in a human time frame. Then,
how can we explain those “rapid” changes of type ? There are several theories involving the appearance or disappearance
of optically thick material in front of the observer’s line-of-sight (Goodrich 1989; Elitzur 2012), tidal disruptions events
(TDEs, Rees 1988; Lawrence et al. 2016) or rapid mass accretion rate drop resulting in the disappearance of the BELR
(Noda & Done 2018). In this lecture note, we will expound how (spectro)polarimetric measurements of those “changing-
look AGN” (CLAGNs) could help understand the physical processes happening around active supermassive black holes.
Here, we will focus on nearby, low-luminosity CLAGNs, and refer to Hutsemékers et al. (2019) for high luminosity
objects (quasars).

2 Optical polarization of Seyfert-like CLAGNs

There are at least three scenarios∗ to explain the dramatic flux variation and spectral change of Seyfert-like CLAGNs. The
first one invokes the appearance or disappearance of obscuring material in front of the observer’s line of sight. In this case,
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a cloud from either the outer BELR or the circumnuclear torus passes in front of the line-of-sight and (partially) obscures
the central source, resulting in an opacity-dependent dimming and the apparent disappearance of the broad emission line
signatures (Goodrich 1989; Tran et al. 1992). The second scenario explains CLAGNs using unusually luminous TDEs
(Lawrence et al. 2016). When a star orbits close enough to the central supermassive black hole of AGNs, it is torn apart
by tidal forces and a fraction of the mass is accreted, resulting in a sudden brightening of the black hole. The change in
luminosity can easily last for several hundreds of days (Rees 1988). Finally, a third scenario postulates that the CLAGN
phenomenon is due to modifications in the source of ionizing radiation, likely a variation in the rate of accretion onto the
central supermassive black hole (Penston & Perez 1984; Elitzur et al. 2014; Noda & Done 2018).

Spectroscopic and photometric observations can be explained by one or several of those scenarios, depending on
the target. However, their polarization signatures are unique (Marin et al. 2016; Hutsemékers et al. 2017; Marin 2017;
Hutsemékers et al. 2019).

• If the central source is intrinsically dimming, at the onset of the flux variation the polarization degree experiences
sharp decreases and increases associated with rotations of the polarization angle. Those time-dependent variations
are due to lower amounts of direct, unpolarized flux from the central engine and constant amounts of reprocessed
(delayed) radiation from the equatorial region. The duration of the high polarization degree peak depends on the
distance of the scatterer from the source and can be used to achieve polarized reverberation mapping of the inner
CLAGN regions. The polarization degree and polarization position angle then return to a stability period after
several years/decades (see Marin & Hutsemékers, A&A, submitted). On the other hand, if the BELR disappears,
electron scattering inside the BELR becomes inefficient, the polarization degree decreases and the polarization
position angle rotates by 90◦. Polarized light echoes are much less bright due to the absence of an electron-filled,
nearby scattering target. The duration of the echo is also extended due to the fact that radiation has to scatteronto
the parsec-scale torus/winds rather than onto the sub-parsec scale BELR. At the end of the echo, the polarization
position angle rotates again by 90◦, returning to the initial value at the same time than the polarization degree returns
to a stability period. This could, in turn, provide us with an estimation of the inner radius of the torus if the polarized
light echo is detectable.

• In the case of cloud obscuration, radiation mainly escapes the central (obscured) region by scattering inside the polar
outflows, similarly to what has been postulated for the Unified Scheme of AGNs (Antonucci 1993). This results in
much higher polarization degrees (10 – 20%, see e.g., NGC 1068 Antonucci & Miller 1985) and a rotation of the
polarization position angle due to the fact that equatorial scattering is no longer visible. The flux and polarization
variations are also time-dependent but are likely to be shorter depending on the size and radial distance of the cloud
to the central engine (Gaskell & Harrington 2018).

All differences are detailed in Marin (2017) for further details. In any case, it is vital to obtain polarization mea-
surements of CLAGNs, before and after the change of look. We thus compiled the historical spectral type changes and
polarization measurements of known changing-look Seyferts (at our best knowledge) in Tab. 1. The spectral types of
changing-look Seyferts and the epoch at which they were measured are given in Col. 2. A range of dates indicates that the
spectral types measured at these two dates are identical, with no change recorded in between. We emphasize that this does
not imply absence of spectral type variations during this period. For some objects, exhaustive monitorings were carried
out. In such cases, only some representative types/epochs are reported in Tab. 1. The polarization degrees given in Col. 4
refer to the optical continuum polarization measured in various broad-band filters. For a few objects the polarization was
monitored during several years. In such cases, we give three representative values at most in Tab. 1. In total, there are
only 23 polarization measurements of Seyfert-like CLAGNs. Among the 23, only 3 observations have been carried out
after 2000, which means that our knowledge of the polarization of CLAGNs is based on data that are at least 20 years
old. There are only 6 objects (Mrk 6, NGC 1566, NGC 4151, NGC 7603, Fairall 9 and 3C 390.3) that have repeated po-
larimetric measurements but none of them happened coincidentally with the change of look. At best, we can estimate the
past polarization level of CLAGNs before their transition but there is very little we can do about determining the correct
physical explanation of the spectral/flux change without new and periodic polarization measurements of those objects.

3 Discussion and conclusions

We have seen that the pool of archival polarimetric measurements of state transitions in CLAGNs is very limited, almost
non-existent. This is rather detrimental since polarimetric observational data along with numerical models are a unique
tool to determine what are the physical causes of the changes of look, unveiling new frontiers in the AGN physics. New and
repeated polarimetric measurements are thus needed as part of a monitoring campaign. There are at least 23 candidates for
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a follow up program and a handful more of radio-loud AGNs (Hutsemékers et al. 2019). Ideally, broad-band polarization
measurements should be obtained twice a year during typically one or two decades. For the brightest objects (Seyferts)
this could be achieved with robotic 1m class telescopes. On the other hand, a follow-up of the polarization of CL quasars
as those studied in Hutsemékers et al. (2019) would require 2-4m class telescopes, in particular when the objects are in
their faint type-2 phase.
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