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ARTICLE INFO ABSTRACT

An assessment of classical and emerging trace element contamination was conducted on gonads of the sea urchin
Paracentrotus lividus (Lamarck, 1819), in Corsica (Western Mediterranean). The aim of this study was to evaluate
the contamination levels at different sites by following the seasonal variation of 22 trace elements. The sea
urchins analyzed were taken in 2017 from reference and more impacted sites in four Corsican areas. The results
obtained shown the importance of biotic factors such as gender, reproduction and the way of life. Variations
have been highlighted with lower trace element concentrations during the summer season. This is mainly due to
a dilution phenomenon resulting from gametogenesis. The pollution index (TEPI) was determined and high-
lighted differences in contamination levels at the various sites. This work could provide additional support for
other tools for the diagnosis and monitoring of coastal water quality. It provides useful new data to enable
managers to act at the source and reduce degradation in order to improve the ecological quality of marine
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waters.

1. Introduction

The growth of industrial, agricultural and urban activities gives rise
to the introduction of considerable amounts of chemicals in marine
coastal ecosystems. These substances have toxic properties likely to
cause extensive damage at the scale of organisms, populations and
ecosystems (Nordberg et al., 2007; Amiard, 2011). Furthermore, in-
tensive human activities, particularly in coastal areas, have a major
environmental impact on these productive zones (Papathanassiou and
Gabrielides, 1999). The United Nations Environment Programme esti-
mated that 650 million tons of sewage, 129000 tons of mineral oil,
60000 tons of mercury, 3800 tons of lead and 36000 tons of phosphates
are dumped into the Mediterranean each year. In addition, 70 per cent
of the wastewater dumped into the Mediterranean is untreated. These
pressures make the Mediterranean a vulnerable ecological unit (Turley,
1999). Furthermore, as the water bodies renews with a few decades in
the Mediterranean versus a few centuries for the ocean, this sea is a
veritable laboratory for observing the pressures and changes that hu-
mans exert on the environment (Bethoux et al., 1999).

Trace elements (TEs) are among the most common contaminants in
the marine ecosystem. Due to their toxicity, persistence and ability to

accumulate in marine organisms, they are considered as serious pollu-
tants in marine ecosystems (Bonanno and Di Martino, 2017). TEs are
present in the different compartments of the environment at low con-
centrations (Baize, 2009). In the marine environment, they can remain
in solution, be adsorbed on sedimentary particles, precipitate to the
bottom, or be bioaccumulated or biomagnified by organisms and to
reach concentrations that can be toxic (Warnau et al., 1998). Above a
certain threshold, all TEs present a potential danger that can cause
disturbances at cellular level, individual level, and also population or
ecosystem levels (Amiard, 2011). They represent a potential danger for
marine organisms (e.g. Allemand et al., 1989; Walter et al., 1989) and
for human consumers of sea urchin gonads. As a result of the threats
posed by TEs in the environment, they must be continuously monitored
from their emission sources to their final deposition in the oceans
(Richir and Gobert, 2014).

In order to assess the levels of contaminants available in the eco-
system, organisms can be used as bioindicators. Postmetamorphic
echinoids in general, and Paracentrotus lividus (Lamarck, 1816), in
particular, are interesting candidates for the bioindication of TEs con-
taminations and have already been used in the Mediterranean and
elsewhere (e.g. Augier et al., 1989; Guendouzi et al., 2017; Ternengo
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et al., 2018). Due to its wide distribution, abundance in several coastal
ecosystems, ease of harvesting, longevity, relative sedentarity and high
tolerance of pollutants, Paracentrotus lividus is an organism that is re-
cognized for its role as bioindicator (Warnau et al., 1998; Geraci et al.,
2004; Salvo et al., 2014). Its gonads and digestive tract are described as
the organs accumulating the most trace elements (Augier et al., 1989),
thus, the study of their ecotoxicological properties is also of public
health interest (Salvo et al., 2015). Trace elements concentration in the
gonads is known to vary according to different biological (age, gender),
physiological (reproduction) or environmental (season) factors
(Warnau et al., 1998; Guendouzi et al., 2017; Rocha et al., 2019). The
elementary constitution of the sea urchin reflects the composition of its
environment and provides a basis for monitoring the patterns of change
of contamination (Morrison et al., 2017).

In the Mediterranean, numerous studies using Paracentrotus lividus
as a bioindicator have studied classical TEs such as zinc or lead, but
there has been little or no description of the contamination related to
emerging trace elements (e.g. Rouane-Hacene et al., 2017; Guendouzi
et al., 2017). Well-known throughout the Mediterranean region, Para-
centrotus lividus is a species of economic and ecological importance
(Lawrence and Sammarco, 1982; Kelly, 2004). The sea urchin is of high
commercial value and represents a complementary resource for arti-
sanal fishing. The taste quality of its gonads also makes it a species
appreciated and targeted by recreational fishing. In addition, as a pri-
mary consumer, it plays a key role in the structuring and functioning of
benthic ecosystems and more particularly of macrophyte communities
(Lawrence and Sammarco, 1982).

Corsica island is often considered as a 'pristine' region on account of
its water quality and the low anthropic pressure (Lafabrie et al., 2008;
Gobert et al., 2017; Marengo et al., 2018). Nevertheless, according to
recent studies, local contamination similar to that recorded in other
anthropized areas in the Mediterranean can be found (Richir et al.,
2015), with areas classified on the basis of different levels of con-
tamination as anthropized or preserved sites (Ternengo et al., 2018).
This is a real asset that makes it a particularly suitable study area to
identify contaminants and to monitor their dynamics according to an-
thropogenic pressures.

The purpose of this study is (i) to monitor the spatio-temporal dy-
namics of 22 TEs (classical and emerging) in sea urchin gonads col-
lected along the Corsican coasts, and (ii) to evaluate the seasonal pat-
terns of change in the pollution index characterizing each site to
determine whether these variations are linked to the sea urchin's phy-
siology or to contamination. This paper will assess the bio-indicator
potential of sea urchins and compare this model with other bioindica-
tors.

2. Material and methods
2.1. Sampling sites, collection and preparation of samples

Sea urchin samples were collected in May, August and November
2017, and in order to have a complete range of seasonal monitoring, the
February 2017 data of Ternengo et al. (2018) were added. Sea urchins
were collected in the Western Mediterranean Sea in four Corsican
coastal areas between 1 and 5 m depth (Fig. 1). In each area, two sites
were defined, diverging by their ecological characteristics and their
degree of anthropization: (1) a reference site, chosen for its distance
from any pollution source and supposed to have a good ecological
status, and (2) a site close to identified anthropogenic sources (waste-
water treatment plant, commercial harbour, marina and a former as-
bestos mine) supposedly impacted.

Thirty sea urchins were collected in each area, 15 per site for each
season, resulting in a total of 480 individuals harvested in this study.
After measuring height and weight, the sea urchins were dissected and
the gender was determined. The sex ratio has been respected, to the
extent possible, to avoid bias. The gonads were removed and weighed
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Fig. 1. Location of study coastal areas in Corsica (NW Mediterranean. France),
showing the eight sampling stations of Paracentrotus lividus and their char-
acterization.

to calculate the gonadosomatic index of each individual. This index was
calculated using the following formula: (GFW/TFW) **100 where GFW
is the gonad fresh weight and TFW is total fresh weight. Gonads were
cleaned with ultrapure water and stored at —20 °C.

2.2. Trace element analysis

Prior to the analysis, samples were lyophilized (CHRIST LCG
Lyochamber Guard 121550 PMMA/Alpha 1-4 LD plus) and ground in
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Fig. 2. Variation in mean (mg.kg ™' dw + SE) trace elements concentrations in the gonads of Paracentrotus lividus and gonadosomatic indices according to the season

and on the eight sites (1: reference site; 2: impacted site).

an agate mortar. Approximately 0.2 g of each dried material was mi-
neralized in a closed microwave digestion labstation (Ethos D Milestone
Inc.), using nitric acid and hydrogen peroxide as reagents (suprapur
grade, Merck). The TE concentrations were determined by Inductively
Coupled Plasma Mass Spectrometry using Dynamic Reaction Cell

technology (ICP-MS ELAN DRC II, Perkin Elmer), according to the
method described by Richir and Gobert (2014). A total of 22 trace
elements were analyzed: silver (Ag), aluminium (Al), arsenic (As),
barium (Ba), beryllium (Be), bismuth (Bi), cadmium (Cd), cobalt (Co),
chromium (Cr), copper (Cu), iron (Fe), lithium (Li), manganese (Mn),
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molybdenum (Mo), nickel (Ni), lead (Pb), antimony (Sb), selenium (Se),
tin (Sn), uranium (U), vanadium (V), and zinc (Zn). In order to check
the purity of the chemicals used, a large number of chemical blanks
were run every 40 samples. Analytical quality control was achieved
using Certified Reference Materials (CRM), DORM-4 (fish protein),
NIST 1566b (oyster) and NIST 2976 (mussel tissue). For each TE, de-
tection limit (LD) and quantification limit (LQ) were calculated ac-
cording to Currie (1999) and Grinzaid et al. (1977) depending on their
specific blank distribution. The results are expressed in milligrams of
element per kilogram of dry weight + standard error (mg.kg '
dw = SE). TEs with values generally below the detection limit were
removed from the database. For the others, concentrations below the
LD were replaced with a value of LD/2, as reported by Skrbi¢ et al.
(2010).

2.3. Data analysis

The data was log-transformed in order to meet the conditions of
application of the parametric tests, to reduce the effect of outliers
skewing the data distribution, and to bring elemental concentrations
within the same range (Gobert et al., 2017). Analyses were performed
using XLSTAT software (Addinsoft, 2019). A multivariate analysis of
variance (MANOVA) was applied to explore the influence of gender (2
levels), site (8 levels) and season (4 levels) factors to the observed
differences in TE concentration. MANOVA was then followed by pos-
teriori univariate ANOVA and post-hoc Tukey’s honestly significant
difference (HSD) tests. Pearson rank correlation tests were performed to
investigate the relationship between the trace element levels (inter-
element correlations) and the biological data (weight, size and gona-
dosomatic index). To determine the significance and strength of each
relationship, the correlation coefficient was calculated together with p-
values. A significant difference is considered as a p-value less than 0.05.

In order to compare the contamination levels of the different sites,
the TE Pollution Index (TEPI) was calculated for each site. Developed
by Richir and Gobert (2014), the TEPI is a modified version of the Metal
Pollution Index (Usero et al., 1996). It has the advantage of taking into
account non-metallic TEs to study As and Se. Moreover, unlike the
Metal Pollution Index, the TEPI allows a reliable comparison of study
sites, regardless of TEs or the biological model used (Richir and Gobert,
2014). As recommended for the calculation of the TEPI, the data were
standardized by mean normalization (Richir and Gobert, 2014). TEPI
values were calculated using the following formula:
TEPI = (Cfl » Cf2...Cfn)"’™ where Cfn is the mean normalized con-
centration of the TE at each site or station and n is the number of TE
examined. The higher the TEPI value, the more contaminated the site is.
A 3-level water quality scale was established, using the method devel-
oped by Richir et al. (2015). The first level corresponds to the Low
Contamination Level (LCL), the second level to a Medium Contamina-
tion Level (MCL) and the third level to a High Contamination Level
(HCL).

3. Results
3.1. Biotic factors of the sea urchin

The gonadosomatic index ranged from 0.72 to 6.7 and shows dif-
ferent patterns according to the site considered (Fig. 2). Among the 20
TEs measured, the concentration of 16 TEs is found negatively corre-
lated with gonadosomatic indices (Ag, Al, As, Ba, Cd, Co, Cr, Fe, Mn,
Mo, Ni, Pb, Sb, Se, U, V) (p-value < 0.05) and only one TE (Zn) is
positively correlated with the gonadosomatic indices (r = 0.011,
p = 0.020).

There are significant positive correlations for 14 out of 20 TEs with
both the weight and the size of sea urchins. The larger the individuals,
the more they tend to accumulate TEs (Ag, As, Cd, Co, Cr, Fe, Li, Mo, Ni,
Pb, Sb, Se, U, V) in the gonads (p-value < 0.05).
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3.2. Trace element concentrations

The mean TE concentrations measured in the gonads of
Paracentrotus lividus, at each site for all seasons, are presented in Fig. 2.
Be and Bi observed concentrations are below the detection limit, so they
have not been taken into account in the statistical analyses. Zn is the
most abundant TE (175.454 + 12.004 mg.kg’l) while the lowest
abundance is observed for Sn (0.016 * 0.001 mg.kg '). TE con-
centrationsfollowthesequence:Zn > Fe > As > Al > V > Cu > Se >
Ni > Mn > Cr > U > Co > Mo > Cd > Ba > Li > Ag > Pb > Sb >
Sn. There are 14 significant negative correlations (Ag — Sn, As - Cu, As -
Sn, Cd - Cu, Cd - Sn, Zn - Cr, Zn - Fe, Zn - Mo, Zn - Ni, Zn - Pb, Zn - U, Zn
— V). The highest positive inter-elemental relationships are U-V
(r = 0.83), Co-Cr (r = 0.78), V-Cr (r = 0.71), Ni-Cr (r = 0.67) and U-
Cr (r = 0.63) with p-value < 0.001.

The MANOVA results showed significant differences (p-value <
0.001) in TE concentrations between the genders, the seasons and the
sites.

3.3. Temporal variations of trace elements

The concentration of all TEs except Ag significantly vary among
seasons variations (p-value < 0.0001) (Table 1). Noteworthy, TE
display similar fluctuation profiles that is a decrease during the spring
and summer seasons. The result of TEPI (Fig. 3) is in accordance with
such results, evidencing that sea urchins have higher TE concentration
during the legal harvesting season (i.e. autumn and winter). Over the 8
values that are in HCL, 6 are in winter and concern four site of three
areas (i.e. Saint-Florent 1, Saint-Florent 2, Ajaccio 2, Calvi 1). The TE
content is higher when gonadosomatic indices are low in autumn and
winter. Most TEs are probably stored in the gonads and are not expelled
with the gametes.

3.4. Spatial variations of trace elements

The TE concentrations vary considerably depending on the sampling
stations (Table 2). Zn is the only element that does not significantly
vary spatially (p-value = 0.543). The annual TEPI reveals two stations
with High Contamination Level: Saint-Florent 1 (TEPI = 1.127) and
Saint-Florent 2 (TEPI = 1.222). Conversely, Bonifacio 2
(TEPI = 0.726) and Calvi 2 (TEPI = 0.738) have been classified as Low
Contamination Level.

3.5. Variations of trace elements according to gender

The concentration of 11 out of the 20 TE are different between male
and female (p-value < 0.05), the average concentrations of Fe, Cr, Mo,
Ni, Pb, U and V being higher in male, although those of As, Cd, Se and
Zn are higher in female (Table 3). Specifically, Zn and Fe are the two
TEs presenting the highest differences among gender, Zn being 5 times
more concentrated in female and Fe 1.75 times more concentrated in
males (p-value < 0.0001). The differences observed don’t vary with
the seasons and very little according to the sites.

4. Discussion

Measurements of 22 TEs were conducted in 480 sea urchins.
Paracentrotus lividus has a greater tendency to accumulate essential TEs
such as Cu, Fe, Mn or Zn in contrast to non-essential TEs (e.g. Storelli
et al., 2001; Guendouzi et al., 2017). The difference of TE concentration
in sea urchin gonads between the two genders has been little explored
(e.g. Bayed et al., 2005; Soualili et al., 2008). Zn is an essential element
in gametogenesis (Unuma et al., 2007), which explains the high content
found in the gonads Unuma et al. (2007). Ovogenesis requires greater
amounts of Zn than spermatogenesis, which is why concentrations are
higher in females than in males. According to Unuma et al. (2007), the
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Table 1
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Mean (mg.kg~! dw + SE) trace elements concentrations in the gonad of Paracentrotus lividus according to the season. abed Dissimilar letters denote significant
differences between groups (p-value < 0.05). p-value: < 0.05%; < 0.01**; < 0.001***,

Winter Spring Summer Autumn p-value

Ag 0.112 = 0.018" 0.159 = 0.072° 0.353 = 0.101% 0.187 * 0.037° 0.694

Al 32.888 + 3.722% 16.608 + 1.757° 9.637 * 0.954° 22.936 * 2.802% < 0.0001***
As 37.788 + 1.845% 32.083 = 1.723% 52.576 * 3.061° 53.253 * 2.685" < 0.0001***
Ba 0.305 = 0.026" 0.238 = 0.034° 0.116 = 0.008° 0.380 = 0.092° < 0.0001***
cd 0.239 *+ 0.019° 0.240 *= 0.020% 0.285 + 0.022% 0.344 + 0.027° 0.0120*

Co 0.370 = 0.042° 0.295 = 0.025% 0.302 = 0.024% 0.504 + 0.043" < 0.0001***
Cr 1.204 + 0.226" 0.891 = 0.101° 0.850 = 0.084" 1.533 + 0.193" < 0.0001***
Cu 3.893 + 0.068" 2.949 + 0.085" 1.869 + 0.041¢ 2.731 + 0.091° < 0.0001%***
Fe 92.708 = 12.112° 60.204 + 4.489% 52.695 + 3.371° 117.273 * 12.784° < 0.0001%**
Li 0.330 = 0.008" 0.239 = 0.010° 0.131 = 0.004° 0.324 = 0.014° < 0.0001***
Mn 2.264 + 0.104" 1.033 + 0.060° 0.568 * 0.034° 1.281 + 0.101¢ < 0.0001***
Mo 0.343 = 0.014% 0.311 * 0.021* 0.241 + 0.022° 0.346 = 0.032° < 0.0001***
Ni 1.735 + 0.808" 0.748 = 0.157° 0.549 * 0.073% 2.143 + 0.335° < 0.0001***
Pb 0.212 = 0.036" 0.131 = 0.009" 0.109 + 0.008" 0.223 = 0.026" < 0.0001***
Sb 0.169 * 0.026" 0.049 = 0.006" 0.036 + 0.003° 0.074 + 0.004¢ < 0.0001%***
Se 1.990 + 0.066" 1.680 + 0.057° 1.627 = 0.041° 2.082 * 0.069" < 0.0001***
Sn 0.019 = 0.002° 0.016 = 0.002° 0.009 = 0.001° 0.020 = 0.003" < 0.0001***
18) 0.991 * 0.080% 0.838 * 0.067% 0.872 + 0.071* 1.508 * 0.125° < 0.0001***
\Y% 3.093 + 0.217% 3.133 *= 0.269° 3.353 + 0.289% 5.108 + 0.366" < 0.0001***
Zn 210.167 * 24.076" 112.792 + 14.137° 144.450 + 14.711™ 234.408 + 35.264¢ < 0.0001***
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Fig. 3. Trace Element Pollution Index (TEPI) variation of the eight sites (A:
Ajaccio; B: Bonifacio; C: Calvi; SF: Saint-Florent; 1: reference site; 2: impacted
site) according to the season (HCL: High Contamination Level, MCL: Medium
Contamination Level, LCL: Low Contamination Level).

Major Yolk Protein (MYP) transports the assimilated Zn from the di-
gestive tract to the gonads.

Although non-essential TE are expected to have no physiological
role, we have evidence however, differential accumulation of those
non-essential TE between male and female. They probably have a
strong affinity with certain essential TEs and are thus bioaccumulated
with them. When there are several TEs in an environment, antagonistic
or synergistic effects can indeed occur (Kabata-Pendias and Pendias,
2001). Moreover, positive inter-elemental relationships have been ob-
served: Cr-V; Cr-Ni; Cr-U are among the strongest combinations. Ni, U
and V could be bioaccumulated with Cr, an essential element, in male
gonads. A high level of some non-essential TEs can reduce sperm fer-
tility or increase the frequency of embryo malformations that can lead
to death (Pagano et al., 1986; Soualili et al., 2008).

The population in Corsica increases considerably during summer
with intense maritime and recreational activities (INSEE, 2018). It is
therefore surprising that the contamination levels are lowest this
season. Furthermore, studies indicate that transfers inside the echinoid
occur on a relatively short time scale (typically of the order of a week)
(e.g. Miramand et al., 1982; Warnau et al., 1996); These low con-
centrations of trace element in summer cannot be due to delays in
gonad contamination. An increase in the gonad weight of Paracentrotus
lividus is correlated with a decrease in TE concentrations, and inversely.
There are two main cell populations in the germinal epithelium of the
sea urchin gonad: germinal cells and somatic cells called nutritive

phagocytes (Holland and Holland, 1969; Byrne, 1990; Walker et al.,
2005). Assuming that the TEs accumulate mainly in the somatic cells
and not in the germinal cells (Sellem and Guillou, 2007), a dilution of
the TEs is observed during gametogenesis and a concentration during
spawning (Guendouzi et al., 2017). The spawning period varies by site
and is influenced by environmental factors such as temperature, depth,
photoperiod, quality and abundance of food (Fenaux, 1968; Byrne,
1990; Lozano et al., 1995; Guettaf, 1997). The higher gonad weight is
probably due to gametogenesis and its decrease to potential spawning.
TE concentration tend to decrease in spring and summer when gona-
dosomatic indices are highest and increase in autumn and winter when
spawning has occurred.

The size of sea urchin gonads is not necessarily related to the pro-
gress of gametogenesis alone. They also grow because somatic cells, the
nutritive phagocytes, store extensive nutrient reserves before gameto-
genesis begins (Bottger et al., 2004). Before the formation of gametes,
nutritive phagocytes could store reserves and accumulate TEs, which
explains the significant positive correlation between the concentration
of Zn and the gonadosomatic index. About 80% of the total proteins in
the gonads, at the stage of pre-gametogenesis and the renewal of nu-
trient phagocytes after spawning, are in both genders MYP, the protein
involved in the transport of Zn in the gonads (Unuma et al., 2003;
Unuma et al., 2007). It is also worth noting that the TE concentration is
higher during the autumn, the period characterized by the refilling of
nutrient reserves in the nutritive phagocytes (Walker et al., 2013). This
supports the hypothesis that TEs are accumulated in nutritive phago-
cytes.

The temporal variations in TEs concentration are related to the sea
urchin's physiological variations. Thus, to monitor TE contamination in
the sea urchin gonads, it would be more appropriate to avoid the
spawning period. It’s also important to take into account the sex of
individuals because some TEs are naturally more abundant in males or
females. The role of TEs in sea urchins needs to be studied further in
order to better interpret their dynamics and their potential con-
sequences for the species.

In addition to physiological factors, other parameters such as food
may be involved in these temporal variations. Nutritive phagocytes
develop when individuals are well nourished during the pre-gameto-
genesis and nutrient phagocyte replacement phase (Walker and Lesser,
1998). According to Schlacher-Hoenlinger and Schlacher. (1998), sev-
eral macrophyte species have levels of some TEs which have a marked
seasonality with lower values in summer and higher in winter.
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taking into account the physiological state. It is preferable to combine
the TE analysis and histology in order to know the physiological stage
of the sea urchins and better assess the contamination. It is also ne-
cessary to consider these results carefully because despite the analysis
of a large number of TEs, many other contaminants are not taken into
account.

To verify the accuracy of these results, it is of interest to compare
them with other bioindicators such as Mytilus galloprovencialis
(Lamarck, 1819) or Posidonia oceanica. The TEs measured at high
concentrations at the different sites of this study were also observed in
these bioindicators, in particular for Saint-Florent 2 (e.g. Kantin and
Pergent-Martini, 2007; Lafabrie et al., 2007; Lafabrie et al., 2008;
Richir et al., 2015). High concentrations of Ag were observed in Posi-
donia oceanica at Ile Rousse in Richir et al. (2015), certainly originating
in the same type of source as for the contamination at Saint-Florent 1. In
view of these results, the sea urchin Paracentrotus lividus proves to be a
good bioindicator and could complement the use of other bioindicators.
An ecotoxicological study of this sea urchin would provide information
on the contamination at sea and on the influence of the trophic chain
and substrates, while the mussel would determine the contamination in
the water column, and Posidonia oceanica the contamination on sub-
strate and in the first link of the trophic chain (Richir and Gobert,
2014). In addition, depending on the sampling period, one or other of
these bioindicators would be more suitable. The spawning period would
be avoided for the sea urchin and the mussel while it would be more
interesting to study Posidonia oceanica in the spring (Kantin et al.,
2015).

5. Conclusion

This study highlights, once again, the need to consider biotic factors
(gender, reproductive activity) and abiotic factors (physical and che-
mical characteristics of seawater or food) in the use of sea urchins as
bioindicators. Differences in concentration were observed, according to
sex, for 11 TEs. This would probably be due to gametogenesis and to
antagonistic or synergistic effects between TEs. It is necessary to extend
our knowledge to assess the effects of these contaminants on the sea
urchin populations. There are temporal variations marked by higher TE
concentrations in autumn and winter and, conversely, lower con-
centrations during the summer season. A dilution effect is observed on
the TE content in the gonads during gametogenesis. The use of gonads
should be avoided during the spawning period in order to avoid biased
comparisons. A difference in concentration of TEs is observed between
the different sites. Due to the influence of the soil and the former as-
bestos mine at Canari, the Saint-Florent area is the most contaminated.
On the basis of these results, Paracentrotus lividus appears as an inter-
esting tool for achieving a better understanding of anthropic pressures.
Associated with other bioindicators such as Mytilus galloprovencialis or
Posidonia oceanica, the study of its ecotoxicological properties would
enable managers to act at source and reduce degradation or improve
the ecological quality of water bodies. In addition, it seems that no
previous study of the sea urchin, taking all these factors into account,
has analyzed so many TEs in a Mediterranean region. These results are
therefore essential and can serve as a reference state for the
Medirerranean sea.
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