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1 This whitepaper was submitted to the Exoplanet Science Strategy call in March 2018 and is presented here without 
modification. An updated version of Fig. 2 and associated detailed description can be found in ref (21). 
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1 Introduction 
The Wide Field Infrared Survey Telescope (WFIRST) Coronagraph Instrument (CGI) is a high-

contrast imager and integral field spectrograph that will enable the study of exoplanets and 
circumstellar disks at visible wavelengths [Mennesson and Kasdin white papers]. Ground-based 
high-contrast instrumentation is fundamentally limited to flux ratios of 107-8 at small working 
angles, even under optimistic assumptions for 30m-class telescopes (1; 2). There is a strong 
scientific driver for better performance, particularly at visible wavelengths [Seager white paper].  
Future flagship mission concepts aim to image Earth analogues with visible light flux ratios >1010 
[Crill, HabEx, and LUVIOR white papers; (3)]. CGI is a critical intermediate step toward that goal, 
with a predicted 108-9 flux ratio capability. CGI achieves that capability through improvements 
over current ground and space systems in several areas:  

• Hardware: space-qualified (TRL9) deformable mirrors, detectors, and coronagraphs 
• Algorithms: wavefront sensing and control; post-processing of integral field spectrograph, 

polarimetric, and extended object data 
• Validation of telescope and instrument models at high accuracy and precision 
This white paper describes the current status of key technologies and presents ways in which 

performance is likely to evolve as the CGI design matures. WFIRST is now in Phase A; this paper 
is not intended as a definitive document on the final instrument configuration or performance. 

2 Key CGI components 
• Two science cameras (cannot be used simultaneously):  

o Imager: 10” FOV; direct imaging or polarimetry; 10% bandpass filters 
o Integral Field Spectrograph (IFS): 2” FOV; R~50 spectrum; 18% bandpass filters. 
o Electron Multiplying CCDs (EMCCDs) for improved signal-to-noise on faint objects. 

• Visible to very near infrared wavelengths:  
o 10% bandwidth: 575nm and 825nm; 18% bandwidth: 660nm and 760nm  
o 1% bandwidth Hα filter for IFS calibration and imaging is under consideration. 

• Starlight suppression with interchangeable coronagraphic masks2: 
o Hybrid Lyot Coronagraph (HLC): 360dgr FOV, 3-9λ/D, optimized for imaging. 
o Shaped Pupil Coronagraph (SPC) “bowtie”: 2 x 65dgr FOV, 3-9λ/D, optimized for the 

broader IFS bandpasses.  
o SPC “disk”: 360dgr FOV, 6.5-20λ/D, optimized for imaging.  

• Wavefront sensing and control at unprecedented levels of precision: 
o Dedicated Low Order Wavefront Sensor (LOWFS) for Zernike modes 2-11. 
o High Order Wavefront Sensing (HOWFS) using science camera images. 
o Two high-actuator count deformable mirrors (DMs) for phase and amplitude control. 

 
The current budget allows for fully commissioning three observing modes: 

575nm/HLC/imaging, 760nm/SPC bowtie3/IFS, and 825nm/SPC disk/imaging. These modes will 
                                                        
2 The use of an external occulting “starshade” with WFIRST is under consideration [Ziemer WP], pending guidance 
from the next Decadal Survey. 
3 Only one SPC bowtie orientation is included in the current baseline. Installation of the remaining two SPC bowtie 
masks, without full pre-flight commissioning, is under consideration.  
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be tested with CGI flight hardware and software. Other combinations of filters and coronagraphic 
masks are possible and will be exercised at the JPL WFIRST CGI engineering testbed, though they 
will not be fully tested with flight hardware and software prior to launch, due to CGI Integration 
and Test schedule and budget constraints. 

 
Figure 1: CGI schematic diagram. 

3 Coronagraph Designs 
CGI has chosen two families of coronagraphs, Hybrid Lyot and Reflective Shaped Pupil, on 

the basis of their maturity, expected performance with the WFIRST obscured pupil, and low 
sensitivity to aberrations (4; 5). New fabrication techniques have been implemented to address 
the tight optical tolerances (6; 7). The designs must be robust against effects that were not 
significant at the contrast levels achieved by previous-generation coronagraphs. For example, 
accommodating the secondary mirror support struts pushes designs to more difficult trades 
between performance metrics such as IWA, throughput, bandwidth, contrast, field-of-view, and 
aberration sensitivities, relative to designs for unobscured apertures. Additionally, polarization-
dependent aberrations and telescope tip/tilt jitter limit starlight suppression at small working 
angles; ongoing work is evaluating soft-edge focal plane masks to reduce sensitivity to these 
effects.  Future flagship mission concepts are already learning from CGI experience in areas 
including: coronagraph designs for complex apertures, mirror coatings to minimize polarization-
dependent aberrations, and lower-vibration spacecraft pointing control systems. 

4 Wavefront Sensing and Control  
State of the art ground-based adaptive optics systems control the incoming wavefront to 

tens of nanometers RMS. CGI must stabilize the wavefront to tens of picometers RMS, and future 
exo-Earth imaging missions aim for <10pm RMS. This level of wavefront control is infeasible even 
on future 30m-class ground-based facilities [eg: (1; 2)]. The surest path to imaging Jovian and 
Earth analogues in reflected visible light is to move to a stable, space-based platform.  

4.1 Low Order Aberrations 
Tip/tilt errors will originate from slow (sub-Hz) observatory pointing drift and from 

structural vibrations excited by the telescope reaction wheels (1-100Hz). Longer timescale 
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thermal drifts in the spacecraft will be the primary contributors to errors in other low order 
modes. To compensate, CGI will have a dedicated Low Order Wavefront Sensor and Control 
system (LOWFS/C; (8)) for Zernike modes 2-11. The Zernike phase contrast wavefront sensor uses 
rejected starlight reflected by the coronagraph occulting masks. A fast steering mirror will correct 
tip/tilt jitter at frequencies ≲20Hz; other modes will be corrected at 5mHz with a combination of 
a dedicated focus corrector and the DMs. LOWFS images will be downlinked at full frame rate 
(1kHz) for use in post-processing and in telescope model validation to inform future missions. 
 Lab tests of the LOWFS/C have shown promising performance, with several important 
tests remaining. On bright sources (V = -5), with disturbances approximating the anticipated 
telescope error power spectrum, the engineering testbed has demonstrated tip/tilt control to 
better than 0.5mas RMS and focus sensing at 10pm accuracy with closed-loop rejection of 
20dB/decade (9). Future work will verify sensing and control of other modes. In the coming year, 
fainter (V=5) sources will be tested; models predict sensing on V<6 stars will be photon noise-
limited. Finally, we note that LOWFS optical alignment tolerances require thermal regulation to 
better than 0.1K over tens of hours; future observatories will need even more stringent controls. 

4.2 Higher Order Aberrations 
For higher-order modes, CGI will employ focal-plane wavefront sensing, using science 

camera images themselves; corrections will be applied to the DMs. The baseline wavefront 
sensing and correction scheme is pairwise probing and electric field conjugation (10; 11). This 
scheme has been demonstrated in the engineering testbed for both the SPC bowtie and HLC 
modes (12; 13), achieving contrasts below 5x10-9 and 1x10-9, respectively.  More recent tests 
have demonstrated that the control scheme may be used while flight-like tip/tilt jitter and low-
order drift are injected upstream and corrected by the LOWFS/C (9). Future tests will verify 
performance of newer HLC and SPC designs on fainter (V=5) sources and with polarization-
dependent low-order aberrations. One remaining challenge is instrument-model mismatch, 
which slows wavefront correction convergence and limits achievable contrast. Work is ongoing 
to improve characterization of as-built coronagraph masks, optics, and DM actuator influence 
functions. New algorithms that update the instrument model in situ, using feedback from 
previous iterations, are another promising path for improvement (14).  

4.3 Deformable Mirrors  
Achieving an annular dark hole requires two deformable mirrors to correct both the 

amplitude and phase components of the complex electric field (15; 16). WFIRST will place one 
DM at a pupil image plane and a second out-of-plane. The DMs, from Xinetics, each have 48x48 
electrostrictive actuators and were chosen for their relatively high level of technology readiness.  

Because CGI high-order wavefront sensing is photon-starved, the DMs will be tuned on a 
bright reference star before slewing to the science target. The DMs are required to remain stable 
throughout a ~10hr science sequence, without active control of dynamic optical aberrations 
higher than the Zernike modes sensed by the LOWFS. The CGI DMs must therefore be calibrated 
and stabilized to levels far exceeding those of ground-based applications. A three-pronged 
approach of precise thermal control (~3mK stability), improved commanding (accounting for 
long-timescale actuator settling), and actuator-by-actuator calibration (gains, stability, and 
surface influence profiles) is the subject of ongoing effort. 
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5 Detector development 
Both science cameras and the LOWFS will use Electron Multiplying CCDs (EMCCDs) (17). 

These devices amplify the photoelectron signal at readout, giving superior signal-to-noise in the 
very low flux regime, relative to classical CCDs. EMCCDs have not flown in space-based science 
instruments; information from CGI on detector performance, systematics, and degradation over 
multi-year timescales is essential for formulating future missions. The imager and IFS detectors 
will typically operate in high-gain “photon counting” mode, where the frame time is set so that 
each pixel has at most one photoelectron. This bypasses the effect of EM gain uncertainty (the 
“extra noise factor”) and maintains the effective quantum efficiency of the detector. Frame times 
<100s also minimize contamination from cosmic rays, which are a significant noise source.  

Ongoing work is addressing several hardware and software challenges. Detector 
degradation from high energy particle damage is a concern for operations beyond the initial 18 
month technology demonstration period. Damaged pixels can have both higher dark current and 
more “charge traps;” the latter lead to lower effective detector quantum efficiency. Additionally, 
large signals, such as cosmic rays, induce “tails” of charge in adjacent pixels during high-gain read; 
it is estimated that this effect could contaminate 10-20% of pixels in photon counting mode. 
Currently, these effects are the limiting factors for IFS sensitivity. JPL is iterating with Teledyne-
e2v to produce new devices that address each of these effects. New devices will be tested prior 
to PDR, including a radiation test campaign. Additionally, CGI will build on post-processing 
strategies, pioneered on HST, for mitigating the impact of cosmic rays and charge traps (18). 

6 Integral Field Spectroscopy 
 The IFS will enable the first demonstrations of atmosphere spectral retrieval at very high 
(>108) flux ratios, providing system-level scientific operations experience to benefit future 
flagship missions. The R = 50 spectra will also support the mission objective of validating 
integrated observatory and instrument models by capturing the chromatic behavior of the 
speckle noise floor in a new contrast regime. The prioritized spectroscopy demonstration filter is 
an 18% bandpass centered at 760nm; however, the IFS can operate in a Δλ/λ = 20%  
instantaneous bandpass anywhere in the wavelength range 600—1000 nm. 

7 Post-processing 
Lessons learned from existing high-contrast instrumentation provide a solid foundation 

for processing CGI data. Techniques such as angular and reference differential imaging (ADI, RDI) 
will still be critical. Current baseline observing scenarios include both two-roll imaging (limited by 
telescope sun angle constraints) as well as target-reference chopping. In this new very high-
contrast regime, speckles are affected by both phase and amplitude aberrations. Hence, existing 
tools that hinge on phase-only dependence must be updated (19). Additionally, aberrations will 
be polarization-dependent; therefore, polarimetry will only be possible for targets that are much 
brighter than the speckle floor, unless new algorithms are invented.    

Algorithm development with realistic simulated images will be a high priority during 
Phase B. Challenges include: spectral retrieval in the presence of detector artifacts and other 
systematics, as well as reconstruction of extended, low surface brightness features in both polar-
ized and unpolarized light. Incorporating LOWFS and telescope telemetry, including tracking the 
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star position under the corona-
graph and creating physically 
motivated modal basis sets for 
PSF subtraction, is an area of 
active research. 

8 Performance Prediction 
Validating performance of 

CGI pre- and post-launch will 
heavily rely on comparison to 
simulation. Good agreement has 
been demonstrated for lab tests 
of the SPC/IFS mode in several 
metrics: raw contrast, HOWFS/C 
convergence rate, and key 
contrast stability sensitivities (20). 
Future work will improve model 
predictions for other operational 
modes, for new wavefront control 
schemes, and for other, more 
flight-like, configurations. 

Figure 2 presents model predictions for CGI imaging and IFS sensitivity, based on current 
lab-validated performance of the coronagraphs, wavefront control, and detectors4. Telescope 
vibration, aberration, and thermal environments predicted by integrated modeling are assumed; 
model uncertainty factors of unity are used throughout. Shot noise from the planet, residual 
stellar PSF, zodi, and exo-zodi is included. Until post-processing algorithms are more mature, a 
conservative scenario is used: simple roll/reference image subtraction with an additional factor 
of two gain from the application of all other post-processing algorithms.  
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Figure 2: Predicted CGI performance on a V=5 star, in the 
context of known giant planets and current instrumentation. 
See (21) for a description of assumptions and data. 
 


