
The Smart Grids lab at the 
University of Liège 

January 22nd, 2020 @ Parliament of Wallonia


Professor Damien Ernst


Presentation by Dr Raphaël Fonteneau



Our goal
Developing AI solutions 
for  the future of our energy 
systems.

· From macro to micro power grids, and back
· From electricity, to sector coupling, using AI

The Smart Grids lab
Prof. Damien Ernst







Outline

Microgrids, energy communities & distribution networks 

Global grid and renewable resource complementarity 

Sector coupling 

Other applications & research in AI



From a « micro » point of view



Multiple possible configurations

electrical parts of the network, di↵erent levels of modeling are possible. Given the
span of this master thesis, we only consider the low voltage part of the distribution
network, namely a feeder starting from the MV/LV transformer. Moreover, we will
adopt for transformers and lines of the low-voltage grid a level of modeling usually
considered in transmission network for studying voltage problems. This level of
modeling assumes that the three-phases are balanced. As a result, only one line
is required for modeling the di↵erent phases. Note that this assumption should
probably be revised in future work. Indeed, low-voltage distribution networks are
known for not being well-balanced, since residential loads are usually single phase.
Houses are often also only connected to a single phase, as mentioned in the Electric
Power Distribution Handbook [16]. Furthermore, PV panels under 5 kVA are often
also only connected to a single phase [9]. Figure 2.1 gives a simple representation of
the network studied in this master thesis. Note that we will assume throughout this
manuscript that the thermal limit of this network can never be reached.

In the subsequent subsection, we detail all the other modeling assumptions.
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Figure 2.1: Graphic representation of the test network.

2.1.1 Equivalent for the higher voltage system

The voltages and the currents in the low-voltage grid obviously depend on the char-
acteristics of the power system as seen from the MV/LV junction. We model the
power system that comes atop of the MV/LV transformer and the transformer itself
by a Thévenin equivalent, that is, our test network is connected to an infinite bus —
whose voltage is the one from the Thévenin equivalent V1 — trough an impedance
Z12. An infinite bus is a node whose voltage magnitude stays constant. Additionally,
this voltage is assumed to always oscillate at the nominal frequency. When doing
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• �t [kW] 2 R+ is the electricity generated locally by the photovoltaic installation, we have:

�t = ⌘
PV

t
x
PV

t
it ; (33)

• dt [kW] 2 R denotes the net electricity demand, which is the difference between the local consump-
tion and the local production of electricity:

dt = ct � �t ; (34)

• �t [kW] 2 R represents the power balance within the microgrid, taking into account the contribu-
tions of the demand and of the storage devices:

�t = �p
B

t
� p

H2
t

� dt . (35)

These quantities are illustrated in a diagram of the system in Figure (1), which allows for a more intuitive
understanding of the power flows within the microgrid.
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Figure 1: Schema of the microgrid featuring PV panels associated with a battery and a hydrogen storage
device.

At each time step t 2 T , a positive power balance �t reflects a surplus of production within the
microgrid, while it is negative when the power demand is not met. As the law of conservation of energy
requires that the net power within the microgrid must be null, compensation measures are required when
�t differs from zero. In the case of a connected microgrid, this corresponds to a power exchange with
the grid. In the case of an off-grid system, a production curtailment or a load shedding is required. The
instantaneous operational revenues we consider correspond to the financial impact of a surplus or lack
of production. The reward function ⇢t is a linear function of the power balance �t and, because the
price � at which the energy surplus can be sold to the grid usually differs from the retail price k to buy
electricity from the grid, the definition of the reward function at time step t 2 T depends of the sign of
�t:

⇢t =

(
� �t�t if �t � 0 ,

k �t�t otherwise.
(36)

Using Equations (33), (34), and (35), the reward function can be expressed as a function of the system
variables:

⇢t =

(
� (�p

B

t
� p

H2
t

� ct + ⌘
PV

t
x
PV

t
it) �t if � p

B

t
� p

H2
t

� ct + ⌘
PV

t
x
PV

t
it � 0 ,

k (�p
B

t
� p

H2
t

� ct + ⌘
PV

t
x
PV

t
it) �t otherwise.

(37)

3 Optimisation

In this section, we detail how to implement the LEC version of Problems (1), (2), and (3), to obtain
an optimal solution using mathematical programming techniques. Even though the formalization of the
problem includes non-linear relations (e.g. Equations (22), (23), and (37)), we show how to obtain a linear
program by using auxiliary variables. The presented approach assumes that the following conditions are
met:
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FULLY OFF-GRID MICROGRID

For each storage systems included in the microgrid :

State system variable Decision making process

Challenge : Real-time balancing of several storage systems under uncertainties.

DATA

• Annual solar irradiance in Belgium ;

• Daily consumption pattern (18 kWh) ;

• Microgrid size.

INCENTIVES

• Load (e.g. house) proximity ;

• Drop in the cost of PV panels.

LINEAR DYNAMICS

Variables

8t 2 {1 . . . T},� 2 ⌃, T 2 N :

• a�,+t , a�,�t ! Storage system � actions ;

• s�t = s�(t�1) + a�,�
t�1 + a+,�

(t�1), s
�
0 = 0 !

Storage system � state ;

• Ft = dt �
P
�2⌃ (a

+,�
t
⌘� + ⌘�a�,�

t ) !
Power cut. dt = prodt � const is the net de-
mand. ⌘� is storage system � efficiency.

Objective function (operational costs)

Levelized Cost of Energy :

LEC =

PT
t=1

�
P
 2 k

 
t F

 
t

(1+r)y
0 +I0

Pn
y=1

✏y
(1+r)y

where

• I0 ! Initial investment cost ;

• k t F
 
t ! Cost of consumption not met for

load  2  at time t 2 {1 . . . T}.

Linear programming

Minimization of objective function with
contraints related to the dynamics !

Optimization of planning strategies given a
complete scenario.

GOAL

Automated extraction of smart online planning
agents using imitative learning.

IMITATIVE LEARNING

Principle : learning near-optimal behavior with
optimal sequences of actions.

• Compute optimal sequences of actions from
production and consumption scenarios (lin-
ear programming) ;

• Build smart online planning agent with op-
timal sequences (machine learning).

FUTURE WORK

• Benchmarking of others machine learning
structures/algorithms ;

• Testing on others microgrids (e.g. con-
nected on main network) ;

• Transfer learning (i.e. adaptation of an ex-
isting strategy for new microgrids).

RESULTS

Discharge/recharge storage systems in
increasing order of efficiency.

LEC (e/ kWh) :

Expert Agent Novice
0.32 0.42 0.6

LEARNING STRUCTURE

Forest of regression binary trees.

8j 2 {1, . . . , N}, 8t 2 {0, T � 1},
��QL

j,t

��  QL
j,max

Also, by convention, we assume that the active power injected into the network needs to be greater
than 0, i.e.:

8j 2 {1, . . . , N}, 8t 2 {0, T � 1}, PL
j,t � 0.

• A quarter-hourly electricity production from a battery; the battery is also modeled using two time
series, corresponding to the active and the reactive power that are injected into the network at time
t 2 {0, . . . , T � 1}. We denote by PB

j,t and QB
j,t the active and reactive power it reinjects into the

network at time t. We assume that these different values are bounded.

8j 2 {1, . . . , N}, 8t 2 {0, T � 1},�PB
j,char  PB

j,t  PB
j,dis.

8j 2 {1, . . . , N}, 8t 2 {0, T � 1},
��QB

j,t

��  QB
j,dis.

Also, by convention, we assume that the active power injected into the network needs to be greater
than 0, i.e.:

8j 2 {1, . . . , N}, PB
j,dis � 0, PB

j,char � 0.

Intuitively, PB
j,char corresponds to an upper bound on the charging power, and PB

j,char corresponds
to an upper-bound on the discharging power. In addition to this, each battery is characterized by a
capacity parameter CB

j 2 R [kWh].

We assume that each house is connected to the low-voltage feeder. at node number j.
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Figure 2.2: Electrical model of the network.

Other Assumptions related to the PV installation. A PV installation is made of two key elements: PV
panels that generate DC current and a power converter that transforms this DC current into an AC one,
namely an inverter. Note that we assume here that the electrical impedance of the cable connecting the
power converter to the feeder of the low-voltage network is equal to zero.
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Reinforcement 
Learning

4.3 Training
By starting with a random Q-network, we perform at each time step the update given in Eq. 1
and, in the meantime, we fill up a replay memory with all observations, actions and rewards
using an agent that follows an ✏-greedy policy s.t. the policy ⇡(s) = maxa2AQ(s, a; ✓k)
is selected with a probability 1 � ✏, and a random action (with uniform probability over
actions) is selected with probability ✏. We use a decreasing value of ✏ over time. During the
validation and test phases, the policy ⇡(s) = maxa2AQ(s, a; ✓k) is applied (with ✏ = 0). As
discussed in François-Lavet et al. (2015), we use an increasing discount factor along with a
decreasing learning rate through the learning epochs so as to enhance learning performance.

4.4 Results and discussions
We consider a robust microgrid sizing provided by François-Lavet et al. (2016). The size
of the battery is xB = 15kWh, the instantaneous power of the hydrogen storage is xH2 =
1.1kW and the peak power generation of the PV installation is xPV = 12kWp. We first run
the base case with minimal information available. The selected policy is based on the best
validation score. The typical behaviour of the policy is illustrated in Figure 2 (test data).
Since the microgrid has no information about the future, it builds up (during the night)
a sufficient reserve in the short-term storage device so as to be able to face the next day
consumption without suffering too much loss load. It also avoids wasting energy (when the
short term storage is full) by storing in the long-term storage device whenever possible.

(a) Typical policy during summer (b) Typical policy during winter

Figure 2: Computed policy with minimal information available to the agent. H action = 0
means discharging the hydrogen reserve at maximum rate; H action = 1 means
doing nothing with the hydrogen reserve; H action = 2 means building up the
hydrogen reserve at maximum rate.

We now investigate the effect of providing additional information to the agent. We report
in Figure 3(a) the operational revenue on the test data M

⇡q
y for the three cases as a function

of a unique percentage of the initial sizings xB, xH2 , xPV . For each configuration, we run the
process five times with different seeds. We first observe that the dispersion in the revenues
is higher for small microgrids: the operation being more challenging in such cases, small
differences in the decision process have a larger impact. Second, it can be observed that any
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From	supervised	learning	to	reinforcement	learning

Supervised	learning	techniques	(in	particular	
(deep)	convolutional	networks)	may	be	used	
as	 a	 block	 in	 a	 more	 complex	 structure,	 in	
particular	 in	 Dynamic	 Programming	 (DP)	 or	
Model	Predictive	Control	(MPC)	schemes.	

This	 connects	 to	 reinforcement	 learning,	 an	
area	 of	 machine	 learning	 originally	 inspired	
by	 behaviorist	 psychology,	 concerned	 with	
how	software	agents	ought	to	take	actions	in	
an	 environment	 so	 as	 to	 maximize	 some	
notion	of	cumulative	reward.	

Deep	reinforcement	learning	combines	deep	
learning	 with	 reinforcement	 learning	 (and,	
consequently,	in	DP	/	MPC	schemes).
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Agent

Environment

ActionReward

neural network (consumption and production respectively);
(ii) the case where information on the season is provided:

st =
⇥
[ct�hc , . . . , ct�1], [�t�hp , . . . ,�t�1], sMG

t , ⇣s
⇤

where ⇣s is the smallest number of days to the solar solstice (21st of June) which is then
normalized into [0,1];
(iii) the case where accurate production forecasting is available:

st =
⇥
[ct�hc , . . . , ct�1], [�t�hp , . . . ,�t�1], sMG

t , ⇣s, ⇢24, ⇢48
⇤

where ⇢24 (resp. ⇢48) is the (known) solar production for the next 24 hours (resp. 48 hours).

4.1 Neural network architecture

We propose a Neural Network (NN) architecture where the inputs are provided by the state
vector, and where each separate output represents the Q-values for each discretized action.
Possible actions a are whether to charge or discharge the hydrogen storage device with the
assumption that the batteries handle at best the current demand (avoid any value of loss
load whenever possible). We consider three discretized actions : (i) discharge at full rate
the hydrogen storage, (ii) keep it idle or (iii) charge it at full rate.

The NN processes time series thanks to a set of convolutions with 16 filters of 2 ⇥ 1
with stride 1 followed by a convolution with 16 filters of 2⇥ 2 with stride 1. The output of
the convolutions as well as the other inputs are then followed by two fully connected layers
with 50 and 20 neurons and the output layer. The activation function used is the Rectified
Linear Unit (ReLU) except for the output layer where no activation function is used.

Input #1

Input #2

Input #3

...

Fully con-

nected layers
Convolutions Outputs

Figure 1: Sketch of the structure of the NN architecture. The NN processes time series
thanks to a set of convolutional layers. The output of the convolutions as well
as the other inputs are followed by fully connected layers and the ouput layer.
Architechtures based on LSTMs instead of convolutions obtain very close results
and the reader is welcome to experiment with the source code.

4.2 Splitting times series to avoid overfitting

We consider the case where the agent is provided with two years of actual past realizations
of (ct) and (�t). In order to avoid overfitting, these past realizations are split into a training
environment (y = 1) and a validation environment (y = 2). The training environment is
used to train the policy while the validation environment is used at each epoch to estimate
how well the policy performs on the undiscounted objective My and selects the final NN. The
final NN is then used in a test environment (y = 3) to provide an independent estimation
on how well the policy performs.
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where � 2 [0, 1) is the so-called discount factor. An optimal
policy is a policy ⇡⇤ such that, for any policy ⇡,

8s 2 S, J⇡
⇤
(s) � J⇡(s) .

Such an optimal policy ⇡⇤ is scored with an optimal return
J⇤(s) = J⇡

⇤
(s) which satisfies the Bellman optimality equa-

tion:

8s 2 S,
J⇤(s) = max

a2A

X

s02S
T (s, a, s0) (R(s, a, s0) + �J⇤(s0)) .

Finding an optimal policy can thus be theoretically achieved
by behaving greedily with respect to the optimal state-action
value function Q⇤ : S ⇥A! R defined as follows:

8(s, a) 2 S ⇥A,

Q⇤(s, a) =
X

s02S
T (s, a, s0) [R(s, a, s0) + �J⇤(s0)] .

One major difficulty in our setting resides in the fact that
the transition model T (·, ·, ·) is initially unknown and need
to be learned through interactions. This implicitly leads to a
trade-off between acting optimally with respect to the current
knowledge of the unknown transition model (exploitation) and
acting in order to increase the knowledge about the unknown
transition model (exploration).

B. Model-based Bayesian Reinforcement Learning
Model-based Bayesian RL proposes to address the explo-

ration/exploitation (E/E) trade-off by representing the knowl-
edge about the unknown transition model using a probability
distribution over all possible transition models µ. In this
setting, an initial prior distribution b0 is given and iteratively
updated according to the Bayes rule as new samples of the
actual transition model are generated. At any time-step t, the
so-called posterior distribution bt depends on the prior dis-
tribution b0 and the history ht = (s0, a0, . . . , st�1, at�1, st)
observed so-far. The Markovian property implies that the
posterior bt+1:

bt+1 = P (µ|ht+1, b0)

can be updated sequentially:

bt+1 = P (µ|(st, at, st+1), bt) .

The posterior distribution bt over all possible models is called
“belief” in the Bayesian RL literature.

A standard approach to � theoretically � solve Bayesian
RL problems is to consider a BA-state z obtained by con-
catenating the state with the belief z = hs, bi and solving
the corresponding BA-MDP [17], [15]. In the following, we
denote by B the BA-state space. This BA-MDP is defined by
a transition function T given by:

8(z, z0) 2 B2, 8a 2 A,

T(z, a, z0) = P (z0|(z, a))
= P (b0|b, s, a, s0)E [P (s0|s, a)|b]
= 1{ht+1=(ht,a,s

0)}E [P (s0|s, a)|b]

and a reward function R given by:

8(z, z0) 2 B2, 8a 2 A, R(z, a, z0) = R(s, a, s0) .

A Bayesian optimal policy ⇡⇤ can be theoretically obtained
by behaving greedily with respect to the optimal Bayesian
state-action value function Q⇤:

8z 2 B, ⇡⇤(z) = argmax
a2A

Q⇤(z, a)

where 8z 2 B, 8a 2 A,

Q⇤(z, a) =
X

z0

T (z, a, z0) (R(z, a, z0) + �J⇤(z0)) .

Here, z0 are reachable belief state when taking action a in
belief state z and J⇤(z) is the Bayesian optimal return:

J⇤(z) = max
a2A

Q⇤(z, a) .

In this work, the goal is to take decisions that are near-
optimal in the Bayesian meaning, i.e. we want to find a policy
which is as close as possible as ⇡⇤.

C. Dirichet distribution-based BRL
One needs to define a class of distributions. A most usual

approach is to consider one independent Dirichlet distribution
for each state-action transition. We obtain a posterior b whose
probability density function is:

d(µ;⇥) =
Y

(s,a)2S⇥A

D
�
µ

s,a
;⇥(s, a, ·)

�

where D(·; ·) denotes a Dirichlet distribution, ⇥(s, a, s0) de-
notes the number of observed transitions from (s, a) 2 S ⇥A
towards every s0 2 S and ⇥(s, a, ·) denotes the vector of
counters of observed transitions:

⇥(s, a, .) =
h
⇥

⇣
s, a, s(1)

⌘
, . . . ,⇥

⇣
s, a, s(nS)

⌘i

and ⇥ is the matrix that contains all ⇥(s, a, .) s 2 S, a 2
A. In the following, we denote by b (⇥) such a Dirichlet
distribution-based posterior. The resulting posterior distribu-
tion b (⇥) satisfies the following well-known property:

E [P (s0|s, a)|b (⇥)] =
⇥(s, a, s0)P

s002S ⇥(s, a, s00)

and the Bayesian update under the observation of a transition
(s, a, s0) 2 S⇥A⇥S is reduced to a simple increment of the
corresponding counter:

⇥(s, a, s0) ⇥(s, a, s0) + 1 .

In such a context, the Bayesian optimal state-action value
function writes:

Q⇤(hs, b (⇥)i, a) =
X

s02S

⇥(s, a, s0)P
s002S ⇥(s, a, s00)

⇣
R(s, a, s0)

+�J⇤(hs0, b
�
⇥0

s,a,s0
�
i
⌘

where ⇥0
s,a,s0 is such that:

⇥0
s,a,s0(x, y, x

0) =

⇢
⇥(x, y, x0) + 1 if (x, y, x0) = (s, a, s0),

⇥(x, y, x0) otherwise.



The MeryGrid project

Figure 5.1: Aerial view2of the MeryGrid community. Companies A, B and C are respectively
CBV, Merybois and Merytherm.

second is Merybois with non-flexible load and PV panels, the third Merytherm, also with non-

flexible load, and a hydroelectric powerplant and the last entity is the battery.

We have access to the demand and renewable generation data that were measured with time

steps of 15 minutes during the year 2017 and we therefore use these data as demand and supply

orders in our simulations.

5.2 Description of the sharing policy

The sharing policy used in our simulations is a local market model managing the exchanges

within the community and with the main grid and sharing the profits among the members. It

was developed by Cornélusse et al. (2018) and was briefly presented in Chapter 4.

The proposed architecture consists of an internal local market based on the marginal pricing

scheme. The objective is to maximize the social welfare of the community by sharing efficiently

the resources. They consider as actors in the community the entities forming the community

and a community operator that acts as a benevolent planner. Collectively, the entities decide

both the quantity to trade among themselves within the community, and the quantity to trade

outside of the community directly with the main grid. This is illustrated in Fig. 5.2.

2Source: https://les-smartgrids.fr/merygrid-premier-micro-grid-belgique/
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The MeryGrid project

The microgrid is located in Méry, on the 
banks of the river Ourthe in the Liège 
area, and links three partner companies:


• MeryBois, a timber merchant equipped 
with a 60 kWp photovoltaic installation,


• MeryTherm, a company active in the 
thermal treatment of metals and 
equipped with a 200 kVA hydroelectric 
power station,


• CBV, active in industrial fans and 
consuming electricity, like the other 
two companies.


Internet

The site produces 1,200 MWh per year and consumes 800 MWh per year. It now features a 
lithium battery (capacity of 300 kWh and power of 600 kVA) and is connected to the 
distribution network managed by RESA via a single access point.



The MeryGrid project
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Simulating 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Figure 9: Evolution of the deployment of batteries.

electricity in order to consume it at another point in time rather than sell it straight
away. Under the NPvol scenario, more than 3000 KWh of batteries are installed while
under the NPcap scenario 5000 KWh of storage capacity is available. There are indeed
additional incentives to invest in storage when a capacity fee is imposed as batteries
helps to reduce the electricity bill by shaving the peak demand. Hence, as shown in
Figure 11, investing jointly in PV panels and in batteries helps decrease the relatively
larger tari↵ bill paid by traditional consumers which increases faster under the NPcap

scenario.

Overall we have that switching to a new metering technology that di↵erentiates
the price of imports and exports of electricity, as well as switching to distribution
tari↵s based partially on capacity components, allows for smoother investments in PV
installations and do not completely discourage the transition towards renewable energy
sources. In addition, and this is particularly true when capacity tari↵s are in place,
prosumers are also much more likely to invest in a storage device. Finally, it is important
to mention that the net-purchasing system o↵ers an additional degree of freedom by
allowing to adapt the selling price of electricity. We have considered in this case a
rather small selling price, set at the commodity price. By choosing a higher selling
price, it is possible to encourage more PV investments. However, this will be at the
expense of lower investments in storage devices and at an increasing unequal electricity
bill between prosumers and consumers.
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Figure 7: Evolution of the share of house-
holds with a PV installation.

Figure 8: Evolution of the installed capac-
ity of PV installations.

5.2 Net purchasing system

With the introduction of smart meters, the implementation of a net-purchasing system
is greatly facilitated. We consider two scenarios, a fully volumetric distribution tari↵
(NPvol), and a combined capacity and volumetric one (NPcap) with an equal contribu-
tion of the two components to the grid costs. In those scenarios, the tari↵ structure of
the former is the same as in scenario AsIf and, for the latter, as in scenario NMcap.

Under the two net-purchasing scenarios we consider, we observe in Figures 7 and
8 that they lead to a lower number of PV installations than under a net-metering
system. At the end of the 10 periods considered, we have that 79% and 85% of the
potential prosumers have become actual prosumers under theNPvol andNPcap scenarios
respectively. The growth pattern of the investments made is constant and similar across
the 10 periods considered. In terms of capacity, we observe a similar total installed
capacity in these two cases. This is because, with a volumetric tari↵, the average
installation size is larger but there are less installations.

In addition to a slightly lower LCOE under the NPcap scenario, the reasons for
investing in batteries explain the di↵erences in the number and size of the batteries
installed. Under NPvol, batteries are installed because it is financially speaking more
interesting to store (and later consume) your electricity than to sell it to the grid at the
selling price and later consume it at retail price. Under NPcap, Compared to the AsIf
benchmark, we have one third less of deployed PV capacity, which can be explained by
a close to twice larger LCOE, as shown in Figure 10.

The key other change compared to the net metering setting is the high take of
battery investments, as shown on Figure 9. This is because the price of the energy
imported from the grid is larger than when it is exported. Hence, it is better to store
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Discovering topologies

Automatic phase identification of 
smart meter measurement data

9 Results

The algorithm was implemented in Matlab. To compute the MST,
the Prim algorithm (minimum spanning tree) is used with the
opposite of the branches’ weight.

9.1 With pseudo-measurements

Since they are generated using a LV network simulator, phase
measurements are already sorted, so the first step is to randomly
permute them for each measurement point. Then, the identification
algorithm is run on the data.

The most important result is that the algorithm successfully
manages to identify all the phases and to cluster them the proper
way, regardless of the initial permutation. As an illustration, Fig. 3
shows the voltages that were clustered by the algorithm into one
single group.

The MST output by the algorithm is displayed in Fig. 4,
superimposed on the structure of the electrical network. It can be
seen that the structure of the MST is coherent with the structure of
the network as no nodes are connected between different feeders
except at the root of the network. The edges are weighted by the
correlation coefficient of the correlation maximising pairing. It can

be seen that all values are close to three, the maximum, indicating
an excellent correlation between the nodes.

9.2 With real measurements

At the time of writing this paper, the rollout of the smart meters for
the purpose of the measurement campaign is still ongoing and all
houses have not yet been equipped. Regardless, the algorithm has
been applied to the measurements that have already been collected.
The resulting tree is displayed in Fig. 5.

It can be seen that the majority of edges have a strong correlation
coefficient, except the one linking nodes 8 and 24. The reason is
certainly that the two measurement points are too far apart, either
due to the lack of a smart meter in between, or due to a large
impedance between them. It is information that can be further
investigated by the DSO in its phase identification process. In any
case, we advise the installation of a smart meter at the LV side of
the distribution transformer to provide a measurement point that
can be used to link different feeders.

Finally, the method can be used to check if a measurement point’s
location was incorrect. It could be observed when a branch of the
MST is not coherent with the topology of the network, and has a
low correlation coefficient.

10 Conclusion

We have proposed a phase identification algorithm, which performs
exactly as planned when applied to measurements purposely
generated. In addition to phase identification, the algorithm outputs
a MST, which provides insight into the structure of the electrical
network and the measurements that are more correlated.
Furthermore, the first results from real measurements are extremely
encouraging as the correlation coefficients are close to their
maximum.

Several research questions arise from this study. It would be
interesting to investigate the behaviour of the algorithm when the
sampling period of the measurement is increased (from 1 to
10 min for example). This should lead to a decrease in the
imbalance of the voltages and lead to a decrease of the overall
correlation coefficients. The next steps are to further analyse the
real measurement data in regards to their location in the network,
and to provide an explanation and/or a solution to the links of the
graph, which have a poor correlation coefficient.

Fig. 3 Example of a cluster of time series after the algorithm

Fig. 4 Topology of the electrical network is in grey. The upper node
corresponds to the distribution transformer and the nodes that are
numbered are measurement points (blue). The MST is in red (dashed) and
the weight of the edges is the maximum correlation coefficient

Fig. 5 Maximal spanning tree for the real measurement data where the
weight of the edges is the maximum correlation coefficient
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branch can be traversed, because, as explained above, pairing 4 in
one direction is pairing 5 in the other.

7.3 Finding the maximum spanning tree

Next, the Prim algorithm [5] is used to find the MST of the complete
graph. It selects the edges that will bring the maximum total
correlation between the nodes. The result is a tree where each
branch represents the pairing, which must be used to link
measurements from the parent node to the child node. By using a
tree, we ensure that there is no cycle inside the network and that
there is only one possible succession of pairings from one node to
any other.

7.4 Selecting the reference and clustering the phases

Once the tree is computed, we know how the phases of two adjacent
nodes are paired, but this information is relative to the phases of the
parent. The final step is to select a reference node to start from, and to
traverse the entire tree structure, from parent to children, applying the
pairing of each branch to uniquely select which cluster each phase
measurements belongs to. The final results of the algorithm are
three sets, CA, CB, and CC where, for example

CA = M1
A , M

2
B , M

3
B , . . .

{ }

CB = M1
B , M

2
A , M

3
C , . . .

{ }

CC = M1
C , M

2
C , M

3
A , . . .

{ }

that can be arbitrarily associated to the phases of the network NA, NB

and NC.

7.5 Including information on the topology of the
distribution network

If more information on the structure of the electrical network is
available, it can be used to reduce the number of branches from the
complete graph. If nodes are far apart and on different feeders, the
branch linking them can be discarded, reducing the number of edges
and thus simplifying the resolution of the MST problem. One
extreme option could be to directly define the tree by linking the
nodes that are closest to each other, thus eliminating the need for the
MST step. However, it is obviously not recommended because this
eliminates a powerful step of the algorithm, which can restructure
the network based on correlation. For example, if measurement data
were corrupted or if one house was associated with the wrong
feeder, the algorithm will be able to circumvent those errors. Finally,
it would be a strong shortcut to assume that the closer the
measurement points are geographically, the stronger the correlation
between the voltages as voltage variations, mainly due to the line
impedance. Therefore, we advise the reader to suppress branches
with parsimony and only those that are without doubt irrelevant.

8 Test network

The test network used for this study is an existing Belgian LV
distribution network, composed of three feeders made with
underground cables of the type EVAVB-F2 3× 95 + 1× 50. It is
located in a suburban area and has been modelled according to [6]
based on the data provided by the DSO (topology, line length,
cable type etc.). Detailed unbalanced three-phase four-wire
modelling of the network has been used.

8.1 Model for the dwellings: load and PV units

The network is composed of 32 houses, all of which have a
three-phase 400/230 V connection of various length with a cable

of type EXAVB 4× 10. Five of these houses are equipped with
PV units.

The energy consumption of the house is modelled using
consumption profiles created with [7]. Several alterations have
been made to the code created by Widén and Wäckelgård in order
to allow the creation of unbalanced load profiles.

First, the appliances have been classified as single phase or three
phase. Each single-phase appliance has been allocated to one of three
groups based on good practice, trying to balance the load in each
group as optimally as possible. Each time the profile generator is
run, appliances are clustered in the same groups; however, the
clusters are randomly allocated to a specific phase. At this point,
rather than calculate the sum of the consumption of all appliances,
appliance consumptions are summed phase by phase, adding one
third of the three-phase appliances. An example of a load profile
can be seen in Fig. 1.

The production of the PV panels is based on the production of a
typical PV unit in Belgium, scaled with respect to the peak power
of each unit. The consumption and production profile have been
generated for an arbitrarily chosen day: Thursday, 5 May 2016.

8.2 Model for the medium-voltage network

The medium-voltage network is modelled as a Thevenin equivalent.
The phase-to-phase voltage of the equivalent is fixed at 420 V and
the impedance at 0.0059 + j 0.0094 Ω.

8.3 Pseudo-measurement generation

An unbalanced load flow algorithm based on [6] and implemented in
Python is used to compute the currents in the lines and the voltages at
each node with a resolution of 1 min to capture the variability of the
loads. The three phase-to-neutral voltages at the bus where a house is
connected are exported so that they can be used in the next step. Such
voltages are displayed in Fig. 2 for measurement point M25.

Fig. 1 Example of an unbalanced load profile

Fig. 2 Voltages for measurement point M25
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From a « macro » point of view



« Dunkelflaute »

At the beginning of this research, the problem of the 
« Dunkelflaute », a german term for characterizing an event 
where there is no renewable production for a few days. 
How to model it? How to avoid it? 
-> Notion of « critical time windows ». 

Source : WimAndersson through Wikipedia Data: https://www.energy-charts.de

https://commons.wikimedia.org/w/index.php?title=User:WimAndersson&action=edit&redlink=1
https://www.energy-charts.de/


Impact of α and δ in evaluating critical time windows
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From time windows to critical time windows



Impact of β in evaluating critical time windows
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A new way to deploy generation capacities

Does complementarity lead 
to different results than just 
optimizing the capacity 
factor? 

The case of wind energy in 
France.
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Figure 5: Comparison of criticality index-based (black) and electricity yield-based (blue) deployment of wind farms within a
given subset of locations, based on the criticality indicator values. Example depicting the results for the subset of potential
generation sites in France, LF .

threshold of 35%). This increase stems from the geographical proximity of the locations, which makes them429

subject to very similar wind regimes. However, the improvement in criticality index value for the locations430

with highest complementarity (i.e., having increased continuity of supply) comes at the expense of very high431

capacity factor values. While the five most productive wind farms have an aggregated capacity factor value432

of 46% over the entire time domain considered, the locations with highest complementarity only boast an433

aggregated capacity factor value of 34%.434

Therefore, such an analysis opens the door to planning decisions based on a trade-o↵ between high435

production levels and enhanced continuity of supply. According to the particularities and requirements of436

each individual system, one may opt for extensive generation volumes accompanied by bigger time frames437

of production under certain levels or for lower generation volumes that, for most of the time, behave as base438

load generation supplied entirely by renewable energy technologies.439

5.4. Results Discussion440

A key factor impacting the accuracy of results presented in Section 5 is the accuracy of the raw data used441

throughout the analysis. In this respect, several studies have identified significant spatial bias attributed to442

the ability of reanalysis models to recreate VRE resource patterns in certain topographies [20, 22, 23]. This443

undesirable feature is also observed in the current study that uses ERA5 as reanalysis database. Comparing444
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On a larger scale

TABLE II: Benchmarking of the approximate solution method for several
geographical coverage threshold (c) values. The figures reported below
represent the upper bound (UB), lower bound (LB), and the gap (✏) in %. A
time limit was set to 12 hours, and results are reported for this solving time,
unless stated otherwise.

c 11 32 5 7 9

BB
UB 41554.0 38340.0 35625.9 32807.7 29910.7

LB 41554.0 38340.0 34675.0 30355.0 26819.0

✏
3 0.0 0.0 2.74 8.08 11.52

ASM
UB 41569.7 38637.8 35750.5 33025.4 30351.1

LB 41545.0 38340.0 34702.0 30658.0 27542.0

✏
4 0.06 0.77 3.02 7.72 10.20

MIR5 UB 42316.0 39911.0 38061.0 36090.5 34018.1

Legend: BB = branch-and-bound (Gurobi 8.1), ASM = approximate solu-
tion method, MIR = mixed-integer relaxation (2).
1 BB solved in 69 seconds. ASM ran for 25223 seconds.
2 BB took 6128 seconds to solve. ASM ran for 12 hours (43200 seconds).
3 This gap corresponds to the MIP gap produced by Gurobi.
4 This gap corresponds to the optimality gap defined in section II-B3.
5 This mixed-integer relaxation is solved within a 1% gap in minutes.

and one maximizing the yearly electricity output (MAX)
are investigated to uncover the benefits of the power system.
More precisely, the cumulative distribution functions (CDF)
of aggregate signals formed for both deployment patterns are
used to highlight the implications complementarity may have
in terms of reserve requirements. Capacity credit values [15]
are also computed to check whether complementary locations
may also help the power system when it is subject to high
load levels.

Figure 1 shows the distribution of n = 20 wind generation
assets across the ENTSO-E area according to the two proposed
deployment schemes. On top, the OPT strategy results in the
twenty desired locations being spread across Northern Europe,
with two additional sites being selected on the southern coast
of France. Most locations, though, are selected around the
British Isles, in the North Sea (e.g., offshore Norway and the
Netherlands), as well as in the Baltic sea basins. Interestingly,
most selected locations are offshore sites, with only three
exceptions (i.e., in Northern Scotland, Norway and Southern
France). At the bottom, the MAX scheme shows a fairly
concentrated pattern, with four sites being deployed in the
North Sea area, while the remainder are distributed north of the
British Isles. Again, with one exception, all sites are located
offshore, an expected outcome considering the proven superior
wind quality in such environments. It is worth noticing that
the full longitude and latitude of the region have not been
exploited, possibly as a result of the relatively low number of
sites to deploy.

Figure 2 displays the CDFs of the aggregate signals formed
by summing all time series corresponding to individual lo-
cations for each deployment strategy. A first observation is
that the CDF of the OPT scheme remains well under that of
the other deployment pattern for approximately 40% of the
range observed. This implies that low-production events occur
in smaller numbers for the OPT than the MAX scheme.

Fig. 1: Distribution of n = 20 wind generation sites within the ENTSO-E
region according to deployment schemes leveraging resource complementarity
for c = 7 (OPT , top) and maximizing electricity output (MAX , bottom),
respectively.

This result therefore supports the claim that the method is
capable of identifying deployment patterns exhibiting very
few simultaneous low-production events. Alternatively, the
method can be understood to select deployment patterns whose
probability distribution function possesses a very slim left
tail. From a practical perspective, this result may have non-
negligible consequences. Indeed, it may for instance imply
that the amount of reserve capacity that should be deployed
to guarantee a certain level of adequacy may be reduced
compared to the MAX scheme. A second observation pertains
to the fact that the CDF of the OPT scheme closely resembles
that of a Gaussian variable. In particular, the vast majority of
aggregate wind power realizations fit within a much narrower
band than those of the MAX pattern. This fact may have
implications for the use of primary reserve, as the forecast of a
Gaussian-like aggregate wind power variable would be much
easier than that of the distribution obtained via the MAX

scheme. In addition, the capacity of conventional dispatchable
plants that should be kept on hand would also be smaller in
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method can be understood to select deployment patterns whose
probability distribution function possesses a very slim left
tail. From a practical perspective, this result may have non-
negligible consequences. Indeed, it may for instance imply
that the amount of reserve capacity that should be deployed
to guarantee a certain level of adequacy may be reduced
compared to the MAX scheme. A second observation pertains
to the fact that the CDF of the OPT scheme closely resembles
that of a Gaussian variable. In particular, the vast majority of
aggregate wind power realizations fit within a much narrower
band than those of the MAX pattern. This fact may have
implications for the use of primary reserve, as the forecast of a
Gaussian-like aggregate wind power variable would be much
easier than that of the distribution obtained via the MAX
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Assessing the potential of power-to-gas-to-
power technologies
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The Belgian Case

was used as a proxy in the estimation of associated costs.
Though not shown in Table 1, the costs of energy not served (also

known as value of lost load) for electricity, hydrogen and natural gas
are set to 3000€/MWh, 500€/MWh and 500€/MWh, respectively. The
value used for electricity is consistent with values reported for private
end users [59] (Fig. 3, left panel in the aforementioned reference), al-
though lower than those listed for economic (industrial) consumers.
From a modelling standpoint, however, the values must also be selected
to promote adequacy, i.e. the costs incurred when failing to serve the
energy demand should exceed the investment and operating costs re-
quired to deploy, operate and maintain technologies allowing to supply
the energy demands. In particular, the value of lost load is set higher for
electricity than for other carriers as the electricity system must be ba-
lanced at all times, whereas local imbalances can be tolerated in the gas
system. Bearing this in mind, the values for natural gas and hydrogen
were selected after consulting the Belgian natural gas TSO. Finally, a
carbon price of 80€/t has been applied in each scenario.

4.3. Results

Fig. 3 displays the installed capacities of all technologies which are
sized in each scenario. Hence, CHP, biomass, waste and pumped-hydro
power plants, whose capacities are fixed and shown in Table 1, do not
appear in Figure 3. Then, Tables 2–4 gather the capacities of carbon
capture and storage technologies, system and energy costs, broken
down by carrier, as well as volumes of energy imports and energy de-
mand not served, respectively. In Table 3, the system-wide cost includes
all investment and operating costs, as well as all expenses stemming
from energy and commodity imports/exports, and energy demand not
served. The costs of carriers are reported solely with respect to the
corresponding volumes of demand served. Thus, for any given carrier,
its cost is obtained by dividing the expenses resulting from all tech-
nologies producing it and importing it by the demand for this carrier
that was served. Moreover, when deployed, PCCC costs are included in
electricity and hydrogen costs. Carbon dioxide costs are obtained by
computing PCCC and DAC costs and dividing by the amount of CO2
captured. Finally, it is worth mentioning that DAC costs are reported
without energy-related expenses. Now, general observations are made
before results are analysed and discussed for each scenario.

Firstly, the renewable potential is fully exploited in each of the first
four scenarios, which explains the fact that the installed capacity of

renewable-based power generation technologies only changes in sce-
nario 5. Furthermore, the total installed capacity of dispatchable power
generation, shown in Fig. 3, remains remarkably constant across all

Fig. 3. Deployed generation, conversion and storage capacities across the five considered scenarios. For each scenario, the first, second, third and fourth bars
represent renewable-based power generation, dispatchable power generation, other conversion and storage technologies, respectively, besides CO2 storage.

Table 2
Post-combustion and direct air carbon capture deployments for each of the five
scenarios. Figures representing capture rates are expressed in kt/h.

S1 S2 S3 S4 S5

Technology
OCGT N/A N/A 0.0 0.0 0.0
CCGT N/A N/A 3.07 2.55 1.84
CHP N/A N/A 0.31 0.13 0.13
Biomass N/A N/A 0.0 0.0 0.0
Waste N/A N/A 0.08 0.08 0.08
SMR N/A N/A 0.71 0.03 0.69
Direct Air CC N/A N/A N/A 1.90 1.60

Table 3
System-wide and electricity (E), natural gas (NG), hydrogen (H2) and carbon
dioxide (CO2) sub-system costs associated with the five considered scenarios.
Carbon dioxide costs are reported without energy-related expenses.

Unit S1 S2 S3 S4 S5

System b€/year 67.1 50.8 41.2 14.7 9.6
E €/MWh 67.1 52.4 40.8 46.0 45.6
NG €/MWh 11.6 11.7 11.8 12.0 12.0
H2 €/MWh 164.3 146.8 25.0 163.0 24.9
CO2 €/t N/A N/A 35.1 49.2 46.6

Table 4
Import and energy not served (ENS) volumes of electricity (E), natural gas (NG)
and hydrogen (H2) across the five considered scenarios (TWh).

S1 S2 S3 S4 S5

E Imports 57.2 57.2 57.2 57.2 57.2
ENS 0.0 0.0 0.0 0.0 0.0
Curtailment 1.7 3.4 18.6 8.3 94.7

NG Imports 365.8 365.8 855.4 1124.6 1124.5
ENS 545.6 390.8 347.1 0.0 0.0

H2 Imports 128.7 120.8 0.5 127.9 0.1
ENS 2.0 1.9 0.0 0.1 0.0
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value used for electricity is consistent with values reported for private
end users [59] (Fig. 3, left panel in the aforementioned reference), al-
though lower than those listed for economic (industrial) consumers.
From a modelling standpoint, however, the values must also be selected
to promote adequacy, i.e. the costs incurred when failing to serve the
energy demand should exceed the investment and operating costs re-
quired to deploy, operate and maintain technologies allowing to supply
the energy demands. In particular, the value of lost load is set higher for
electricity than for other carriers as the electricity system must be ba-
lanced at all times, whereas local imbalances can be tolerated in the gas
system. Bearing this in mind, the values for natural gas and hydrogen
were selected after consulting the Belgian natural gas TSO. Finally, a
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« Deeper » deep RL and other applications

From	supervised	learning	to	reinforcement	learning

Supervised	learning	techniques	(in	particular	
(deep)	convolutional	networks)	may	be	used	
as	 a	 block	 in	 a	 more	 complex	 structure,	 in	
particular	 in	 Dynamic	 Programming	 (DP)	 or	
Model	Predictive	Control	(MPC)	schemes.	

This	 connects	 to	 reinforcement	 learning,	 an	
area	 of	 machine	 learning	 originally	 inspired	
by	 behaviorist	 psychology,	 concerned	 with	
how	software	agents	ought	to	take	actions	in	
an	 environment	 so	 as	 to	 maximize	 some	
notion	of	cumulative	reward.	

Deep	reinforcement	learning	combines	deep	
learning	 with	 reinforcement	 learning	 (and,	
consequently,	in	DP	/	MPC	schemes).
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neural network (consumption and production respectively);
(ii) the case where information on the season is provided:

st =
⇥
[ct�hc , . . . , ct�1], [�t�hp , . . . ,�t�1], sMG

t , ⇣s
⇤

where ⇣s is the smallest number of days to the solar solstice (21st of June) which is then
normalized into [0,1];
(iii) the case where accurate production forecasting is available:

st =
⇥
[ct�hc , . . . , ct�1], [�t�hp , . . . ,�t�1], sMG

t , ⇣s, ⇢24, ⇢48
⇤

where ⇢24 (resp. ⇢48) is the (known) solar production for the next 24 hours (resp. 48 hours).

4.1 Neural network architecture

We propose a Neural Network (NN) architecture where the inputs are provided by the state
vector, and where each separate output represents the Q-values for each discretized action.
Possible actions a are whether to charge or discharge the hydrogen storage device with the
assumption that the batteries handle at best the current demand (avoid any value of loss
load whenever possible). We consider three discretized actions : (i) discharge at full rate
the hydrogen storage, (ii) keep it idle or (iii) charge it at full rate.

The NN processes time series thanks to a set of convolutions with 16 filters of 2 ⇥ 1
with stride 1 followed by a convolution with 16 filters of 2⇥ 2 with stride 1. The output of
the convolutions as well as the other inputs are then followed by two fully connected layers
with 50 and 20 neurons and the output layer. The activation function used is the Rectified
Linear Unit (ReLU) except for the output layer where no activation function is used.

Input #1

Input #2

Input #3

...

Fully con-

nected layers
Convolutions Outputs

Figure 1: Sketch of the structure of the NN architecture. The NN processes time series
thanks to a set of convolutional layers. The output of the convolutions as well
as the other inputs are followed by fully connected layers and the ouput layer.
Architechtures based on LSTMs instead of convolutions obtain very close results
and the reader is welcome to experiment with the source code.

4.2 Splitting times series to avoid overfitting

We consider the case where the agent is provided with two years of actual past realizations
of (ct) and (�t). In order to avoid overfitting, these past realizations are split into a training
environment (y = 1) and a validation environment (y = 2). The training environment is
used to train the policy while the validation environment is used at each epoch to estimate
how well the policy performs on the undiscounted objective My and selects the final NN. The
final NN is then used in a test environment (y = 3) to provide an independent estimation
on how well the policy performs.
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where � 2 [0, 1) is the so-called discount factor. An optimal
policy is a policy ⇡⇤ such that, for any policy ⇡,

8s 2 S, J⇡
⇤
(s) � J⇡(s) .

Such an optimal policy ⇡⇤ is scored with an optimal return
J⇤(s) = J⇡

⇤
(s) which satisfies the Bellman optimality equa-

tion:

8s 2 S,
J⇤(s) = max

a2A

X

s02S
T (s, a, s0) (R(s, a, s0) + �J⇤(s0)) .

Finding an optimal policy can thus be theoretically achieved
by behaving greedily with respect to the optimal state-action
value function Q⇤ : S ⇥A! R defined as follows:

8(s, a) 2 S ⇥A,

Q⇤(s, a) =
X

s02S
T (s, a, s0) [R(s, a, s0) + �J⇤(s0)] .

One major difficulty in our setting resides in the fact that
the transition model T (·, ·, ·) is initially unknown and need
to be learned through interactions. This implicitly leads to a
trade-off between acting optimally with respect to the current
knowledge of the unknown transition model (exploitation) and
acting in order to increase the knowledge about the unknown
transition model (exploration).

B. Model-based Bayesian Reinforcement Learning
Model-based Bayesian RL proposes to address the explo-

ration/exploitation (E/E) trade-off by representing the knowl-
edge about the unknown transition model using a probability
distribution over all possible transition models µ. In this
setting, an initial prior distribution b0 is given and iteratively
updated according to the Bayes rule as new samples of the
actual transition model are generated. At any time-step t, the
so-called posterior distribution bt depends on the prior dis-
tribution b0 and the history ht = (s0, a0, . . . , st�1, at�1, st)
observed so-far. The Markovian property implies that the
posterior bt+1:

bt+1 = P (µ|ht+1, b0)

can be updated sequentially:

bt+1 = P (µ|(st, at, st+1), bt) .

The posterior distribution bt over all possible models is called
“belief” in the Bayesian RL literature.

A standard approach to � theoretically � solve Bayesian
RL problems is to consider a BA-state z obtained by con-
catenating the state with the belief z = hs, bi and solving
the corresponding BA-MDP [17], [15]. In the following, we
denote by B the BA-state space. This BA-MDP is defined by
a transition function T given by:

8(z, z0) 2 B2, 8a 2 A,

T(z, a, z0) = P (z0|(z, a))
= P (b0|b, s, a, s0)E [P (s0|s, a)|b]
= 1{ht+1=(ht,a,s

0)}E [P (s0|s, a)|b]

and a reward function R given by:

8(z, z0) 2 B2, 8a 2 A, R(z, a, z0) = R(s, a, s0) .

A Bayesian optimal policy ⇡⇤ can be theoretically obtained
by behaving greedily with respect to the optimal Bayesian
state-action value function Q⇤:

8z 2 B, ⇡⇤(z) = argmax
a2A

Q⇤(z, a)

where 8z 2 B, 8a 2 A,

Q⇤(z, a) =
X

z0

T (z, a, z0) (R(z, a, z0) + �J⇤(z0)) .

Here, z0 are reachable belief state when taking action a in
belief state z and J⇤(z) is the Bayesian optimal return:

J⇤(z) = max
a2A

Q⇤(z, a) .

In this work, the goal is to take decisions that are near-
optimal in the Bayesian meaning, i.e. we want to find a policy
which is as close as possible as ⇡⇤.

C. Dirichet distribution-based BRL
One needs to define a class of distributions. A most usual

approach is to consider one independent Dirichlet distribution
for each state-action transition. We obtain a posterior b whose
probability density function is:

d(µ;⇥) =
Y

(s,a)2S⇥A

D
�
µ

s,a
;⇥(s, a, ·)

�

where D(·; ·) denotes a Dirichlet distribution, ⇥(s, a, s0) de-
notes the number of observed transitions from (s, a) 2 S ⇥A
towards every s0 2 S and ⇥(s, a, ·) denotes the vector of
counters of observed transitions:

⇥(s, a, .) =
h
⇥

⇣
s, a, s(1)

⌘
, . . . ,⇥

⇣
s, a, s(nS)

⌘i

and ⇥ is the matrix that contains all ⇥(s, a, .) s 2 S, a 2
A. In the following, we denote by b (⇥) such a Dirichlet
distribution-based posterior. The resulting posterior distribu-
tion b (⇥) satisfies the following well-known property:

E [P (s0|s, a)|b (⇥)] =
⇥(s, a, s0)P

s002S ⇥(s, a, s00)

and the Bayesian update under the observation of a transition
(s, a, s0) 2 S⇥A⇥S is reduced to a simple increment of the
corresponding counter:

⇥(s, a, s0) ⇥(s, a, s0) + 1 .

In such a context, the Bayesian optimal state-action value
function writes:

Q⇤(hs, b (⇥)i, a) =
X

s02S

⇥(s, a, s0)P
s002S ⇥(s, a, s00)

⇣
R(s, a, s0)

+�J⇤(hs0, b
�
⇥0

s,a,s0
�
i
⌘

where ⇥0
s,a,s0 is such that:

⇥0
s,a,s0(x, y, x

0) =

⇢
⇥(x, y, x0) + 1 if (x, y, x0) = (s, a, s0),

⇥(x, y, x0) otherwise.
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