

The Smart Grids lab at the University of Liège

January 22nd, 2020 @ Parliament of Wallonia

Professor Damien Ernst

Presentation by Dr Raphaël Fonteneau

The Smart Grids lab

Prof. Damien Ernst

From macro to micro power grids, and back
From electricity, to sector coupling, using AI

Outline

Microgrids, energy communities & distribution networks

Global grid and renewable resource complementarity

Sector coupling

Other applications & research in Al

From a « micro » point of view

Multiple possible configurations

The MeryGrid project

Source: https://les-smartgrids.fr/merygrid-premier-micro-grid-belgique/

The MeryGrid project

The microgrid is located in Méry, on the banks of the river Ourthe in the Liège area, and links three partner companies:

- MeryBois, a timber merchant equipped with a 60 kWp photovoltaic installation,
- MeryTherm, a company active in the thermal treatment of metals and equipped with a 200 kVA hydroelectric power station,
- CBV, active in industrial fans and consuming electricity, like the other two companies.

The site produces 1,200 MWh per year and consumes 800 MWh per year. It now features a lithium battery (capacity of 300 kWh and power of 600 kVA) and is connected to the distribution network managed by RESA via a single access point.

The MeryGrid project

Next steps: going further with the Al integration

Discovering topologies

Automatic phase identification of smart meter measurement data

From a « macro » point of view

« Dunkelflaute »

At the beginning of this research, the problem of the « Dunkelflaute », a german term for characterizing an event where there is no renewable production for a few days. How to model it? How to avoid it? -> Notion of « critical time windows ».

From time windows to critical time windows

A new way to deploy generation capacities

Does complementarity lead to different results than just optimizing the capacity factor?

The case of wind energy in France.

On a larger scale

Assessing the potential of power-to-gas-topower technologies

— Electricity — Natural Gas — Hydrogen — Carbon Dioxide

The Belgian Case

Post-combustion and direct air carbon capture deployments for each of the five scenarios. Figures representing capture rates are expressed in kt/h.

	S1	S2	S3	S4	S 5
Technology					
OCGT	N/A	N/A	0.0	0.0	0.0
CCGT	N/A	N/A	3.07	2.55	1.84
CHP	N/A	N/A	0.31	0.13	0.13
Biomass	N/A	N/A	0.0	0.0	0.0
Waste	N/A	N/A	0.08	0.08	0.08
SMR	N/A	N/A	0.71	0.03	0.69
Direct Air CC	N/A	N/A	N/A	1.90	1.60

System-wide and electricity (E), natural gas (NG), hydrogen (H_2) and carbon dioxide (CO_2) sub-system costs associated with the five considered scenarios. Carbon dioxide costs are reported without energy-related expenses.

	Unit	S1	S2	S3	S4	S5
System	b€/year	67.1	50.8	41.2	14.7	9.6
E	€/MWh	67.1	52.4	40.8	46.0	45.6
NG	€/MWh	11.6	11.7	11.8	12.0	12.0
H ₂	€/MWh	164.3	146.8	25.0	163.0	24.9
CO_2	€/t	N/A	N/A	35.1	49.2	46.6

Import and energy not served (ENS) volumes of electricity (E), natural gas (NG) and hydrogen (H_2) across the five considered scenarios (TWh).

		S1	S2	S3	S4	S5
Е	Imports	57.2	57.2	57.2	57.2	57.2
	ENS	0.0	0.0	0.0	0.0	0.0
	Curtailment	1.7	3.4	18.6	8.3	94.7
NG	Imports	365.8	365.8	855.4	1124.6	1124.5
	ENS	545.6	390.8	347.1	0.0	0.0
H_2	Imports	128.7	120.8	0.5	127.9	0.1
	ENS	2.0	1.9	0.0	0.1	0.0

« Deeper » deep RL and other applications

Valorising flexibility; bidding on day-ahead and intra-day markets using storage capacities; investigating the potential of distributed ledgers, ...

A few references

The role of power-to-gas and carbon capture technologies in cross-sector decarbonisation strategies. M Berger, D Radu, R Fonteneau, T Deschuyteneer, G Detienne, D Ernst. Electric Power Systems Research 180, 2020.

Complementarity assessment of south Greenland katabatic flows and West Europe wind regimes. D Radu, M Berger, R Fonteneau, S Hardy, X Fettweis, M Le Du, et al. Energy 175, 393-401, 2019.

On overfitting and asymptotic bias in batch reinforcement learning with partial observability. V François-Lavet, G Rabusseau, J Pineau, D Ernst, R Fonteneau. Journal of Artificial Intelligence Research 65, 1-30, 2019.

Cellular neuromodulation in artificial networks. N Vecoven, D Ernst, A Wehenkel, G Drion. Proceedings of the NeurIPS 2019 Workshop Neuro AI, 2019.

Evaluating the evolution of distribution networks under different regulatory frameworks with multi-agent modelling. M Manuel de Villena, R Fonteneau, A Gautier, D Ernst. Energies 12 (7), 2019.

Introducing neuromodulation in deep neural networks to learn adaptive behaviours. N Vecoven, D Ernst, A Wehenkel, G Drion. arXiv preprint arXiv:1812.09113, 2018.

Critical time windows for renewable resource complementarity assessment. M Berger, D Radu, R Fonteneau, R Henry, M Glavic, X Fettweis, ML Du, et al. arXiv preprint arXiv:1812.02809, 2018.

Blockchain for peer-to-peer energy exchanges: design and recommendations. D Vangulick, B Cornélusse, D Ernst. 2018 Power Systems Computation Conference (PSCC), 1-7, 2018.

Intra-day Bidding Strategies for Storage Devices Using Deep Reinforcement Learning. I Boukas, D Ernst, A Papavasiliou, B Cornélusse. International Conference on the European Energy Market, Łódź 27-29 June 2018, 2018.

Phase identification of smart meters by clustering voltage measurements. F Olivier, A Sutera, P Geurts, R Fonteneau, D Ernst. 2018 Power Systems Computation Conference (PSCC), 1-8, 2018.

Foreseeing new control challenges in electricity prosumer communities. F Olivier, D Marulli, D Ernst, R Fonteneau. Proc. of the 10th Bulk Power Systems Dynamics and Control Symposium–IREP'2017, 2017.

Reinforcement learning for electric power system decision and control: Past considerations and perspectives. M Glavic, R Fonteneau, D Ernst. IFAC-PapersOnLine 50 (1), 6918-6927, 2017.

Global power grids for harnessing world renewable energy. S Chatzivasileiadis, D Ernst, G Andersson. Renewable Energy Integration, 161-174, 2017.

Active network management for electrical distribution systems: problem formulation, benchmark, and approximate solution. Q Gemine, D Ernst, B Cornélusse. Optimization and Engineering 18 (3), 587-629, 2017.

Automatic phase identification of smart meter measurement data. F Olivier, D Ernst, R Fonteneau. CIRED-Open Access Proceedings Journal 2017 (1), 1579-1583, 2017.

Deep reinforcement learning solutions for energy microgrids management. V François-Lavet, D Taralla, D Ernst, R Fonteneau. European Workshop on Reinforcement Learning (EWRL 2016), 2016.

Towards the minimization of the levelized energy costs of microgrids using both long-term and short-term storage devices. V François-Lavet, Q Gemine, D Ernst, R Fonteneau. Smart Grid: Networking, Data Management, and Business Models, 295-319, 2016.

Imitative learning for online planning in microgrids. S Aittahar, V François-Lavet, S Lodeweyckx, D Ernst, R Fonteneau. International Workshop on Data Analytics for Renewable Energy Integration, 1-15., 2015.

The global grid. S Chatzivasileiadis, D Ernst, G Andersson. Renewable Energy 57, 372-383, 2013.

The Smart Grids lab

Prof. Damien Ernst

From macro to micro power grids, and back
From electricity, to sector coupling, using AI

