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Abstract
This paper investigates the problem of placement procedure for distributed piezoelectric actuators and
sensors. Two placement techniques are proposed. The first one is based on the controllability and
observability Grammians of the system expressed in a modal state-space coordinates. The controllability
Grammian is then able to quantify how structural modes are controllable with a set of predefined actuators,
while the observability Grammian expresses how much structural modes can be observed from a set of
predefined sensors. The second placement technique is based on the selection of the best sensor sets which,
for each selected structural modes, have the best signal to noise ratio. The sensor selection is performed by
inspecting the Fisher information matrix. The number of sensors is then reduced, in an iterative manner, by
eliminating locations that do not contribute significantly to the linear independence of the target modal
partitions.

Introduction

This paper investigates the problem of placement
procedure for distributed piezoelectric actuators and
sensors. These last one are very well fitted for
applications on plate like structures. The popularity
of piezoelectric materials comes from their relative
low-cost and light-weight properties and from the
fact that piezoelectric laminas can be used as well in
actuator mode as in sensor mode.
There exists various attempts to develop a
systematic approach for selecting optimal sets of
punctual actuators and sensors for experimental
identification, but few of them are reported on
distributed actuators and sensors.
This problem arises in the case of flexible structure
modal identification by means of piezoelectric
laminas. An initial mathematical model (generally a
finite element model) of the structure is required at
the initial step. Assuming that the stiffness and mass
influences of the distributed actuators / sensors is
negligible in comparison with the support structure,
the structural model dynamics (in terms of resonant
frequencies and modes) will be independent of the
number of candidates for actuator and sensor

locations. This generated model is then used to
compute the truncated modal base of the structure
in order to retain the more representative set of
structural modes.
Two placement techniques are proposed. The first
one is based on the controllability and observability
Grammians of the system expressed in a modal
state-space form. The controllability Grammian is
then able to quantify how structural modes are
controllable with a set of predefined actuators,
while the observability Grammian expresses how
much structural modes can be observed from a set
of predefined sensors. The procedure begins with
the selection of the smallest subset of actuators
giving a norm of the system transfer function as
close as possible to the norm of the original full set.
Once the actuators are selected, the same
methodology can be applied to locate the minimum
set of sensors.
The second placement technique is based on the
selection of the best sensor sets which, for each
selected structural modes, have the best signal to
noise ratio. The sensor selection is performed by
inspecting the Fisher information matrix. The
number of sensors is then reduced, in an iterative
manner, by eliminating locations that do not



contribute significantly to the linear independence
of the target modal partitions contained in the Fisher
information matrix.

1. Piezo-structure overview

1.1 Dynamics of piezo-structures

In the case of a structure instrumented with
piezoelectric sensor/actuator, electromechanical
relationships are added to the dynamics of the
system to represent the contributions of the
electrical degrees of freedom linked to the
piezoelectric actuator and sensor (Saunders et al.
[1]) :
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The first equation is commonly called the actuator
equation and the second, the sensor one. The
actuator equation exhibits the force generated by the
piezoelectric actuator through the electromechanical
coupling actuator matrix aΘ  and the electrical
potential av  applied between the electrodes of the
element. The sensor equation shows the relationship
existing between the mechanical degrees of freedom
x  and the electrical charges q  or potentials sv

through the electromechanical coupling matrix
TsΘ and the capacitance pC  of the sensor. When an

external force f  acts on the structure, the induced
sensor signal depends on the electrical conditions
applied at the electrode level :
•  Case 1 : open-circuit ( 0=q )
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The corrective stiffness term 
Ts

p
s C Θ⋅⋅Θ −1  is usally

neglected when the partition of piezoelectric
elements is small compared to the structure. Thus,
the structural dynamics is not modified by the
presence of the piezoelectric effect.
•  Case 2 : short-circuit ( 0=sv )
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In this case, the capacitance of the sensor is
eliminated from the output measurement by means
of an appropriate analog circuitry (e.g. : a charge
amplifier).

1.2 Sensor and actuator dynamic
reduction

The dynamics of a piezoelectric system described
by ( 1 ) is mechanically affected by the presence of
the actuator/sensor transducers loading  the
structure (in terms of stiffness and inertia) :
resonance frequencies and mode shapes are
theoretically modified by the mechanical
characteristics of actuator/sensor. If the transducer
placement strategy consists of a computation of a
position index performance, it induces that the
eigen-value problem has to be solved at each
iteration. This is very costly and becomes
prohibitive in case of large structures.
Therefore, when the partition of distributed
transducers is negligible compared to the main
structure, one will neglect the inertia associated
with the transducers (weight of piezos << structural
weight) as well as their stiffness (local stiffening
neglected); only the electromechanical coupling will
be taken into account. As an example, let us take a
structure fitted with two decoupled piezo-laminates.
Figure 1(a) shows the global stiffness connectivity
of the initial system :
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where mechanical and electrical degrees of freedom
(d.o.f.) are organised in such a way that :

{ } T
sasastruct qvxxx ( 5 )

with structx , the d.o.f.’s of the main structure and ax ,

sx  are related to the actuator and sensor mechanical
d.o.f.’s.
When performing the finite element model (FEM)
of the distributed transducers, a reduction of
transducer degrees of freedom (d.o.f.) (e.g. : using
Guyans’s reduction technique [2]) can then be
performed as follows :

•  Modelling of the distributed transducers.
•  Reduction of the system to the structural

interface degrees of freedom.
•  Setting of the resulting transducer mass and

stiffness matrix to zero (inertia and stiffening
neglected).

•  Assembling of the modified transducer model
with the main structure.



The resulting system has only the following d.o.f. :

{ } T
sastruct qvx ( 6 )

and figure 1(b) shows the connectivity of the
resulting reduced system.
When the partition of piezoelectric elements is
small compared to the main structure, reduction
errors on resonance frequencies and mode shapes
are small, leading to an acceptable model for
applying actuator / sensor placement techniques. In
the following transducer models will be used in the
condensed form.

(a) (b)

Figure 1 : Connectivity of a piezo-structure
(a) full system, (b) condensed system

2. The modal approach of
controllability and observability

2.1 State-space modal representation

To apply the theory of controllability and
observability, which has been developed in the
theory of control, it is convenient to express the
system nodal representation in the generalised
form :
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where y  is defined as the output vector and depends
linearly of the structural displacements and
velocities. Defining the state variables as the modal
displacement and velocities :
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the modal state-space representation takes the form :
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with the following triplet :
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where ),,( 21 ndiag ωωω �=Ω  is the spectral matrix
associated with the ( )mnn×  modal matrix

[ ]
mnφφφ �21=Φ . The modal mass, damping

(assumed proportional) and stiffness matrix are
obtained by the modal projection of K , D , M  :
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In the same way, the modal input, displacement and
velocity output matrices are introduced by :
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By simply rearranging the lines of ( 8 ) in order to
organise the state components as follows :
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the modal state-space representation is characterised
by a block diagonal structure :
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The dimensions of this modal state-space
representation ( )mm nn ⋅×⋅ 22  are then more
economic than the nodal representation ( )nn×  since

nnm <<⋅2  for a modal truncated system.

2.2 Controllability and observability

In classical control theory, a linear time invariant
system ( )CBA ,,  is fully controllable if and only if
the constructed matrix :

[ ]BABAABB NC 12 −= � ( 15 )

has rank ( )AsizeN = . In the same way, a linear time
invariant system ( )CBA ,,  is fully observable if and
only if the matrix :
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has rank N . As clearly explained in Gawronski [6],
these criteria, although simple, are not at all
efficient :



•  the level of controllability or observability is not
quantified; these criteria give an answer in terms
of yes or no.

•  The computation of C  or O  is prohibitive in the
case of system with realistic size.

These two drawbacks bring us to prefer expressing
the system properties in terms of Grammians. The
controllability and observability Grammians are
defined as follows :
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The controllability Grammian reflects the ability of
a perturbation u  to perturb the state of the system.
The observality Grammian reflects the ability of a
state X  to affect the output y  of a system. In the
case of a time invariant system, the stationary
solutions of ( 17 ) are given by the Lyapunov
equations :
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The singular values of the Grammians product are
invariant under linear transformation and are called
the Hankel singular values :

( ) NiWW ocii �1, =⋅= λγ ( 19 )

An important advantage of the modal state
representation ( 8 ) is that the resulting
controllability and observability Grammians are
diagonally dominant (see Gawronski [3]) :
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Diagonal entries of ( 20 ) and Hankel singular
values could then be obtained as follows :
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which is a more efficient way to compute the
Gammians than the resolution of equations ( 18 ).

2.3 Transfer function norm

The transfer function of a system, expressed in the
state-space form, is given by :

( ) ( ) BAIjCG ⋅−⋅⋅⋅= −1ωω ( 22 )

Transfer function norms HankelHHH ,,2 ∞  serve as a
measure of the controlling ability of an
actuator / sensor configuration applied on a system

defined by ( )CBA ,, . In this paper, only the 2H

norm, defined by :
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will be considered. The second part of ( 23 ) shows
the cross-connectivity between the output matrix C
and the observability Grammian CW  (and vice-
versa) on the system norm.
For flexible systems in the modal state
representation, 2H  norm can be expressed in terms
of the norms of the modes. This modal
decomposition affords then a visibility on each
modal contribution. Taking the transfer function of
the ith  mode :

( ) ( ) mimimii BAIjCG ⋅−⋅⋅⋅= −1ωω ( 24 )

the 2H  norm of the ith  mode can be estimated (see
Gawronski [6]) by :
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where iii ωζω ⋅⋅=∆ 2  is the half-power frequency at
the ith resonance. By using ( 23 ) and since the
Grammians are diagonally dominant in the modal
state-space representation, the 2H  norm of the
complete system is estimated by the rms sum of the
modal norms :
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where 
tmn  ( mn<< ) is the number of targeted modes.

Equations ( 25 ) and ( 26 ) are the bases for actuator
and sensor placement strategies.

2.4 Placement strategy for structural
testing

This technique addresses the problem of targeted
mode identification in structural testing. The aim is
to select a minimal number of actuators and sensors
that would measure, as accurate as possible,
targeted modes. For a realistic structure, the
procedure has to take into account geometrical
constraints that limits the number of candidate
locations.



2.4.1 Actuator positioning

Assuming that sensors are placed at all candidate
locations ( C  is then fixed for comparison purpose
only), the principle of the method is to compute, for
each possible actuator locations, the placement
index ki2σ  that evaluates the importance of the kth

( )nna <�1  actuator at the ith ( )
tmn�1  mode to the

performance achievable with the full set of
actuators (we cannot afford the full set of actuators,
and it will used for comparison purpose only) :
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where kiw  is an user defined weighting coefficient
that reflects the importance of the ith mode and the
kth actuator in the application. A placement matrix
can then be constructed by varying 0B ,C  being
fixed :

actuatork

mode

th

212

21211

2

⇑

⇐
















=Σ th

nnn

n
a i

atmtm

a

σσ

σσ

�

���

�

( 28 )

Each terms of 2∑  show the ability of the kth

actuator position to affect the ith mode. The actuator
index, computed by the rms sum of the kth actuator
over all the modes :
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reflects an averaged ability of the kth position to
affect all the targeted modes.
In the case of a large (and complex) structure, the
maximisation of a

kσ  alone is not a satisfactory
criterion : too many locations have to be selected to
guarantee a sufficient excitation of all the targeted
modes. On the other way, a strategy based on the
selection of the 1s  higher placements for each mode
will give too many locations with comparable
efficiencies [3]. These locations can be extracted
using an additional criterion based on the
correlation of each actuator modal norm vector :
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with 
2kiG , the 2H  norm of the transfer function of

the kth candidate actuator on the ith targeted mode.
An assurance criterion ( AC ) is then used to distinct
high correlated actuator candidate locations :
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When ( ) ε−≥ 1, lk ggAC  (with ε , a small positive
number), it means that these two actuator candidate
locations will excite the targeted modes with an
equivalent efficiency; one of these two candidates
can then be removed.
Based on the above analysis, the actuator placement
strategy is established :

1) Construct the actuator placement matrix a
2∑ .

2) For each targeted mode, select the ms  most
efficient locations. The resulting number of
actuators 1s  is then much smaller than the number
of candidate locations :

amm nnss
t
<<⋅≤1

3) Check the correlation between the remaining
actuator modal norm vector kg , keep all non-
correlated locations with ( ) ε−< 1, lk ggAC  and keep

also the one with the higher index a
kσ  for correlated

actuators. The number of remaining locations is
now anss <<< 12 .

2.4.2 Sensor positioning

Once the actuator positions are selected ( 0B  is
optimised), the same procedure can be repeated by
constructing a sensor placement matrix that allows
the selection of the best sensor positions.

2.4.3 Numerical example

The method for actuator placement strategy,
presented in this section, has been applied on a
numerical example to locate piezo-laminate for
structural characterization. The main structure
consists of an 0.16 x 0.08 x 0.001 m clamped-free
stainless steel plate (clamped side at x = 0 in
figure 3). The problem is to find the minimal set of
0.0508 x 0.0254 x 0.0004 m PZT-laminates able to
excite correctly the first five modes of the structure.

Structural finite element model
The tested structure is first modelled using the finite
element technique. The meshing of the structure is



chosen to be compatible with the piezo elements
(see figure 3).
The model uses conventional 3-D isoparametric
solid elements, improved by adding incompatible
second order shape functions associated to nodeless
degrees of freedom. This technique has been
introduced by Bathe and Wilson [4] and applied to
piezoelectric structure by Tzou and Tseng [5].
The resulting model totalises 918 mechanical
d.o.f.’s. Table 1 gives the computed resonance
frequencies associated with the five first modes of
the tested structure.

Hz Shape

Mode 1 27.9 (11)
Mode 2 134.3 (12)
Mode 3 165.8 (21)
Mode 4 442.7 (22)
Mode 5 473.2 (31)

Table 1 : Eigen-frequencies of tested structure

Actuator placement procedure
Due to obvious physical constraints, only 91
candidate actuators have been identified :
•  7 positions along the y axis
•  13 positions along the x axis.
Assuming that only vertical displacements (z
direction) are monitored :

0, 0 == xzox CIC
&

( 32 )

the actuator placement matrix a
2∑  is constructed by

setting, in ( 7 ) :

a
kk

B Θ−=0 ( 33 )

where a
kΘ  is the electromechanical coupling of an

actuator at the kth position.

Figure 2 : Actuator modal performances

Results
The procedure described in § 2.4.1 is then applied
and leads to the actuator placement matrix shown in
figure 2. Note that the actuator controllability on the
mode 1 (flexion along the x axis) is logically
decreasing with the distance between actuator and
the clamped side of the plate.
The three remaining actuator locations (on 91
candidates!) are presented in figure 3. By checking
the actuator modal performance matrix, it is
interesting to note that the actuator location n°1 has
a good efficiency to excite the 3 first modes while
position n°35 and n°57 have been selected to excite
modes 4 and 5 respectively.

Figure 3 : Controllability placement procedure
results.

3. Sensor placement technique
based on noise minimisation
effect

For practical reasons it is of course impossible to
make measurements at all structural degrees of
freedom. The position and number of sensors not
only condition the modal extraction, but also the
resulting spatial independency of the modal base
formed by the *

sn  sensors on the
tmn  targeted modes.

Spatial independency is important when the
experimental identification goal is to serve as input
for, e.g. a model updating procedure : a linear
dependency between extracted modes leads to ill-
posed problems because it will be impossible to
distinguish modes from each other. Kammer [6] has
proposed an iterative method that selects
measurement locations, assuring that the measured
modal base will be linearly independent.

(0, 0, 0)

x
y z

N°1

N°57

N°35



3.1 Placement procedure

Spatial independency implies that the estimate q̂  of
the target modal coordinates q  is found in a least
squares sense :

[ ] s
T
ss

T
s uq ⋅Φ⋅Φ⋅Φ=

−1ˆ ( 34 )

with qu ss ⋅Φ= , the sensor outputs,

sΦ , the 
tmn  targeted modes given at all sensor

candidates.
Let us assume that the sensor outputs are polluted
by a stationary Gaussian noise, uncorrelated and
with equivalent statistical properties for each
sensor. The variance is given by :

( ) InnE T ⋅=⋅ 2
0ϕ ( 35 )

The criterion to choose the location of the sensors is
given by the minimization of the covariance matrix
for the estimates of the modal displacements :

( ) ( )[ ]TqqqqE ˆˆmin −⋅− ( 36 )

This problem is equivalent to maximize the Fisher
information matrix expressed by :
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Equation ( 37 ) implies then that the signal to noise
ratio is maximised.
For convenience, the trace will be used as the
matrix norm :

( ) ( )Λ== trAtrA 00 ( 38 )

where Λ  comes from the associated eigenvalue
problem :

Λ⋅Ψ=Ψ⋅0A ( 39 )

The degrees of freedom not contributing to the
norm of 0A  do not affect the estimation of the
modal components and their measurement is
useless. Let us define a scaled matrix in wich each
row contains the square of the components of the
rows of sΦ  in terms of the basis Ψ  :

[ ] [ ]( ) 1−Λ⋅Ψ⋅Φ⊗Ψ⋅Φ= ssEF ( 40 )

where ⊗  indicates a term by term product.
The sum of the elements of each row (the row
number corresponding to a sensor candidate) of EF

is a measure of its contribution to Λ . The effective
independence of a sensor can then been checked at

each iteration, the location showing the lowest sum
value is then removed from the list.
To prevent rank deficiency of 0A  (and by the way,

to allow the computation of q̂  in ( 34 )), the
iteration procedure is stopped when the number of
retained locations is equal to the number of targeted
modes. The derived sensor configuration is said
suboptimal because it is generated in an iterative
manner.

3.2 Numerical example

The same set-up, as described in §2.4.3 is used. The
final goal is, this time, to find the minimal sensor
set able to identify the first 5 modes of the structure.
To adapt Kammer's algorithm for distributed
sensors, the procedure starts from the computation
of the piezoelectric output modal base, where each
component is the response of each candidate sensor
to a modal structural deformation :

[ ] i
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s
k

spiezo
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with s
kΘ is the electromechanical coupling of the

kth distributed sensor candidate,

iφ is the ith targeted mechanical mode.
piezo

iφ is the ith mode expressed in the
distributed sensor coordinates.
Figure 4 presents the achieved effective
independence distribution defined by :

( )∑
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i
E iFEfI

1
:, ( 42 )

for all iterations.

Figure 4 : EfI distribution for all iterations.

The trace of the Fisher information matrix is also
presented in figure 5. Its value is logically
decreasing as the number of sensors decreases, but
is maintained to an acceptable value in order to
achieve a sufficient signal to noise ratio.



Figure 5 : 0A  trace versus number of sensors.

Table 2 gives the reference corner positions of the
selected sensors.

X (m) Y (m)

1 0 0
7 0 0.06
29 0.045 0
35 0.045 0.06
70 0.1012 0.06

Table 2 : Selected sensor corner positions

4. Conclusion

Placement procedures for distributed transducers
have been successfully adapted from existing
methods. The first procedure is based on the
observability and controllability aspects. The
second method, based on the noise minimisation
effect can only be applied for sensor placement, but
guarantees a linear independence of the resulting
sensor base. The two approaches give similar results
on simple structure. Nevertheless, the Grammians
method is able to take into account the initial sensor
and actuator sets : the optimised sensor set will
depends on the previously optimised actuator set
(and inversely).
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