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Abstract

Of the glomerular, tubular and endocrine functions of the kidney, nephrologists have mostly focused their attention on the glomerular functions—albuminuria and glomerular filtration rate (GFR)—to grade the severity of chronic kidney disease (CKD). Although both albuminuria and GFR are associated with renal and cardiovascular morbidity and mortality, the utility of measured GFR (mGFR) has been questioned. GFR when measured adequately is the most precise measure of glomerular function and can be useful to individualize therapy among patients with CKD. In situations where estimated GFR is known to provide imprecise estimates of glomerular function, for example, sarcopenia and advanced cirrhosis, the measurement of GFR may be especially important. We discuss several clinical situations where mGFR can potentially influence the quality of life or complications of therapy because of interventions based on imperfect knowledge of GFR. We reason that although large databases may not detect the benefits of mGFR at the population level, precision medicine requires that therapy be individualized based on the best estimate of GFR that can be obtained particularly when the risk of harm is increased. The recent standardization of mGFRs is a step in the right direction and may help in treating the individual patient with CKD with a lower risk of complications and a better quality of life. We call for research in these subgroups of patients where it is clinically felt that mGFR is useful for clinical decision-making.

INTRODUCTION

The kidney functions can be classified into three broad groups—glomerular, tubular and endocrine (Figure 1). Measuring glomerular filtration rate (GFR) can be theoretically obtained by plasma or urinary clearances of exogenous makers that have the following characteristics: freely filtrated through the glomerulus, not bound to proteins, neither secreted nor reabsorbed by tubules, and only excreted by the kidneys. Different markers are available (inulin, 51Cr-EDTA, 99Tc- DTPA, iohexol and iothalamate), each having their own strengths and limitations [1]. For the estimation of GFR, the most widely available and used endogenous marker is serum creatinine [2]. We will not point out the limitations of serum creatinine as a filtration marker, which have been discussed extensively in the literature, except for some less recognized observations [2-4]. First, it is now well established that in early stages of kidney failure, serum creatinine and measured creatinine clearance may remain normal despite a falling GFR [5]. Since creatinine is both freely filtered and secreted, its levels may be normal despite measured GFR (mGFR) dropping because of increased tubular secretion or reduced creatinine generation. The ratio of measured creatinine clearance/inulin clearance averages 1.16 for GFR >80mL/min/1.73m2, 1.57 for GFR 40-80 mL/ min/1.73m2 and 1.92 for GFR <40mL/min/1.73m2 [6]. Thus, tubular secretion may be increased more with falling GFR. However, the correlation between creatinine clearance/mGFR and the mGFR is weak (p —0.49), which makes it difficult to predict the magnitude of creatinine secretion accurately. Less recognized is that serum creatinine is a negative acute-phase reactant. Thus, inflammation can reduce the generation of creatinine [7, 8]. Serum cystatin C is another emerging marker of glomerular filtration [9-11]. It too is influenced by inflammation in that the latter can increase the generation of cystatin C [7, 12].

Tubular function is another important domain of kidney health. Besides filtration of albumin by the kidney, the uptake of urinary albumin by cubulin and megalin pathways reflects an important contribution of the tubule in albumin handling [13]. Less recognized is that albumin can be synthesized by the proximal tubules in states of injury [14]. Thus, urinary albumin excretion rate likely reflects glomerular and tubular functions. The associations of serum phosphorus and bicarbonate with progression of chronic kidney disease (CKD) to end-stage renal disease (ESRD) likely reflect—at least in part—the independent assessment of tubular function by these markers [15,16].

Endocrine functions of the kidney are many, but the best recognized are the production of erythropoietin and activation of vitamin D [17]. Blood hemoglobin concentration, which is much more commonly measured than serum erythropoietin levels, is influenced by inflammation and iron deficiency. Therefore, it is not surprising that hemoglobin is a strong marker of progression of CKD to ESRD [18]. Similarly, 25 hydroxy vitamin D, a precursor for 1,25 dihydroxy vitamin D, is influenced not only by the dietary intake but also by sunlight exposure—a proxy for overall health—and negatively by inflammation. Thus, the association of 25 hydroxy vitamin D with poor outcomes comes as no surprise [19].

[image: image1.png]Despite rich tools available to us to measure renal functions, nephrologists worldwide have focused mostly on the estimation of GFR (eGFR) and albuminuria for the assessment of kidney function [20, 21]. Given that both eGFR and urine albumin to creatinine ratio are to varying degrees reflect glomerular, tubular and non-renal domains (such as age, sex, race, sarcopenia, liver disease and inflammation), it is not surprising that strong associations between these measures and all-cause mortality and ESRD are seen. The question emerges of whether mGFR has any value [22,23].
FIGURE 1: Conceptual framework for renal functions. 

The renal functions can be divided broadly as glomerular, tubular and endocrine functions. Nephrologists have largely focused on the glomerular functions. Some such as eGFR and albuminuria can be influenced by tubular functions also. The importance of tubular and endocrine functions is discussed in the text. Dotted arrows denote that tubular functions can modulate some functions thought to be purely glomerular in nature (see text for details).
IS mGFR USEFUL?

Urinary excretion rate of inulin after steady-state infusion of inulin is the first GFR measurement described in the literature [1]. However, this measure is now rarely performed due to the expense of obtaining inulin, time to achieve steady-state infusion especially when the GFR is low, and the need for bladder catheterization to measure the urinary flow rate accurately. Recently, this method has been taken off the market in France for safety reasons. Two other alternatives have emerged. In Europe, iohexol clearance is widely used and in the USA, iothalamate clearances. Iothalamate can be done using the native form or tagged with radioisotopes. Neither of these methods as currently practiced commonly collect urine; thus, plasma clearances are used [23-26]. We will discuss the pros and cons of these methods later, but before we discuss, it would be useful to compare how these methods compare with eGFR.

[image: image2.jpg]We can measure GFR, estimate it in the population and ask the question of how well they relate to each other. To do so, we can calculate the difference between the eGFR and mGFR and then calculate the average difference between the two and the standard deviation of this difference (Figure 2). The average difference between the two measures is called the bias. Bias is the systematic difference between the two measures. Bias is easy to correct by adding or subtracting a number to the eGFRs. The standard deviation of the differences between the two measures is the random dispersion of the errors around the bias. At an individual level, this error—called precision—is very important because it allows the estimation of the probability that the eGFR will be in a certain range given the population measure [27-29]. The estimates of GFR are such that they can transgress a stage. In other words, if the eGFR is 45mL/min/1.73m2, it could be <30mL/min/1.73m2 or >60mL/min/1.73m2 in an individual patient [29-31]. Bias and precision can be combined to give an estimate of accuracy; it is defined as the percentage of eGFR results within a given percentage of mGFR [28, 29]. Accuracy within 30% is considered to be acceptable [32]. Setting the accuracy at 30% is arbitrary and it may not be sufficient in individual patients or clinical circumstances when greater accuracy is needed.
FIGURE 2: Bland and Altman plots illustrating the performance (or the concordance) between two methods (eGFR with mGFR or two different mGFR; see main text for details). 

Each black circle is the result of one patient, calculated as: (Method 1 — Method 2)/[(Method 1 + Method 2)/2]. The dotted line is unbiased (0% or zero line). The black full lines represent the limit of 30%.
Bias is certainly important in the epidemiological studies. For example, the Modification of Diet in Renal Disease (MDRD) study equation underestimates eGFR when mGFR is high. This can profoundly influence CKD epidemiology [29,33, 34]. Thus, the MDRD study equation will overestimate the prevalence of CKD [34-36]. However, we must keep in mind that the bias can be corrected as it, by definition, is a systematic error (Method 2 in Figure 2). In contrast, the precision is especially important at the individual level. Being a random error, it is not possible to systematically correct (Method 3 in Figure 2). Even if there is no bias, it would still not be possible to know the real mGFR at an individual level if the imprecision was high (Method 3 in Figure 2) [29]. To illustrate the above concept, we provide an example, that of performance of the Cockcroft-Gault among the elderly. The bias of the Cockcroft-Gault formula was found to be as good as the Berlin initiative study equation and even better than the CKD-Epidemiology Collaboration (CKD- EPI) equation [37]. Indeed, in the elderly, MDRD and CKD-EPI equations classically overestimate mGFR and this is probably due to the decrease in muscle mass, a lower serum creatinine concentration and therefore higher eGFR [37]. This overestimation is compensated by both age and weight variables in the numerator of the Cockcroft-Gault equation. 
This compensation of two different errors makes the bias acceptable. However, and more importantly, no difference is made with the precision. Indeed, the precision of the Cockcroft-Gault equation is actually lower than other eGFR, once again making its performance (and its accuracy within 30%) at the individual level questionable [33, 37]. 

Finally, we could question the current recommendation of a target of accuracy within 30% [29, 30, 38, 39]. Our opinion is that accuracy within 30% is probably sufficient in the majority of clinical care. However, in very specific situations and/or very specific patients, this value of 30% could be considered as too wide. Best accuracies within 30% observed in recent studies [CKD-EPI consortium [9] and full age spectrum (FAS) equations [40, 41]] for equations combining creatinine and cystatin C are around 85-90%. However, first, the accuracy within 20 or 10% is, as expected, much less impressive (around 75% for accuracy within 20% in the CKD-EPI consortium [9] and around 50% for accuracy within 10% in the FAS equation cohort [40, 41]). When a high precision is required, all current equations lack this attribute.

SPECIFIC SITUATIONS AND INDIVIDUALS WHO MAY NEED MEASUREMENT OF GFR

Errors by GFR estimating equations can thus be quite large. If such errors can lead to situations that may jeopardize the duration or quality of life, then it would be important to have knowledge of true GFR.

Situations, which are critical hinge on the accurate estimation of GFR could be the following. The list is more illustrative than exhaustive:

The decision to initiate dialysis often hinges on eGFR <15 mL/min/1.73 m2. In some patients the nonspecific symptoms of uremia may be due to other reasons. In a patient who may be considered symptomatic of uremia, where eGFR is about 15 mL/min/1.73 m2, a true measurement of GFR may help clarify whether the symptoms are truly uremic. For example, if mGFR is 30 mL/min/1.73 m2, then it is probably unlikely that the patient is uremic. In this situation, it is worth measuring GFR; the utility and cost of a single GFR measurement far outweighs the cost of long-term dialysis. On the other hand, typical symptoms of uremia in someone with eGFR >15 mL/ min/1.73 m2 or absence of symptoms with eGFR <8 mL/ min/1.73 m2 may clarify clinical decision making if GFR is measured [42].

Dosing a potentially nephrotoxic drug (e.g. cisplatin) [39, 43], or a drug that may have other toxicity due to impaired pharmacokinetics. In a systematic review, 17 of 48 antineoplastic drugs had substantial (>30%) removal by the kidneys [44]. In this context, knowledge of mGFR may allow adequate dosing to cytotoxic therapies; over dosing may be toxic and under dosing may be associated with a higher risk of cancer relapse [45].
Sarcopenic individuals such as those with paraplegia or muscular dystrophies may have larger than usual errors in measured and estimated GFRs. The performance of equations, especially with creatinine-based equations, can be particularly poor in very specific populations [39, 46, 47]. Considerations noted in (i) and (ii) may be particularly important in these individuals.

In patients with decompensated cirrhosis—who are well known to have impaired creatinine generation—the measurement of GFR may be useful to avoid nephrotoxicity, for example, normal creatinine and contrast exposure [46, 48].

In patients with sepsis in the intensive care unit, akin to rodent experiments, the generation of creatinine may be impaired. Cytokine storm in burn patients may also lead to poor recognition of substantial renal injury and downstream events such as dosing of drugs and decisions for renal interventions and renal replacement therapy. Urinary clearance of GFR marker could serve a useful purpose in such situations. However, implementing measurements of renal clearance in the intensive care unit can impose substantial hurdles.

Donor nephrectomy in a living donor requires that the GFR be normal. Many transplant centers measure GFR in such patients instead of relying on an estimate [49]. This may be important to ensure the health of the donor.

Thus the measurement of the filtration marker is not needed for all, but what we need is more support for this notion—that mGFR is useful—at an individual level [23]. Even if we claim that there is still a place for mGFR in nephrology, we must admit that a definitive proof of its utility is not available. A randomized control study that illustrates that in these situations (and/or patients), mGFR that will lead to a better management or outcomes of patient is simply not available. For instance, the potential added value of mGFR in living kidney donation process or in terms of drug dosage adaptation (e.g. for platin derivate) is based more on simulation than on randomized controlled trials.

eGFR versus mGFR and their relationship with hard outcomes

As stated in the Introduction, recommendations in nephrology are more often based on observational epidemiological studies rather than hard evidence based on randomized control trials [50]. For example, the CKD-EPI equation is preferred over the MDRD or Cockcroft-Gault formula, not only because CKD-EPI better estimates mGFR [34] but also because this equation better predicts mortality [51]. The same arguments are used to promote cystatin C-based eGFR estimations [52], and finally to question mGFR [22, 53, 54]. Biomarkers used in equations, namely serum creatinine and cystatin C, are not only influenced by GFR but also by the so-called non-GFR determinants. It is becoming more evident from the recent literature that the added value of cystatin C in predicting hard endpoints is also due to its non-GFR determinants such as inflammation [7,12].

However, here we will more directly compare eGFR and mGFR. Compared with eGFR, whether mGFR relates more strongly with morbidity and mortality has been mired in controversy. From the CRIC study, Ku et al. [55] took a sample of patients who had two mGFRs and eGFRs. 
They wanted to test the strength of the association between mGFR and eGFR. Strength of the association between exposure and outcome is not measured by the hazard ratio but by the C-statistic. For any of the outcomes of ESRD, all-cause mortality and cardiovascular morbidity, using the C-statistic, there was no statistical difference between mGFR and eGFR. This means that the null hypothesis that there is no difference between mGFR and eGFR in the ability to predict all-cause mortality or other outcomes cannot be rejected.

Bhavsar et al. [56] reported the association of ESRD with mGFR and eGFR in the African American study of kidney disease. The C-statistic for mGFR was 0.852 and for eGFR based on serum creatinine was 0.853. Although the statistical significance of the difference in the C-statistic was not reported, the clinical significance of the difference is irrelevant. Again, the data tell us that there is no difference between the two measures, mGFR and eGFR, for prediction of ESRD.

From the Swedish CKD registry, among 2705 patients with CKD, Methven et al. [42] compared mGFR and eGFR with 2year all-cause mortality using logistic regression. The C-statistic was 0.77 for mGFR and 0.75 for eGFR for all-cause mortality at 2 years. Although the difference between the C-statistic appears small, the P-value for the difference was 0.009, indicating that mGFR was more strongly associated with all-cause mortality. Furthermore, there was a small improvement in integrated discrimination improvement (IDI). IDI is a statistical test that illustrates superiority of risk prediction by mGFR compared with eGFR. The authors did not report the association of mGFR and eGFR with ESRD.

Given these data, we can take a cautious approach and state that at present, there is no clinically relevant convincing evidence that mGFR is superior to eGFR in predicting hard endpoints. Nevertheless, the bigger question is whether long-term risks of mortality or ESRD are a valid comparison of mGFR and eGFR. We will probably get the same answers if we were to repeat this study in another observational cohort. If we individualize mGFR measurement say, for example, to avoid nephrotoxic drug exposure or to assess unclear symptoms that we think are uremic, then we perhaps are changing the quality of life or saving costs to society, not changing all-cause mortality. A more nuanced approach is therefore needed to design studies that compare mGFR and eGFR. At present, we do not know the answer.

Are other domains of kidney function also important?

The association of eGFR with markers of tubular function— which is not seen in the case of mGFR—supports the notion that eGFR and mGFR may measure different domains of kidney function. To explain this further, we will consider the well- known fact that tubulointerstitial fibrosis on a kidney biopsy is a stronger correlate of progression than glomerulosclerosis. Markers that relate to deranged tubular function are an elevated serum phosphorus concentration, hyperkalemia and acidosis. These may confer independent effects on poor renal and cardiovascular outcomes. A filtration marker that relates more to tubulointerstitial function may therefore not accurately reflect the domain of filtration. Some investigators interpret this otherwise and point to this as evidence not to measure GFR [53].

mGFR: STILL SOME WORK TO DO

mGFR is not without limitations. Among these are its cost and the difficulty in performing this procedure on a routine basis, which we acknowledge remains a barrier in many centers [23, 24]. mGFR can be done quite inexpensively if we employ some low technology disruptive innovations. As an example, iothalamate and iohexol are very stable over a wide temperature range. Hagan et al. [57] have shown that dried plasma on a filter paper can provide results that are as accurate as direct measurement of iothalamate from the blood. Such accurate results with dried blood spots have been shown recently with iohexol [58]. Thus multiple timed samples drawn after a measured amount of iothalamate or iohexol can be processed. Plasma can be placed on a filter paper and simply mailed to a central laboratory for analysis. With large volumes, costs of central labs can come down and mGFR can be provided to nearly anyone in any country with access to a postal system.
Another problem is the lack of a standardized way to measure GFR. A recent review paper from a European group of experts attempted to standardize mGFR (Table 1) [24]. Second, there are different markers that can be considered as useful for measuring GFR [61]. Inulin requires urinary clearances, is costly and is not readily available everywhere in the world. Several alternative markers have been proposed such as 51Cr- EDTA, 99Tc-DTPA, iothalamate and iohexol [23, 26, 33, 61, 62]. For pragmatic reasons, iohexol and iothalamate plasma clearances are the two most popular methods in Europe and in the USA, respectively. However, it is true that some differences in GFR results can be observed between the two markers [63, 64]. Indeed, in comparison with iothalamate, mGFR based on iohexol measured by liquid chromatography with tandem mass spectrometry (LC-MS/MS) resulted in a bias of —10.6% [95% confidence interval (95% CI) —28.2 to 6.9%], whereas the bias for mGFR based on iohexol measured by high-performance liquid chromatography (HPLC) was only —1.7% (95% CI —26.5 to 23.0%). This discordance could be tempered. Firstly, the differences observed between iohexol and iothalamate were highly dependent on the way iohexol was measured (LC-MS/MS or HPLC). This lack of standardization between markers could be more a matter of analytical measurements of these markers than a true difference between iohexol and iothalamate. Secondly, the concordance within 30 and 15% between the iohexol and iothalamate clearances: accuracy within 30% was 98 and 99%, and within 15% was 80 and 74% (for iohexol measured by LC-MS/MS and HPLC, respectively). Such high accuracies are never observed in any studies comparing eGFR and mGFR (see above). Accordingly, bias could be considered as relevant; the precision of the measurement was very high. More important, and as stated before, the systematic bias between iohexol (HPLC) and iothalamate can be corrected (with a recalibration of 10%, i.e. by correcting the systematic error), leading to an accuracy within 15 of 84% between the two methods [63].

Table 1. Available procedures to measure GFR

	Methodology
	Indication in clinical practice
	Indication in clinical research

	Urinary clearance
Plasma clearance
	Increased extracellular volume (edema, ascites, intensive care units, etc.)
	Basic (physiologic) studies
Specific populations (cirrhotic, intensive care, nephrotic syndrome, edema, etc.)

	Multiple samples (first or fast, second or slow exponential curves and calculation of area under the curve)
	High GFR values (‘hyperfiltering’) subjects
	Development of equations to estimate GFR Studies in hyperfiltering patients

	Multiple samples only for second and slow component (2 h after injection, four samples over 5 or 6 h, one sample/h) + BM correction
	High precision determination (see text)
	Development of equations to estimate GFR Clinical research with GFR as main endpoint

	Idem + late sample (8 or 24 h)
	Predialysis subjects
	Research in predialysis subjects

	Simplified two or three sample method (two samples: first at 2 or 3 h and second at 4 or 5 h) + BM correction
	CKD or healthy population
	Development of equations to estimate GFR Clinical research with GFR as a secondary endpoint

	Simplified single-sample method + Jacobsson correction [59, 60]
	CKD or healthy population
	Development of equations to estimate GFR Clinical research with GFR as a secondary endpoint
Epidemiological research


The recommendations are adapted from [24]. These propositions are basically applicable to all GFR markers, except for inulin, which must be used only as urinary clearance.

BM, Brochner-Mortensen correction.
Discrepancies between mGFR markers should therefore not be exaggerated. However, it would not be scientific to ignore them. It took a long time to standardize measurements of serum creatinine [65], and such a measurement can be considered easier than iohexol or iothalamate measurement. Moreover, such a standardization is obtained with enzymatic methods although most of Jaffe assays are still not well calibrated [66]. Also, a full standardization of cystatin C assays is still not a reality, even if recent improvements have been observed [67]. There is still some work to be done to standardize mGFR. This lack of standardization does not eclipse the major strength of mGFR: absence of non-GFR determinants and highly reproducible results (intra-individual coefficient of variation <5%) [7,23,68].

CONCLUSION

We conclude that GFR measurement may be useful in certain patients and in certain situations. Furthermore, mGFR is important in clinical research specifically where precise knowledge of GFR is necessary. [23, 69].
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