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I. Abstract

The trend for precision ammunition is always to hit a smaller target with a higher probability at an ever increasing
distance. The last two decades revealed many new calibers, new weapon features and a large number of trajectory
software to reach this goal. However, there is no unanimous criterion yet to define properly and scientifically why a
projectile is better than another one. The existing software are often drag based (point-mass models), with a fitting
established to match real firing, but they do not account specifically for the sharp changes in aerodynamic forces when
the projectiles reach the transonic zone. Nonetheless, the transonic domain has to be crossed by precision ammunition
when reaching high operational ranges with the classical propulsion and its inherent velocities. Some aero-ballistic
articles define the transonic regime as a region of critical aerodynamic behavior where aerodynamic coefficients have
been found to increase by as much as 100% for classical small caliber ammunition [1, 2].

This study will focus particularly on the .338 inch Lapua Magnum projectile, in operational use with Belgium
Defense snipers. Depending on the brand, those .338 projectiles become subsonic between 1000 m and 1200 m, but
the hit expectation for this weapon system is around 1600 m. The geometrical specificities of this projectile and the
velocity range from Ma 1,2 to Ma 0,8 will be aerodynamically analyzed using Computational Fluid Dynamics (CFD), to
understand better how does this projectile behave through the transonic domain. A 6-DOF Model [3] will then be used
to assess properly the effect on the trajectory compared to a standard drag-based model (2-DOF), already optimized for
this type of projectile.

Numerous CFD studies were achieved for all flight regimes to characterize spin-stabilized projectiles [4–13], some
of them focused on the transonic regime [1, 2, 14–17]. Those references are used to validate our methodology on
a 5,56 mm projectile. Aerodynamic force and moment coefficients will be obtained using steady Reynold Average
Navier-Stokes simulations with a low-order turbulence model including transition (γ-SST k-ω-model [18, 19]) and
validated against available data.

An extensive study including CFD, wind tunnel and spark-range firings was also done by the Army Research
Laboratory (ARL) [20–22] to see the influence of rifling grooves on different 5,56 mm projectiles in the supersonic
domain. The effort made to take the grooves in consideration experimentally and in CFD does not yield a significant
improvement in that flight domain. Based on those results, further CFD investigations will however be continued on the
.338 projectile in the transonic range, to assess the sensitivity of this specific precision ammunition to the grooves in that
regime.
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