

Detecting signatures of consciousness in cortical dynamics

Instituto de Neurobiología
Universidad Nacional Autónoma de México
15 November 2018

Athena Demertzi, PhD
FNRS Research Associate
GIGA Consciousness
GIGA Research Institute & Neurology Department
University & University Hospital of Liège
Belgium

Some numbers...

- The human brain is approximately 2% of the weight of the body
- 80% of this energy consumption is used to support neuronal signaling
- Stimulus and performance-evoked changes in brain energy consumption <5%

While conscious awareness is energetically inexpensive, it is dependent upon a very complex, dynamically organized, non-conscious state of the brain that is achieved at great expense

Functional connectivity in rest

Stationary

Stationary rsfc and cognition

Stationary rs functional connectivity :

- is linked to behavior and task performance (*Laird et al, J Cogn Neurosci. 2011*)
- reflects physiological & pathological unconsciousness (*Heine et al, Front Psychol 2012*)
- permits single-patient automatic diagnosis (*Demertzi & Antonopoulos et al, Brain 2015*)

But

it remains unclear to what extent it provides a representative estimate of cognition

(*Peterson et al, NeuroImage Clin. 2015*)

Ongoing interactions among distinct brain regions

(*Hutchison et al, NeuroImage 2013*)

Dynamic functional connectivity in rest

Dynamic rsfc and cognition

Typical wakefulness: significance for performance, emotion and cognition

(Alavash, et al, *Neuroimage*, 2016; Shine et al., *Neuron*, 2016; Friston, *Neuroimage*, 1997; Thompson et al., *Hum. Brain Mapp*, 2013)

Unconsciousness: rigid spatiotemporal organization, less metastable dynamics

- **sleep** (Tagliazucchi et al., PNAS 2013; Wang, et al, PNAS (2016; Wilson et al., *Neuroimage* 2015; Chow et al., PNAS 2013)
- **anesthesia**
 - **in humans** (Tagliazucchi et al, *J. R. Soc. Interface*. 2016; Kafashan, et al, *Front. Neural Circuits*, 2016; Amico et al., *PLoS One* 2014)
 - **in animals** (Barttfeld PNAS . 2014); Grandjean et al., *Neuroimage*. 2017; Liang, et al, *Neuroimage* 2015).

Barttfeld*, Ulhrig*, Sitt*, et al, PNAS 2015

The brain cannot map the complexity of the internal and external world
(Dehaene, et al *Trends Cogn. Sci.* 2006; Tononi et al, *Nat. Rev. Neurosci.* 2016)

The aim:

**to use spontaneous brain dynamics
to detect signatures of consciousness in
wakeful noncommunicating conditions**

Disorders of Consciousness

TRENDS in
Cognitive
Sciences

Behaviour

Terry Schiavo °1963,
vegetative 1990, † 2005 USA

Study cohort (N=159)

Main dataset

awake

	VS/UWS	MCS	CTR
LIEGE	17	23	21
PARIS	13	9	15
NY	6	10	11
Total	36	42	47

n = 125

Validation datasets

sedated

LIEGE	
EMCS	3
MCS	14
UWS	6

n = 23

ONTARIO

VS/UWS-	6
VS/UWS+	5

n = 11

James S. McDonnell Foundation

Grant Type: Collaborative Activity Award, Phase I & II (2008-2017)

Analysis pipeline

EPI acquisition

Preprocessing

Slice-time correction
Realignment
Segmentation
Normalization
Smoothing
Motion outliers (ART)
aCompCor
Regressing out realignment
parameters and ART outliers
Bandpass filtering [0.008-0.09Hz]

Brain parcellation

(Sphere ROIs)

ROI timeseries extraction

Phase analysis (Hilbert transform)

Unsupervised clustering (k-means)

State identification (cluster centroids)

Structure-function correlation

A**B**

Aud
Mot

DMN
Sal

FP
Vis

Diffusion Spectrum Imaging

Patterns (all sites)

Patterns (different k)

A

Patterns (per site)

A

Structure-function correlation

C

 $KW = 4e-11$ $UWS/MCS = 0.007$

The pattern exploration differs with respect to state of consciousness (1)

A. Between-pattern transition probabilities

Consciousness-level dependent

MCS vs. UWS

The pattern exploration differs with respect to state of consciousness (2)

We measure consciousness?

Pattern prediction in cognitive-motor dissociation

Pattern prediction in anesthesia

Rs-fMRI dynamics:

- reveal complex inter-regional communication as compared to stationary fc
- differentiate states of consciousness uniformly across centers
- may reflect cognitive processing (str-funct corr)
- align with theoretical frameworks on the mechanisms of consciousness

Science Advances

Science
JOURNALS AAAS

----- Forwarded message -----

From: Kevin LaBar <scienceadvanceseditorial@aaas.org>

Date: Thu, Nov 15, 2018 at 5:43 AM

Subject: Science Advances aat7603: Accept-Technical Hold

To: <tagliazucchi.enzo@googlemail.com>, <jacobo.sitt@inserm.fr>, <a.demertz@uliege.be>

Ref.: Ms. No. aat7603

Title: Human consciousness is supported by dynamic complex patterns of brain signal coordination

Dear Dr. Tagliazucchi, Sitt, Demertzzi,

We are pleased to inform you that our editors are preparing to accept your manuscript, referenced above. However, your paper cannot be formally accepted until some issues related to author paperwork and/or file types have been addressed.

Defining Consciousness

SELF

CONSCIOUSNESS

WHICH SELF IN UNCONSCIOUSNESS?

social

COMMON VIEW: no self

HYPOTHESIS: yes self

MODEL: Embodiment

narrative

HOW: Probe balance

minimal

Thank you for your attention!

a.demertzi@uliege.be

 ADemertzi

The Hilbert transform

Phase coherence

Markov Process

- *stochastic process that has no memory*
- *selection of next state depends only on current state, and not on prior states*
- *process is fully defined by a set of transition probabilities π_{ij}*
 π_{ij} = probability of selecting state j next, given that presently in state i .
Transition-probability matrix Π collects all π_{ij}

Transition-Probability Matrix

○ Example

- *system with three states*

$$\Pi \equiv \begin{pmatrix} \pi_{11} & \pi_{12} & \pi_{13} \\ \pi_{21} & \pi_{22} & \pi_{23} \\ \pi_{31} & \pi_{32} & \pi_{33} \end{pmatrix} = \begin{pmatrix} 0.1 & 0.5 & 0.4 \\ 0.9 & 0.1 & 0.0 \\ 0.3 & 0.3 & 0.4 \end{pmatrix}$$

Annotations for the matrix:

- Top-left cell (0.1): *If in state 1, will stay in state 1 with probability 0.1*
- Cell (2, 3) (0.4): *If in state 1, will move to state 3 with probability 0.4*
- Cell (3, 2) (0.0): *Never go to state 3 from state 2*

○ Requirements of transition-probability matrix

- *all probabilities non-negative, and no greater than unity*
- *sum of each row is unity*
- *probability of staying in present state may be non-zero*