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• The human brain is approximately 2% of the weight of 
the body

• 80% of this energy consumption is used to support 
neuronal signaling

• Stimulus and performance-evoked changes in brain 
energy consumption <5%

While conscious awareness is energetically inexpensive, it 
is dependent upon a very complex, dynamically 

organized, non-conscious state of the brain that is 
achieved at great expense 

Raichle & Snyder. Intrinsic Brain Activity and Consciousness. 
In: Laureys S, Tononi G, editors. The Neurology of Consciousness. Oxford: Elsevier Academic Press; 2009. p. 81-48
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(Power et al. 2012), but rather than remove affected time points from
data (which would compromise the subsequent sliding window ap-
proach), we replaced outliers with the best estimate using a
third-order spline fit to the clean portions of the TCs. Outliers were
detected based on the median absolute deviation, as implemented in
3DDESPIKE (http://afni.nimh.nih.gov/afni). Improvement in the
root-mean-square of the temporal derivative over component TCs, re-
ferred to as “DVARS” in Power et al. 2012 (see Supplementary Fig.
S1A) and removal of anticipated motion-related biases from FC esti-
mates (see Supplementary Fig. S1B), suggest satisfactory correction of
motion artifacts. As a final step in postprocessing, we normalized the
variance of each TC, thus covariance matrices (below) correspond to
correlation matrices. In exploratory work, we repeated all analyses on
component TCs that underwent minimal postprocessing (only de-
trending and low-pass filtering) and found nearly identical results
with regard to FC temporal variability (Fig. 4) and connectivity states
(Fig. 5), suggesting that the somewhat aggressive postprocessing
applied here did not fundamentally alter dynamic structures.

FC Estimation and Temporal Variability
For each subject i = 1…M, stationary FC was estimated from the TC
matrix Ri as the C × C sample covariance matrix ∑i (Fig. 1B, left).
Dynamic FC was estimated with a sliding window approach, wherein
we computed covariance matrices ∑i(w), w = 1…W, from windowed
segments of Ri (Fig. 1B, right). We used a tapered window (see
Fig. 1B, right), created by convolving a rectangle (width = 22 TRs = 44
s) with a Gaussian (σ = 3 TRs) and slid in steps of 1 TR, resulting in
W = 126 windows. Because relatively short time segments may have
insufficient information to characterize the full covariance matrix, we
estimated covariance from the regularized precision matrix (inverse
covariance matrix, ∑i

−1(w)) (Varoquaux et al. 2010; Smith et al.
2011). Following the graphical LASSO method of Friedman et al.
2008, we placed a penalty on the L1 norm of the precision matrix to
promote sparsity. The regularization parameter lambda (λ) was opti-
mized separately for each subject by evaluating the log-likelihood of
unseen data (windowed covariance matrices from the same subject)
in a cross-validation framework. Final dynamic FC estimates for each
window, ∑i

L1(w), were concatenated to form ∑i
L1, a C × C ×W array

representing the changes in covariance (correlation) between com-
ponents as a function of time. Both stationary and dynamic FC esti-
mates were Fisher transformed to stabilize variance prior to further
analysis.

FC estimates between some ICNs exhibited greater temporal varia-
bility than others (see Figs. 3 and 4A). We used a simple algorithm to
separate ICNs into groups with more variable FC (Partition 1, P1), re-
ferred to as the “zone of instability” (ZOI), and less variable FC (P2).
The algorithm proceeded with 3 steps: 1) ICNs were randomly as-
signed to P1 or P2 with equal probabilities, 2) in repeated iterations,
membership for a single component was changed in such a way to
maximize the Separation Index
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where au,v is the average low-frequency (<0.025 Hz) amplitude of FC
oscillations between components u, v = 1, ... C1, σ2 is the standard
deviation over au,v, u; v [ P2, and h1, h2, are the number of com-
ponents in each respective partition, and 3) stopping criteria were
reached when any change in membership would result in a decrease
in SI. To obtain a robust partitioning solution that incorporated data
variability and was independent of initial conditions, we repeated the
algorithm on b = 1000 bootstrap resamples of the data, that is, M sub-
jects were drawn with replacement and au,v was recomputed as the
average over that sample. ZOI scores for each ICN (see Fig. 4B) were
then calculated as the fraction of repetitions in which the component
was assigned to P1.

Clustering Analysis
To assess the frequency and structure of reoccurring FC patterns we
applied the k-means clustering algorithm (Lloyd 1982) to windowed
covariance matrices. We used the L1 distance function (Manhattan dis-
tance), guided by work suggesting the L1-norm may be a more effec-
tive similarity measure than the L2 (Euclidean) distance for
high-dimensional data (Aggarwal et al. 2001). Only covariances
between the C1 = 50 ICNs were used in the clustering analysis, result-
ing in (50 × (50− 1))/2 = 1225 features. Prior to clustering, subject

Figure 1. Illustration of analysis steps. (A) Group ICA decomposes resting-state data from M= 405 subjects into C= 100 components, C1 = 50 of which are identified as
intrinsic connectivity networks (ICNs). GICA1 back reconstruction is used to estimate the TCs (Ri) and SMs (Si) for each subject. (B) Stationary FC between components (left,
∑i) is estimated as the covariance of Ri. Dynamic FC (right, ∑i

L1(w)) is estimated as the series of regularized covariance matrices from windowed portions of Ri.
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Stationary rsfc and cognition

Stationary rs functional connectivity : 
• is linked to behavior and task performance (Laird et al, J Cogn Neurosci. 2011)

• reflects physiological & pathological unconsciousness (Heine et al, Front 
Psychol 2012)

• permits single-patient automatic diagnosis (Demertzi & Antonopoulos et al, Brain 2015)
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Ongoing interactions among distinct brain regions 
(Hutchison et al, NeuroImage 2013)

But
it remains unclear to what extent it provides a 

representative estimate of cognition 
(Peterson et al, NeuroImage Clin. 2015)



(Power et al. 2012), but rather than remove affected time points from
data (which would compromise the subsequent sliding window ap-
proach), we replaced outliers with the best estimate using a
third-order spline fit to the clean portions of the TCs. Outliers were
detected based on the median absolute deviation, as implemented in
3DDESPIKE (http://afni.nimh.nih.gov/afni). Improvement in the
root-mean-square of the temporal derivative over component TCs, re-
ferred to as “DVARS” in Power et al. 2012 (see Supplementary Fig.
S1A) and removal of anticipated motion-related biases from FC esti-
mates (see Supplementary Fig. S1B), suggest satisfactory correction of
motion artifacts. As a final step in postprocessing, we normalized the
variance of each TC, thus covariance matrices (below) correspond to
correlation matrices. In exploratory work, we repeated all analyses on
component TCs that underwent minimal postprocessing (only de-
trending and low-pass filtering) and found nearly identical results
with regard to FC temporal variability (Fig. 4) and connectivity states
(Fig. 5), suggesting that the somewhat aggressive postprocessing
applied here did not fundamentally alter dynamic structures.

FC Estimation and Temporal Variability
For each subject i = 1…M, stationary FC was estimated from the TC
matrix Ri as the C × C sample covariance matrix ∑i (Fig. 1B, left).
Dynamic FC was estimated with a sliding window approach, wherein
we computed covariance matrices ∑i(w), w = 1…W, from windowed
segments of Ri (Fig. 1B, right). We used a tapered window (see
Fig. 1B, right), created by convolving a rectangle (width = 22 TRs = 44
s) with a Gaussian (σ = 3 TRs) and slid in steps of 1 TR, resulting in
W = 126 windows. Because relatively short time segments may have
insufficient information to characterize the full covariance matrix, we
estimated covariance from the regularized precision matrix (inverse
covariance matrix, ∑i

−1(w)) (Varoquaux et al. 2010; Smith et al.
2011). Following the graphical LASSO method of Friedman et al.
2008, we placed a penalty on the L1 norm of the precision matrix to
promote sparsity. The regularization parameter lambda (λ) was opti-
mized separately for each subject by evaluating the log-likelihood of
unseen data (windowed covariance matrices from the same subject)
in a cross-validation framework. Final dynamic FC estimates for each
window, ∑i

L1(w), were concatenated to form ∑i
L1, a C × C ×W array

representing the changes in covariance (correlation) between com-
ponents as a function of time. Both stationary and dynamic FC esti-
mates were Fisher transformed to stabilize variance prior to further
analysis.

FC estimates between some ICNs exhibited greater temporal varia-
bility than others (see Figs. 3 and 4A). We used a simple algorithm to
separate ICNs into groups with more variable FC (Partition 1, P1), re-
ferred to as the “zone of instability” (ZOI), and less variable FC (P2).
The algorithm proceeded with 3 steps: 1) ICNs were randomly as-
signed to P1 or P2 with equal probabilities, 2) in repeated iterations,
membership for a single component was changed in such a way to
maximize the Separation Index
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where au,v is the average low-frequency (<0.025 Hz) amplitude of FC
oscillations between components u, v = 1, ... C1, σ2 is the standard
deviation over au,v, u; v [ P2, and h1, h2, are the number of com-
ponents in each respective partition, and 3) stopping criteria were
reached when any change in membership would result in a decrease
in SI. To obtain a robust partitioning solution that incorporated data
variability and was independent of initial conditions, we repeated the
algorithm on b = 1000 bootstrap resamples of the data, that is, M sub-
jects were drawn with replacement and au,v was recomputed as the
average over that sample. ZOI scores for each ICN (see Fig. 4B) were
then calculated as the fraction of repetitions in which the component
was assigned to P1.

Clustering Analysis
To assess the frequency and structure of reoccurring FC patterns we
applied the k-means clustering algorithm (Lloyd 1982) to windowed
covariance matrices. We used the L1 distance function (Manhattan dis-
tance), guided by work suggesting the L1-norm may be a more effec-
tive similarity measure than the L2 (Euclidean) distance for
high-dimensional data (Aggarwal et al. 2001). Only covariances
between the C1 = 50 ICNs were used in the clustering analysis, result-
ing in (50 × (50− 1))/2 = 1225 features. Prior to clustering, subject

Figure 1. Illustration of analysis steps. (A) Group ICA decomposes resting-state data from M= 405 subjects into C= 100 components, C1 = 50 of which are identified as
intrinsic connectivity networks (ICNs). GICA1 back reconstruction is used to estimate the TCs (Ri) and SMs (Si) for each subject. (B) Stationary FC between components (left,
∑i) is estimated as the covariance of Ri. Dynamic FC (right, ∑i

L1(w)) is estimated as the series of regularized covariance matrices from windowed portions of Ri.
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Dynamic rsfc and cognition
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The brain cannot map the complexity of the internal and external world
(Dehaene, et al Trends Cogn. Sci. 2006; Tononi et al, Nat. Rev. Neurosci. 2016)

Barttfeld*, Ulhrig*,  Sitt*, et al, PNAS 2015

Unconsciousness:  rigid spatiotemporal 
organization, less metastable dynamics
• sleep (Tagliazucchi et al., PNAS 2013; Wang, et al, PNAS (2016; 

Wilson et al., Neuroimage 2015; Chow et al., PNAS 2013)

• anesthesia
o in humans (Tagliazucchi et al, J. R. Soc. Interface. 2016; 

Kafashan, et al, Front. Neural Circuits, 2016; Amico et al., PLoS One
2014)

o in animals (Barttfeld PNAS . 2014); Grandjean et al., 
Neuroimage. 2017; Liang, et al, Neuroimage 2015).

Typical wakefulness: significance for 
performance, emotion and cognition 
(Alavash, et al, Neuroimage, 2016; Shine et al., Neuron, 2016; Friston, Neuroimage, 1997; 
Thompson et al., Hum. Brain Mapp, 2013)



The aim:

to use spontaneous brain dynamics
to detect signatures of consciousness in 
wakeful noncommunicating conditions 
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Laureys. Trends Cogn Sci 2005; Laureys et al, Nat Clin Med 2008
Demertzi, Boly, Laureys. Encyclopedia of Consciousness 2009

Coma

General 
Anesthesia

Minimally Conscious state

“Vegetative” unresponsive

Conscious 
Wakefulness

Drowsiness

St I-II Sleep

St III-IV Sleep

= necessary but not sufficient
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Disorders of Consciousness



Behaviour

Terry Schiavo °1963, 
vegetative 1990, † 2005 USA

Consciousness   |   Moral significance |   Assessing Consciousness  |  Conclusions



Study cohort (N=159)

VS/UWS MCS CTR

LIEGE 17 23 21

PARIS 13 9 15

NY 6 10 11

Total 36 42 47

n = 125

LIEGE

EMCS 3

MCS 14

UWS 6

Main dataset
awake

Validation datasets
sedated                        CMD

ONTARIO

VS/UWS- 6

VS/UWS+ 5

Grant Type: Collaborative Activity Award, Phase I & II (2008-2017)

n = 23 n = 11



Analysis pipeline
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EPI acquisition Preprocessing Brain parcellation

ROI timeseries
 extraction

Phase analysis
(Hilbert transform)

Unsupervised clustering
(k-means)

State identification
(cluster centroids)

Transition matrices

Slice-time correction
Realignment
Segmentation
Normalization
Smoothing
Motion outliers (ART)
aCompCor
Regressing out realignment 
         parameters and ART outliers
Bandpass filtering [0.008-0.09Hz]
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Structure-function correlation
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Diffusion Spectrum Imaging



Patterns (all sites)
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Patterns (different k)
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Pattern 1                                         Pattern 4

Pattern number                    Pattern number

N
um

be
r o

f k
 c

lu
st

er
s

3

5

6

7

3

5

6

7

B                                                                                                    C

In
te

r-
pa

tte
rn

 
co

rr
el

at
io

n 
va

ria
nc

e

A

KW: 4e-15
Rho: -0.7, p= 2e-21
UWS/MCS= 0.002

KW: 8e-14
Rho: -0.7, p= 1e-18
UWS/MCS= 0.005

KW: 4e-13
Rho: -0.7, p= 1e-17
UWS/MCS= 0.005

KW: 6e-10
Rho: -0.6, p= 9e-13
UWS/MCS= 0.001

Structure-function correlation

R
at

e

Structure-function correlation

R
at

e

Structure-function correlation

R
at

e

Structure-function correlation

R
at

e

UWS

MCS

HC

C-0.8                 C                    0.8

UWS

MCS

HC

UWS

MCS

HC

UWS

MCS

HC

Number of clusters



Patterns (per site)
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Structure-function correlation
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The pattern exploration differs with respect to

state of consciousness (1)
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The pattern exploration differs with respect to

state of consciousness (2)



Objectives  |   Methods  |  Results | Discussion

We measure consciousness? 



Rs-fMRI dynamics:

Ø reveal complex inter-regional communication as 
compared to stationary fc

Ø differentiate states of consciousness uniformly 
across centers

Ø may reflect cognitive processing (str-funct corr)
Ø align with theoretical frameworks on the 

mechanisms of consciousness
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Bayne, Hohwy, Owen. Trends Cogn Sci 2016

Defining Consciousness



SELF

CONSCIOUSNESS

?



social 

narrative

minimal 

WHICH SELF IN UNCONSCIOUSNESS?

COMMON VIEW: no self

HYPOTHESIS: yes self

MODEL: Embodiment

HOW: Probe balance



a.demertzi@uliege.be

Thank you for 
your attention!

ADemertzi



The Hilbert transform

Cohen, Mike X. 2014. Analyzing Neural Time Series Data, 2014. Cambridge, MA: The MIT Press. Chapter 14



Phase coherence



Markov Process


