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What is Consciousness?

Demertzi et al, Annals of the New York Academy of Sciences 2008



Saul Steinberg

The stream of Consciousness

Demertzi & Whitfield-Gabrieli. in: Neurology of Consciousness 2nd ed. 2015
Demertzi et al, Front Hum Neurosci 2013
Demertzi, Soddu, Laureys. Curr Opin Neurobiology 2013
Demertzi, Vanhaudenhuyse, Noirhomme, Faymonville, Laureys, J Physiol Paris 2015
Demertzi, Soddu, Faymonville et al, Prog Brain Res 2011
Vanhaudenhuyse*, Demertzi* et al, J Cogn Neurosci 2011



Fox et al, PNAS 2005

Anticorrelated brain systems



Demertzi, Soddu, Laureys, Curr Opin Neurobiology 2013
Demertzi & Whitfield-Gabrieli, in: Neurology of Consciousness 2nd ed. 2015
Demertzi et al, Front Hum Neurosci 2013
Laureys, Scientific American 2007

External awareness
or anticorrelated network

Internal awareness
or Default mode network

Switch 0.01-0.1Hz

A mode of awareness?



External-internal: r=-0.44, p<.02
Mean switch: 0.05Hz (range: 0.01-0.1)
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Vanhaudenhuyse & Demertzi et al, Journal of Cognitive Neuroscience 2011

Neurobehavioral relevance of 
the anticorrelations



Normal consciousness
Autobiographical mental imagery
Hypnosis 

Demertzi, Soddu, Faymonville et al, Progress in Brain Research 2011

p<0.05 corrected for multiple comparisons

*p<.05

Normal consciousness

Autobiographical mental imagery

Hypnosis

Anticorrelated connectivity is modified in 
hypnosis-Brain



External-internal: r=-0.41, 
Mean switch: 0.05Hz (0.04-0.05)

External-internal: r=-0.24, 
Mean switch: 0.03Hz (0.02-0.05)

Demertzi, Vanhaudenhuyse, Noirhomme, Faymonville, Laureys, J Physiol Paris 2015

Anticorrelated connectivity is modified in 
hypnosis-Behavior



Demertzi, Vanhaudenhuyse, Noirhomme, Faymonville, Laureys, J Physiol Paris 2015

Anticorrelated connectivity is modified in 
hypnosis-Behavior



Boveroux et al, Anesthesiology 2010

n=20

Propofol-induced 

Anticorrelations reduce in anesthesia



Parabolic flight

Parabolic flight trajectory

Effect of environment



Post – Pre flight

Van Ombergen … and Demertzi, Scientific Reports 2017

Anticorrelations reduce in 
extreme environments



RS functional connectivity : 
• is linked to behavior and task performance (Laird et al, J Cogn Neurosci. 2011)

• reflects physiological & pathological unconsciousness (Heine et al, Front 
Psychol 2012)

• permits single-patient automatic diagnosis (Demertzi & Antonopoulos et al, Brain 2015)

Ongoing interactions among distinct brain regions 
(Hutchison et al, NeuroImage 2013)

But
it remains unclear to what extent it provides a 

representative estimate of cognition 
(Peterson et al, NeuroImage Clin. 2015)

Interim conclusions



The brain is dynamic



(Power et al. 2012), but rather than remove affected time points from
data (which would compromise the subsequent sliding window ap-
proach), we replaced outliers with the best estimate using a
third-order spline fit to the clean portions of the TCs. Outliers were
detected based on the median absolute deviation, as implemented in
3DDESPIKE (http://afni.nimh.nih.gov/afni). Improvement in the
root-mean-square of the temporal derivative over component TCs, re-
ferred to as “DVARS” in Power et al. 2012 (see Supplementary Fig.
S1A) and removal of anticipated motion-related biases from FC esti-
mates (see Supplementary Fig. S1B), suggest satisfactory correction of
motion artifacts. As a final step in postprocessing, we normalized the
variance of each TC, thus covariance matrices (below) correspond to
correlation matrices. In exploratory work, we repeated all analyses on
component TCs that underwent minimal postprocessing (only de-
trending and low-pass filtering) and found nearly identical results
with regard to FC temporal variability (Fig. 4) and connectivity states
(Fig. 5), suggesting that the somewhat aggressive postprocessing
applied here did not fundamentally alter dynamic structures.

FC Estimation and Temporal Variability
For each subject i = 1…M, stationary FC was estimated from the TC
matrix Ri as the C × C sample covariance matrix ∑i (Fig. 1B, left).
Dynamic FC was estimated with a sliding window approach, wherein
we computed covariance matrices ∑i(w), w = 1…W, from windowed
segments of Ri (Fig. 1B, right). We used a tapered window (see
Fig. 1B, right), created by convolving a rectangle (width = 22 TRs = 44
s) with a Gaussian (σ = 3 TRs) and slid in steps of 1 TR, resulting in
W = 126 windows. Because relatively short time segments may have
insufficient information to characterize the full covariance matrix, we
estimated covariance from the regularized precision matrix (inverse
covariance matrix, ∑i

−1(w)) (Varoquaux et al. 2010; Smith et al.
2011). Following the graphical LASSO method of Friedman et al.
2008, we placed a penalty on the L1 norm of the precision matrix to
promote sparsity. The regularization parameter lambda (λ) was opti-
mized separately for each subject by evaluating the log-likelihood of
unseen data (windowed covariance matrices from the same subject)
in a cross-validation framework. Final dynamic FC estimates for each
window, ∑i

L1(w), were concatenated to form ∑i
L1, a C × C ×W array

representing the changes in covariance (correlation) between com-
ponents as a function of time. Both stationary and dynamic FC esti-
mates were Fisher transformed to stabilize variance prior to further
analysis.

FC estimates between some ICNs exhibited greater temporal varia-
bility than others (see Figs. 3 and 4A). We used a simple algorithm to
separate ICNs into groups with more variable FC (Partition 1, P1), re-
ferred to as the “zone of instability” (ZOI), and less variable FC (P2).
The algorithm proceeded with 3 steps: 1) ICNs were randomly as-
signed to P1 or P2 with equal probabilities, 2) in repeated iterations,
membership for a single component was changed in such a way to
maximize the Separation Index

SI ¼ 1
h1

X

u;v [ P1

au;v "
1
h2

X

u;v [ P2

au;v

 !
=s2

where au,v is the average low-frequency (<0.025 Hz) amplitude of FC
oscillations between components u, v = 1, ... C1, σ2 is the standard
deviation over au,v, u; v [ P2, and h1, h2, are the number of com-
ponents in each respective partition, and 3) stopping criteria were
reached when any change in membership would result in a decrease
in SI. To obtain a robust partitioning solution that incorporated data
variability and was independent of initial conditions, we repeated the
algorithm on b = 1000 bootstrap resamples of the data, that is, M sub-
jects were drawn with replacement and au,v was recomputed as the
average over that sample. ZOI scores for each ICN (see Fig. 4B) were
then calculated as the fraction of repetitions in which the component
was assigned to P1.

Clustering Analysis
To assess the frequency and structure of reoccurring FC patterns we
applied the k-means clustering algorithm (Lloyd 1982) to windowed
covariance matrices. We used the L1 distance function (Manhattan dis-
tance), guided by work suggesting the L1-norm may be a more effec-
tive similarity measure than the L2 (Euclidean) distance for
high-dimensional data (Aggarwal et al. 2001). Only covariances
between the C1 = 50 ICNs were used in the clustering analysis, result-
ing in (50 × (50− 1))/2 = 1225 features. Prior to clustering, subject

Figure 1. Illustration of analysis steps. (A) Group ICA decomposes resting-state data from M= 405 subjects into C= 100 components, C1 = 50 of which are identified as
intrinsic connectivity networks (ICNs). GICA1 back reconstruction is used to estimate the TCs (Ri) and SMs (Si) for each subject. (B) Stationary FC between components (left,
∑i) is estimated as the covariance of Ri. Dynamic FC (right, ∑i

L1(w)) is estimated as the series of regularized covariance matrices from windowed portions of Ri.

Cerebral Cortex March 2014, V 24 N 3 665

Allen et al,  Cerebral Cortex 2014 
Liegeois et al, Nat Communications 2019

Stationary fc              Time-varying fc                Dynamic

From stationarity to dynamics



The brain cannot map the complexity of the internal and external world
(Dehaene, et al Trends Cogn. Sci. 2006; Tononi et al, Nat. Rev. Neurosci. 2016)

Barttfeld*, Ulhrig*,  Sitt*, et al, PNAS 2015

Unconsciousness:  rigid spatiotemporal 
organization, less metastable dynamics
• sleep (Tagliazucchi et al., PNAS 2013; Wang, et al, PNAS (2016; 

Wilson et al., Neuroimage 2015; Chow et al., PNAS 2013)

• anesthesia
o in humans (Tagliazucchi et al, J. R. Soc. Interface. 2016; 

Kafashan, et al, Front. Neural Circuits, 2016; Amico et al., PLoS One
2014)

o in animals (Barttfeld PNAS . 2014); Grandjean et al., 
Neuroimage. 2017; Liang, et al, Neuroimage 2015).

Typical wakefulness: significance for 
performance, emotion and cognition 
(Alavash, et al, Neuroimage, 2016; Shine et al., Neuron, 2016; Friston, Neuroimage, 1997; 
Thompson et al., Hum. Brain Mapp, 2013)

Brain dynamics and cognition



Disorders of Consciousness

Laureys et al, Curr Opin Neurol 2005 
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Awareness ? = response to command or non-reflex movements



Study cohort (N=159)

VS/UWS MCS CTR

LIEGE 17 23 21

PARIS 13 9 15

NY 6 10 11

Total 36 42 47

n = 125

LIEGE

EMCS 3

MCS 14

UWS 6

Main dataset
awake

Validation datasets
sedated                        CMD

ONTARIO

VS/UWS- 6

VS/UWS+ 5

Grant Type: Collaborative Activity Award, Phase I & II (2008-2017)

n = 23 n = 11

H I - R E S O L U T I O N  F I G U R E  P R O O F

 Demertzi Figure 3
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Demertzi & Tagliazucchi, Dehaene, Deco, Barttfeld, Raimondo, Martial, Fernández-Espejo, Rohaut, Voss, Schiff, Owen, Laureys, Naccache, Sitt.  
Science Advances 2019



EPI acquisition Preprocessing Brain parcellation

ROI timeseries
 extraction

Phase analysis
(Hilbert transform)

Unsupervised clustering
(k-means)

State identification
(cluster centroids)

Transition matrices

Slice-time correction
Realignment
Segmentation
Normalization
Smoothing
Motion outliers (ART)
aCompCor
Regressing out realignment 
         parameters and ART outliers
Bandpass filtering [0.008-0.09Hz]
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Methods

Demertzi & Tagliazucchi, Dehaene, Deco, Barttfeld, Raimondo, Martial, Fernández-Espejo, Rohaut, Voss, Schiff, Owen, Laureys, Naccache, Sitt.  
Science Advances 2019



Demertzi & Tagliazucchi, Dehaene, Deco, Barttfeld, Raimondo, Martial, Fernández-Espejo, Rohaut, Voss, Schiff, Owen, Laureys, Naccache, Sitt.  
Science Advances 2019

Four brain patterns



Patterns (different k)
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KW: 4e-15
Rho: -0.7, p= 2e-21
UWS/MCS= 0.002

KW: 8e-14
Rho: -0.7, p= 1e-18
UWS/MCS= 0.005

KW: 4e-13
Rho: -0.7, p= 1e-17
UWS/MCS= 0.005

KW: 6e-10
Rho: -0.6, p= 9e-13
UWS/MCS= 0.001
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Demertzi & Tagliazucchi, Dehaene, Deco, Barttfeld, Raimondo, Martial, Fernández-Espejo, Rohaut, Voss, Schiff, Owen, Laureys, Naccache, Sitt.  
Science Advances 2019



Patterns (per site)

Demertzi & Tagliazucchi, Dehaene, Deco, Barttfeld, Raimondo, Martial, Fernández-Espejo, Rohaut, Voss, Schiff, Owen, Laureys, Naccache, Sitt.  
Science Advances 2019



Diffusion Spectrum Imaging

Hagmann, et al, 2008 PLOS Biol. 6, e159.
Demertzi & Tagliazucchi, Dehaene, Deco, Barttfeld, Raimondo, Martial, Fernández-Espejo, Rohaut, Voss, Schiff, Owen, Laureys, Naccache, Sitt.  
Science Advances 2019

Structure-function correlation



Demertzi & Tagliazucchi, Dehaene, Deco, Barttfeld, Raimondo, Martial, Fernández-Espejo, Rohaut, Voss, Schiff, Owen, Laureys, Naccache, Sitt.  
Science Advances 2019

Structure-function correlation



Dynamics: Markov Process



Demertzi & Tagliazucchi, Dehaene, Deco, Barttfeld, Raimondo, Martial, Fernández-Espejo, Rohaut, Voss, Schiff, Owen, Laureys, Naccache, Sitt.  
Science Advances 2019

Transitions differ with respect to
state of consciousness



Demertzi & Tagliazucchi, Dehaene, Deco, Barttfeld, Raimondo, Martial, Fernández-Espejo, Rohaut, Voss, Schiff, Owen, Laureys, Naccache, Sitt.  
Science Advances 2019

Pattern exploration differs with respect to
state of consciousness



Do we measure consciousness?



Self = Consciousness?

The minimal self
social 

narrative

minimal 

Blanke & Metzinger Trends Cogn Sci 2008



Features

*

*

Auditory oddball paradigm

Local
Effect

Global
Effect

*

Local
Effect

Global
Effect

*
Post interval 

Brain-body interactions

Cardiac cycle phase acceleration
only in MCS

Electrocardiographic markers carry 
independent information from EEG



Seth,  Suzuki,  Critchley, Frontiers Psychology 2012
Seth & Friston Philosophical Transactions of the Royal Society B: Biological Sciences 2016

Which model for Unconsciousness?

!Apply to our lab!



Consciousness needs a brain which:
• is intrinsically organized
• shows complexity
• shows dynamic flexibility

Taken together…

Consciousness as brain-body interactions

Consciousness as active inference



Thank you
Coma Science Group & PICNIC Lab

The deparments of Neurology and Radiology in Liège & Paris

…and mostly 
patients and their families!

a.demertzi@uliege.be
ADemertzi



The Hilbert transform

Cohen, Mike X. 2014. Analyzing Neural Time Series Data, 2014. Cambridge, MA: The MIT Press. Chapter 14



Phase coherence


