

Quantifying conscious states by means of selfinitiated brain activity

Zangwill Club University of Cambridge, UK

November 1 2019

Athena Demertzi, PhD FNRS Research Associate Physiology of Cognition Research Lab I GIGA Consciousness I GIGA Institute University of Liège Belgium

James S. McDonnell Foundation

Human Brain Projec

The problem

Patients cannot express themselves

Hable con ella 2002, Pedro Almodóvar

How can we evidence C in the absence of communication? What is the minimum information we need?

How can we be conscious? (1)

We need a brain (all of it?)

How can we be conscious? (2)

We need a functional brain

What is Consciousness?

Defining Consciousness

A moral imperative

Demertzi et al, J Neurol 2011

2,475 medical professionals

■Feel pain □Do not feel pain

Demertzi & Racine et al, Neuroethics 2012

Do they feel pain?

Boly et al, Lancet Neurol 2008

Demertzi et al, Prog Brain Res 2009 Demertzi & Racine et al, Neuroethics 2012

Behaviour

Terry Schiavo °1963, vegetative 1990, † 2005 USA

Behavioural signs

COGNITIVE CAPACITY

We cannot always trust behavior

Standardized assessment

n=103 post-comatose patients

45 Clinical diagnosis of VS 18 Coma Recovery Scale MCS

40% misdiagnosed

Schnakers et al, Ann Neurol 2006; BMC Neurol 2009

Neuroimaging

	Coma Recovery Scale–Revised results			
	UWS	MCS	Total	
Clinical consensus diagnosis				
18F-FDG PET				
VS/UWS	24 (21%)	5 (4%)	29 (26%)	
MCS	12 (11%)	71 (63%)	83 (74%)	
Total	36 (32%)	76 (68%)	112 (100%)	
UWS=unresponsive wakefulness syndrome. MCS=minimally conscious state.				

Table 2: Diagnostic results by modality

Stender & Gosseries et al, Lancet 2014

Neuroimaging paradigms

Owen et al, Science 2006 Monti & Vanhaudenhuyse et al, NEJM 2010

Boly et al, Lancet Neurol 2008

Heine, Di Perri, Soddu, Laureys, Demertzi In: *Clinical Neurophysiology in Disorders of Consciousness*, Springer-Verlag 2015 Demertzi & Laureys, In: *I know what you are thinking: brain imaging and mental privacy*, Oxford University Press 2012

The stream of consciousness

The stream of thought (Chapter IX) The principles of psychology 1890

Some numbers...

- The human brain is approximately 2% of body's weight
- 80% of this energy for neuronal signalling
 → most of consumed energy used for function
- Stimulus & performance-evoked changes in brain energy consumption are surprisingly small (typically <5%)

While conscious awareness is a low bandwidth phenomenon and therefore energetically inexpensive, it is dependent upon a very complex, dynamically organized, non-conscious state of the brain that is achieved at great expense

Raichle & Snyder. Intrinsic Brain Activity and Consciousness. In: Laureys S, Tononi G, editors. The Neurology of Consciousness. Oxford: Elsevier Academic Press; 2009. p. 81-48

Task deactivations

Task performance - Rest (fixation/eyes closed) → Deactivations

Raichle & Snyder. Intrinsic Brain Activity and Consciousness. In: Laureys S, Tononi G, editors. The Neurology of Consciousness. Oxford: Elsevier Academic Press; 2009. p. 81-48

The brain's default mode at rest

Demertzi & Whitfield-Gabrieli, in: Neurology of Consciousness 2nd ed. 2015 Demertzi, Soddu, Laureys, *Curr Opin Neurobiology*Demertzi et al, *Front Hum Neurosci*Raichle et al, *PNAS*

Default mode network in DOC

DMN anticorrelations

DMN anticorrelations

Internal awareness or Default mode network

Demertzi & Whitfield-Gabrieli, in: *Neurology of Consciousness* 2nd ed. *2015* Demertzi, Soddu, Laureys, *Curr Opin Neurobiology* 2013 Demertzi et al, *Front Hum Neurosci* 2013

Cognitive-behavioral relevance

Vanhaudenhuyse*, Demertzi* et al, J Cogn Neurosci 2011

Effect of awareness

- Normal consciousness
- Autobiographical mental imagery
- Hypnosis

Normal consciousness

Autobiographical mental imagery

Effect of arousal

Boveroux et al, Anesthesiology 2010

Effect of environment

SCIENTIFIC REPORTS

www.nature.com/scientificreports/

Parabolic flight

Parabolic flight trajectory

Angelique Van Ombergen¹, Floris L. Wuyts¹, Ben Jeurissen², Jan Sijbers², Floris Vanhevel³, Steven Jillings¹, Paul M. Parizel³, Stefan Sunaert⁴, Paul H. Van de Heyning¹, Vincent Dousset⁵, Steven Laureys⁶ & Athena Demertzi^{6,7}

Effect of environment

3.4

5.7

Effect of pathology

Di Perri, ..., Demertzi*, Laureys*, Soddu*, *Lancet Neurol* 2017 Vanhaudenhuyse et al, *Brain* 2010

Intrinsic Connectivity Networks

Smith et al, PNAS 2009

Long-range system connectivity disrupted

Demertzi & Gómez et al, Cortex 2014

Heine et al, Front Psychol 2012; Smith et al, PNAS 2009; Beckmann et al, Phil. Trans. R. Soc. B 2005

Which network discriminates best?

FWE p<0.05 (cluster-level)

Crossmodal connectivity classifies DOC

- Training set: 45 DOC (26 MCS, 19 VS/UWS)
 - 14 trauma, 28 non-trauma, 3 mixed
 - 34 patients assessed >1m post-insult
- Test set: 16 MCS, 6 VS/UWS (M_{age}: 43y, 15 non-trauma; all chronic), from 2 different centers

Stationary connectivity

RS stationary connectivity :

- is linked to behavior and task performance (Laird et al,. J Cogn Neurosci 2011)
- reflects physiological & pathological unconsciousness (Heine et al, Front Psychol 2012)
- permits single-patient automatic diagnosis (Demertzi & Antonopoulos et al, Brain 2015)

But

it remains unclear to what extent it provides a representative estimate of cognition

(Peterson et al, NeuroImage Clin 2015)

Ongoing interactions among distinct brain regions

(Hutchison et al, NeuroImage 2013)

From stationarity to dynamics

Brain dynamics and cognition

Typical wakefulness: significance for performance, emotion and cognition

(Alavash et al, *Neuroimage*, 2016; Shine et al *Neuron*, 2016; Friston *Neuroimage*, 1997; Thompson et al, *Hum Brain Mapp*, 2013)

Unconsciousness: rigid spatiotemporal organization, less metastable dynamics

- SICCP (Tagliazucchi et al, *PNAS* 2013; Wang et al, *PNAS* 2016; Wilson et al., *Neuroimage* 2015; Chow et al, *PNAS* 2013)
- anesthesia
 - in humans (Tagliazucchi et al, J. R. Soc. Interface 2016; Kafashan et al, Front Neural Circuits, 2016; Amico et al, PLoS One 2014)
 - **in animals** (Barttfeld et al, *PNAS* 2014); Grandjean et al, *Neuroimage* 2017; Liang et al, *Neuroimage* 2015).

The brain cannot map the complexity of the internal and external world (Dehaene et al, *Trends Cog Sci, 2006;* Tononi et al, *Nat Rev Neurosci.* 2016)

Barttfeld*, Ulhrig*, Sitt*, et al, PNAS 2015

Patterns of recurrent coordinated activity

Structure-function correlation

More chances to transition if in higher conscious state

Markov Process

- stochastic process that has no memory
- selection of next state depends only on current state, and not on prior states
- process is fully defined by a set of <u>transition probabilities</u> π_{ij} π_{ij} = probability of selecting state *j* next, given that presently in state *i*. Transition-probability matrix Π collects all π_{ii}

Transition-Probability Matrix

Consciousness-level dependent

Exploration is longer for complex patterns

B. Duration of pattern occupation

Do we measure consciousness?

Why does it matter?

The American Journal of Bioethics, 8(9): 3-12, 2008

Target Article

Neuroimaging and Disorders of Consciousness: Envisioning an Ethical Research Agenda

Joseph J. Fins, Weill Medical College of Cornell University* Judy Illes, University of British Columbia* James L. Bernat, Dartmouth Medical School** Joy Hirsch, Columbia University** Steven Laureys, University of Liege** Emily Murphy, Stanford Law School**

*Co-lead authors. **Equal authors in alphabetical order.

Balancing costs-benefits

Results of Tests	Beneficial Effects	Harmful Effects
 brain activity than neurological examination 	Relatives: decisions to limit life- sustaining treatment	Relatives: may lose hope, purpose, and meaning in life
+ brain activity than neurological examination	Clinical management: may be intensified by the chance of further recovery	Relatives: false hopes
Same as neurological examination	Clinicians & relatives: may be affirmed in their decision about the level of treatment	Clinicians & relatives: may be disappointed & treatment cost/effectiveness may be poor

Benefit for science

Gantner, et al, Fut Neurol 2013

Benefit for patients?

Bruno et al, Br Med J Open 2011

Nizzi & Demertzi et al, Conscious & Cogn 2012

Nizzi, Blandin, Demertzi NeuroEthics 2018

Benefit for caregivers?

n=523

Gosseries, Demertzi et al, Brain Injury 2012

Neuro-ethical considerations

- The moral significance of Consciousness
 - \rightarrow ontological understanding: consciousness = personhood = moral agency
 - \rightarrow relational or contextual understanding: patients have value for others
- Legal challenges: responses to critical questions with NI
- Cognitive neuroscience is about brain/mind reading

 \rightarrow to what degree do we neuroscientists have the right to interfere with a patient's intimacy, such as cognitive contents, in the absence of their consent?

 \rightarrow in essence, where do we draw the limits of deciphering another person's cognitive content, like dreams, ongoing mentation etc? What is the additive value of it to a societal level?

Conclusions

Consciousness needs a brain which:

- is intrinsically organized
- shows complexity
- shows dynamic flexibility

Consciousness as a collective consensus

Consciousness

Many thanks to **Coma Science Group & PICNIC Lab**

The departments of Neurology and Radiology in Liège & Paris

...and mostly patients and their families!

GIGA

ADemertzi