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Abstract—We present an automated solution for detecting bad
trials in magneto-/electroencephalography (M/EEG). Bad trials
are commonly identified using peak-to-peak rejection thresh-
olds that are set manually. This work proposes a solution to
determine them automatically using cross-validation. We show
that automatically selected rejection thresholds perform at par
with manual thresholds, which can save hours of visual data
inspection. We then use this automated approach to learn a
sensor-specific rejection threshold. Finally, we use this approach
to remove trials with finer precision and/or partially repair them
using interpolation. We illustrate the performance on three public
datasets. The method clearly performs better than a competitive
benchmark on a 19-subject Faces dataset.

keywords— magnetoencephalography, electroencephalogra-
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ing

I. INTRODUCTION

Magneto-/electroencephalography (M/EEG) measure brain
activity by recording magnetic/electrical signals in multi-
ple sensors. M/EEG data is inherently noisy, which makes
it necessary to combine (e.g., by averaging) multiple data
segments (or trials). Unfortunately, trials can sometimes be
contaminated due to high amplitude artifacts which can reduce
the effectiveness of such strategies. Added to this, (the signal
in) some sensors can also be bad and repairing or removing
them is critical for algorithms downstream in the pipeline.
In this paper, we aim to offer an automated solution to this
problem of detecting and repairing bad trials/sensors.

Existing software for processing M/EEG data offer a rudi-
mentary solution by marking a trial as bad if the peak-to-peak
amplitude in any sensor exceeds a certain threshold [1]. The
threshold is usually set manually after visual inspection of
the data. This can turn tedious for studies involving hundreds
of recordings (see the Human Connectome Project [2] as an
example of such a large-scale study).

Modern algorithms for rejecting trials compute more ad-
vanced trial statistics. FASTER [3], for example, rejects based
on a threshold on the z-score of the trial variance, its amplitude
range, etc. Riemannian potato filtering [4] works on covari-
ances matrices [4] and Artifact Subspace Reconstruction [5]
rejects based on the variance of artifact components. However,
these methods are not fully satisfactory as rejection thresholds
must be fixed or manually tuned. Another promising approach
is to apply algorithms robust to outliers. For instance, robust
regression [6] can compute an average by downweighting
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Fig. 1: Mean cross-validation error as a function of peak-to-
peak rejection threshold. The root mean squared error (RMSE)
between the mean of the training set (after removing the trials
marked as bad) and the median of the validation set was
used as the cross-validation metric. The optimal data-driven
threshold (auto reject, global) with minimum RMSE closely
matches the human threshold.

outliers. For single-trial analysis, an outlier detection algorithm
is better suited. The Random Sample Consensus (RANSAC)
algorithm implemented as part of the PREP pipeline [7], for
example, annotates outlier sensors as bad.

In this paper, we make the following contributions. First,
we offer a data-driven cross-validation framework (Figure
1) to automatically set the rejection threshold. Secondly, we
show that the rejection threshold is sensor-specific and varies
considerably across sensors. Finally, we show that taking
into account this variation in sensor-specific thresholds can
in fact lead to improved detection and repair of bad trials.
Our approach unifies rejection of bad trials and repair of bad
sensors in a single method.

II. METHODOLOGY

Let us denote the data by X ∈ RN×P where N is the
number of trials and P is the number of features. P could be
QT i.e., the number of sensors Q times the number of time
points T if a global threshold has to be computed, or it could
be T if only one sensor is considered. To simplify notation, we
denote a trial by Xi = (Xi1, Xi2, ..., XiP ). Also, we define
the mean of the trials as X = 1

N

∑N
i=1Xi, the median of the



trials as X̃ , and the peak-to-peak amplitude of the trials as
ptp(Xi) = max(Xi)−min(Xi).

A. Global threshold

If we are estimating an optimal global threshold, then P =
QT such that the sensor time-series are concatenated across
the second dimension of the data matrix. For a fold k (out of
total K folds), the data is split into a training set Xtraink

and a
validation set Xvalk such that valk = [1..N ]\ traink (see [8]
for another use of cross-validation for parameter estimation in
the context of M/EEG). The peak-to-peak amplitudes for all
trials Xi in the training set is computed as:

A = {ptp(Xi) | i ∈ traink} (1)

Now, let’s say we have L candidate global thresholds, τl ∈ R
for 1 ≤ l ≤ L. Then, for one candidate threshold τl, the set
of indices of the good trials Gl are computed as:

Gl = {i ∈ traink | ptp(Xi) < τl} (2)

The error metric for one fold of the cross-validation for a
particular threshold is the Root Mean Squared Error (RMSE)
computed as:

ekl = ‖XGl − X̃valk‖Fro (3)

where ‖ · ‖Fro is the Frobenius norm. The RMSE is computed
between the mean of the good trials in the training set Gl
with the median of the trials in the validation set. A low
rejection threshold will remove too many trials (leading to high
RMSE) whereas a high rejection threshold does not remove
the bad trials. Cross validation will find an optimal value
which is somewhere in between. The median of the trials in
the validation set is used to avoid noisy metric values due to
outlier trials. This is inspired from literature on robust cross-
validation methods [9], [10] where the loss function is made
robust to outlier data.

The threshold with minimum mean error is selected as the
global threshold, i.e.,

τ? = τl? with l? = argmin
l

1

K

K∑
k=1

ekl . (4)

We call this method auto reject (global). Note that the
threshold learnt this way matches values set manually (Fig-
ure 1) and is indeed very different across subjects (Figure 2A).

B. Sensor-specific thresholds

In practice however, a global rejection threshold for all
sensors is certainly not optimal. Depending on the sensor
noise levels and the experiment, each sensor can necessitate
a different rejection threshold (Figure 2B). Learning a sensor-
specific threshold is what we propose next. With a sensor-
specific threshold, each sensor votes whether a trial should be
marked as good or bad. If a trial is voted as bad by a minimum
number of sensors, then it will be marked as bad.

The cross-validation procedure here is the same as in
Section II-A except that now P = T . For every sensor, one
can thus learn a sensor-specific threshold τ q? where q ∈ [1..Q].

Fig. 2: A. Histogram of thresholds for subjects in the EEGBCI
dataset with auto reject (global) B. Histogram of sensor-
specific thresholds in gradiometers for the MNE sample
dataset (Section III). The threshold does indeed depend on
the data (subject and sensor).

However here these thresholds will not be directly used to drop
any trial (Equation 5 shows how they are used).

For the cross-validation to work, at least some of the sensor
data must be clean. However, this is not the case with globally
bad sensors. Therefore, we generate a cleaner copy of each
trial by interpolating each sensor from all the others. By
doing so, we double the size of the data and generate an
augmented matrix Xa ∈ R2N×T . This augmented matrix is
then used for cross validation (as described in Section II-A).
For interpolation, we use the procedure outlined in [11] for
MEG and [12] for EEG. Both are implemented in MNE-
Python [13] .

Now, let us define an indicator matrix C ∈ {0, 1}N×Q
whose entries Cij are formed according to the rule:

Cij =

{
0, if ptp(Xij) ≤ τ j?
1, if ptp(Xij) > τ j?

(5)

Each column of this matrix indicates which sensors vote which
trials as bad. If the number of sensors which vote a trial as bad
exceeds a certain number of sensors κ, then the trial is marked
as bad. That is, we take a consensus among the sensors and
mark a trial as bad only if the consensus is high enough. In
other words, good trials G are given by

G = {i |
Q∑
j=1

Cij < κ} (6)

In practice, we will use κ/Q which is a fraction of the
total number of sensors to have a parametrization that is as
independent as possible from the total number of sensors.

C. Trial-by-trial interpolation
Once we find the bad trials by consensus, the next step is

to repair the trials which are good but have a limited number
of bad sensors. Since these sensors might be bad locally (i.e.,
bad for only a few trials) or globally (i.e., bad for all trials),
we choose to interpolate the sensors trial-by-trial. Note that we
cannot interpolate more than a certain number of sensors. This
number depends on the data and the total number of sensors
present. Therefore, we choose to interpolate only the worst ρ
sensors.



Fig. 3: The evoked response (average of data across trials) on
the sample dataset (Section III) for gradiometer sensors before
and after applying the auto reject algorithm. Each sensor is a
curve on the plots. Manually annotated bad sensor is shown
in red. The algorithm finds the bad sensor automatically and
repairs it for the relevant trials.

For each trial where the number of bad sensors is larger
than ρ, the bad sensors are ranked based on the peak-to-peak
amplitude. The higher the peak-to-peak amplitude, the worse
is the sensor. That is, we can assign a score sij which is −∞
if the sensor is good and equal to the peak-to-peak amplitude
if the sensor is bad.

sij =

{
−∞ if Cij = 0

ptp(Xij) if Cij = 1
(7)

This leads us to the following rule for interpolating a sensor
Xij :

Xij =



interp(Xij), if (0 <
∑Q
j′=1 Cij′ ≤ ρ)

and (Cij = 1)

interp(Xij), if (ρ <
∑Q
j′=1 Cij′ ≤ κ)

and (sij > si(N−ρ))

Xij , otherwise

(8)

where the notation si(k) indicates the k-th order statistic, i.e.,
the k-th smallest value. interp(·) is a generic function which
interpolates the data. That is, when the number of bad sensors
in a trial

∑Q
j=1 Cij is less than the maximum number of

sensors ρ which can be interpolated, they are all repaired by
interpolation. However, when this is not the case, only the
worst ρ sensors are repaired.

The optimal values of parameters κ? and ρ? are estimated
using grid search for the same error metric as defined in
Equation 3. We call this method auto reject (local).

III. RESULTS

A. Datasets

We evaluated our algorithms on three publicly available
datasets. The first is the MNE sample dataset [13] containing
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Fig. 4: RMSE with no rejection applied, auto reject (global),
and RANSAC. Each point represents a subject from the Faces
dataset [15]. Auto reject has a better RMSE whenever a point
lies above the dotted red line. Note that auto reject almost
always performs as well as or better than the other methods.

204 gradiometer sensors (1 globally bad) and 102 magnetome-
ter sensors. The second is the EEGBCI motor dataset [14] with
104 subjects and the final one is the Faces dataset [15] with 19
subjects. The bad channel annotations for each run and subject
was available from the authors of the Faces dataset [15].

For the EEGBCI and MNE sample dataset, the trials are
700 ms long with a baseline period of 200 ms with respect to
the trigger (auditory left tone for MNE sample and resting for
EEGBCI). In the Faces dataset, we use the trials where famous
faces were shown. The data was bandpass filtered between 1
and 40 Hz. The trials were 1 s long with a baseline period of
200 ms.

B. Auto reject (global)

Figure 1 shows, on the sample dataset, how the global
threshold can be selected by cross-validation. One can observe
how a low rejection threshold leads to high RMSE due to
removal of too many trials whereas high rejection threshold
leads to high RMSE because the bad trials are not removed.
The reader may note that the automatic threshold is very close
to a carefully chosen manual threshold. Figure 2A shows the
results computed for 104 subjects in the EEGBCI dataset. Note
that the threshold does indeed vary across subjects.

C. Auto reject (local)

This auto reject (local) approach finds the thresholds at the
level of each sensor. The candidate thresholds used vary be-
tween 2–400 µV for EEG; 400–20000 fT/cm for gradiometers;
and 400–20000 fT for magnetometers.

Figure 2B demonstrates that the sensor-level thresholds for
rejection are indeed different across sensors. This is the moti-
vation for the more fine-grained technique based on consensus.
Figure 3 demonstrates that the algorithm indeed improves
the data quality. The bad MEG sensor which showed high
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fluctuations before applying the algorithm is repaired after
application of the algorithm.

We compared our proposed algorithm to the RANSAC
implementation in the PREP pipeline [7]. RANSAC being an
algorithm robust to outliers, serves as a competitive bench-
mark. To generate the ground truth for comparison, 4/5ths
of the available trials were averaged and the bad channels
interpolated per run. Outliers will have negligible effect in the
ground-truth as it is obtained by averaging a large number
of trials. It is this ground-truth which is used for computing
the RMSE. This is a nested cross-validation setting where the
validation set used for optimizing the thresholds is different
from the ground truth (test set). The bad sensors detected by
RANSAC (with default parameters) were interpolated before
comparison to the ground truth. Figure 4 shows that auto
reject (local) indeed does better than not rejecting trials or
applying RANSAC. Of course, if annotations of bad sensors
per epochs were available, auto reject will have an even better
score because of how it works. We found that RANSAC results
depend greatly on the input parameters (results omitted due to
space constraints) which is probably why it does not perform
as well as auto reject.

IV. DISCUSSION

The algorithm described here is fully automated requiring
no manual intervention. This is particularly useful for large-
scale experiments. It also implies that the analysis pipeline is
free from experimenter’s bias while rejecting trials.

A big strength of the auto reject algorithm is that the
average evoked response obtained can be used in noise-
normalized source modeling techniques such as dSPM or
sLORETA without any modifications. Indeed, such methods
are not readily applicable if the average is a weighted mean
(as in robust regression [6]), which changes how the variance
of the noise should be calculated. However this is not the case
in our method.

Compared to other methods (e.g., PREP [7]), we do not
make the assumption that sensors must be globally bad. In
fact, it can detect and repair sensors even when they are locally
bad, thus saving data. Of course, with suitable modifications,
the method can also be used to detect flat sensors. Note that,
even though we used peak-to-peak threshold as our statistic
for trials, our algorithm should work with other reasonable
statistics too.

To avoid the dangers of double dipping, our advice is to
run the algorithm on each condition separately and not on the
contrast. Instead of using spline interpolation or Minimum
Norm Estimates to clean the sensor data in Section II-B, one
could also use the SNS algorithm [16] or the algorithm based
on Signal Space Separation [17]. Our algorithm is complemen-
tary to these efforts and can only benefit from improvements
in these techniques. Comparing these interpolation methods
and their effect on our algorithm will be done in future work.
Finally, when spatial filtering methods [18], [19] are used for
artifact removal, they should be applied after our algorithm.

V. CONCLUSION

We have presented an algorithm to automatically reject and
repair bad trials/sensors based on their peak-to-peak amplitude
which is so far done manually in standard preprocessing
pipelines. The algorithm was tested on three publicly available
datasets and compared to a competitive benchmark. Finally,
the code will be made publicly available.
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