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Dzyaloshinskii-Moriya interaction at an antiferromagnetic interface:
First-principles study of Fe/Ir bilayers on Rh(001)
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We study the magnetic interactions in atomic layers of Fe and 5d transition metals such as Os, Ir, and Pt on the
(001) surface of Rh using first-principles calculations based on density functional theory. For both stackings of the
5d/Fe bilayer on Rh(001) we observe a transition from an antiferromagnetic to a ferromagnetic nearest-neighbor
exchange interaction upon 5d band filling. In the sandwich structure 5d/Fe/Rh(001) the nearest-neighbor exchange
is significantly reduced. For Fe/Ir bilayers on Rh(001) we consider spin spiral states in order to determine exchange
constants beyond nearest neighbors. By including spin-orbit coupling we obtain the Dzyaloshinskii-Moriya
interaction (DMI). The magnetic interactions in Fe/Ir/Rh(001) are similar to those of Fe/Ir(001) for which an
atomic scale spin lattice has been predicted. However, small deviations between both systems remain due to the
different lattice constants and the Rh vs Ir surface layers. This leads to slightly different exchange constants and
DMI and the easy magnetization direction switches from out-of-plane for Fe/Ir(001) to in-plane for Fe/Ir/Rh(001).
Therefore a fine tuning of magnetic interactions is possible by using single 5d transition-metal layers which may
allow to tailor antiferromagnetic skyrmions in this type of ultrathin films. In the sandwich structure Ir/Fe/Rh(001)
we find a strong exchange frustration due to strong hybridization of the Fe layer with both Ir and Rh which
drastically reduces the nearest-neighbor exchange. The energy contribution from the DMI becomes extremely
large and DMI beyond nearest neighbors cannot be neglected. We attribute the large DMI to the low coordination
of the Ir layer at the surface. We demonstrate that higher-order exchange interactions are significant in both
systems which may be crucial for the magnetic ground state.
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I. INTRODUCTION

Magnetic skyrmions had been predicted in the late 1980s
[1,2], but it took 20 years to confirm their existence experi-
mentally [3–6]. They have intriguing topological and dynam-
ical properties which make them attractive for fundamental
research and spintronic applications [7–9]. After the first
experimental observation of magnetic skyrmions in MnSi
[3], they could be stabilized in different types of systems:
noncentrosymmetric bulk crystals [3,10,11], thin films of
noncentrosymmetric crystals [4,12,13], and ultrathin films
[5,6]. The latter are composed of a few atomic transition-metal
(TM) layers on surfaces. Such systems have been studied
extensively in the past decades, since they are also at the
heart of devices utilizing the tunneling [14] and the giant
magnetoresistance [15,16].

A key ingredient for stabilizing skyrmions and other
chiral magnetic configurations is the Dzyaloshinskii-Moryia
interaction (DMI) [17,18] which occurs due to spin-orbit
coupling (SOC) in systems with broken inversion symmetry.
In 2007, the interfacial DMI due to the broken inversion
symmetry at the surface [19] had been experimentally observed
[20] which opened the route to DMI stabilized skyrmions
at interfaces such as the nanoskyrmion lattice of Fe/Ir(111)
[5]. An atomic adlayer of Pd changes the ground state of
Fe/Ir(111) to a spin spiral which allows the creation of
isolated skyrmions in an applied magnetic field [6,21,22]. This
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demonstrates the possibility of tailoring magnetic interactions
in transition-metal films by changing the interface [21–24].

Isolated skyrmions can be moved upon application of
electric currents [8,9,25–31]. However, skyrmions in materials
with a ferromagnetic nearest-neighbor exchange interaction
possess the disadvantage of being deflected by the Magnus
force [32,33]. This skyrmion Hall effect which has been
recently observed in experiments [34,35] leads to skyrmion
movement towards the edges of the tracks in sufficiently strong
currents. Skyrmions in antiferromagnets do not suffer from
the Magnus force because they have no net magnetization
[32,33,36,37]. Therefore, they can be moved faster compared
to ferromagnetic skyrmions. However, so far there is no system
in which these types of skyrmions have been observed.

Here we study ultrathin film systems which combine
antiferromagnetic nearest-neighbor (NN) exchange with large
DMI and are therefore potential candidates for skyrmions in
antiferromagnets. We apply density functional theory (DFT)
as implemented in the FLEUR code [38] and focus on atomic
layers composed of Fe and a 5d transition metal such as Os, Ir,
or Pt on the Rh(001) surface. We show that one atomic layer
of the 5d element can change the magnetism of the system
from antiferromagnetic (Os) to ferromagnetic (Pt) similar to a
5d surface [39]. The stacking of the bilayer has a large effect
on the magnetism in the systems. If the 5d layer is the topmost
layer, the NN exchange interaction decreases and the systems
are strongly exchange frustrated.

Bilayers of Fe/Ir on Rh(001) are of particular interest since
Rh and Ir are isoelectronic 4d and 5d transition metals and
have similar lattice constants. It has been found before that the
NN exchange is antiferromagnetic in both Fe/Ir(001) [40–42]
and in Fe/Rh(001) [43,44]. For Fe/Ir(001) strong DMI has also
been reported [45,46] and the possible formation of an atomic
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spin lattice due to higher-order exchange interaction has been
suggested [46]. Antiferromagnetic exchange interactions at
the interfaces of thin Fe films and multilayers on Ir(001)
have also been observed experimentally [47–49]. However, the
Ir(001) surface exhibits a (5 × 1) reconstruction which makes
the preparation of a pseudomorphic Fe monolayer on Ir(001)
difficult [50–52]. On the other hand, pseudomorphic growth
of Fe on Rh(001) has been demonstrated experimentally
and an antiferromagnetic checkerboard ground state has
been observed [53] in agreement with theoretical predictions
[43,44].

For the two types of stackings of the Fe/Ir bilayer—
Fe/Ir/Rh(001) and Ir/Fe/Rh(001)—we obtain an antiferro-
magnetic NN exchange interaction. Exchange beyond nearest
neighbors competes with the NN interaction which leads to
exchange frustration. In both systems we find a large DMI
which induces a spin spiral state. In Ir/Fe/Rh(001) the NN DMI
even exceeds the NN Heisenberg exchange. Upon introducing
an additional Ir adlayer, however, the DMI is reduced by 50%
compared to Ir/Fe/Rh(001) leading to a collinear ground state.
We find that higher-order exchange interactions are significant
for both bilayer stackings. Our first-principles calculations
show that Fe/Ir bilayers on Rh(001) are promising candidates
for noncollinear spin structures with antiferromagnetic NN
exchange such as isolated antiferromagnetic skyrmions or
antiferromagnetic skyrmion lattices as in Ref. [46].

The paper is structured as follows: Sec. II describes the
method and computational details of our calculations. In
Sec. III we first discuss the collinear states of the different
Fe/5d bilayers on Rh(001). Afterwards, we show results of
noncollinear calculations of a freestanding Fe/Ir bilayer and
we present the film systems Fe/Ir/Rh(001), Ir/Fe/Rh(001), and
Ir/Ir/Fe/Rh(001). We end with conclusions in Sec. IV.

II. COMPUTATIONAL DETAILS

We use the full-potential linearized augmented plane wave
method (FLAPW) [54,55] in film geometry [56] as imple-
mented in the Jülich DFT code FLEUR [38]. We performed
spin-polarized calculations for every system and we chose the
same radii for the muffin-tin spheres for the three kind of
atoms (Fe: 2.26 a.u., Rh: 2.41 a.u., 5d: 2.30 a.u.). The lattice
constant of our substrate (a = 3.84 Å) was determined for Rh
bulk within the generalized gradient approximation (GGA) of
the exchange-correlation (xc) functional [57].

A. Structural relaxation

For structural relaxations we used a symmetric film with
five layers of Rh and a Fe/5d bilayer on both sides. We
considered two types of stackings: Fe/5d and 5d/Fe (see
Fig. 1). We use the checkerboard c(2 × 2) antiferromagnetic
(AFM) state in the Fe layer and minimize the forces between
the uppermost layers in (001) direction while three Rh
layers are kept fixed [58]. We relaxed the structure with
spin-polarized calculations using the GGA of the xc potential
(revised Perdew-Burke-Ernzerhof, rPBE [57]). The k-point
mesh consists of 136 k points in 1/8 of the Brillouin zone
(BZ) and the cutoff for the basis functions is kmax = 5.0 a.u.−1.
Relaxations were performed until the forces were less than

100
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5d RhFe

9 layers Rhodium

FIG. 1. Unit cell of Fe/5d bilayers on Rh(001). The 5d elements
are Os, Ir, or Pt. Two different stackings of the bilayer are considered.
Left: The Fe layer at the surface. Right: The Fe layer in a sandwich
structure between the 5d layer and the Rh surface.

10−5 hartree/a.u. The equilibrium interlayer distances for all
systems are given in Table I. For the freestanding Fe/Ir bilayer
system we chose the in-plane lattice constant of Rh and the
layer distance according to Fe/Ir/Rh(001) (cf. Table I).

B. Collinear magnetic calculations

In order to investigate the Fe/5d bilayers on Rh(001) with
respect to collinear magnetic order, we use the optimized
parameters of the structural relaxation to construct asymmetric
films. The setup is shown in Fig. 1 where the surface is
represented by nine layers of Rh(001). The Fe/5d bilayers
are on one side of the substrate. We calculated the energy
difference �E between the ferromagnetic (FM) and the
c(2 × 2) AFM state in scalar-relativistic approximation [59]
using 484 k points in 1/4 of the BZ using the local density
approximation (LDA) [60]. The cutoff for the basis functions
was kmax = 4.0 a.u.−1.

C. Spin-spiral calculations and Heisenberg exchange

To obtain the exchange constants Jij of the Heisenberg
model for Fe/Ir bilayers on Rh(001) we calculate the energy
dispersion of homogeneous, flat spin spirals [61,62]. These are
characterized by their spin spiral vector q which gives the prop-
agation direction of the spiral. The q vector represents a vector
in the reciprocal space and is chosen along high symmetry

TABLE I. Interlayer distances in Å after structural relaxation for
the film systems Fe/5d/Rh(001), 5d/Fe/Rh(001), and Ir/Ir/Fe/Rh(001)
in the c(2 × 2) antiferromagnetic state as well as the chosen distance
in the freestanding Fe/Ir bilayer. Note that the last relaxed layer in
the film systems is the Rh surface layer. A (–) indicates an interlayer
distance according to the unrelaxed Rh(001) surface.

d12 d23 d34 d45

Fe/Os/Rh(001) 1.62 1.95 1.97 –
Fe/Ir/Rh(001) 1.69 2.02 1.91 –
Fe/Pt/Rh(001) 1.79 2.10 1.90 –
Os/Fe/Rh(001) 1.67 1.91 1.96 –
Ir/Fe/Rh(001) 1.68 1.89 1.96 –
Pt/Fe/Rh(001) 1.83 1.79 1.98 –
Ir/Ir/Fe/Rh(001) 2.11 1.71 1.87 1.96
Fe/Ir 1.69 – – –
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directions of the BZ. The magnetic moment of atom i is given
by Mi = M[cos (q · Ri) sin θ, sin (q · Ri) sin θ, cos θ ], where
Ri is the position of atom i and θ is the opening angle of the
spiral. For the flat spirals considered here θ = 90◦.

In the absence of spin-orbit coupling the generalized Bloch
theorem can be applied to calculate spin spirals within the
chemical unit cell of the system [63]. Asymmetric films with
nine Rh substrate layers and the Fe/Ir bilayer on one side as
described in Sec. II B were used for the spin spiral calculations.
We apply the exchange-correlation functional in LDA [60]
and a dense k-point mesh of 48 × 48 k points in the full two-
dimensional BZ. The energy cutoff is set to kmax = 4.0 a.u.−1.
The interlayer distances from the structural relaxation obtained
for the c(2 × 2) AFM ground state is chosen (cf. Table I).

The resulting energy dispersion curves E(q) along the
X-�-M direction are mapped to the Heisenberg model

H = −
∑

ij

Jij (mi · mj ) (1)

to obtain the shell resolved exchange constants Jij where
mi = Mi/Mi is the unit vector of the magnetic moment at
atom site i.

D. Dzyaloshinskii-Moriya interaction

The degeneracy of the energies of left- and right-rotating
spin spirals described above (Sec. II C) is lifted if spin-
orbit coupling (SOC) is considered. Two additional energy
contributions will appear due to SOC: the magnetocrys-
talline anisotropy (MAE, cf. Sec. II E) and the antisymmetric
exchange interaction, the so called Dzyaloshinskii-Moriya
interaction (DMI). The latter requires a broken inversion
symmetry, which is given by the interfaces and surface in
our systems. The DMI can be described in the spin model via

HDMI = −
∑

ij

Dij · (mi × mj ), (2)

where Dij is the Dzyaloshinskii-Moriya (DM) vector which
determines the strength and the sign of the DMI. Due to the
cross product, the DMI prefers a canting of magnetic moments
mi ,mj with one particular rotation direction. Typically, the
DMI gives a small energy contribution compared to the
Heisenberg exchange. The energy of DMI will be maximum
for a rotation axis which is parallel to the DM vector, which
is shown in Fig. 2. Therefore, we consider flat homogeneous
cycloidal spin spirals.

If SOC is included, the generalized Bloch theorem is not
valid anymore. In principle, one can calculate spin spirals with
SOC in large supercells, however, the computational effort
increases drastically. Since SOC is typically a small effect one
can treat it in first-order perturbation theory [62,64] starting
from the self-consistent spin spiral calculations. The change
of energy due to SOC is obtained from

�ESOC(q) =
∑

k,ν

nk,ν(q) 〈ψk,ν(q)|HSOC|ψk,ν(q)〉 , (3)

where HSOC is the Hamilton operator of SOC, ψk,ν(q) is
the self-consistent wave function of the spin spiral state, and
nk,ν(q) is the weight of the state to the BZ summation. Due to
the symmetry of our ultrathin films at a surface the DM vectors
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FIG. 2. Sketch of the Dzyaloshinskii-Moriya vectors for the Fe
monolayer on the Rh(001) surface from first to fifth neighbors
(first red, second orange, third blue, fourth green, fifth gray) with
the directions of the high symmetry lines of the two-dimensional
Brillouin zone. The DM vectors are perpendicular to the bond
between the black reference Fe atom and the corresponding neighbor.
The size of the vectors illustrate the expected decreasing strength of
the DMI with distance. The propagation directions of spin spirals for
q along the �-M and the �-X direction are shown.

lie in the surface plane as shown in Fig. 2 and therefore we
consider cycloidal spin spirals. In order to extract the strength
of the DMI, Eq. (2) is fitted to the SOC contribution of the
system. The cut-off parameters for the calculation of the SOC
contribution in first-order perturbation theory are identical to
those from the spin spiral calculations (cf. Sec. II C).

To test the use of first-order perturbation theory for SOC to
determine the energy contribution due to DMI (see Sec. II D),
we can perform self-consistent calculations including SOC for
certain spin spiral states. Since the generalized Bloch theorem
cannot be used, we have to calculate the total energies in large
unit cells corresponding to the spin spiral periods. Due to the
large computational effort we restrict these calculations to the
freestanding Fe/Ir bilayer, i.e., without the Rh(001) surface.
Each spin spiral state has to be calculated separately in the
2D unit cell corresponding to its periodicity. We apply SOC to
left- and right-rotating cycloidal spirals along �-M direction
and use the energy cutoff of kmax = 3.8 a.u.−1 with different k-
point sets adopted to each spiral state/unit cell in order to obtain
the same k-point density as in the spin spiral calculations.

E. Magnetocrystalline anisotropy

The second effect due to spin-orbit coupling (SOC) is the
magnetocrystalline anisotropy energy (MAE). We perform
self-consistent scalar-relativistic calculations and use the force
theorem [65,66] to apply SOC in the out-of-plane (⊥) and in
the in-plane [100] direction (‖) using the second variation
method [67]. The difference of the resulting two energies
is the magnetocrystalline anisotropy energy K = E⊥ − E‖.
We restrict ourselves within the spin model to a uniaxial
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anisotropy, i.e.,

EMAE =
∑

i

K
(
mz

i

)2
, (4)

which is a good approximation for our ultrathin film sys-
tems since the energy differences between different in-plane
magnetization directions are about one order of magnitude
smaller than those with respect to the out-of-plane direction
as we found in our calculations. For the Fe/Ir bilayers on
Rh(001) we perform the calculations for the checkerboard
c(2 × 2) AFM state which has the lowest total energy of all
considered collinear states. Asymmetric films with nine Rh
substrate layers and the Fe/Ir bilayer on one side as described
in Sec. II B were used. For all systems, we choose 2025 k

points in the full Brillouin zone (BZ) and kmax = 4.0 a.u.−1.

F. Higher-order exchange interactions

The Heisenberg exchange interaction can be found as the
second-order expansion in kinetic energy [68] of the Hubbard
model [69]. The fourth order gives rise to the four-spin
interaction and the biquadratic interaction. The former can
be understood as the hopping of electrons between four lattice
sites, e.g., 1 → 2 → 3 → 4 → 1 and is given by

H4-spin = −
∑

ijkl

Kijkl[(mimj )(mkml)

+ (mj mk)(mlmi) − (mimk)(mj ml)]. (5)

The biquadratic term arises due to the hopping of electrons
between two sites 1 → 2 → 1 → 2 → 1 and is given by

Hbi = −
∑

ij

Bij (mi · mj )2. (6)

Kijkl and Bij depend on the electronic structure of the system
similar to Jij in Eq. (1). Due to the perturbative expansion
these higher-order exchange interactions are typically much
smaller than the Heisenberg exchange and are often neglected.
To see the effect of the higher-order exchange in DFT it is in
general necessary to consider two-dimensionally modulated
noncollinear spin structures. We compare states formed from
superpositions of symmetry equivalent spin spirals. With
respect to the Heisenberg exchange these superpositions are
degenerate with the spin spirals. Energy differences obtained
within a DFT calculation are therefore an indication of higher-
order terms.

We choose the row-wise p(2 × 1) antiferromagnetic state
(cf. Fig. 3, α = 0◦) and change the angle α of the spins up
to 45◦ which corresponds to the 2Q state [70]. In nearest-
neighbor approximation of the four-spin and biquadratic
interaction the energy as a function of α is given by
E(α) = (2K4-spin + B) cos2(2α), i.e., both terms possess the
same angle dependence. Although one cannot obtain the two
constants separately, these calculations allow us to estimate the
energy contributions from higher-order exchange interactions.

Asymmetric films as described in Sec. II B were used. We
apply LDA [60] and a k-point mesh of 576 k points in the
full two-dimensional BZ. The energy cutoff is set to kmax =
4.3 a.u.−1.

α

FIG. 3. Considered spin structure to test the influence of higher-
order exchange interactions. The angle α is varied from 0◦ to 45◦,
where theses structures correspond to the p(2 × 1) antiferromagnetic
state and the 2Q state, respectively.

III. RESULTS

A. Collinear magnetic states of Fe/5d bilayers on Rh(001)

We start our study of the magnetic properties of Fe/5d

bilayers on Rh(001) by considering collinear magnetic states,
i.e., the ferromagnetic (FM) and the c(2 × 2) (checkerboard)
antiferromagnetic (AFM) state. Figure 4 shows the total energy
difference �E = EAFM − EFM for both stackings of Fe/5d

bilayers on Rh(001) and varying the 5d transition metal from
Os to Pt. Negative energies indicate that the c(2 × 2) AFM state
is favorable, positive values denote a preferred FM order. The
green and red line are two reference values from the literature
for Fe/Rh(001) [44] and Fe/Ir(001) [46].

First we focus on the bilayer stacking with the Fe layer
at the surface. There is a transition in magnetic order from
AFM to FM with the band filling of the 5d layer. This trend
is similar to the one for Fe monolayers on 4d and 5d surfaces
reported by Hardrat et al. [39]. Note that we have chosen
the relaxed geometry of the AFM state also to compute the
total energy of the FM state to be consistent with the spin
spiral calculations in the following sections. However, using
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FIG. 4. Calculated total energy differences �E between the
FM and the AFM state for Fe/5d/Rh(001) (dashed line) and
5d/Fe/Rh(001) (solid line). Positive values indicate that the FM
state is preferred, negative values denote a favorable c(2 × 2) AFM
structure. All energies are calculated for structurally relaxed films in
the AFM state. The green (red) line is the value taken from Ref. [44]
(Ref. [46]).
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TABLE II. Calculated magnetic moments for the upmost three
layers in Fe/5d/Rh(001) and 5d/Fe/Rh(001) in μB in the c(2 × 2)
antiferromagnetic (AFM) and the ferromagnetic (FM) state. All
calculations are performed in the structural relaxation of the AFM
state. Note that in the c(2 × 2) AFM state the magnetic moments of
adjacent layers vanish due to symmetry.

μAFM
Fe μAFM

5d μAFM
Rh(001) μFM

Fe μFM
5d μFM

Rh(001)

Fe/Os/Rh(001) 2.34 0.0 0.02 2.00 −0.10 −0.08
Fe/Ir/Rh(001) 2.71 0.0 0.10 2.67 0.10 −0.14
Fe/Pt/Rh(001) 2.95 0.0 0.13 3.01 0.25 −0.02
Os/Fe/Rh(001) 2.10 0.0 0.0 1.91 −0.15 0.12
Ir/Fe/Rh(001) 2.43 0.0 0.0 2.30 0.11 0.05
Pt/Fe/Rh(001) 2.83 0.0 0.0 2.81 0.29 0.13

the structural relaxation of the FM state does not lead to a
qualitative change of the trend. We conclude that already a
single atomic layer of a 5d transition metal is sufficient to
change the magnetic order in the Fe monolayer. We attribute
this finding to the fact that the 3d-5d hybridization which plays
the key role for the change of the exchange interaction in the
Fe layer is an interface effect. This interpretation is supported
by the energy difference of Fe/Ir/Rh(001) being almost the
same as that of Fe/Ir(001) [46].

Upon changing the stacking of the Fe/5d bilayer such that
Fe is sandwiched between the 5d overlayer and the Rh(001)
surface we observe a reduction of the energy difference. Since
the nearest-neighbor (NN) exchange interaction in the Fe layer
is approximately proportional to the energy difference �E,
this shows that J1 can be tuned by the stacking order of the
Fe/5d bilayer. In the following sections we will show for Ir as
the 5d layer that the sandwich structure leads to frustration of
exchange interactions.

The magnetic moments in the FM and AFM state are
presented in Table II. We observe two major trends: (i) the mag-
netic moments of Fe increase with the d-band filling of the 5d

element and (ii) reducing the coordination number of Fe, i.e.,
if Fe is the top layer, gives rise to enhanced magnetic moments.
Layers which are adjacent to the antiferromagnetic Fe are not
spin polarized due to the symmetry of the c(2 × 2) AFM state.

The effects of hybridization at the interfaces and of the
5d band filling are visible in the local density of states
shown in Fig. 5 for the c(2 × 2) AFM state. If Fe is at the
surface [Fig. 5(a)] the LDOS is mainly influenced by the
underlying 5d layer. Both the majority and the minority spin
LDOS become sharper with increasing 5d band filling. The
hybridization in both channels, in particular, in the vicinity of
the Fermi level is also apparent.

If the Fe layer is in the sandwich structure [Fig. 5(b)]
the bandwidth of both spin channels increases due to the
lower coordination and additional hybridization with the
Rh surface layer. We observe an increased majority LDOS
above the Fermi energy and that the peaks in the minority
spin channel are shifted above the Fermi level. The location
at the surface leads to a reduced bandwidth in the 5d layer.
Layers adjacent to the Fe layer exhibit the same LDOS for
majority and minority spin channels indicating that they
are non-spin-polarized due to the symmetry in the c(2 × 2)
AFM state which we consider here. If Fe is adjacent to the
isoelectronic transition metals Ir and Rh, there is a matching
of 3d-4d and 3d-5d hybridization. We observe states which
are hybridized through the entire trilayer composed of Ir, Fe,
and Rh, e.g., just above the Fermi energy.

The collinear magnetic calculations show that bilayers
with Ir are promising candidates for noncollinear magnetic
structures with antiferromagnetic NN exchange interaction,
which is underlined by the energy difference of Fe/Ir(001)
[46] in Fig. 4. Therefore, we will focus on systems with an
Fe/Ir interface in the rest of the paper.

B. Freestanding Fe/Ir bilayer

As a next step we isolate the Fe/Ir interface and
investigate an unsupported, freestanding Fe/Ir bilayer in
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FIG. 5. Calculated spin-resolved local density of states (LDOS) of the top three layers of (a) Fe/5d/Rh(001) and (b) 5d/Fe/Rh(001) in the
c(2 × 2) antiferromagnetic state. Upper (lower) parts of each panel correspond to the majority (minority) spin channel.
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FIG. 6. (a) Calculated energy dispersion E(q) of flat, cycloidal
spin spirals for a freestanding Fe/Ir bilayer without (black dots)
and with spin-orbit coupling (red dots) in M-� direction with both
senses of rotation. The dispersion is fitted to the Heisenberg model
(black line) and includes the DMI and magnetocrystalline anisotropy
(red line). The green diamonds indicate the values of the supercell
calculations (see text for details). (b) Layer resolved contribution of
�ESOC(q). The black curve is the fit of the DMI including five nearest
neighbors. (c) Layer resolved magnetic moments.

view of noncollinear magnetic order. In Fig. 6(a) the energy
dispersion E(q) of flat homogeneous spin spirals in the Fe/Ir
bilayer is shown along a high symmetry direction of the
2D BZ. If we neglect SOC in our calculation clockwise-
and counterclockwise-rotating spin spirals are energetically
degenerate. The lowest energy is obtained at the M point of
the BZ which corresponds to the c(2 × 2) AFM state. The FM
state (� point) is 138 meV/Fe atom higher in energy exceeding
the value found for Fe/Ir bilayers on Rh(001) (cf. Fig. 4). From
a fit to the Heisenberg model considering up to fifth nearest
neighbors we obtain the exchange constants given in Table III.
We find a dominant NN interaction which is AFM (J1 =
−16.3 meV), however, exchange beyond NN is not negligible.

Upon including SOC there is a preference for clockwise-
rotating spin spirals and a small energy minimum of

TABLE III. Values of the ith nearest-neighbor exchange Ji (meV)
and Dzyaloshinskii-Moriya interaction constants Di (meV) as well
as the magnetocrystalline anisotropy (MAE) K (meV/Fe atom)
obtained for the freestanding Fe/Ir bilayer. K < 0 (K > 0) represents
an out-of-plane (in-plane) easy axis.

Freestanding Fe/Ir bilayer
J1 J2 J3 J4 J5

−16.3 +3.1 −2.5 −0.3 −1.6
D1 D2 D3 D4 D5 K

+5.7 −2.4 +4.5 +0.6 −0.7 −2.4

3.3 meV/Fe atom occurs for a spin spiral period of 6.1 nm.
Note that there is a small shift of the energy dispersion of
spin spirals with respect to the AFM state due to the magne-
tocrystalline anisotropy energy (MAE) which favors collinear
states. In the AFM state the MAE favors an out-of-plane
magnetization (cf. Table III). The energy contribution due to
SOC �ESOC(q) has been obtained in first-order perturbation
theory as discussed in Sec. II D and is displayed in Fig. 6(b). We
obtain maximal values of �ESOC(q) of more than 20 meV/Fe
atom. It stems mainly from the Ir contribution due to its large
SOC constant. In contrast the 3d transition metal Fe has a much
smaller SOC constant and an almost negligible contribution.
From a fit of �ESOC(q) we can obtain the strength of the
DMI constants which are given in Table III. It is largest for
the nearest neighbor (D1 = 5.7 meV/Fe atom) and exhibits an
oscillatory character similar to the exchange constants. Due to
the shape of �ESOC, e.g., with different slopes at the � and M

point, it is necessary to include five nearest neighbors for the
DMI fit.

In Fig. 6(c) the magnetic moments of Fe and Ir layers
are presented. There is a small change of μFe and a strong
spin polarization of Ir, which has the same trend as �ESOC.
However, suppressing the spin polarization of Ir in the
calculation by choosing a spin quantization axis perpendicular
to that of Fe gives rise to a very similar energy contribution
due to SOC (see Appendix B). Therefore, the DMI does not
depend on the induced magnetic moment of Ir.

Close to the AFM state (M point), the energy contribution
due to DMI is reduced compared to that close to the FM state
(� point). This is due to the competition of DM interactions
beyond NN as apparent from the values and signs of the
extracted DMI constants. A one-dimensional example captures
the essence of this effect as shown in Fig. 7. The first four spins
of a clockwise-rotating spin spiral along a chain of atoms
are displayed. For the spin spiral with small angles between
adjacent spins, i.e., close to the FM state, the direction of the
cross product (mi × mj ) which enters in the DMI term, Eq. (2)
is always pointing into the page plane. Therefore, the energy
due to DMI for ith nearest neighbors will have the same sign
if the DMI have the same sign. For a spin spiral in the vicinity
of the AFM state (lower panel of Fig. 7), on the other hand,
the direction of the cross product between spins switches from
one to the next neighbor. Hence DM interactions with opposite
signs would be favorable.
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FIG. 7. One-dimensional sketch to illustrate the effect of DMI
beyond nearest neighbors for clockwise-rotating spin spirals close to
the FM state (upper panel) and close to the AFM state (lower panel).
The cross product mi × mj is shown for the first three neighbors.
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Note that for a spin spiral along the �-M direction in
the Fe/Ir bilayer the spins on the second and third nearest
neighbors possess the same canting angle φ = qRi (cf. Fig. 2).
Therefore, within the one-dimensional sketch they would both
correspond to the second neighbor along the chain. From
Table III we see that the sign of D1, D2 + √

2D3, and D4

are the same (the factor
√

2 results from evaluating the energy
for a cycloidal spin spiral along �-M). Therefore, we obtain a
large energy contribution to the dispersion of spin spirals close
to the � point (corresponding to the upper panel in Fig. 7) and
a smaller one close to the M point (lower panel in Fig. 7).

We expect a small error based on treating spin-orbit
coupling in first-order perturbation theory. Therefore, we
also perform self-consistent total energy calculations for
spin spiral states in supercell geometries with and without
SOC. We choose spin spiral states with angles between the
magnetic moments of adjacent Fe atoms of 0◦ (|q| = q = 0),
φ = 45◦ (q ≈ 0.18 · 2π

a
), φ = 90◦ (q ≈ 0.35 · 2π

a
), φ = 120◦

(q ≈ 0.47 · 2π
a

), and φ = 180◦ (q ≈
√

2
2 · 2π

a
). The FM state

(φ = 0◦) and the AFM state (φ = 180◦) are calculated in each
supercell geometry as a reference energy state. The 2D unit
cells corresponding to the spin spiral periodicities are c(2 × 8)
for φ = 45◦, i.e., eight atoms per layer, c(4 × 4) for φ = 90◦,
i.e., four atoms per layer, and c(2 × 6) for φ = 120◦, i.e., six
atoms per layer.

The diamonds in Fig. 6 indicate the calculated total energies
of these states with respect to the AFM state neglecting
SOC. The corresponding values are in very good agreement
with the spin spiral calculations using the generalized Bloch
theorem [Fig. 6(a)]. The values of the magnetic moments in
Fig. 6(c) also match perfectly. The only difference between
both computational methods is in the contribution of SOC.
Indeed, the supercell calculation [green diamonds in Fig. 6(b)]
show a similar trend of high values for the investigated states.
However, there is a slight energy difference which amounts
to about 20%. We conclude that calculations of the SOC
contributions to spin spiral states in first-order perturbation
theory give the same trends and similar magnitude as self-
consistent calculations.

The magnetocrystalline anisotropy energy (MAE) is calcu-
lated in the AFM state (see Sec. II E). The Fe/Ir bilayer prefers
an out-of-plane magnetization with K = −2.4 meV/Fe atom.
We calculated the MAE also for a freestanding Fe monolayer
(ML) in (001) geometry with the same in-plane lattice constant
as for the bilayer. It also prefers a magnetization direction
out-of-plane with K = −1.2 meV/Fe atom in the AFM state.
Although the Ir is non-spin-polarized in the AFM state of
the Fe layer, the MAE is enhanced by a factor of 2 which
we attribute to the hybridization at the Fe-Ir interface and
change of electronic structure. Further information about the
spin and orbital moments of the in-plane and out-of-plane
magnetization directions are given in Table VI in Appendix A
for all calculated systems.

C. Noncollinear magnetism in Fe/Ir bilayers on Rh(001)

In the previous section we have seen that the freestanding
Fe/Ir bilayer exhibits strong antiferromagnetic exchange be-
tween nearest neighbors as well as large values of the DMI
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FIG. 8. (a) Calculated total energy dispersion E(q) of flat,
cycloidal spin spirals for Fe/Ir/Rh(001) without (black dots) and with
spin-orbit coupling (red dots) in M-� direction for both rotational
senses. The dispersion is fitted to the Heisenberg model (black line)
and includes the DMI and magnetocrystalline anisotropy (red line).
(b) Layer resolved contribution to �ESOC(q). The black curve is the
fit of the DMI for three nearest neighbors. (c) Sketch of the spin spiral
state according to the energy minimum of the red curve of (a).

which extends beyond nearest neighbors. In this section we
study how the Rh(001) surface affects these conclusions and
in how far the stacking of the Fe/Ir bilayer matters.

We start with the stacking in which the Fe layer is
at the surface, i.e., Fe/Ir/Rh(001). Figure 8(a) shows the
energy dispersion of flat spin spirals in Fe/Ir/Rh(001) in M-�
direction. The energy difference between the FM (�) and
c(2 × 2) AFM (M) state is similar to that of the collinear
calculations (cf. Fig. 4) and to that reported for Fe/Ir(001)
by Hoffmann et al. [46]. From the energy dispersion without
SOC we obtain the exchange constants given in Table IV.
The exchange interactions between first (J1 = −10.8 meV)
and second nearest neighbors (J2 = −3.8 meV) both try to
align these spins antiparallel which is incompatible and leads
to frustration. However, the energetically lowest spin spiral
state neglecting SOC is still at the M point, i.e., the c(2 × 2)
AFM state. The exchange constants are similar to those for
Fe/Ir(001) [46], but differ considerably from those of the
freestanding bilayer (cf. Sec. III B)
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TABLE IV. Values of the ith neighbor exchange Ji (meV) and Dzyaloshinskii-Moriya interaction constants Di (meV) as well as the
magnetocrystalline anisotropy (MAE) (meV/Fe atom) and higher-order exchange interactions for both stackings of the Fe/Ir bilayer on
Rh(001). Note that we need seven neighbors for Fe/Ir/Rh(001) and nine neighbors for Ir/Fe/Rh(001) to achieve a good fit for the exchange and
three neighbors for the DMI in Fe/Ir/Rh(001) and five neighbors for Ir/Fe/Rh(001). K < 0 (K > 0) represents an out-of-plane (in-plane) easy
magnetization axis.

Fe/Ir/Rh(001) Ir/Fe/Rh(001)
J1 J2 J3 J4 J5 J1 J2 J3 J4 J5 J6 J7 J8 J9

−10.8 −3.8 −0.7 −0.7 +0.4 −3.4 +0.6 −0.8 −0.2 −2.3 −0.1 0.0 −0.2 +0.5
D1 D2 D3 K 2K4-spin + B D1 D2 D3 D4 D5 K 2K4-spin + B

+3.2 +0.7 +0.3 +0.2 −2.0 −5.3 +2.0 −2.9 +0.5 +1.2 −0.4 −3.8

Upon including SOC, the Dzyaloshinskii-Moriya interac-
tion (DMI) arises which leads to an energy minimum in the
spin spiral dispersion for clockwise-rotating cycloidal spirals
[see Fig. 8(a)] with an angle of about 172◦ from one to the next
atomic row [see Fig. 8(c)]. The period of this spiral is about
λ = 12 nm. Note that the spin spiral energy curve with SOC
in Fig. 8(a) has been shifted by K/2 = 0.1 meV/Fe atom with
respect to the c(2 × 2) AFM state.

The maximum energy contribution due to SOC amounts
to 10 meV/Fe atom. It is mostly induced by the Ir layer
with minor contributions from Fe and the Rh surface as
expected due to the large SOC constant of Ir. The large energy
contribution due to SOC originates from the hybridization at
the Fe-Ir interface. The strength of the DMI can be seen in
Table IV. The DMI gains 3.2 meV for the nearest neighbor
while second and third neighbor contributions are an order of
magnitude smaller.

The magnetocrystalline anisotropy energy (MAE) is K =
+0.2 meV/Fe atom and prefers the spins to be in the plane
of the film (cf. Table IV). It is interesting to compare the
MAE to that of Fe monolayers on Ir(001) and Rh(001).
While for Fe/Ir(001) a favorable out-of-plane magnetization
has been found (K = −0.25 meV/Fe atom [46] and K =
−0.56 meV/Fe atom [45]), an easy in-plane magnetization
axis was reported for Fe/Rh(001) [44] (K = +0.2 meV/Fe
atom). Surprisingly, the system Fe/Ir/Rh(001) behaves with
respect to the MAE as Fe/Rh(001) although the Ir layer is
adjacent to the Fe layer. However, one has to remember that we
are considering the c(2 × 2) AFM state in which by symmetry
the Ir layer possesses no induced spin polarization and only
the Rh layer carries a magnetic moment (cf. Table II).

In strongly exchange-frustrated ultrathin film systems, it is
possible that higher-order exchange interactions can compete
with the Heisenberg exchange, DMI and MAE leading to
complex magnetic ground states [5,46,71]. In order to estimate
the importance of such terms in Fe/Ir bilayers on Rh(001) we
have calculated the total energy of superposition states of spin
spirals as shown in the inset of Fig. 9. We vary the angle α

between 0◦, which corresponds to the row-wise AFM state
and 45◦, which is the so called 2Q state [70]. These states are
degenerate within the Heisenberg model, i.e., there should be
no change in energy with α. However, in our DFT calculations
we obtain an energy difference which is 8 meV between α = 0◦
and α = 45◦ which indicates the occurrence of higher order
exchange interactions. If we assume only nearest-neighbor
four-spin and biquadratic interactions we expect the energy
to vary as E(α) = (2K4-spin + B) cos2(2α). As seen in Fig. 9
we obtain an excellent fit to the values from DFT resulting in

2K4-spin + B = −2 meV. To determine the two constants sepa-
rately further noncollinear spin states would have to be consid-
ered. Here we note that contributions from higher-order inter-
actions are of a similar order of magnitude as those from DMI.

The magnetic interactions presented above show similar-
ities to those obtained in Fe/Ir(001) where a spin lattice
with AFM nearest-neighbor exchange interaction is predicted
[46]. Small deviations between the systems remain due to
the different lattice constants and the Rh vs Ir surface.
Additionally, the energy dispersion of Fe/Ir/Rh(001) around
the AFM (M) state is similar to that of Pd/Fe/Ir(111) [21]
close to the FM (�) state in which FM skyrmions could
be observed experimentally [6]. In both systems there is a
spin spiral minimum driven by the DMI resulting in a small
canting between adjacent spins with respect to the collinear
state. We conclude that Fe/Ir/Rh(001) is a promising ultrathin
film system to find complex noncollinear spin structures
such as AFM skyrmions or skyrmionic lattices with AFM
nearest-neighbor exchange.

Now we turn to the other stacking of the Fe/Ir bilayer
in which the Fe layer is sandwiched between Ir and the Rh
surface, i.e., Ir/Fe/Rh(001). The energy dispersion of spin
spirals without SOC shown in Fig. 10 is in striking contrast
to that of Fe/Ir/Rh(001). The energy difference between the
FM (� point) and the AFM (M point) state is smaller by more
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FIG. 9. Calculated energy of superposition states of spin spirals
for Fe/Ir/Rh(001) with respect to the p(2 × 1) AFM state. The
considered spin structure is shown in the inset and α is varied
from 0◦ to 45◦. The red line is a fit to the energy contribution for
nearest-neighbor biquadratic and four-spin interaction (cf. Sec. II F).
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dispersion is fitted to the Heisenberg model (black line) and includes
the DMI and magnetocrystalline anisotropy energy (red line).
(b) Layer resolved contributions to �ESOC. The black curve is the fit
of the DMI for three nearest neighbors. (c) Sketch of the spin spiral
state according to the minimum of the red curve of (a).

than a factor of 2. The energy dispersion is also extremely
flat in the vicinity of the M point. As a consequence, we
have to take into account more nearest neighbors to obtain a
good fit to the energy dispersion [black curve of Fig. 10(a)].
We iteratively improved the fit beyond six nearest neighbors
in order to reproduce the flat energy regime close to the
M point. The obtained values of the exchange constants
are given in Table IV. The nearest-neighbor exchange is
still antiferromagnetic but very small (J1 = −3.6 meV) and
exchange with further neighbors is of a similar magnitude.
Hence there is a strong frustration of exchange in this
system.

The exchange frustration is also apparent upon including
the energy contribution due to SOC [Fig. 10(b)]. �ESOC(q)
rises up to 20 meV/Fe atom, which is in the range of the
total energy difference of 35 meV/Fe atom between the FM
and the AFM state. Since Ir is on top of the Fe layer the
DMI prefers left-rotating cycloidal spin spirals in contrast to
the right-rotating spirals in freestanding Fe/Ir bilayers and
in Fe/Ir/Rh(001). This change of the rotational sense is in
accordance with the expectation from the Levy and Fert
model [72]. The large maximum value as well as the shape
of �ESOC(q) is similar to that of the freestanding Fe/Ir bilayer
except for the opposite rotational sense [cf. Fig. 6(b)]. As
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FIG. 11. Calculated energy of superposition states of spin spirals
for Ir/Fe/Rh(001) with respect to the p(2 × 1) AFM state. The
considered spin structure is shown in the inset and α is varied
from 0◦ to 45◦. The red line is a fit to the energy contribution for
nearest-neighbor biquadratic and four-spin interaction (cf. Sec. II F).

expected, the main contribution stems from the Ir layer at the
surface [see decomposition in Fig. 10(b)].

The DMI in Ir/Fe/Rh(001) is larger than the one of
Fe/Ir/Rh(001) which is emphasized by the values of the DMI
given in Table IV. We obtain a DMI of 5.3 meV/Fe atom for
the nearest neighbors that even exceeds the nearest-neighbor
Heisenberg exchange. This has to our knowledge not been
found for other systems so far. The values of the DMI are
also large beyond nearest neighbors and they are very similar
to those found for the Fe/Ir bilayer except for the sign due
to the opposite rotational sense (cf. Table III). This shows
the importance of the Ir layer being at the vacuum boundary
with a reduced coordination and hybridization. Another
important difference to Fe/Ir/Rh(001) is that the MAE is K =
−0.4 meV/Fe atom (cf. Table IV), i.e., preferring an out-of-
plane magnetization.

Taking SOC into account we obtain quite a drastic change
of the energy dispersion of spin spirals [Fig. 10(a)]. This is
due to the large contribution from SOC as well as the strong
exchange frustration in the sandwich structure. The DMI leads
to a canting of the spins into a spin spiral state with 120◦
presented in Fig. 10(c). Note that the fit to the dispersion is
not perfect because deviations from fitting the exchange and
DMI separately are summed up. The large values due to SOC
obtained here are similar to those of the freestanding Fe/Ir
bilayer which we confirmed by self-consistent calculations
[cf. Fig. 6(b)]. We conclude that changing the stacking of the
Fe/Ir bilayer leads to a large enhancement of the DMI which
we attribute to the lower coordination and reduced bandwidth
of the Ir layer at the surface.

Higher-order exchange interactions may also play
an important role to find the magnetic ground state in
Ir/Fe/Rh(001). As seen in Fig. 11 the energy difference
between the 2Q state and the p(2 × 1) AFM state has
increased by almost a factor of 2 compared to Fe/Rh/Ir(001).
The dependence of the energy on the angle α obtained
from DFT is well described by considering nearest-neighbor
biquadratic and four-spin interaction leading to a value
of 2K4-spin + B = −3.8 meV. A nonvanishing biquadratic
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interaction would also affect the energy dispersion E(q) of spin
spirals while the four-spin term contributes only a constant
energy shift. The q dependence of the nearest-neighbor
biquadratic term is the same as that of the third nearest-
neighbor exchange interaction. Therefore, the fitting value
given in Table IV for J3 would then include the biquadratic
term, i.e., 2J3 + B = −0.8 meV. Similarly, the second and
third nearest-neighbor biquadratic terms which we expect to be
even smaller would enter the fitting value obtained for J5 and
J9. Due to the small values of the Heisenberg exchange that
are on the order of the DMI, higher-order terms should be able
to compete and may become crucial for the magnetic ground
state (cf. Table IV). It will be a challenge for experimental
studies to unravel the magnetic ground state of this system.

D. Spin spiral calculations for Ir/Ir/Fe/Rh(001)

Finally, we study the effect of an additional Ir adlayer on
Ir/Fe/Rh(001) in order to see whether the strong exchange
frustration remains and whether the large DMI is an effect
of the lower coordination of Ir at the surface. The energy
dispersion of flat spin spirals without SOC is shown in
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FIG. 12. (a) Calculated energy dispersion E(q) of flat, cycloidal
spin spirals for Ir/Ir/Fe/Rh(001) without (black dots) and with
spin-orbit coupling (red dots) in M-� direction for both senses of
rotation. The dispersion is fitted to the Heisenberg model (black line)
and includes the DMI and magnetocrystalline anisotropy (red line).
(b) Layer resolved contribution to �ESOC(q). The black curve is the
fit of the DMI for four nearest neighbors.

TABLE V. Values of the ith neighbor exchange Ji (meV) and
Dzyaloshinskii-Moriya interaction constants Di (meV) as well as
the magnetocrystalline anisotropy (MAE) K (meV/Fe atom) for
Ir/Ir/Fe/Rh(001). All values are given in meV/Fe atom. Note that we
choose five neighbors for the exchange and three neighbors for the
DMI for the fits. K < 0 (K > 0) represents an out-of-plane (in-plane)
easy magnetization axis.

Ir/Ir/Fe/Rh(001)
J1 J2 J3 J4 J5

−7.3 −1.3 −1.0 −0.9 +1.0
D1 D2 D3 D4 K

−2.0 +0.1 −0.2 +0.3 +0.4

Fig. 12(a). The total energy difference between the FM
and c(2 × 2) AFM state is about 75 meV/Fe atom and the
energy rises very fast close to the M point. The obtained
exchange constants are presented in Table V. The nearest-
neighbor exchange rises by about a factor of 2 compared to
Ir/Fe/Rh(001) and becomes more dominant with respect to
exchange beyond nearest neighbors. The exchange frustration
is thus reduced due to the additional Ir layer.

The energy contribution due to SOC �ESOC(q) reaches a
maximum value of about 6 meV/Fe atom [Fig. 12(b)] and
is much reduced compared to Ir/Fe/Rh(001). There is still a
very large contribution coming from the Ir-Fe interface with
a value of up to 15 meV/Fe atom. However, it is balanced by
the additional Ir layer and the Rh surface which act into the
opposite direction. As a result the nearest-neighbor DMI is
reduced by about 60% with respect to the Ir/Fe bilayer system
(cf. Tables V and IV).

The magnetocrystalline anisotropy in the c(2 × 2) AFM
state is reduced as well. While we see an out-of-plane MAE
in Ir/Fe/Rh(001) (K = −0.4 meV/Fe atom), it is in-plane
upon adding an Ir adlayer K = +0.4 meV/Fe atom. The
Fe-Ir hybridization is weakened and thus the effect of the
Rh substrate is intensified. While film systems with Fe/Ir
bilayers on Rh(001) are promising candidates for noncollinear
magnetism with antiferromagnetic nearest-neighbor exchange
interaction, this is apparently not the case for the Ir/Ir/Fe
trilayer on Rh(001). The antiferromagnetic ground state driven
by the exchange cannot be changed because the DMI has a
minor contribution to the total energy.

IV. CONCLUSIONS

We have studied the magnetic interactions in Fe/5d bilayers
on the Rh(001) surface using density functional theory (DFT)
as implemented in the FLAPW method. Upon changing the
band filling of the 5d transition metal from Os to Pt there
is a transition of the nearest-neighbor exchange interaction
in the Fe layer from antiferro- to ferromagnetic. This effect
occurs irrespective of the stacking of the bilayer, i.e., with Fe
at the surface or in the sandwich geometry between the 5d

layer and the Rh surface. However, in the sandwich geometry
the nearest-neighbor exchange is considerably reduced which
makes these systems prone to exchange frustration and
complex ground states due to competing interactions.

In view of complex noncollinear magnetic states with
antiferromagnetic nearest-neighbor exchange interaction such
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as isolated skyrmions and skyrmion lattices, we propose
Fe/Ir bilayers on Rh(001) as promising candidates. For both
stackings of the bilayer we have obtained the exchange con-
stants, the Dzyaloshinskii-Moriya interaction (DMI), and the
magnetocrystalline anisotropy energy. Higher-order exchange
interactions are significant for both systems.

Fe/Ir/Rh(001) exhibits similar magnetic interactions as
Fe/Ir(001) for which an atomic scale spin lattice has been
predicted [46]. However, the exchange and DMI differ slightly
which may allow to find AFM skyrmions in this system. It
also has the advantages that it is potentially easier to realize
in experiments since Rh(001) does not possess a surface
reconstruction and it allows fine tuning of the magnetic
interactions, e.g., by growing an additional Ir layer at the
interface to the Rh surface.

Ir/Fe/Rh(001) is strongly exchange frustrated with very
small values of the exchange constants. The DMI is very
large and even exceeds the Heisenberg exchange. DMI beyond
nearest neighbors cannot be neglected. We attribute the large
values of the DMI in this system to the low coordination of
the Ir layer at the surface. This is supported by similar values
of the DMI for a freestanding Fe/Ir bilayer. By including an
additional Ir adlayer, on the other hand, the DMI is reduced to
a much smaller value. The induced magnetic moment of the Ir
layer does not affect the strength of the DMI.
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TABLE VI. Layer resolved spin moments μ
‖,⊥
S (in μB ) and orbital

moments μ
‖,⊥
L (in μB ) in the AFM state for the Fe unsupported
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energy difference between both magnetization directions is given in
meV/Fe atom. Note that for the film systems the upper four [five for
Ir/Ir/Fe/Rh(001)] layers are given.

System Layer �E = E⊥ − E‖ μ⊥
S μ

‖
S μ⊥

L μ
‖
L

Fe - UML Fe −1.16 3.002 3.000 0.256 0.242

Fe/Ir Fe −2.46 2.792 2.791 0.060 0.073
Ir 0.0 0.007 0.0 0.006

Fe/Ir/Rh(001) Fe +0.23 2.686 2.689 0.090 0.176
Ir 0.0 0.014 0.0 0.075
Rh 0.090 0.092 0.006 0.090
Rh 0.0 0.001 0.0 0.052

Ir/Fe/Rh(001) Ir −0.38 0.0 0.004 0.0 0.004
Fe 2.384 2.386 0.068 0.082
Rh 0.0 0.001 0.0 0.005
Rh 0.078 0.080 0.003 0.001

Ir/Ir/Fe/Rh(001) Ir +0.40 0.188 0.208 0.001 0.077
Ir 0.0 0.006 0.0 0.037
Fe 2.282 2.288 0.100 0.116
Rh 0.0 0.002 0.0 0.047
Rh 0.067 0.067 0.004 0.006
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APPENDIX A: SPIN AND ORBITAL MAGNETIC
MOMENTS IN THE AFM STATE

For completeness we give the spin and orbital moments in
Table VI for all the systems for which we have considered
spin-orbit coupling in the AFM state, i.e., Ir/Fe/Rh(001),
Fe/Ir/Rh(001), Ir/Ir/Fe/Rh(001), as well as the Fe/Ir bilayer
and unsupported Fe ML.

APPENDIX B: DEPENDENCE OF DMI ON INDUCED
MAGNETIC MOMENTS

Figure 13 shows the energy dispersion of spin spirals
in Ir/Fe/Rh(001). Compared to the figures in the main text,
there are some differences. We present the energy dispersion
and �ESOC(q) along the X-�-M direction which we also
considered for all other systems in order to perform the fits
to the Heisenberg model and the DMI. The rotational sense is
right rotating along X-� and left rotating for the �-M direction
indicated by negative and positive values of q, respectively. We
have suppressed the induced magnetic moment of the Ir and Rh
layers (green points) within one of the calculations by choosing

FIG. 13. Energy dispersion of spin spirals along the X-�-M
direction for Ir/Fe/Rh(001). (a) Energy dispersion E(q) without
spin-orbit coupling. (b) Energy contribution due to SOC, �ESOC(q)
and (c) magnetic moments of the topmost three layers. The black
points are the values including the induced magnetic moments in the
Ir layer with the fit to the Heisenberg model and the DMI. The green
points are values if the moments in the Ir layer are suppressed in the
calculation.
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a spin quantization axis orthogonal to that of the Fe layer. The
qualitative behavior of the energy dispersion without SOC
[Fig. 13(a)] remains the same as well as the values of �ESOC(q)

obtained in this way [Fig. 13(b)]. These calculations show that
�ESOC and hence the DMI does not depend on the induced
spin polarization of the Ir and the Rh layers.
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