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Stability and magnetic properties of Fe double layers on Ir (111)
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We investigate the interplay between the structural reconstruction and the magnetic properties of Fe double
layers on Ir (111) substrate using first-principles calculations based on density functional theory and mapping
of the total energies on an atomistic spin model. We show that if a second Fe monolayer is deposited on Fe/Ir
(111), the stacking may change from hexagonal-close-packed to bcc (110)-like accompanied by a reduction of
symmetry from trigonal to centered rectangular. Although the bcc-like surface has a lower coordination, we
find that this is the structural ground state. This reconstruction has a major impact on the magnetic structure.
We investigate in detail the changes in the magnetic exchange interaction, the magnetocrystalline anisotropy,
and the Dzyaloshinskii-Moriya interaction depending on the stacking sequence of the Fe double layer. Based
on our findings, we suggest a technique to engineer Dzyaloshinskii-Moriya interactions in multilayer systems
employing symmetry considerations. The resulting anisotropic Dzyaloshinskii-Moriya interactions may stabilize
higher-order skyrmions or antiskyrmions.
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I. INTRODUCTION

The next generation of high-density and low-energy data
storage devices or neuromorphic computing based units will
require novel materials and phenomena. Skyrmions in mag-
netic materials have high potential to meet the demands for
these new technologies [1,2]. In condensed matter, magnetic
skyrmions were predicted and first studied based on con-
tinuous micromagnetic models [3,4]. Their existence was
confirmed experimentally in bulk and thin-film semicon-
ductors [5,6], in metallic multilayers [7,8], and in ultrathin
films [9,10]. The presence and the manipulation of isolated
skyrmions in magnetic thin films and multilayers make them
promising for technological applications such as the race-
track memory [11–14].

The presence of isolated skyrmions is attributed to
the Dzyaloshinskii-Moriya interaction (DMI) which occurs
where spatial inversion symmetry is broken [15,16]. In B20
compounds such as MnSi [5] or Fe0.5Co0.5Si [6] this sym-
metry is broken due to the crystal lattice whereas in the
multiferroic Cu2OSeO3 [17] the polarization breaks inversion
symmetry. At surfaces and interfaces, the inversion symmetry
is broken due to the interface between different materials.

The DMI originates from spin-orbit coupling (SOC). At
metal surfaces and interfaces, the DMI can be understood
via the model of Fert and Levy [18], which gives a general
direction to control the DMI. In ultrathin films, the DMI can
be engineered by combining 3d transition metals with 4d or
5d substrates, which provide large SOC [19–21]. In magnetic
multilayers, two interfaces can be used to control different
magnetic interactions. One interface can be used to tune the
magnetic exchange while the other one can generate a large
DMI [21]. When both interfaces are composed of 5d metals,

the contribution of each interface can be engineered to obtain
a giant DMI [7,22].

In ultrathin films, not only the DMI can be tuned via the
interface but also the magnetic exchange interactions, which
makes them an ideal playground to study magnetism [23].
Among them, the Fe monolayer on Ir (111) has attracted
particular attention due to its versatility. If the Fe atoms are
adsorbed on the fcc surface sites, the magnetic ground state
is a square lattice of skyrmions [9]. If Fe is adsorbed in
the hcp stacking, the ground state is a hexagonal lattice of
skyrmions [24]. If two monolayers of Fe are deposited on
Ir (111), the growth is not epitaxial anymore but results in a
complex reconstruction leading to a mixture of fcc, hcp, and
bcc stacking of the second Fe layer characterized by a certain
pattern of reconstruction lines [25,26]. These reconstruction
lines play a prominent role in the triple layer of Fe on Ir
(111) for the writing and deleting of skyrmions by applying
an electric field [27]. In this system, the surface reconstruction
stabilizes skyrmions with an oval shape, which was attributed
to an environment anisotropy [28]. Recently, it was found that
the symmetry of the interface and thereby the symmetry of the
DMI could also determine the type of skyrmions that can be
stabilized, i.e., skyrmions or antiskyrmions [29].

In the case of an fcc (100) or an fcc (111) interface, the
symmetry of the interface imposes that the DMI has the same
sign along each neighboring bond. This configuration favors
the presence of skyrmions and explains why Pd/Fe/Ir (111)
exhibits isolated skyrmions [10,30,31]. In the case of a bcc
(110) interface, the sign of the DMI may change depending on
the nearest-neighbor bonds [29,32]. Therefore, antiskyrmions
may be more stable, as was illustrated in the case of 2Fe/W
(110) [29]. Independently from the symmetry argument, it
was also shown that skyrmions and antiskyrmions may coexist
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in the case of frustrated exchange interaction [21,30,33–36].
Therefore, an accurate theoretical description of all magnetic
interactions is required.

Here, we study the double layer of Fe on Ir (111) [2Fe/Ir
(111)] via density functional theory (DFT) with a particular
focus on the different stackings of the two Fe layers of 2Fe/Ir
(111). We base our DFT calculations on the experimental
observations of certain structural phases [25,26]. First, a pseu-
domorphically strained double layer with fcc stacking of the
surface Fe layer was identified, which exhibits spin spirals of
short periodicity of about 1.2 nm without a preferred prop-
agation direction, indicated by a grainy contrast in the spin-
polarized scanning tunneling microscopy (SP-STM) images.
These areas seem to be prone to defects such as vacancies and
substitutional atoms [37]. Second, reconstructed areas were
suggested with differently oriented bcc domains separated by
reconstruction lines with a characteristic distance of 5.2 nm.
The reconstruction lines compensate for the lattice mismatch
between the Fe layer at the interface, which has a fcc (111)
structure, and the Fe layer at the surface which adopts the
bcc (110) structure. In the bcc domains spin spirals with
periodicities of about 1.9 nm were observed which propagate
only along the [100] directions of the bcc unit cells and thus,
in the presence of the reconstruction lines and different do-
main orientations, give rise to a characteristic zigzag-shaped
herringbone-like magnetic contrast with pearls along the spin
spiral propagation directions.

We show that, counterintuitively, the second monolayer
does not grow in the fcc or hcp adsorption site but in the
bcc adsorption site. This induces a reduction of the crystal
symmetry of 2Fe/Ir (111) which loses the 3-fold rotation
axis. We calculate the magnetic exchange interaction for each
of the stackings of the Fe second layer and show that the
frustration of exchange interaction varies considerably from
one stacking to the other. Our DFT-parametrized atomistic
spin model includes both intra- and interlayer exchange inter-
actions. Then, we compute the DMI for each of the stackings
and show that the interfacial symmetry does not impose the
symmetry of the DMI alone. Finally, we deconvolute the DMI
contribution of each of the layers and infer a method based on
symmetry considerations to obtain an anisotropic DMI which
may stabilize antiskyrmions or higher-order skyrmions.

The paper is organized in two parts. The first part is
dedicated to the methodology used to compute the magnetic
exchange interaction and the DMI. The second part presents
the results regarding the different magnetic ground states of
2Fe/Ir (111) depending on the double-layer stacking.

II. MODEL AND COMPUTATIONAL METHODS

A. Stacking of the Fe double layers

We want to study the effect of simple variations of stacking
sequences in the Fe double layer deposited on an Ir (111)
surface and how their structural differences influence the
stability and magnetic interactions between the Fe atoms in
the double layer. We chose double-layer structures which are
derived from the metallic bulk structures fcc, hcp, and bcc.

The fcc structure consists of hexagonal-close-packed lay-
ers in the (111) plane, where every atom has six equidistant
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FIG. 1. Given are the stacking sequences for the bulk case for
structures (a) fcc, (b) hcp, and (c) pseudomorphically strained bcc.
All layers are close packed in this scenario.

nearest neighbors within the plane as shown in Fig. 1(a).
These close-packed layers follow an ABC stacking sequence
perpendicular to the plane as shown on the right, where the
numbers indicate the x and y coordinates of the atoms in the
different layers. Each layer occupies a set of hollow sites of
the sublayer.

Also the hcp structure in Fig. 1(b) is formed by hexagonal-
close-packed layers, which correspond to the (0001) planes
of the hexagonal unit cell. In hcp, the layers follow an ABA
stacking sequence. The hollow sites C remain empty in this
case.

The third stacking type we include in our study is the
pseudomorphically strained bcc (110) structure. In contrast
to the fcc and hcp structures, the bcc bulk structure usually
does not possess any close-packed crystallographic planes.
However, the (110) plane of the bcc unit cell can be (con-
siderably) strained (εxx = −10.7%, εyy = +9.6%) in order to
fit the same hexagonal unit cell as the fcc and hcp structures,
as indicated in white. The main difference is that the Fe atoms
do not occupy the hollow site positions B or C, but the bridge
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TABLE I. Overview of the double-layer structures. Given are the
names and stacking sequences in ABC notation, where the stacking
of the substrate is given in parentheses. Also indicated are the
coordination numbers (CN) of the Fe atoms in the two layers
of the double layer, as well as the plane groups (PG) of the isolated
double layer and the full film.

Stacking CN CN PG PG
Name sequence Fe@Ir Fe@vac double layer film

ff (ABC) AB 12 9 p3m1 p3m1
fh (ABC) AC 12 9 p3m1 p3m1
fb∗ (ABC) AD 11 8 c2mm cm

hf (ABC) BA 12 9 p3m1 p3m1
hh (ABC) BC 12 9 p3m1 p3m1
hb∗ (ABC) BD 11 8 c2mm cm

positions marked D, giving rise to the stacking sequence
ADA. Fe atoms in this position have a reduced coordination
number as they possess only two nearest neighbors in the
plane below instead of three.

To characterize the stacking sequences in the Fe dou-
ble layer with respect to the fcc-stacked Ir (111) substrate,
throughout this paper, we use a modified h-f stacking se-
quence notation, borrowed from the description of close-
packed (bulk) crystal structures. In contrast to the original h-f
stacking sequence notation, where the symbol always refers to
the middle layer of the sequence triple, i.e., “f” for the B layer
in the ABC sequence of the fcc structure or “h” for the B layer
in the ABA sequence of the hcp structure, our symbols refer to
the top layer of the sequence triple, as we want to characterize
surface structures. In addition to f and h, we introduce the
stacking sequence b∗ to indicate a pseudomorpically strained
bcc-like top layer.

In Table I we give an overview of the stacking sequences
that we have studied. The first symbol indicates the stacking
sequence of the Fe atom at the interface Fe@Ir and the second
symbol the stacking sequence of the Fe atom at the surface
Fe@vac. For Fe@Ir only stackings f and h were considered,
while for Fe@vac also b∗ was taken into account. Besides
the stacking sequence in ABC notation also the coordination
numbers (CN) of the two Fe atoms are given, demonstrating
that coordination numbers are reduced by one, if the top layer
adopts the bcc-like structure. Two different symmetries result
in the close-packed structures ff, fh, hf, and hh; we find the
trigonal plane group (PG) p3m1 and in the bcc-like structures
fb∗ and hb∗ the centered rectangular/rhombic plane group cm.
Figure 2 illustrates these symmetries. In an isolated double
layer, the symmetry is higher in the bcc-like stackings (c2mm

instead of cm), but unchanged in the others.

B. Stability of the stackings

We study via density functional theory (DFT) calculations
the energies and magnetic interactions of the six different
structural stackings presented in Table I. We have used the
FLEUR ab initio package [38]. The FLEUR code utilizes the
full potential linearized augmented plane wave approach
(FLAPW) [39–41], which ranks among the most accurate
electronic structure techniques. Especially, FLEUR allows us

cm p3m1

Ir@Fe
Fe@Ir
Fe@vac

glide reflection
reflection

rotation center

fb* ff

FIG. 2. Top views of the atomic configurations of films with
stackings fb∗ and ff and symmetry elements of their respective plane
groups cm and p3m1. Shown are the atoms of the three outmost
layers, only.

to study complex magnetic states at interfaces such as non-
collinear magnetic states [42], skyrmion lattice ground states
[9], and the presence of isolated topologically protected states
in bilayers such as skyrmions or antiskyrmions [21,29,30,34].

To optimally describe the geometry of the Fe/Ir interface,
a mixed exchange correlation functional was employed [43].
This mixed functional applies the generalized gradient ap-
proximation in the parametrization of Perdew et al. (GGA)
[44] to the interstitial region and to the muffin-tin spheres
of the Fe atoms, whereas in the Ir atoms’ muffin-tin (MT)
spheres the local density approximation (LDA) [45] is ap-
plied. This method has been shown to capture the magnetic
and structural properties of the 3d elements on 5d substrates
[30,43,46].

The muffin-tin radii were set to 2.23 bohrs (1.18 Å) for
Fe and 2.31 bohrs (1.22 Å) for Ir. We chose a plane-wave
cutoff kmax of 4.0 bohr−1 and a mesh of 256 k points within
the irreducible part of the first Brillouin zone.

Structural relaxations were performed using a symmetric
film consisting of 11 layers of Ir and two layers of ferromag-
netic (FM) Fe on the top and bottom of the Ir slab, slightly
different from the slab shown in Fig. 5. The equilibrium
hexagonal lattice parameter of the Ir substrate of aIr = 5.10
bohrs (2.70 Å) was used. The atoms of the outmost three
layers, i.e., Fe@vac, Fe@Ir, and Ir@Fe, were allowed to relax
along the z direction until forces were smaller than 0.001
hartrees per bohr (0.04 eV/Å). Table II provides the resulting
interlayer distances. dIr-Ir is with 2.23–2.25 Å larger than the
distance in the bulk material of 2.20 Å; it shows little variation
for the different stackings but tends to be smaller for the hx

stackings. dFe-Ir depends weakly and dFe-Fe depends strongly
on the stacking of the Fe@vac atoms. The values for dFe-Ir

are in the range between 2.09 and 2.12 Å. While dFe-Fe is with

TABLE II. Interlayer distances for the outmost three layers in the
relaxed structures. Values are given in Å.

ff fh fb∗ hf hh hb∗

dFe-Fe 2.02 2.08 2.01 2.01 2.08 2.02
dFe-Ir 2.09 2.11 2.12 2.09 2.11 2.11
dIr-Ir 2.25 2.25 2.24 2.23 2.23 2.23
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2.08 Å largest for fh and hh stacking, it is considerably smaller
in ff, hf, fb∗, and hb∗ with 2.01–2.02 Å.

C. Symmetry aspects of the spin spirals

A powerful way of describing and understanding the un-
derlying mechanisms and magnetic interactions leading to
noncollinear magnetic structures in ultrathin films is to study
the energy dispersion of spin spirals [47,48].

Homogeneous spin spirals possess static periodic struc-
tures, which can be incommensurate with the chemical unit
cell of the crystal lattice. Therefore, we describe them by wave
vectors q in reciprocal space so that the magnetic moment M
at site r is given by

M(r) = M

⎛
⎜⎝

sin(qr)

cos(qr)

0

⎞
⎟⎠. (1)

This spin spiral propagation vector q can be chosen arbi-
trarily in the irreducible Brillouin zone. In Fig. 3, we present
the Brillouin zones of the different double-layer stackings.
In Fig. 3(a), we show how the unit cells of the real space
(spanned by a and b, in gray) and the reciprocal space
(spanned by a∗ and b∗, in blue) are related to each other
for a hexagonal lattice (the length of the vectors is arbitrary
here). In internal coordinates, the high-symmetry points �̄ =
(0, 0), M̄ = ( 1

2 , 0), and K̄ = ( 1
3 , 1

3 ) within the first Brillouin
zone (BZ; shown in yellow) are indicated as well, along with
the irreducible part of the BZ (dotted line). To extract the
exchange and the DM interactions, we employ the Cartesian
coordinate system within the BZ, which is spanned by x and
y (in yellow).

As we learned before (see Table I), the Fe double layer
does not possess the sixfold rotation axis of the hexago-
nal symmetry. Instead, depending on the stacking sequence,
the symmetry is reduced to trigonal (plane group p3m1) in
the hexagonal-close-packed stackings ff, fh, hf, and hh or
to centered rectangular (plane group c2mm) in the bcc-like
stackings fb∗ and hb∗. Therefore, some of the high-symmetry
points are lost in the close-packed stackings or become fully
obsolete in the bcc-like stackings, as indicated in Figs. 3(b)
and 3(c).

In the case of trigonal symmetry, the K̄ points are not
equivalent anymore as shown by the additional K̄′ along �b.
The M̄ points remain unchanged. Therefore, the irreducible
BZ has doubled in size as compared to the case shown
in Fig. 3(a). In the centered rectangular symmetry, the BZ
changes its shape and size. The former M̄ point along y
becomes the Ȳ point at (0, 1√

3
) (in Cartesian coordinates) and

the K̄ point becomes obsolete. A new high-symmetry X̄ point
results at (1,0) and a new M̄ point at ( 1√

3
, 1√

3
).

As �̄-M̄ and �̄-X̄ along x as well as �̄-K̄ and �̄-Ȳ along y
are high-symmetry lines in both the trigonal and centered rect-
angular symmetries, we utilize these throughout this study to
compare the magnetic interactions in the different stackings.

The spin spiral propagation vector q determines the prop-
agation direction of the spin spiral and the periodicity length
or, in other words, the angle between the neighboring mag-
netic moments. A spin spiral with q = � describes the

real space
unit cell

a

b

(b) trigonal: ff, fh, hf, hh (c) centered rectangular: fb*, hb*

Cartesian 
coordinate
system 

First Brillouin 
zone (BZ)

x

y

reciprocal 
unit cell

b*

a*

(a) hexagonal reference

x

M

Γ

y

M K'

K x XΓ

y

Y M

M

KΓ

FIG. 3. Brillouin zones of the double-layer stackings. In (a) the
relationships between real space (gray) and reciprocal (blue) unit
cells including the first Brillouin zone (yellow) for the hexagonal
reference structure is given. For simplicity, the vectors of the real
space and reciprocal space were chosen to have the same length. The
dotted-lined black triangle indicates the irreducible part of the first
Brillouin zone. Also shown is the Cartesian coordinate system within
the first Brillouin zone (yellow), which is used for the calculation
of magnetic interaction energies. The high-symmetry q points �̄,
K̄, and M̄ are indicated as well. In the double layers, the hexagonal
symmetry is reduced to trigonal and centered rectangular. In (b) the
trigonal setting is shown where half of the points K̄ are lost, indicated
by the additional K̄′ and a doubling of the size of the irreducible
Brillouin zone. In the centered rectangular systems, given in (c),
the Brillouin zone changes its shape and size (the hexagonal one is
shown for comparison) and new special k points X̄, Ȳ, and M̄ result.

ferromagnetic state. At q = M̄ the row-wise antiferromag-
netic state is characterized by an angle of 180◦ between
neighboring magnetic moments and a periodicity length of 2a.
q = K̄ on the other hand characterizes the Néel state with an
angle of 120◦ and a periodicity length of 3a.

In Fig. 4 two examples are shown corresponding to q =
1
6

2π
a

propagating along the two directions �̄-K̄ with the wave
vector (q, 0, 0) and �̄-M̄ with the wave vector (0, q, 0).

D. Magnetic interactions from DFT calculations

1. Magnetic exchange interaction

To study the magnetic properties of these films, we cal-
culate the total energy of flat spin spirals as a function of
the angle between neighboring magnetic moments via the
generalized Bloch theorem [48]. It allows the calculation of
homogeneous spin spirals which are incommensurate with the
chemical unit cell of the crystal lattice. Here, we only consider
flat spin spirals which are propagating in the xy plane and
are described by the propagation vector q. To minimize the
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(a) Γ-Κ direction of reciprocal space

(b) Γ-Μ direction of reciprocal space

a

b

c

a

b

c

6a

6a

FIG. 4. Schematic pictures of flat spin spirals on the hexagonal
lattice in real space corresponding to q = 1

6
2π

a
propagating along (a)

�̄-K̄ direction with the wave vector (q, 0, 0) and (b) �̄-M̄ direction
of reciprocal space with the wave vector (0, q, 0).

computational cost, we have used an asymmetric slab con-
sisting of two iron atoms on nine layers of iridium substrate
as shown in Fig. 5. In these calculations, the spin spiral is
propagating in both the iron and the iridium layers unless
stated otherwise. We use a kmax = 4.0 bohr−1 and 1936 k

points in the full BZ.

2. Spin-orbit coupling contributions

SOC contributes to the magnetocrystalline anisotropy en-
ergy (MAE) and to the DMI. The MAE contribution is ob-
tained from calculations of collinear spin structures, whereas
the DMI energy contribution is accessed via calculations of
spin spirals.
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FIG. 5. Asymmetric film geometry as it was used in the calcula-
tions of the magnetic properties. Shown is the ff stacking of the Fe
double layer.

The MAE can be obtained by evaluating the energy con-
tribution of the SOC in the collinear Fe double layers with
all magnetic moments oriented parallel along the three Carte-
sian axes x, y, and z. This SOC contribution is calculated
by performing self-consistent scalar-relativistic calculations,
which require an increased accuracy; therefore we use a
kmax = 4.3 bohr−1 and 1936 k points. To study the stability
of the MAE with respect to the number of Ir layers, we have
successively turned off the SOC contribution in the muffin
tin of the Ir atoms. In that case, we have converged self-
consistently the charge density when the quantization axis
was applied in the z direction and applied the magnetic force
theorem to evaluate the energy when the quantization axis was
applied in the x and y direction.

For the noncollinear case of a flat spin spiral, the SOC can
be included via first-order perturbation theory [49]. In that
case, the band energies are corrected via the SOC Hamiltonian

HSOC =
∑

i

ξiσ · Li , (2)

where ξi is the SOC strength at site i, σ is the Pauli matrix,
and Li is the orbital momentum operator at site i. HSOC

describes the odd part of the magnetic exchange tensor which
can be interpreted as the DMI, which stabilizes a left or a
right rotating spin spiral. Within FLEUR, the FLAPW basis set
provides a natural framework for the atomic decomposition
of the SOC. The atomically resolved SOC contribution allows
the determination of the layer-dependent contributions to the
DMI. If the magnetic moments in the MT of the layer i are
kept in a FM state perpendicular to the rotation plane of the
spin spiral in the other layers, the SOC contribution of this
layer will be reduced to zero. The DMI can be attributed to
the SOC contributions of the remaining layers. For these cal-
culations, we have used kmax = 4.3 bohr−1 and 1936 k points.

E. Extended Heisenberg model

We use an extended Heisenberg model to analyze the en-
ergy dispersion curves E(q ) of the different stacking models.
This model involves the magnetic exchange interactions up
to the fifth-nearest-neighbors and the Dzyaloshinskii-Moriya
interactions.

1. Heisenberg exchange interaction

The exchange interactions in the magnetic Fe double layer
can be separated into two contributions [21]: the intralayer
interactions within the layers parallel to the film (labeled
Fe@vac and Fe@Ir) and the interlayer interactions between
these two layers perpendicular to the film. This decomposition
results in the spin Hamiltonian

H = H ‖,Fe@vac + H ‖,Fe@Ir + H⊥. (3)

Both the intra- and the interlayer interaction Hamiltonian
are expressed as

H ‖,⊥ = −
∑
ij

J
‖,⊥
ij (mi · mj ), (4)

where the sum runs over sites within both Fe layers. This
Hamiltonian may be expressed as a series of cosines by
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inserting the magnetization of a homogeneous spin spiral as

H = −
∑

δ

Jδ

∑
i

cos(q · Rδi ), (5)

where Rδi is the position of the atom i in the shell δ and q is
the propagation vector of the spin spiral in units of 2π

a
.

In all structures presented in this study, both Fe layers
adopt a hexagonal-close-packed structure. Therefore H ‖ re-
mains unchanged as compared to previous works [21]. In
contrast, H⊥ depends on the double-layer stacking. In the
case of the close-packed stackings ff, fh, hf, and hh, there
are three next-nearest neighbors in the adjacent plane at
positions ( a

2 , a

2
√

3
), (− a

2 , a

2
√

3
), and (0,− a√

3
). The resulting

equations for the interlayer interactions can be found in the
Supplemental Material of Ref. [21].

For the bcc-like stackings fb∗ and hb∗, there are two next-
nearest-neighbor atoms at positions ( a

2 , a
2 ) and (− a

2 , a
2 ). This

gives for the first four neighbor shells in the adjacent plane the
following expressions in Cartesian coordinates H⊥

nn(qx, qy ):

H⊥
1 = 2J⊥

1

[
cos

(
aqx

2

)
− 1

]
, (6)

H⊥
2 = 2J⊥

2

[
cos

(√
3aqy

2

)
− 1

]
, (7)

H⊥
3 = 4J⊥

3

[
cos(aqx )

(√
3aqy

2

)
− 1

]
, (8)

H⊥
4 = 2J⊥

4

[
cos

(
3aqx

2

)
− 1

]
. (9)

Thus, the energy dispersions obtained for three differ-
ent spin spirals in the Fe layers can be fitted to the spin
Hamiltonian (4) in order to obtain the exchange interaction
coefficients J

‖,Fe@vac
ij , J

‖,Fe@Ir
ij , and J⊥

ij up to the fifth- and

fourth-neighbor shell, respectively. J
‖,Fe@vac
ij and J

‖,Fe@Ir
ij are

obtained when the spin spiral only propagates in the Fe@vac
or Fe@Ir layer, respectively. J⊥

ij is obtained when the spin
spiral propagates in both Fe layers simultaneously. In addi-
tion, we provide effective exchange coefficients Jeff resulting
from the first-nearest-neighbor exchange interaction obtained
in the range |q| < 0.1 × ( 2π

a
), i.e., in the vicinity of the �̄

point [21,36].

2. Dzyaloshinskii-Moriya interaction

The DMI arises when SOC occurs in a system with bro-
ken inversion symmetry such as a surface or an interface.
This interaction favors a perpendicular orientation between
neighboring spins instead of the parallel or antiparallel ori-
entation favored by Heisenberg exchange. Its effect is to
favor cycloidal spin spirals and a certain rotational sense;
thus, it determines whether a spin spiral rotates clockwise or
counterclockwise. The Hamiltonian can be written as

HDM = −
∑
ij

Dij · (mi × mj ), (10)

where the sum runs over sites within both Fe layers.
We consider contributions to the DMI up to the third-

neighbor shell and also provide effective DMI coefficients
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FIG. 6. Total energies of the different stackings relative to the
energy of the ff stacking. Decisive for the stability of the double layer
is the top-layer configuration.

Deff resulting from the first-nearest-neighbor interaction as
obtained close to the �̄ point |q| < 0.1 × ( 2π

a
).

III. RESULTS AND DISCUSSION

This section is organized as follows. We first investi-
gate and discuss the stability of the different stackings of
the Fe double layer. We consider the low-temperature case
(Appendix A) as well as a high-temperature case (Sec. III B),
where the effect of thermal expansion of the substrate is taken
into account. For completeness, we also study the kinetic
stability of the stackings with respect to the ground-state
structure (Sec. III B). Afterwards we provide an in-depth in-
vestigation of the magnetic interactions playing a decisive role
in this material system (Sec. III C), i.e., Heisenberg exchange
(Sec. III C 1), magnetocrystalline anisotropy (Sec. III C 2),
and the Dzyaloshinskii-Moriya interaction (Sec. III C 3). In
order to understand the obtained relative stabilities and mag-
nitudes of magnetic interactions we present densities of states
(Sec. III D). Finally, after having determined all energy con-
tributions to the magnetic texture resulting from the different
stackings in the Fe double layer, we can discuss the occur-
rence of spin spirals in the studied system and compare our
findings with experiments (Sec. III E).

A. Thermodynamic stability of stackings

We start by presenting the stability of the different double-
layer stackings given in Table I. In Fig. 6 the total energies
of these different structures are given relative to the energy
of the ff stacking. We find three groups of stackings in terms
of stability, the xf stackings with energies around zero meV
per Fe atom (where x is f, h), the xh stackings with higher
energies at about 45 meV per Fe atom, and the more stable
xb∗ stackings at about −30 meV per Fe atom, of which fb∗

gives the ground state of the Fe double layer on Ir (111).
This result can be considered surprising in two ways. First,

the Fe@vac layer uniquely determines the stability of the
double layer. Second, the low-symmetry structures xb∗ are
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FIG. 7. Total energies along the transformation paths from ff and
fh to fb∗ stacking. The line is a guide to the eye.

more stable than the close-packed stackings xh or xf. It seems
that two monolayers of Fe are sufficient to give rise to bulklike
properties (i.e., the FM bcc ground-state structure) in the ultra-
thin film, although it is extremely strained: εxx = −4.6% and
εyy = +17.0% with respect to the calculated lattice constant
of bcc iron (compare a = 2.83 Å of Fe in cubic unit cell vs
a = 2.70 Å of Ir in hexagonal unit cell). There is no expla-
nation so far for the experimental finding that both fcc and
bcc top layers can be found to coexist [25]; according to our
calculations only fb∗ and hb∗ stackings should be observed in
the Fe double layer. As shown in Appendix A, also epitaxial
strain (e.g., due to thermal expansion at growth conditions)
cannot change the stability hierarchy of the stackings.

B. Kinetic stability of the bcc-like stacking

Since thermodynamic considerations cannot explain the
presence of ff-stacked areas in experimentally investigated Fe
double layers, we turn now to the kinetic stabilization of the
hexagonal-close-packed stackings, i.e., whether there are any
energy barriers between those and the bcc-like stackings.

We envision that the growth of the second layer could start
at the hollow sites, i.e., positions B or C of the close-packed
structures with three next neighbors in the Fe@Ir layer (see
Fig. 1), in contrast to the energetically unfavored D positions
with only two next neighbors characteristic of the bcc-like
surface structure. An energy barrier between the close-packed
structures and the bcc-like structure would then explain why
larger islands cannot transform into the ground state fb∗ but
stay in the metastable states ff or fh. Thus, the structure would
be determined by growth and kinetic considerations although
thermodynamics favor another stacking.

Therefore, starting from the ff stacking and fh stacking,
we continuously shifted the Fe@vac layer along the [112]
direction relative to the fcc (111) plane of the Fe@Ir layer
until we reached the lattice sites of the fb∗ stacking. In the
inset of Fig. 7, these movements correspond to shifts from
position C (ff stacking) and position B (fh stacking) to position
D (fb∗ stacking), respectively. Thus, we follow the paths
ff → fb∗ ← fh.

The corresponding energies can be found in Fig. 7. There
are no energy barriers to overcome for reaching the fb∗ ground
state, at least in the 0 K limit of our calculations. This means
actually that both the ff and fh stacking are mechanically
unstable. Small distortions towards fb∗ will lead to a phase
transition.

At higher temperatures this simple picture may change
though. As was shown previously for the martensitic
phase transition in bulk titanium [50], structures that are
mechanically unstable at 0 K can be stabilized at elevated
temperatures by phonon contributions. Such study is beyond
the scope of this communication though.

Moreover, we observe that the fb∗-stacking ground state
is actually degenerate. A small off-centering towards the
direction of the ff stacking by 0.08 Å leads to a slightly lower
energy by about 1.4 meV per Fe atom as compared to fb∗.
This result is confirmed by supercell calculations [26].

We recently found that at specific growth conditions even
more complex bcc-like superstructures resulting in zigzag
patterns may be thermodynamically stable [26].

C. Magnetic interactions

We investigate next the effect of the change of symmetry
on the magnetic interactions for three different stackings:
ff, fb∗, and fh. In addition, we included the hf stacking to
check for the influence of the Fe@Ir layer. We first present
the energy dispersion curves of spin spirals without SOC,
which are fitted to the Heisenberg model to obtain exchange
constants coefficients within and between the two magnetic Fe
layers. We then show the effect of the double-layer stacking on
the magnetocrystalline anisotropy. Finally, we investigate the
Dzyaloshinskii-Moriya interaction in detail.

1. Total magnetic exchange: Mapping of energy dispersions
on extended Heisenberg model

The total magnetic exchange interaction can be studied
when the spin spiral is propagating within both Fe layers as
well as the Ir substrate. Figure 8(a) shows the energy disper-
sion curves of the four investigated Fe double-layer stackings.
Two types of dispersion curves can be distinguished. In the
case of ff (turquoise) and fh (dark blue), the magnetic ex-
change interactions favor spin spirals. The dispersion curve
of fh has a deep minimum at E = −13.1 meV/Fe with q =
0.24 × ( 2π

a
) which corresponds to a spin spiral wavelength of

λ = 1.1 nm. Although the overall symmetry does not change,
when the hcp stacking of Fe@vac is replaced by the fcc
stacking, the energy minimum of the dispersion curve of ff is
reduced to E = −1.8 meV/Fe and the wavelength increases
to λ = 1.9 nm with q = 0.14 × ( 2π

a
). These two stackings

have a spin spiral ground state.
On the other hand, the dispersion curves of hf (yellow) and

fb∗ (red) exhibit an energy minimum at q = 0.0 × ( 2π
a

) which
corresponds to the ferromagnetic state. In the bcc-like fb∗

stacking, the Néel state and the row-wise antiferromagnetic
state at the BZ edges become extremely unfavorable [E(X̄) =
437 meV and E(Ȳ) = 221 meV, which are more than twice
as large as the corresponding energies for the close-packed
stackings].
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FIG. 8. Spin spiral energy dispersions in the stackings ff, fb∗,
hf, and fh. In (a) the spin spiral propagates in both the Fe@vac
layer and the Fe@Ir. Exchange stabilized spin spirals are found in
ff and fh. In (b), the spin spiral propagates only in the Fe@vac layer
exposed to the vacuum, but not in the interfacial Fe@Ir layer. In this
spin configuration, the spin spiral is only stable in stacking ff; all
other stackings favor the ferromagnetic state. In (c), the spin spiral
propagates in the interfacial Fe@Ir layer, but not in the Fe@vac
layer at the surface. In this case, we find a deep energy minimum
for the spin spiral state in the hf stacking, while the others remain
ferromagnetic.

TABLE III. Effective next-nearest-neighbor exchange coeffi-
cients Jeff corresponding to the dispersion curves of Fig. 8 for |q| <

0.1 × ( 2π

a
). All values are given in meV/Fe.

Double-layer stacking ff fb∗ fh hf

Jeff −3.0 +1.8 −6.9 +3.2

The occurrence of isolated skyrmions depends on the rise
of the dispersion curve close to q = 0.0 × ( 2π

a
) which can be

estimated by using the effective nearest-neighbor exchange
constant Jeff as explained in Sec. II E 1 [21]. The values of
Jeff (see Table III) confirm the qualitative findings of Fig. 8(a).
They are in the same range as the values found in the Pd/Fe/Ir
(111) ultrathin films, where Jeff of −2.3 and +4.4 meV were
reported depending on the stacking of the Pd overlayer [34].
The stackings ff and hf possess dispersion curves with energy
minima along each direction �̄-K̄ and �̄-M̄ which correspond
to Jeff < 0. On the other hand, the hf and fb∗ stackings possess
positive slopes and Jeff > 0. The dispersion curve of hf rises
even faster close to �̄ than the one of fb∗, although the
opposite is true farther from �̄. In both stackings, the magnetic
exchange interaction favors a ferromagnetic ground state. In
all stackings, Jeff are small, which facilitates the presence
of isolated skyrmions at finite magnetic fields, as we could
demonstrate previously for Pd/Fe/Ir (111) [30].

We want to analyze in more detail how the exchange-
induced spin spirals in ff and fh develop by inspecting the
exchange contributions from each Fe layer separately.

The layer-dependent energy dispersion curves are shown
in Figs. 8(b) and 8(c), where a spin spiral was imposed only
in one of the Fe layers and the Ir substrate, while spins in the
other Fe layer were kept parallel to each other and perpendicu-
lar to the rotational plane of the spin spiral resulting in a mixed
spin configuration (spin spiral + ferromagnetic alignment).

Figure 8(b) shows the dispersion curves of the different
stackings with a spin spiral in the layer of Fe@vac. All curves
possess a flat energy dispersion close to the �̄ point. This
indicates that the magnetic exchange interaction in this layer
is generally frustrated. Only the ff stacking possesses a spin
spiral ground state in this mixed spin configuration, while the
remaining stackings are fully ferromagnetic.

Figure 8(c) shows the dispersion curves for spin spirals in
the layer of Fe@Ir. The dispersion curves of hf and ff are
almost identical, although the local structure of the investi-
gated layer is different. The curves of ff, fh, and fb* rise faster
close to the �̄ point than in the Fe@vac case indicating less
frustration. However, the dispersion curve of the fh stacking
shows a deep minimum at −5 meV/Fe for q = 0.2 × ( 2π

a
).

Thus, the spin spirals in the ff and fh double layers have
different origins. In fh, its formation is driven by the Fe@Ir
layer, while in ff, it emerges from the Fe@vac layer.

It is interesting that the strong FM behavior of the fb∗

stacking observed in Fig. 8 is lost for the single-layer spin
spirals [since E(K̄) = 80 and 110 meV/Fe] and that the 3-
fold symmetry of the BZ is also recovered [since E(X̄) =
E(Ȳ)].

In order to analyze in detail all magnetic exchange inter-
actions in the different stackings, we provide in Table IV the
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TABLE IV. Heisenberg exchange coefficients Jij as obtained
from fits to the spin Hamiltonians Eq. (4). All values are given in
meV/Fe.

Ji ff fb∗ fh hf

J
‖,Fe@vac
1 +5.0 +12.3 +7.8 +6.1

J
‖,Fe@vac
2 +1.1 +1.3 − 1.8 +1.4

J
‖,Fe@vac
3 − 2.3 − 5.2 − 1.0 − 1.1

J
‖,Fe@vac
4 +0.2 +0.9 +0.1 − 0.2

J
‖,Fe@vac
5 − 0.5 − 1.2 +0.7 − 0.4

J
‖,Fe@Ir
1 +5.3 +9.6 +6.0 +4.9

J
‖,Fe@Ir
2 +0.1 +0.02 +0.5 +0.4

J
‖,Fe@Ir
3 − 0.7 − 2.3 − 2.7 − 0.4

J
‖,Fe@Ir
4 − 0.3 +0.6 − 0.1 − 0.2

J
‖,Fe@Ir
5 +0.5 − 0.6 − 0.2 +0.2

J ⊥
1 +24.0 +62.7 +12.1 +22.1

J ⊥
2 +0.1 +18.1 +0.9 +2.0

J ⊥
3 − 8.1 − 6.1 − 8.6 − 5.8

J ⊥
4 +2.9 − 2.3 +2.5 +1.3

fitted nearest-neighbor interactions Jij up to the fifth- and the
fourth-nearest neighbor in J ‖ and J⊥, respectively.

All intralayer exchange constants J ‖ show a high degree of
frustration. They oscillate between ferromagnetic (FM) and
antiferromagnetic (AFM) coupling depending on the shell
number. In both Fe layers, J

‖
1 is positive which shows that

the FM state is more stable than the AFM states but the J ‖
beyond the first nearest neighbors can become negative.

All J ‖ have values of maximum 12.3 meV/Fe which is
between J1 = 5.7 meV/Fe for Fe/Ir (111) [9] and of 13 to 14
meV/Fe for Pd/Fe/Ir (111) [30]. Nevertheless, the interlayer
exchange constants J⊥ can reach up to J⊥

1 = 62.7 meV/Fe
and J⊥

2 = 18.1 meV/Fe in the case of fb∗. These values are
much higher than J⊥

1 = 24.73 meV/Fe for [Rh/Pd/2Fe/2Ir]1

[21]. This strong interlayer coupling is the origin of the
marked FM character of the fb∗ Fe double layer observed
in Fig. 8(a). These large values originate from the symmetry
lowering of the (110) surface where the first and second shell
contain only two atoms. They can induce a large anisotropy
in the magnetic exchange interaction which can explain the
occurrence of noncentrosymmetric skyrmions [25–28].

To summarize, in ff and fh stackings, spin spirals are
stabilized by magnetic exchange interaction. Their formation
can be driven by only one of the Fe layers. In contrast, in
fb∗ and hf stacking a flat dispersion curve is observed close
to the �̄ point indicating high magnetic frustration in these
structures. In the latter structures, spin spiral ground states
might be stabilized by the DMI, as we will see later. We will
now consider the SOC contributions to the total energy.

2. SOC contribution to collinear states:
Magnetocrystalline anisotropy

The MAE is determined by calculating the SOC contribu-
tion to the total energy when all spins are pointing parallel
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FIG. 9. Shown are the preferred (in color and bold) and disfa-
vored spin orientations (in gray and fine) for the stackings hf, fb∗,
fh, and ff. The preferred orientation of spins changes from an easy
plane in hf, fb∗, and fh stacking to an out-of-plane easy axis in the
ff stacking. The anisotropy coefficients K1 increase at the same time
from 0.1 meV in fb∗ to 1.2 meV in ff.

along the x, y, and z directions. The MAE is then determined
by the energy difference Ei − Emin with i = x, y, z. The easy
axis or easy plane is the axis or plane along which the SOC
contribution to the total energy is lowest, i.e., Emin.

The results for the MAE of the four stackings ff, fb∗, fh,
and hf are summarized in Fig. 9. The colored axes and planes
indicate the easy axis or easy plane, respectively. Numbers
indicate the anisotropy coefficients K1 with their associated
directions. All energies are in the typical energy range of a
few meV for ultrathin-film systems. For ff we find an easy axis
pointing out-of-plane, whereas fb∗, hf, and fh possess an easy
plane in the basal plane of the film. The anisotropy coefficient
K1 in the easy-axis system is 1.2 meV (ff). The systems with
the easy plane have coefficients of 0.1 meV (fb∗) and 0.5 meV
(fh and hf). We have also explored the dependence of the MAE
on the number of Ir layers in detail (see Appendix B).

It is surprising that the centered rectangular structure fb∗

possesses an easy plane, where the x and y directions are
degenerate, although these directions are not equivalent by
symmetry.

In the limit of small q, the effect of the MAE on the
stability of a spin spiral is a constant energy shift of the whole
dispersion curve by + 1

2K1; i.e., it equally disfavors any kind
of rotation of the magnetic moments.

3. SOC contribution to noncollinear states:
Dzyaloshinskii-Moriya interaction

The DMI originates from SOC in noncentrosymmetric sys-
tems. In our systems, the broken inversion symmetry comes
from the Ir-Fe interface, while the strong SOC originates from
the Ir 5d states. The DMI is thus expected to be dominated by
the atomic SOC contributions from the Ir (111) substrate.

Figure 10 shows the total and atomic SOC contributions
to the energy dispersions of spin spirals in the ff and fb∗

stackings. Figure 10(a) shows the atomic SOC contributions
for the ff stacking. This stacking is also representative for the
other 3-fold-symmetric stackings (therefore, fh and hf are not
shown). As expected, the SOC respects the 3-fold symmetry:
Its total amplitude (red dots and solid lines) does not depend
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on the propagation direction of the spin spiral and is maximum
for the 90◦ spin spirals at q = −0.29 × ( 2π

a
) corresponding

to qcart = (0, 1
2
√

3
, 0) and q = +0.33 × ( 2π

a
) corresponding to

qcart = ( 1
3 , 0, 0). From the atomic SOC contributions we can

see that the total SOC energy is dominated by contributions
of the Ir substrate. The contributions of the two Fe layers
(turquoise triangles and blue squares) are of opposite sign and,
therefore, cancel each other out.

The situation is different for the fb∗ stacking as shown in
Fig. 10(b). The total SOC energy along the direction �̄-X̄ has
the same amplitude as in the ff case. However, the SOC energy
along �̄-Ȳ is reduced by a factor of three as compared to �̄-X̄.
This reduction of SOC interaction along the ky direction may
be surprising, especially if one assumes that the symmetry
of the DMI is determined solely by the symmetry of the
interface. Fe@Ir occupies in the fb∗ stacking the same sites
with respect to the Ir substrate as in the ff and fh stackings.
Therefore, only the surface Fe layer (Fe@vac) reduces the

TABLE V. DMI coefficients of Fe@Ir in all stackings determined
along �̄-K̄ and �̄-M̄ direction for ff, fh, and hf and along �̄-X̄
direction for fb∗ (along �̄-Ȳ in parentheses). All values are given
in meV.

Double-layer stacking ff fb∗ fh hf

Deff 2.0 1.2 (0.2) 2.0 1.3
D1 1.25 1.17 1.25 1.21
D2 0.16 0.90 0.16 − 0.05
D3 0.11 − 0.78 0.11 0.10

symmetry of the ultrathin film, which is usually not expected
to modify the hybridization of the interfacial Ir atoms.

In Table V we compare the DMI coefficients Deff and D1−3

acting on the interfacial Fe (Fe@Ir) of the stackings ff, fh, fb∗,
and hf, which we obtained from fitting the total SOC energies.
For stackings ff and fh, we find Deff of about 2.0 meV,
whereas fb∗ and hf give about 1.2 meV. As Deff in all stackings
adopts positive values it favors clockwise-rotating spin spirals.
These DMI coefficients are in the same range as those for the
Fe monolayer on Ir (111) [9] and those of the Fe/Ir (111)
system with Pd overlayers [30]. The centered rectangular
symmetry of the fb∗ stacking is reflected in the existence of a
second Deff . The DMI in the Cartesian y direction is strongly
suppressed to Deff = 0.2 meV, only one-sixth of the value
along the Cartesian x direction.

In Table V, also the coefficients for the DMI up to the third-
next-nearest neighbor are provided. The values of D1 are very
similar for all stackings. For the ff and the fh stackings, D1−3

are quasi-identical and they are all positive, which creates a
Deff of around 2 meV/Fe. The Deff is significantly reduced to
1.2 meV/Fe for the hf and the fb∗ stackings due to the negative
contribution of the D2 and the D3, respectively. The Deff of
fh and ff differ due to small energy differences of the SOC
contributions close to �̄.

In order to confirm that the symmetry of the DMI in the
fb∗ stacking depends on the adsorption site of the surface
Fe layer (Fe@vac), we calculated the layer-dependent SOC
for two different spin spiral configurations as in Ref. [21].
In the first configuration, the spin spiral propagates only in
the Fe@Ir layer and the Ir substrate, but not in the Fe@vac
layer, where the magnetic moments are oriented parallel to
each other (FM) and perpendicular to the rotation plane of the
spin spiral. Here we calculate the SOC contribution from the
Ir substrate on Fe@Ir. In the second configuration, the spin
spiral propagates exclusively in the Fe@vac layer and in the
Ir substrate, but not in the Fe@Ir layer to obtain the SOC
contribution from the Ir substrate on Fe@vac. The results are
presented in Fig. 11. As each Fe layer taken isolated has 3-fold
symmetry, we chose the trigonal reference for the Brillouin
zone spanned by M̄, �̄, and K̄. Figure 11(a) corresponds to
the case where the spin spiral propagates in the Fe@Ir layer
and Ir substrate, but not in the Fe@vac layer. It is interesting
that indeed a 3-fold-symmetric SOC is retained, since both
�̄-M̄ and �̄-K̄ directions exhibit the same magnitude for
both the total SOC and the individual atomic contributions.
The �ESOC(q ) is dominated by the atomic contribution from
the Ir substrate, whereas the atomic contributions from the
two Fe layers are equally strong and of opposite sign as
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Fe@vac layer of the surface. The magnitudes along the two propagation directions are completely different. The SOC reflects the reduced
symmetry of the bcc-like stacking. The obtained DMI coefficient is D1(Fe@vac) = 0.34 meV. In (c), we show how the Ir-Fe DMI (yellow
arrows) and Fe-Fe DMI (red arrows) arise from different 3-atom scattering events possible in the two different spin spiral configurations.
Shown are the centered rectangular unit cells (gray solid line) in top view, along with the rhombic unit cell (dotted line) for orientation. The
quantization axis of the SOC is always perpendicular to the spin spiral propagation direction which leads to cycloidal spin spirals along q. The
scattering partners are connected via dashed lines, in gray for Ir-Fe and in turquoise/dark blue for Fe-Fe interactions. Only for the spin spiral
in Fe@vac along the �̄-M̄ direction, there is no Ir-Fe DMI possible, which gives rise to the strong asymmetry in (b).

compared to the Ir substrate, giving an overall DMI coefficient
of D1 = 0.40 meV for this spin spiral configuration (red solid
line).

However, when the spin spiral propagates in the Fe@vac
layer and the Ir substrate [Fig. 11(b)], the symmetry is reduced
to cm, as was shown in Fig. 2(b). Therefore, we can expect the
SOC to have a different amplitude depending on the direction
of the propagation vector. Indeed, when the SOC is computed
along the �̄-M̄ direction, the contributions of Fe@Ir and the
Ir substrate are reduced to zero (turquoise and gray trian-
gles, respectively) while the main contribution arises from
Fe@vac (compare the blue squares and the red dots). Along
the perpendicular direction �̄-K̄, all atoms are contributing to
the SOC, the dominating contribution originates from Fe@Ir,
whereas the contributions of Fe@vac and the Ir-substrate
counterbalance each other. Overall, the DMI is dominated by
Fe-Fe interactions in this spin spiral configuration giving an
overall DMI coefficient of D1 = 0.34 meV.

We next analyze how these differences between the two
spin spiral configurations can be understood. In the model of
Fert and Levy [18], the DMI is associated with a scattering
process among three atoms, arranged in an isosceles triangle,
where the scattering atom at the apex can be nonmagnetic.
This atomic configuration leads to cycloidal spin spirals which
propagate in the plane of the ultrathin film. Therefore, the
available scattering partners for the two spin spiral configu-
rations and propagation directions can be directly identified
and are presented in Fig. 11(c). The DMI associated with the
interactions between the Ir substrate and Fe@Ir or Fe@vac
and between Fe@Ir and Fe@va are indicated by yellow and
red arrows, respectively, as well as the interlayer connection
lines between the three scattering atoms (dashed lines). For
orientation, besides the centered rectangular unit cell (gray
solid line) also the rhombic unit cell is indicated (dotted line).
In the first spin spiral configuration exhibiting the full 3-fold
symmetry, shown on the left, we have strong Ir-Fe DMI and
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much weaker Fe-Fe DMI in both propagation directions of
the spin spiral. Along �̄-K̄ both DMI vectors are parallel to
the quantization axis and contribute fully to the DMI, whereas
in the direction �̄-M̄, the two Ir-Fe DMI vectors are rotated by
30◦ with respect to the quantization axis. Therefore, they both
contribute only 50% to the DMI, resulting overall in the same
magnitude for the Ir-Fe DMI as in the direction �̄-K̄.

The situation is different in the second spin spiral con-
figuration shown on the left. In the direction �̄-M̄, no DMI
contribution from Ir-Fe can be found, as no isosceles triangles
formed by Fe@vac–Ir@Fe–Fe@vac exist. Therefore, in this
direction only the weak Fe-Fe DMI is present, in contrast to
the �̄-K̄ direction, where DMI from both interactions Ir-Fe
and Fe-Fe can be found.

To summarize, the absence of the Ir-Fe DMI in the Fe@vac
spin spiral due to the reduced symmetry is the origin of the
reduced symmetry of the total DMI in the fb∗ stacking. Thus,
the symmetry of the surface Fe layer indeed determines the
symmetry of the DMI; hence, not only the symmetry of the
interface matters. This confirms that the DMI is anisotropic
and could allow for the presence of antiskyrmions in this
specific stacking [29].

D. Electronic structure

In order to support the latter statements we present the
orbital-resolved partial densities of states (PDOSs) of the

atoms Fe@vac, Fe@Ir, and Ir@Fe in the stackings ff and
fb∗. The PDOSs are given in Fig. 12. Presented are the 3d

orbitals of the Fe atoms and the 5d orbitals of the Ir atom. In
each panel both the majority (gray scale, negative values) and
minority spins (color, positive values) are given. We directly
compare the PDOSs of fb∗ (filled) and ff (lines) for each atom,
orbital, and spin channel.

The main changes arising from the structural differences
between ff and fb∗ stackings occur in the PDOSs of the Fe
atoms in both spin channels. The majority spin states of the
two Fe atoms are fully occupied. We observe the largest dif-
ferences between the two stackings close to the Fermi energy
which is populated by minority spin states. In ff, the orbitals
3dx2−y2 and dxy as well as 3dyz and 3dxz of both Fe@vac and
Fe@Ir are degenerate. Moreover, all Fe 3d orbitals possess
a peak at the Fermi energy. We have overall a three-peak
pattern with a small peak at −1.5 eV (bonding states), and
two large peaks around EF (nonbonding states) and +1.5 eV
(antibonding states).

In fb∗, the degeneracy is lifted and the peak structure
changes. We find two very broad peaks below and above the
Fermi energy. Around EF, the DOS adopts only small val-
ues, especially apparent in the 3dz2 and 3dx2−y2 states. Thus,
the states with nonbonding character vanish, which explains
the enhanced thermodynamic stability of the fb∗ stacking
as compared to the close-packed structures. Moreover, the
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degeneracy of the 3dyz and 3dxz states is lifted in a particular
way. While the new 3dxz orbital rather has a three-peak
structure with a large peak at the bonding states at −1 eV, the
3dyz orbital becomes mainly antibonding with a large peak
at +1.3 eV. This is a result of the symmetry breaking in the
centered rectangular unit cell of the fb∗ structure. The hy-
bridization between the two Fe layers is enhanced especially
in the x and z direction (i.e., 3dxz and 3dz2 orbitals overlap
strongly), where the interlayer atomic distances are minimal.
Moreover, it is reduced in the 3dyz orbital, where the DOS is
largest above the Fermi energy and which corresponds to an
orientation in which interlayer atomic distances are maximal.
Thus, the changes in the electronic structures reflect the sym-
metry differences between the stackings and can also explain
the enhanced thermodynamic stability of the fb∗ stacking.

Let us focus next on the electronic structure of the Ir atoms
in order to find indications for the reduction of DMI in the
fb∗ stacking. First, we find no effect of the Fe double-layer
structure on the 5dx2−y2 and 5dxy states as they have no out-
of-plane component and are solely directed towards Ir atoms
of the same layer. This is in contrast to the remaining three
orbitals, which are either uniquely directed towards the Fe
atoms like 5dz2 or have at least out-of-plane contributions like
5dyz and 5dxz. Both groups of orbitals are affected differently
by the structural changes in the Fe@vac layer. In ff, we find
a small peak at the Fermi energy in the 5dz2 orbital, whereas
fb∗ shows rather a minimum. For the 5dyz and 5dxz states the
effect is reversed, but to a different degree. We observe a peak
three times larger than the PDOS of the ff stacking at −0.3 eV
for the 5dyz orbital, i.e., a strong increase of the PDOS just
below EF in fb∗. Whereas for the 5dxz orbital, the PDOS is
doubled in this energy range as compared to the ff stacking.
Thus, the electronic states of the atoms in the Ir@Fe layer
“sense” the symmetry breaking due to the Fe@vac layer and
react with an unexpected lifting of degeneracy in the 5dyz and
5dxz orbitals.

E. Magnetic ground state

Finally, we have determined all quantities in order to study
the thermodynamic stability of spin spirals in the different
structures at T = 0 K. In Fig. 13 we present the energy
dispersions with and without the contributions arising from
SOC in positive and negative propagation directions along the
high-symmetry lines of the BZ.

As the DMI coefficients are positive, in all stackings
clockwise-rotating spin spirals (along positive propagation
directions) are favored. The contribution of the magnetocrys-
talline anisotropy amounts to 1

2K1 and leads to a constant
energy shift of spin spirals with respect to the FM state
[q = 0 × ( 2π

a
)]. Indicated are the energies of the spin spirals

relative to the ferromagnetic states and their wavelengths. All
stackings possess spin spiral ground states.

The most isotropic structure is the ff stacking, given in
Fig. 13(a). Here, both energies (about −5.8 meV) and wave-
length (1.7 nm) of the spin spirals along the Cartesian �K and
�M directions are quasi-identical. Thus, in this structure no
preferred propagation direction exists. As the spin spirals are

already stabilized by the exchange interaction, the additional
DMI gives rise to the asymmetry of the dispersion curve
with respect to the chirality (clockwise or anticlockwise).
Here the DMI favors clockwise-rotating cycloidal spin spirals.
Moreover, the DMI shifts the energy minimum to larger q

vectors, thus accelerating the spin spiral.
Completely different is the result of the fb∗ stacking,

presented in Fig. 13(b). Here, the anisotropy of the DMI is
also reflected in a strong anisotropy of the magnetic texture.
Only one spin spiral can exist in the fb∗ structure, which
propagates along the Cartesian �K direction. It has a relatively
long wavelength of 3.5 nm and a shallow energy minimum
at −1.2 meV. The DMI in the �M direction is too small to
stabilize a spin spiral along this direction.

Very short wavelength spin spirals with low energy result in
the fh stacking shown in Fig. 13(c). Spin spirals along the �K
and �M direction should both have a wavelength of 1.1 nm,
but the spin spiral along the �M direction is energetically
favored by almost 2 meV. The ff and the fh stackings have a
dispersion curve similar to the Fe monolayer on Ir (111). They
all exhibit a minimum at q ∼ 0.2 × ( 2π

a
) but the spin spiral

minimum is much deeper in the case of the Fe double layer
which means that the ground state is much more stable. Also
in the hf stacking Fig. 13(d), we find a preference for a spin
spiral propagating along the �K direction. It has an energy of
−1.6 meV and a wavelength of 3.0 nm as compared to the
spin spiral along the y direction, which gives −0.8 meV and a
much longer wavelength of 4.2 nm. The DMI-stabilized spin
spirals in fb∗ and hf have considerably longer wavelengths
than the exchange-stabilized spin spirals in ff and fh.

Thus, all stackings favor spin spiral ground states with dif-
ferent symmetries. They are either stabilized by both magnetic
exchange and DMI, as in ff and fh, or only by DMI, as in
fb∗ and hf. There is a more or less strong preference for spin
spirals along the �K direction depending on the stacking. In
fb∗, along the y axis no spin spiral can be stabilized at all,
while in ff, spin spirals along the �K and �M direction are
degenerate.

Let us compare our results with previous STM experi-
ments. In the supposedly ff-stacked regions a spin spiral of
1.2 nm was identified without a preferred propagation direc-
tion [25]. We also find for this stacking that the spin spirals
along the different propagation directions are degenerate, but
the wavelength is 1.6 nm, which corresponds well with the
experimental value. In the fb∗-stacked regions, spin spirals
propagating only along the [100] direction of the bcc unit
cell with a wavelength of 1.9 nm were reported. We can
confirm this finding. In the fb∗ stacking, spin spirals are
only found in the �X direction, which corresponds to the
[100] crystallographic axis of the bcc unit cell. However,
our wavelength of 3.4 nm is substantially larger than the
experimental value. This is probably due to the differences
in strain exposed on the Fe@vac layer at the surface. We as-
sumed a pseudomorphically strained bcc-like stacking, while
SP-STM experiments reveal a complex surface reconstruc-
tion, which probably occurs in order to compensate for the
large strain. We recently addressed this issue in another
publication [26].
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FIG. 13. Full energy dispersions including SOC of flat cycloidal spin spirals from DFT relative to the FM state of stackings (a) ff, (b) fb∗,
(c) fh, and (d) hf along high-symmetry directions �̄-K̄ and �̄-M̄. Given are values with (filled circles, colored solid lines) and without SOC
(open triangles, gray dashed lines). Positive (negative) values of q indicate clockwise (anticlockwise) rotating spin spirals. In all stackings
clockwise-rotating spin spirals are favored. The contribution of the magnetocrystalline anisotropy to spin spirals amounts to 1

2 K1.

IV. CONCLUSION

We have investigated the interplay between the Fe double-
layer stacking and the stability and the magnetic interactions
for 2Fe/Ir (111) ultrathin films using density functional theory
and mapping on an atomistic spin model.

We considered in total six different double-layer stackings:
the hexagonal-close-packed variants ff, fh, hf, and hh, and
two structures with a bcc (110)-like surface Fe layer fb∗

and hb∗. We find that the fb∗ stacking with a bcc (110)-like
surface layer is the most stable pseudomorphic structure,
whereas the hexagonal-close-packed stackings ff and fh are
not kinetically/mechanically stable. Even if formed during
the growth process, they should transform into the bcc-like
stacking at considerable surface coverages.

Moreover, we computed the magnetic exchange interac-
tion beyond first nearest neighbors, the DMI beyond first
nearest neighbors, and the magnetocrystalline anisotropy. We

find considerable differences for all magnetic interactions
depending on the Fe double-layer stacking. We find that the
bcc-like structure enhances the FM character of the 2Fe/Ir
(111) while the fcc stacking favors exchange-stabilized spin
spirals.

In ff and fh we obtain clockwise-rotating cycloidal spin
spirals with periods of 1.6 nm and 1.1 nm, respectively,
which are stabilized by the frustrated exchange and DMI only,
and compare well with the period of 1.2 nm measured in
the fcc-like structure in experiments [25,37]. In fb∗ and hf,
the spin spiral periods increase to 3.4 nm and 3.0 nm and
are stabilized by the DMI only. The spin spiral of the fb∗

stacking has a unique propagation direction and its period is
larger than the one of the ff and fh stackings as measured in
experiments. The period of the spin spiral of the fb∗ is slightly
longer than the 1.9 nm period measured in the reconstructed
bcc-like surface [26]. This discrepancy can be explained by
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the complex surface reconstruction measured in the bcc-like
surface which is not taken into account here.

The reduced symmetry arising from the surface Fe layer
in the bcc-like stackings (plane group cm instead of p3m1
for the hexagonal-close-packed structures) has fundamental
consequences for the symmetry of the magnetic interactions.
Not only the exchange interaction is affected, but also the
DMI. We can explain this finding based on the density of
states of the Fe 3d and Ir 5d electrons. We show that an
interfacial DMI may be influenced by a magnetic overlayer
farther from the interface.

This interaction between the surface Fe layer and the
Ir substrate provides an opportunity to tune the DMI by
imposing different symmetries on the DMI. In the case of
2Fe/Ir (111), the 6-fold-symmetric DMI present at the Ir-Fe
interface can be modified by lowering the symmetry of the
surface Fe layer. The deposition of a bcc 5d transition metal
on 2Fe/Ir (111) should create a large 2-fold-symmetric DMI
in the interface between Fe@vac and the 5d transition metal.
The combination of two DMIs of 6-fold and 2-fold symmetry
could enable the stabilization of topologically protected states
with spatially varying chirality. This variation of chirality may
allow the stabilization of higher-order skyrmions (such as
S = −2 or S = −3) in multilayer geometry.
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APPENDIX A: EFFECT OF EPITAXIAL STRAIN

As the Fe double layers are grown at elevated temperatures
of about 700 K, thermal expansion of the Ir substrate might
affect the relative stabilities of the stackings. In order to
investigate the effect of an increased epitaxial strain due to
thermal expansion of the substrate we studied the fx stackings
at different in-plane lattice constants expanded by 0.5% and
1.0% as compared to the DFT equilibrium value of a0 =
2.70 Å. Iridium has an expanded lattice constant by about
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0.34% at 600 K as compared to the value at temperatures close
to 0 K [52], while the DFT value is 0.45% smaller than the
experimental 0 K value. Thus, our range is sufficiently large
to cover for both the DFT underestimation and the thermal
expansion effect. The total energies are shown in Fig. 14. All
values are given relative to the energy of the ff stacking at the
same lattice constant.

The energy difference between ff and fb∗ stackings slightly
decreases by 10 meV from the equilibrium lattice constant a0

to +1.0% epitaxial strain, while the energy of the fh stacking
stays almost constant at a value of about 45 meV per Fe
atom higher than the ff stacking. Therefore, epitaxial strain
alone cannot change the stability hierarchy of the stackings
we studied.

APPENDIX B: MAE DEPENDENCE ON Ir LAYER

Since we perform calculations for asymmetric films there
can be unphysical contributions from the Ir-terminated side
of the film. It is therefore important to explore the MAE
dependence of the number of Ir MT spheres, in which SOC is
applied, as shown in Fig. 15. The MAE is rather independent
from the number of Ir MTs for the ff (a), fh (c), and hf
(d) stackings, for which the energy difference oscillates
around the values 1.2 meV, −0.5 meV, and −0.5 meV, respec-
tively. However, the MAE is much smaller for the fb∗ stacking
and its variation oscillates around 0 meV. We approximate the
MAE of fb∗ to 0.1 meV.
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