

How to manage spasticity in disorders of consciousness?

Géraldine MARTENS, PT, PhD student

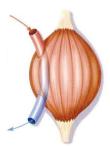
Coma Science Group University of Liege, Belgium

Neurorehabilitation Lab Spaulding-Harvard TBI Model System Boston, USA

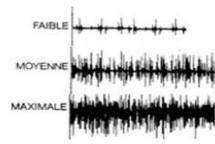
www.giga.ulg.ac.be www.comascience.org srhneurorehabilitationlab.org

Serving the New England Region

What is spasticity?

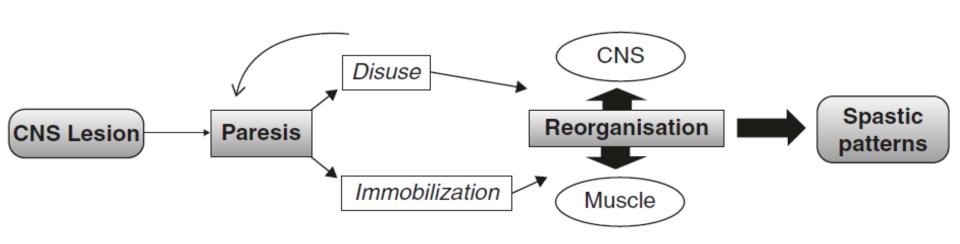

« Motor disorder, characterized by a <u>velocity-dependent</u> increase in tonic stretch reflexes (muscle tone) with <u>exaggerated tendon jerks</u>, resulting from **hyper-excitability** of the stretch reflex as one component of the upper motor neuron (UMN) syndrome » (Lance, 1980)

- No consensus on definition
- Commonly accepted notions of increased tonus and velocity-dependent hyperreflexia


Clinical entities (UMN)

Spasticity

Spastic Dystonia

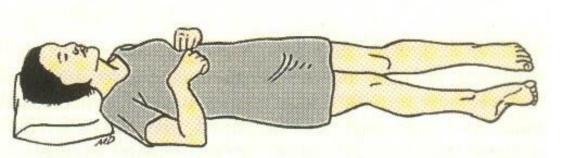

Spastic co-contractions

Physiopathology

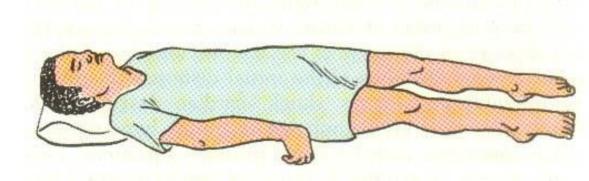
A vicious circle

Affected muscles

- Upper limb: shoulder internal rotators and adductors, elbow flexors, wrist pronators and flexors, hand intrinsic muscles
- Lower limb: hip internal rotators and adductors, knee extensors, ankle flexors (equinovarus spastic deformity)



Thibaut et al., Brain Injury, 2013


2 schemas

Decortication

Decerebration

Complications after brain injury

Procedure	Overall Sample (N=122)	Blast Trauma (n=29)	Penetrating Trauma (n=10)	Other Trauma (n=67)	Nontrauma (n=16)
Procedures					
Spasticity	70 (62–78)	70 (52-86)	90 (71-100)	76 (66-86)	88 (71-100)
Dysautonomia	34 (25-42)	48 (30-66)	40 (10-70)	27 (16-37)	38 (14-61)
Seizure	30 (22-38)	45 (27-63)	70 (42–98)	21 (11–31)	19 (0-38)
Shunt placement	25 (18-33)	31 (14-48)	10 (0-29)	28 (18-39)	12 (0-28)
Intracranial infection	22 (15-30)	48 (30-66)	40 (10-70)	12 (4-20)	0 (-)
Heterotopic ossification	16 (10-23)	31 (14-48)	20 (0-45)	10 (3-18)	13 (0-29)
PE/DVT	14 (8-20)	21 (6-35)	20 (0-45)	13 (5-22)	0 (-)
Filter placement	41 (33-49)	55 (37-72)	60 (30-90)	40 (29-52)	6 (0-18)
Anticoagulation	84 (77–90)	90 (79-100)	100 (NA)	82 (73-91)	75 (54-96)
PE/DVT with prophylaxis	11 (4-14)	17 (3-31)	10 (0-29)	10 (3-18)	6 (0-18)
RA ventilator-dependent	11 (4-14)	17 (3-31)	0 (NA)	10 (3-18)	6 (0-18)
Frequent consultants during rehabilitation	on				
No. of consultants seen during	14/18/23	16/20/24	18/24/27	14/17/21	10/17/21
rehabilitation (quartiles)					
Neuropsychology	73 (65-81)	76 (60-91)	50 (19-81)	73 (63-84)	81 (62-100
Ophthalmology	66 (58-75)	66 (48-83)	80 (55-100)	67 (56-78)	56 (32-81)
Otolaryngology	65 (57-74)	76 (60-91)	90 (71–100)	63 (51-74)	38 (14-61)
Infectious disease	61 (52-69)	90 (79-100)	90 (71–100)	48 (36-60)	44 (19-68)
Neurology	61 (52-69)	62 (44-78)	90 (71-100)	60 (48-71)	50 (26-75)
Neurosurgery	60 (51-69)	66 (48-83)	100 (NA)	58 (46-69)	31 (9-54)
Gastroenterology	62 (54-71)	76 (60-91)	70 (42-98)	51 (39-63)	25 (4-46)

NOTE. Values are percentage (95% confidence interval) or quartiles (25th/50th/75th percentile).

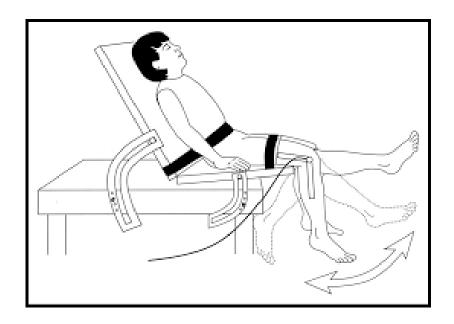
Abbreviations: DVT, deep vein thrombosis; NA, not applicable; PE, pulmonary embolism; RA, rehabilitation admission status.

Authors	Study Type	n	Intervention		Results		
		Occurr	ence of Spasticity in DOC Patients		1		
Thibaut et al., 2014 [3]	Prospective	65	/	89%	showed spasticity (MAS ≥ 1)		
Nakase-Richardson, 2013 [17]	Prospective	122	/		showed spasticity (requiring oral medications, injections or cal procedure)		
Ganesh et al., 2013 [18]	Prospective	68	/	57%	showed spasticity		
		N=255					

- Between 57 and 89%
- Study 1: 61.5% suffer from severe spasticity (MAS ≥3)
 - negative correlation with frequency of PT
 - positive correlation with chronicity and pain

Most commonly: Modified Ashworth Scale

Mod	ified Ashworth Scale
0	No increase in muscle tone
1	Slight increase in muscle tone, manifested by a catch or by minimal resistance at the end of the range of motion (ROM)when the affected part(s) is (are) moved in flexion or extension
1+	Slight increase in muscle tone, manifested by a catch, followed by minimal resistance throughout the remainder (less than half) of the ROM
2	More marked increase in muscle tone through most of the ROM, but affected part(s) is (are) easily moved
3	Considerable increase in muscle tone, passive movement difficult
4	Affected part(s) is (are) rigid in flexion or extension


Most commonly: Modified Tardieu Scale

Modi	fied Tardieu Scale
X: Q	uality of movement mobilization
0	No resistance throughout the course of the passive movement
1	Slight resistance throughout the course of passive movement, no clear catch at a precise angle
2	Clear catch at a precise angle, interrupting the passive movement, followed by release
3	Fatigable clonus with less than 10 s when maintaining the pressure and appearing at the precise angle
4	Unfatigable clonus with more than 10 s when maintaining the pressure and appearing at a precise angle
5	Joint is fixed
V: M	easurements take place in three different velocities
V1	As slow as possible
V2	Speed of limb segment falling under gravity
V3	As fast as possible
Y: Aı	ngle of catching (muscle reaction)

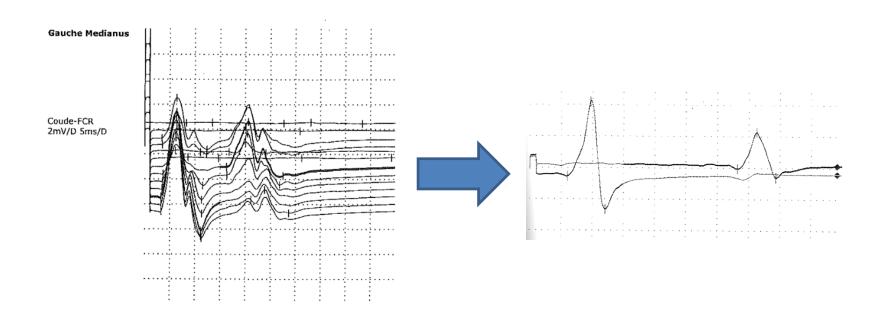
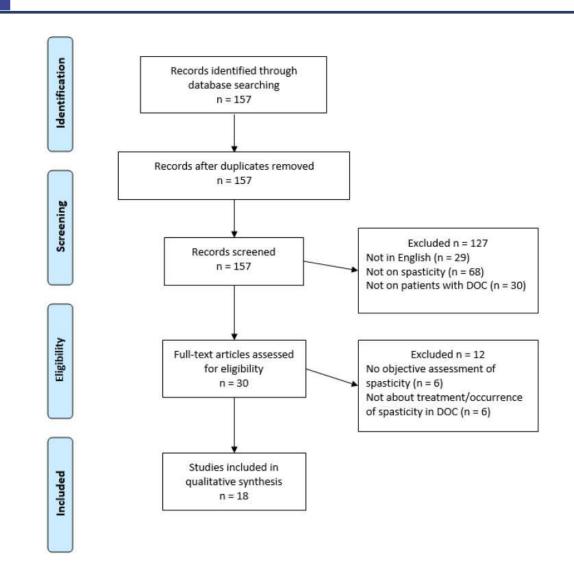
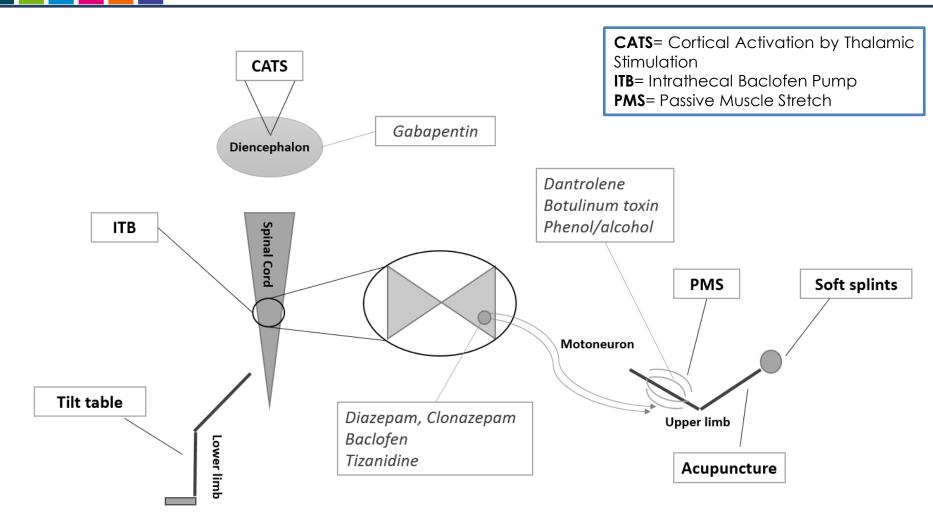

 Other: Pendulum Test, King's Hypertonicity Scale, Tone Assessment Scale

Table 1: Tone Assessment Scale								
	0	1	2	3	4	5		
Is the hand resting on the leg?			_	_	_	_		
Are the shoulders level?			_	_	_	_		
3. Is the foot flat on the floor?			_	_	-	_		
Can you straighten the fingers, with								
the forearm in midposition and the								
wrist extended (sitting)?								
Can you flex the hand to the mouth								
and then fully extend the elbow								
within 2 seconds (sitting)?								
Is the lower limb flexible and the								
knee easily extended in sitting?								
Can you dorsiflex the foot from 20°								
to 10° of plantarflexion (mid-rota-								
tion, leg extended, patient supine)?								
8. Can you passively flex the hip/knee								
to 90° and return to full extension								
within 2 seconds								
9. Can you flex the knee with the hip								
extended, to move the foot over the								
edge of the bed, without resistance?								
10. Does the hand remain stationary on								
the leg as the subject elevates the								
opposite arm above the head?					_	_		
11. Can the hand remain at trochanter								
level or lower on standing up?					_	_		
12. Can the foot remain on the floor on								
standing up?				_				

- EMG assessment: Hmax/Mmax
- Poor correlation with MAS in DOC patients (subcortical lesions)


How to treat?

- Non-pharmacological treatment: physical therapy, orthoses, TENS
- Pharmacological agents: Diazepam, Clonazepam, Gabapentin, Baclofen, Tizanidine, Dantrolene, Phenol, Botox, ITB
- Surgical interventions: tenotomy, neurotomy...
- What about DOC?


Review of interventions

Review of interventions

Soft splints

Impact of soft splints on upper limb spasticity in chronic patients with disorders of consciousness: A randomized, single-blind, controlled trial

Aurore Thibaut¹, Thierry Deltombe^{2,3}, Sarah Wannez¹, Olivia Gosseries^{1,4,5}, Erik Ziegler⁶, Cyril Dieni², Maxime Deroy², & Steven Laureys¹

¹Coma Science Group, Cyclotron Research Centre and Neurology Department, University and University Hospital of Liège, Liège, Belgium, ²Motor Sciences Faculty, Catholic University of Louvain, Louvain-la-Neuve, Belgium, ³Physical Medicine and Rehabilitation Department, CHU Dinant – Godinne/UCL Namur (University of Louvain), Yvoir, Belgium, ⁴Center for Sleep and Consciousness, Department of Psychiatry, ⁵Postle Laboratory, Department of Psychology, University of Wisconsin, Madison, WI, USA, and ⁶Cyclotron Research Centre, University and University Hospital of Liège, Liège, Belgium

 17 patients – MAS, Tardieu, ROM fingers/wrist/elbow + hand opening

Assessments

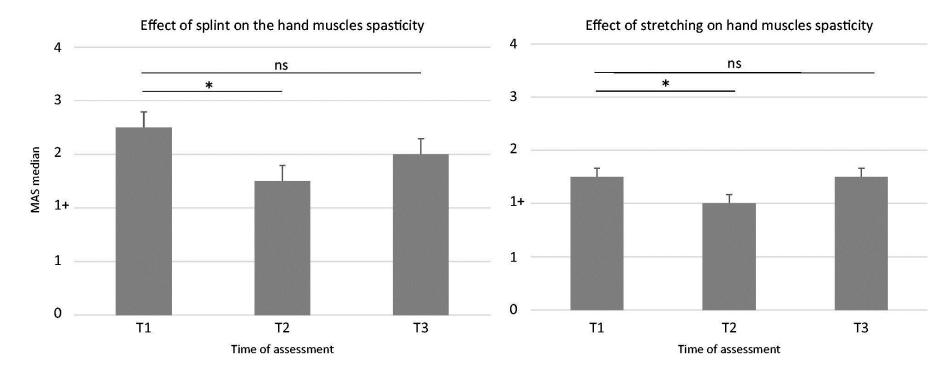
60' break

Figure 2. Experimental protocol. Technique A = splint; technique B = manual stretching; technique C = no treatment; assessments: physiotherapist 1; treatments: physiotherapist 2.

30' treatment

Assessments

Assessments


Assessments

30' treatment

Soft splints: Results

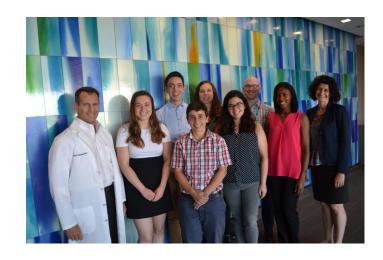
- Spasticity decreases after stretching and splinting
- Hand opening improves after splinting
- Effects transient

Thibaut et al., Brain Injury, 2015

Soft splints: Next Steps

- Long term study
- 3 weeks
- Compare DOC vs. stroke
- Tolerability?
- Effects on tone? Pain? QoL?

Conclusions


- Spasticity = common motor disorder affecting muscle tone
- Concerns a high proportion of patients with DOC
- Likely to cause pain

How to approach:

- 1) Identify (scales)
- 2) Treat: PT (stretching), OT (positioning, splinting/casting)
- 3) Soft splints: valuable adjuvant to treatment
- 4) Follow-up

THANK YOU

geraldine.martens@ulg.ac.be gmartens@partners.org

