Disclosure

Presenter has no relevant financial or non-financial interest to disclose.

What are the treatment options in patients with disorders of consciousness?

Géraldine Martens, PT, PhD candidate

Coma Science Group GIGA-Consciousness University of Liège, Belgium

Neurorehabiliation Lab
Spaulding Rehabiliation Hospital
Harvard Medical School, Boston, USA
www.giga.ulg.ac.be
www.comascience.org

Specificities of therapeutic interventions for DOC patients

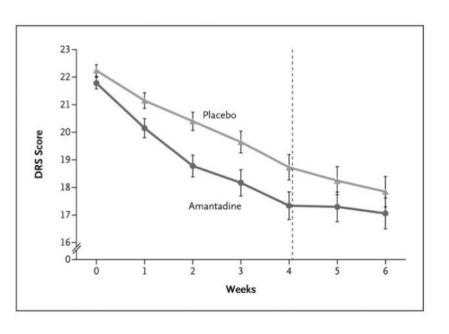
- Absence of communication
- Lack of interaction with their environment
- Severe motor disability (e.g., spasticity)
- Constantly bedridden
- Fatigability
- Aphasia, blindness, deaf, etc.

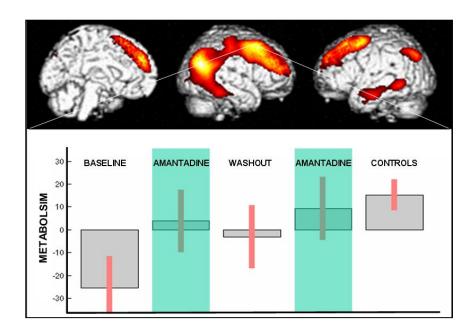
→ No active rehabilitative interventions

« Hable con Ella » Pedro Almodóvar

Pharmacological interventions

Pharmacological interventions




Amantadine Giacino (2012) 184 TBI MCS/VS Schnakers (2008) 1 anoxic MCS No Patrick (2006) 10 TBI Low responsive level Hughes (2005) 123 TBI Coma NA Saniova (2004) 41 TBI 'Persistent unconsciousness' Meythaler (2002) 35 TBI MCS Yes Bromocriptine Brahmi (2004) 4 intoxication Coma No Levodopa Matsuda (2003) 3 TBI VS No	-
Schnakers (2008) 1 anoxic MCS No Patrick (2006) 10 TBI Low responsive level Hughes (2005) 123 TBI Coma NA Saniova (2004) 41 TBI 'Persistent unconsciousness' Meythaler (2002) 35 TBI MCS Yes Bromocriptine Brahmi (2004) 4 intoxication Coma No Levodopa Matsuda (2003) 3 TBI VS No	Positive
Patrick (2006) 10 TBI Low responsive level Hughes (2005) 123 TBI Coma NA Saniova (2004) 41 TBI 'Persistent unconsciousness' Meythaler (2002) 35 TBI MCS Yes Bromocriptine Brahmi (2004) 4 intoxication Coma No Levodopa Matsuda (2003) 3 TBI VS No	
Hughes (2005) 123 TBI Coma NA Saniova (2004) 41 TBI 'Persistent unconsciousness' Meythaler (2002) 35 TBI MCS Yes Bromocriptine Brahmi (2004) 4 intoxication Coma No Levodopa Matsuda (2003) 3 TBI VS No	No effect
Saniova (2004) 41 TBI 'Persistent unconsciousness' NA unconsciousness' Meythaler (2002) 35 TBI MCS Yes Bromocriptine Brahmi (2004) 4 intoxication Coma No Levodopa Matsuda (2003) 3 TBI VS No	
Meythaler (2002) 35 TBI MCS Yes Bromocriptine Brahmi (2004) 4 intoxication Coma No Levodopa Matsuda (2003) 3 TBI VS No	No effect
Bromocriptine Brahmi (2004) 4 intoxication Coma No Levodopa Matsuda (2003) 3 TBI VS No	A Positive
Levodopa Matsuda (2003) 3 TBI VS No	s Positive
	Positive
Nonbenzodiazepine sedative	Positive
Zolpidem Cohen (2008) 1 anoxic Lethargic No	Positive
Shames (2008) 1 anoxic MCS No	Positive
Singh (2008) 1 TBI MCS No	No effect
Brefel-Courbon (2007) 1 hypoxic Akinetic mutism Yes	s Positive
Clauss (2006) 2 TBI, 1 anoxic VS No	Positive
Clauss (2000) 1 TBI Semi-comatose No	Positive
GABA agonist	
Baclofen Sarà (2007) 1 non-TBI VS No	

Amantadine

- Dopaminergic agent (Parkinson)
- Enteral administration, 6 weeks treatment (200mg/2*day)
- Side effects (seizure)

Giacino & Whyte et al, N Engl J Med, 2012

Schnakers et al, J Neurol Neurosurg Psychiatry 2008

Zolpidem

- GABAergic agent
- Enteral/oral administration (10mg)
- No side effects (sleep)

- 5% responders dramatic effects!
- 20% (12/60) improved behaviors after zolpidem but in only 1 patient changed of diagnosis (regained functional communication)

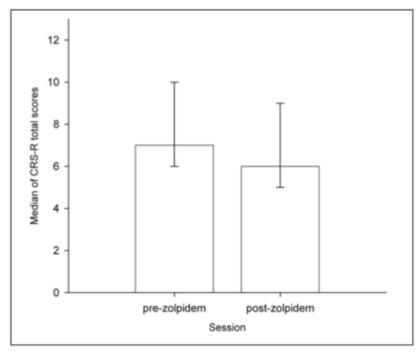
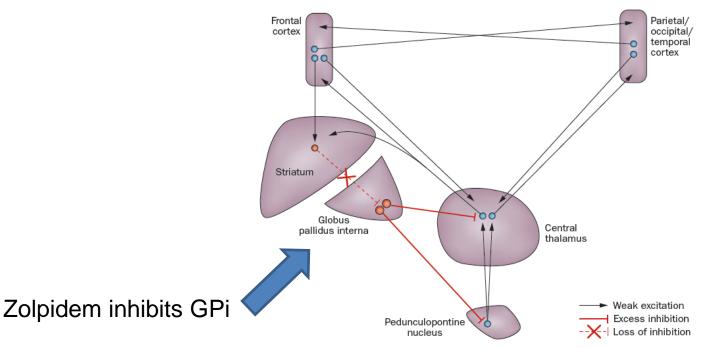



Figure 1 - Significant decrease of CRS-R total scores (ranging from 0 to 23) after zolpidem intake (interquartile range represented by errors bars) in the entire sample (n=60).

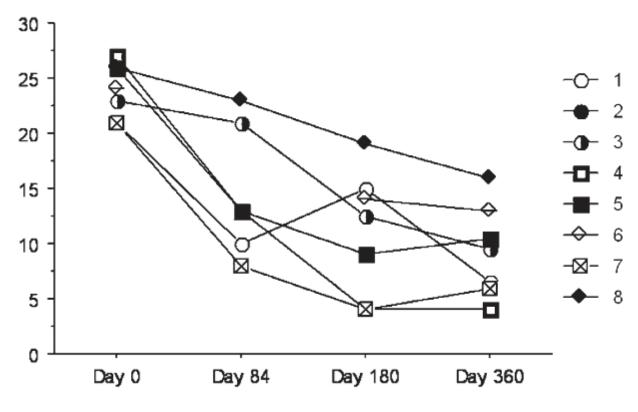
Zolpidem



A. Brain metabolism in zolpidem responders

Zolpidem > Placebo

N=3



Chatelle et al, *Front Hum Neurosci*, 2014 Williams et al, *Elife*, 2013

Apomorphine

- Dopaminergic agent
- Subcutaneous administration (12h/day)
- Only case studies
- Side effects

Pharmacological treatments conclusion

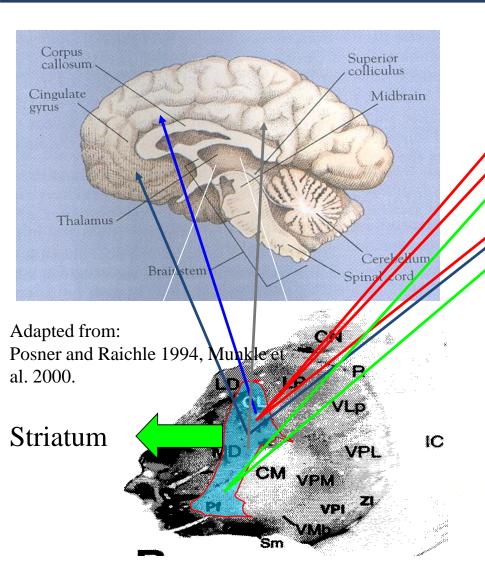
- Only a few pharmacological treatments
- Side effects / habituation
- Next:

Apomorphine multimodal trial Zolpidem responders phenotype

CLINICAL STUDY PROTOCOL

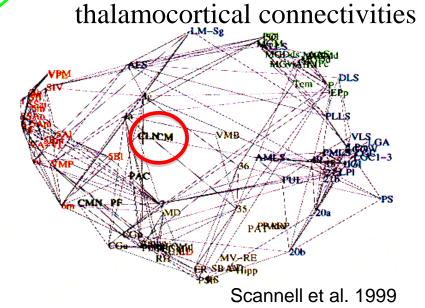
published: 19 March 2019 doi: 10.3389/fneur.2019.00248

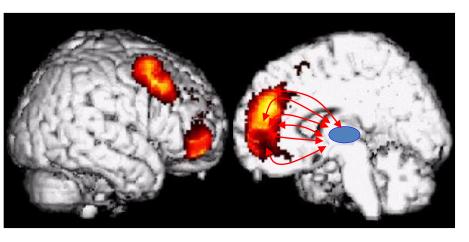
Treating Disorders of Consciousness With Apomorphine: Protocol for a Double-Blind Randomized Controlled Trial Using Multimodal Assessments



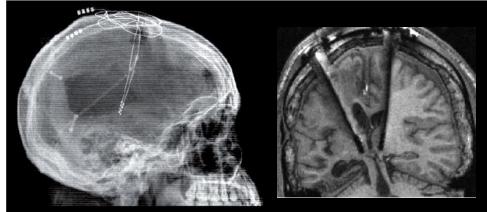
Central Thalamic Deep Brain Stimulation

Projections from intralaminar nuclei COMA


Frontal lobe


Parietal

Consciousness ≈ thalamo-cortical COMA


SCIENCE GROUP

Intralaminar nuclei "reconnections" in spontaneous recovery from "vegetative" unresponsive state

Laureys et al, Lancet 2000

Intralaminar nuclei stimulation induces "recovery" from minimally responsive state

Schiff et al. Nature 2007

MCS → emerged prolonged effects

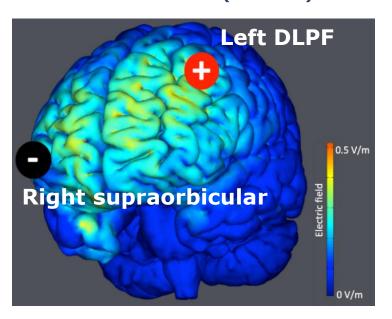
- sustained attention
- intelligible words
- functional objects use

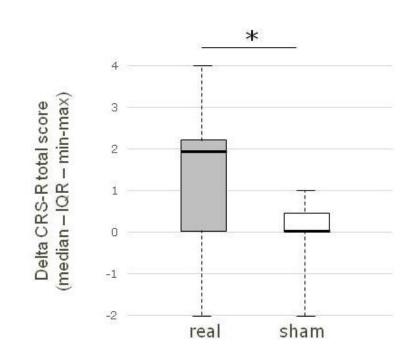
Deep Brain Stimulation conclusion

- DBS modulates specific cognitive and behavioral functions (arousal, functional limb movement, swallowing).
- Evidence of DBS carryover effects

- Limitations:
 - Strict inclusion criteria (e.g., no thalamic lesion)
 - Invasive
 - No randomized controlled study

Non-invasive brain stimulations tDCS

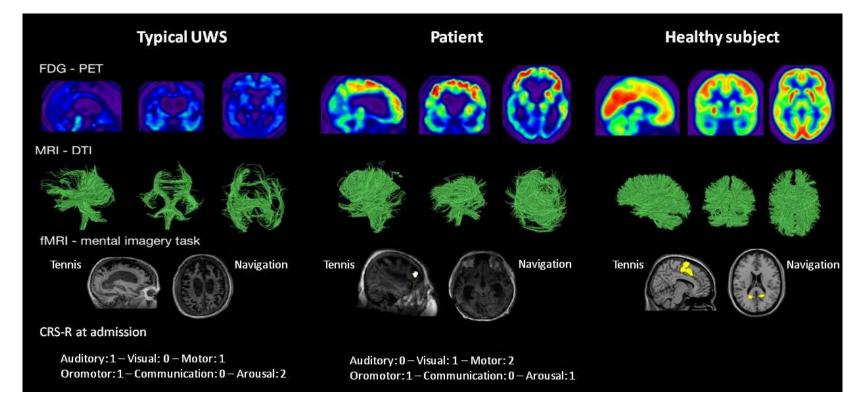



ARTICLES

tDCS in patients with disorders of consciousness

Sham-controlled randomized double-blind study

Crossover RCT (n=55)


MCS n=30

- → No adverse events
- → Clinical improvement in MCS only
- → 13/30 responders (5 > 1y post-insult)

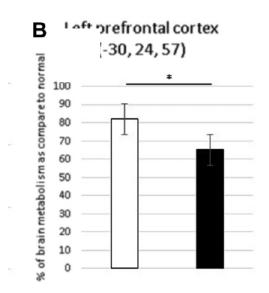
tDCS to unveil covert consciousness

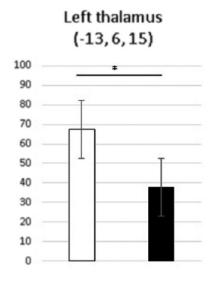
- 67yo woman in UWS for 4 years after a subarachnoid hemorrhage
- Out of 7 standardized CRS-R she showed 1 localization to pain
- She demonstrated consistent response to command only after tDCS
- Neuroimaging exams were consistent with the diagnosis of MCS*

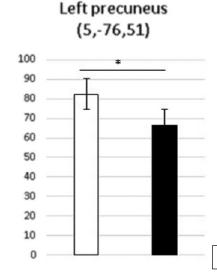
→ tDCS may facilitate motor execution of the command when cognitive functions are preserved

Neural correlates of responsiveness

ain Stimulation 8 (2015) 1116-1123


Clinical Response to tDCS Depends on Residual Brain Metabolism and Grey Matter Integrity in Patients With Minimally Conscious State



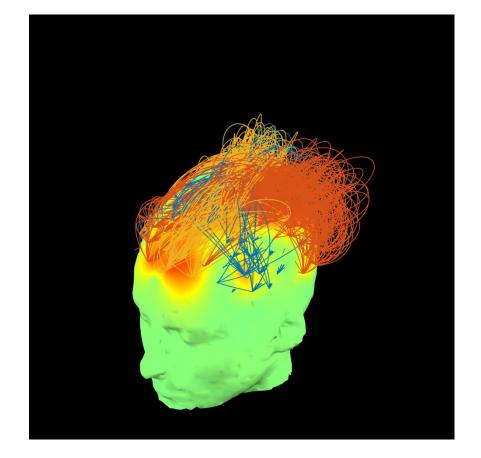

8 tDCS responders versus 13 tDCS non-responders

Aurore Thibaut ^{a,*,1}, Carol Di Perri ^{a,1}, Camille Chatelle ^{b,c}, Marie-Aurélie Bruno ^a, Mohamed Ali Bahri ^d, Sarah Wannez ^a, Andrea Piarulli ^{a,e}, Claire Bernard ^f, Charlotte Martial ^a, Lizette Heine ^a, Roland Hustinx ^f, Steven Laureys ^a

Regional brain metabolism

Responders

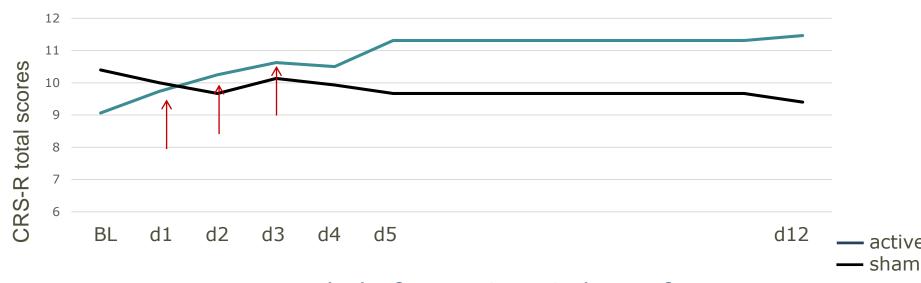
Non-responders


Neural correlates of responsiveness

Brain connectivity - theta band

8 tDCS responders

14 tDCS non-responders



Repeated tDCS

Double-blind crossover RCT (16 chronic minimally conscious pts) 5 sessions – 20 min prefrontal tDCS

 \rightarrow Active session: significant time evolution (p<0.001)

Some patients responded after 1, 2 or 3 days of tDCS

 $^{/}$ responders (9/16 – 56%) & $^{/}$ duration of the effects (1 week)

Single stim: 43% responders – effect size: 0.38 versus 0.57

Repeated tDCS

Archives of Physical Medicine and Rehabilitation

journal homepage: www.archives-pmr.org

Archives of Physical Medicine and Rehabilitation 2014;95:283-9

ORIGINAL ARTICLE

Transcranial Direct Current Stimulation Effects in Disorders of Consciousness

Efthymios Angelakis, PhD, a,b Evangelia Liouta, MSc, a,b Nikos Andreadis, PhD, a Stephanos Korfias, MD, a,b Periklis Ktonas, PhD, a George Stranjalis, MD, PhD, a,b Damianos E. Sakas, MD, PhDa,b

From the ^aHellenic Center for Neurosurgical Research "Prof. Petros Kokkalis," Athens; and ^bEvangelismos Hospital, Department of Neurosurgery, Medical School, National and Kapodistrian University of Athens, Athens, Greece.

5 sessions over M1 or DFPLC
7 VS and 3 MCS - chronic
→ All MCS showed clinical improvement immediately after

Journal of the Neurological Sciences 375 (2017) 464-470

5 sessions over DFPLC 7 VS and 6 MCS - chronic

- → Moderate clinical effects
- → Changes of EEG background in patients who improved clinically

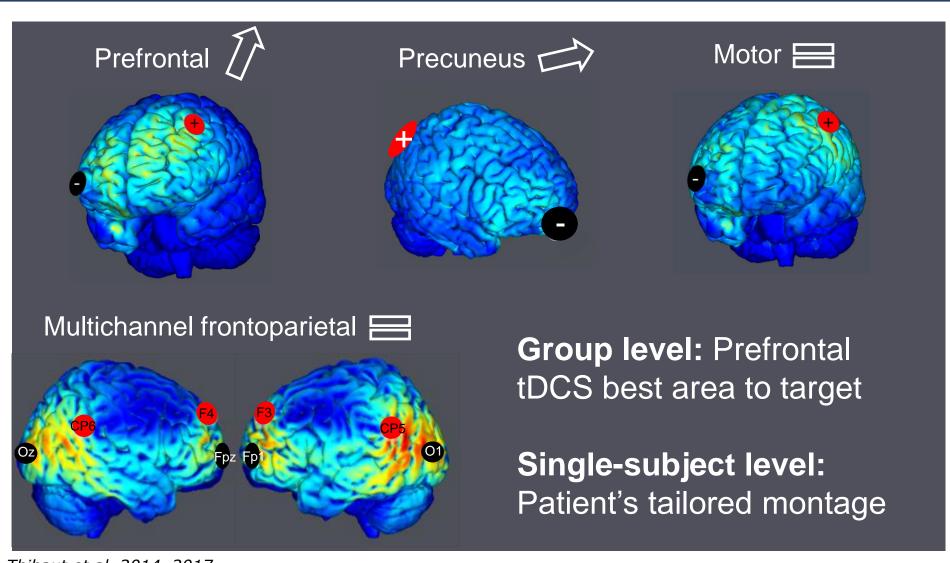
Contents lists available at ScienceDirect

Journal of the Neurological Sciences

journal homepage: www.elsevier.com/locate/jns

Repeated transcranial direct current stimulation in prolonged disorders of consciousness: A double-blind cross-over study

treatment


Anna Estraneo ^{a,*}, Angelo Pascarella ^a, Pasquale Moretta ^a, Orsola Masotta ^a, Salvatore Fiorenza ^a, Grazia Chirico ^a, Emanuela Crispino ^a, Vincenzo Loreto ^a, Luigi Trojano ^{a,b}

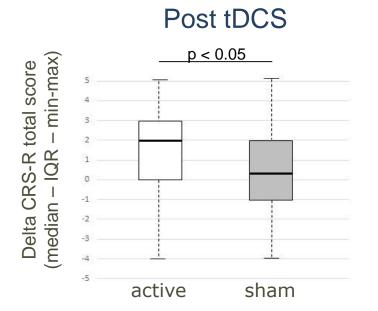
^a Neurorehabilitation Unit and Research Lab. for Disorder of Consciousness, Maugeri ICS, Telese Terme, Italy

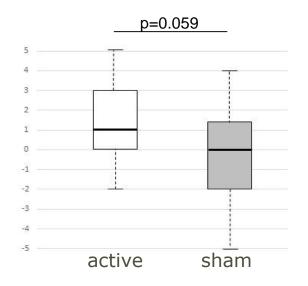
^b Neuropsychology Lab., Dept. of Psychology, Second University of Naples, Caserta, Italy

Stimulating different brain regions COMA

Thibaut et al, 2014, 2017 Huang et al, 2017 Martens et al, submitted, Thibaut et al, submitted

tDCS - mesocircuit


Prefrontal tDCS better than targeting other areas?


Clinical translation

C E FA L Y TECHNOLOGY

- Feasibility of tDCS for daily use
 - By relatives/caregivers (20 sessions)
- 27 MCS patients completed the study compliance: 93±14%
 - No clinical effects
- 22 MCS patients received ≥80% tDCS sessions
 - Significant effects & trend at 8-week follow-up no AE

8 weeks follow-up

Conclusions

Pharmacological treatments

- Amantadine in TBI other etiologies?
- Zoplidem 5% → phenotype of responders
- Apomorphine → randomized clinical trials

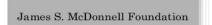
DBS

Promising but invasive & no randomized clinical trials

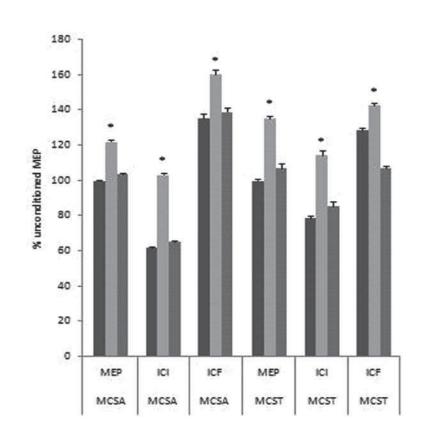
NIBS

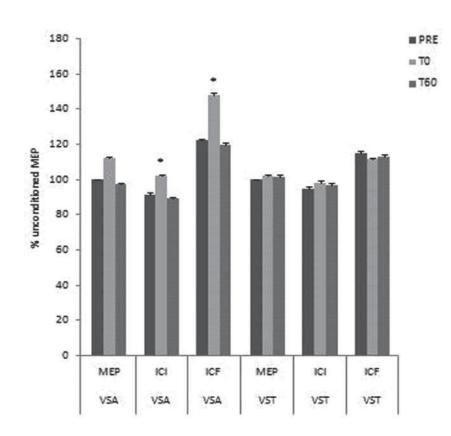
- tDCS is safe in severely brain-injured patients
- Prefrontal tDCS → consistent clinical improvement
- Repeated tDCS → increase duration of the effects
 - → increase number of responders
- Need patients' tailored montage based on individual brain lesions

THANK YOU



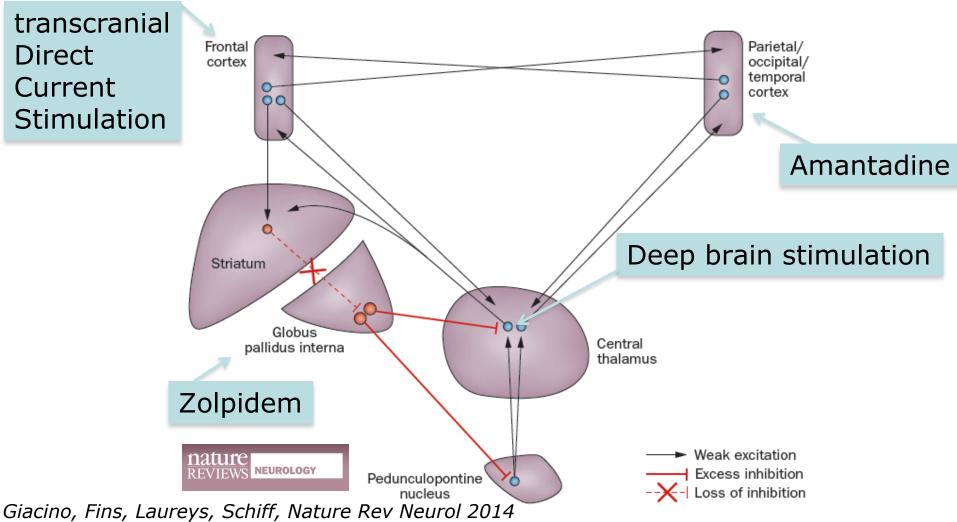
geraldine.martens@ulg.ac.be gmartens@partners.org





Additional slides

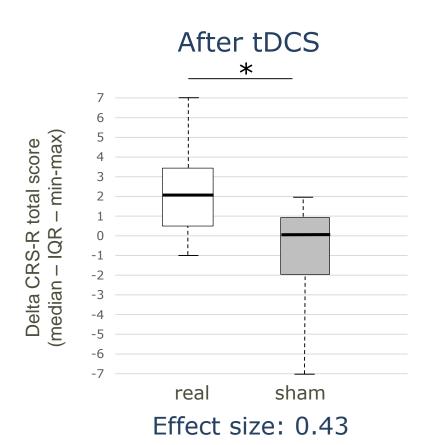
tDCS – diagnostic tool?



1 LIS, EMCS & MCS & 4 VS/UWS

Mesocircuit model

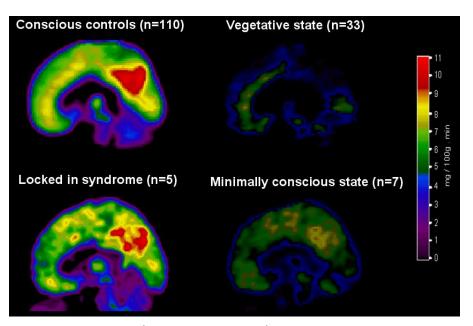
transcranial Direct Current Stimulation



Repeated tDCS

16 patients in MCS (> 3months; 12 TBI; 47±16 y)

Treatment effect: delta CRS-R day 5 & day 12 (follow-up)



Targeting other areas?

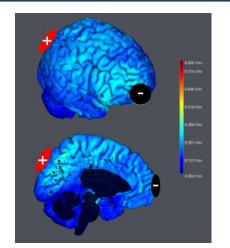
Precuneus: critical hub for consciousness

Laureys et al, Lancet Neurology, 2004

Anode: posterior parietal cortex

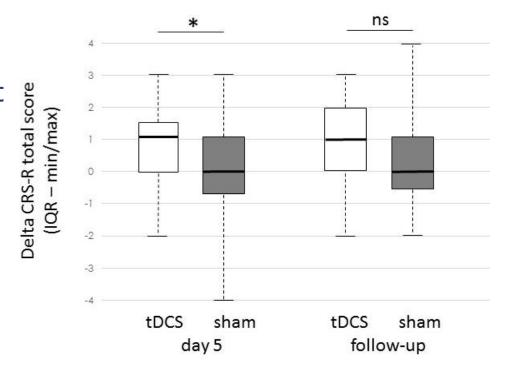
Cathode: right SOR

2mA; 20min


5 tDCS sessions

Active and sham - 5d washout

tDCS - Precuneus


Repeated stimulation of the posterior parietal cortex in patients in minimally conscious state: A sham-controlled randomized clinical trial

33 MCS > 3 months post-insult $(57\pm11y; 20 \text{ TBI})$

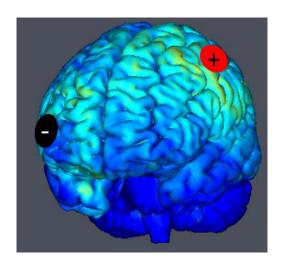
9 responders (27%) Sub-acute > chronic

No effect at 5day follow-up

Effect size: 0.31

tDCS

tDCS - motor cortex



Motor cortex: common

& efficient tDCS target

For patients with DOC?

- → Immobilization, paresis...
- → Improve behavioral responsiveness
- → Covert consciousness

JFK COMA RECOVERY SCALE - REVISED ©2004 Record Form							
Patient:	Date:						Τ
AUDITORY FUNCTION SCALE							h
4 - Consistent Movement to Commar	nd *						Γ
3 - Reproducible Movement to Comm	nand *						Γ
2 - Localization to Sound							Ι
1 - Auditory Startle							
0 - None							L
VISUAL FUNCTION SCALE							
5 - Object Recognition *							L
4 - Object Localization: Reaching *							
3 - Visual Pursuit *							
2 - Fixation *							Γ
1 - Visual Charles							
None							
MOTOR FUNCTION SCALE							
6 - Functional Object Use †							
5 - Automatic Motor Response *							
4 - Object Manipulation *							Γ
3 - Localization to Noxious Stimulation	on *						Γ
2 - Flexion Withdrawal							Γ
1 - Abnormal Posturing							Γ
0 - None/Flaccid							
PROMOTOR/VERBAL FUNCTION	ON COALE						
3 - Intelligible							L
2 - Vocalization/Oral Movement							
1 - Oral Reflexive Movement							
0 - None							L
COMMUNICATION SCALE							
2 - Functional: Accurate †							L
1 - Non-Functional: Intentional *							L
0 - None							L
AROUSAL SCALE							
3 - Attention							1
2 - Eye Opening w/o Stimulation							1
1 - Eye Opening with Stimulation					-		1
0 - Unarousable					1		1
TOTAL SCORE							

Denotes emergence from MCS *

tDCS - motor cortex

Motor cortex: common

& efficient tDCS target

For patients with DOC?

- → Immobilization, paresis...
- → Improve behavioral responsiveness
- → Covert consciousness

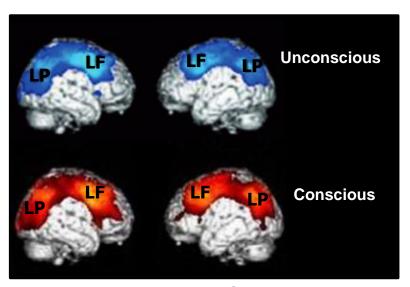
Group level (n=10): no significant improvement (p=0.55; ES=0.10)

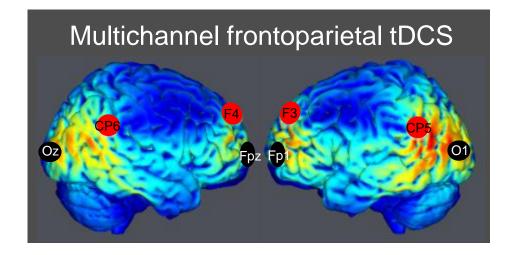
Single-subject level: 2 responders

Single stimulation & small sample size

JFK C	OMA RECOVER	Y SCALE	- REVIS	ED ©2004		
		ord Form				
Patient:	Date:					T
AUDITORY FUNCTION S	CALE					İ
4 - Consistent Movement to	Command *					I
3 - Reproducible Movement	to Command *					Ι
2 - Localization to Sound						
1 - Auditory Startle						1
0 - None						
VISUAL FUNCTION SCA	ALE					
5 - Object Recognition *						1
4 - Object Localization: Rea	ching *					T
3 - Visual Pursuit *						T
2 - Fixation *						Ť
1 - Visual Cr						Ť
None						Ť
MOTOR FUNCTION SCA	ALE					Ì
6 - Functional Object Use †						Τ
5 - Automatic Motor Respon	se *					Ť
4 - Object Manipulation *						Ť
3 - Localization to Noxious S	Stimulation *					t
2 - Flexion Withdrawal	Jumalation					t
1 - Abnormal Posturing						t
0 - None/Flaccid						t
ROMOTOR/VERBAL F	UNCTION CCALE					ì
3 - Intelligible					\neg	Т
2 - Vocalization/Oral Moven	nent					t
1 - Oral Reflexive Movemen						t
0 - None						Ť
COMMUNICATION SCA	LE					ì
2 - Functional: Accurate †						Τ
1 - Non-Functional: Intentio	nal *					t
0 - None						t
AROUSAL SCALE					-	h
3 - Attention					T	T
2 - Eye Opening w/o Stimula	ation					t
1 - Eye Opening with Stimul						Ť
0 - Unarousable						+

Denotes emergence from MCS





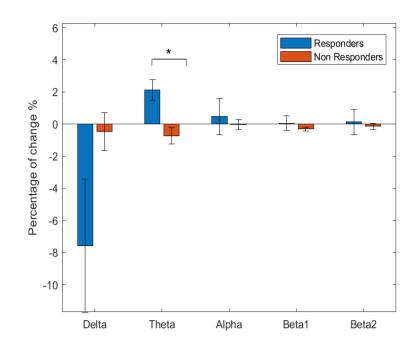
Fronto-parietal multichannel tDCS

Frontoparietal network External awareness network **Critical for consciousness** recovery

→ Stimulation of the external awareness network bilaterally

- Hypometabolic areas
- Preserved areas

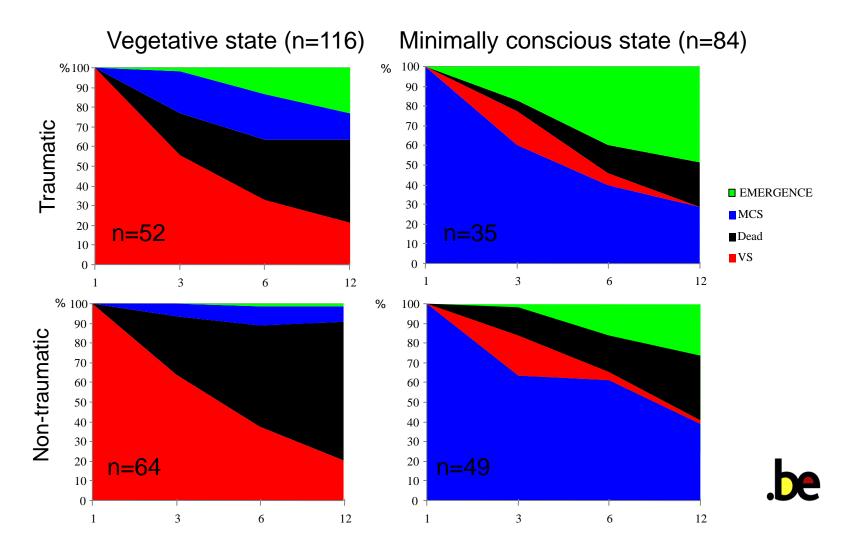
SCIENCE GROUP



Fronto-parietal multichannel tDCS

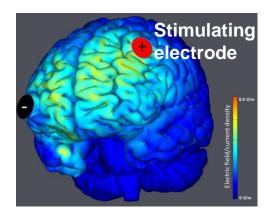
46 patients with prolonged DOC. VS and MCS, TBI and non-TBI 4 anodes and 4 cathodes – 1mA; 20min

Single stimulation – active & sham Behavioral & EEG assessments

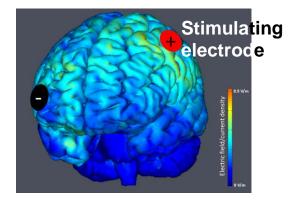

- Group level: no improvement1 mA not enough?1 session not enough?
- 6 responders (13%) mostly TBI

 EEG in responders: increase in theta complexity after active tDCS - no changes after sham tDCS

Prognostic


Bruno et al, Coma and disorders of consciousness, Eds Schnakers and Laureys, 2012

tDCS



transcranial Direct Current Stimulation - tDCS

Prefrontal stimulation

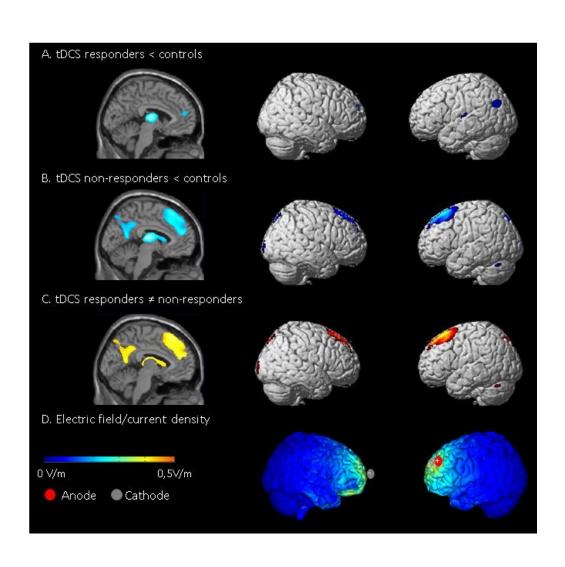
Motor stimulation

2 electrodes (or more) Weak electrical current (1-2mA)

- → Membrane polarization Anode: / excitability Cathode: \ excitability
- → Long term effects

 Neural excitability & plasticity (LTP-LTD)

 Ion channels (Na+, Ca²+)

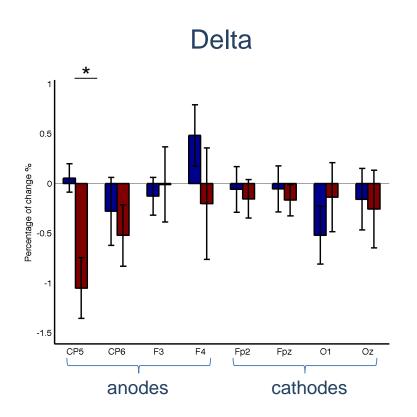

 NMDA receptors

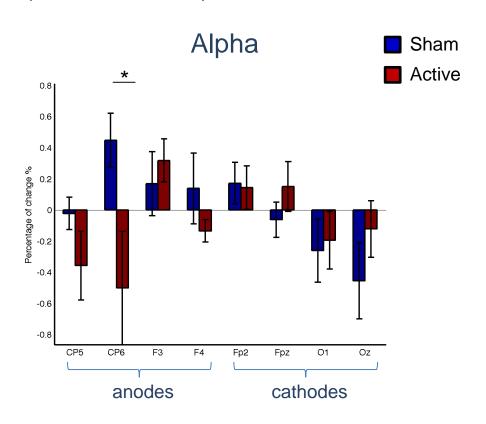
Neural correlates

- hypometabolic
- preservredp<0.05

Neural correlates

fMRI 16 chronic MCS – 6 tDCS responders



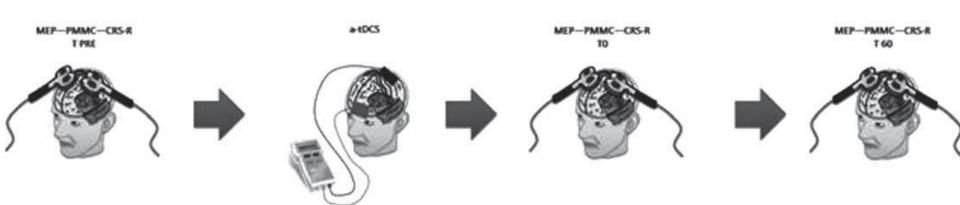


Fronto-parietal multichannels tDCS

Measure of complexity: LZW estimation per band and electrode **Percentage of change** = (Post_LZW – Pre_LZW)/Pre_LZW*100 %)

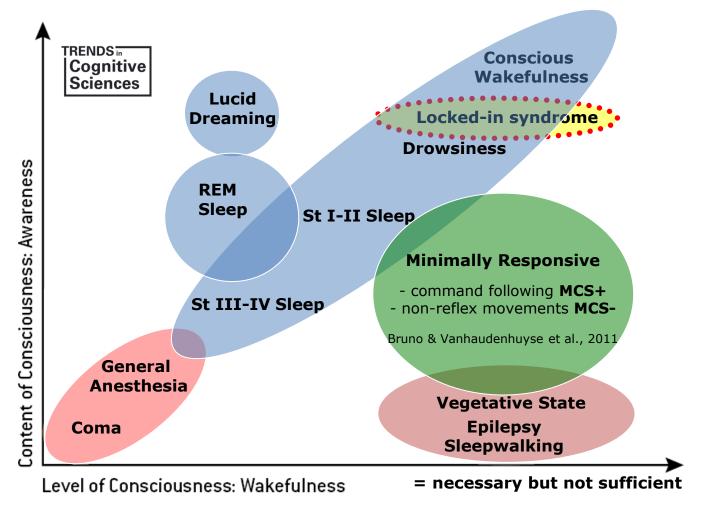
LZW significantly decreases with tDCS under anodes, indicating that complexity decreases with tDCS in these bands

→ more structure in the data following tDCS?


tDCS – diagnostic tool?

tDCS & TMS

25 chronic DOC (12 VS/UWS; 10 MCS; 2 EMCS;1 LIS)


Anode: OFC (Fpz) & cathode: Cz

TMS: MEP, RMT, ICI, ICF

What is consciousness?

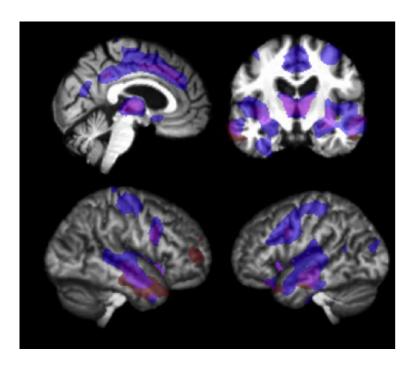
Unresponsive Wakefulness Syndrome

Laureys et al., 2010

"There's nothing we can do... he'll always be a vegetable."

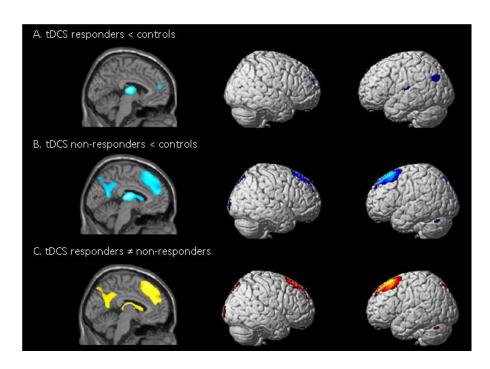
Laureys, Trends in Cognitive Sciences, 2005

Why tDCS in DOC?



- No severe adverse effects
- Modulates spontaneous neuronal activity
- Inexpensive
- Reliable sham condition (for research)
- Easy to administer (→ clinical translation)

Neural correlates



Grey matter atrophy – VBM

- More atrophic in responders
- More atrophic in non-responders
- Overlapping

Brain metabolism - PET-scan

- hypometabolic
- preservred