4th Int. Conference Coma & Consciousness – Nov 2019, Shanghai

SCIENCE GROUP

What are the treatment options in patients with disorders of consciousness?

Géraldine Martens, PT, PhD candidate

Coma Science Group GIGA-Consciousness University of Liège, Belgium

Neurorehabiliation Lab Spaulding Rehabiliation Hospital Harvard Medical School, Boston, USA <u>www.giga.ulg.ac.be</u> <u>www.comascience.org</u>

Spaulding-Harvard Traumatic Brain Injury Model System

Serving the New England Region

Specificities of therapeutic COMA interventions for DOC patients Science Group

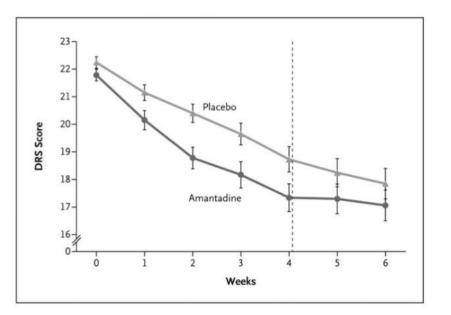
- Absence of communication
- Lack of interaction with their environment
- Severe motor disability (e.g., spasticity)
- Constantly bedridden
- Fatigability
- Aphasia, blindness, deaf, etc.

➔ No active rehabilitative interventions

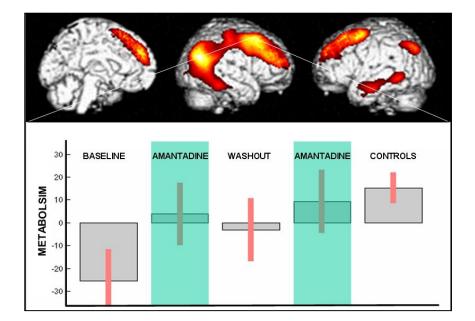
« Hable con Ella » Pedro Almodóvar

Pharmacological interventions

Pharmacological interventions **COMA**


SCIENCE GROUP

Drugs	Study (first author, year)	Number of patients and etiology	Diagnosis	Placebo control	Reported functional outcome
Dopaminergio	agents				
Amantadine	Giacino (2012)	184 TBI	MCS/VS	Yes	
	Schnakers (2008)	1 anoxic	MCS	No	Positive
	Patrick (2006)	10 TBI	Low responsive level	No	No effect
	Hughes (2005)	123 TBI	Coma	NA	No effect
	Saniova (2004)	41 TBI	'Persistent unconsciousness'	NA	Positive
	Meythaler (2002)	35 TBI	MCS	Yes	Positive
Bromocriptine	Brahmi (2004)	4 intoxication	Coma	No	Positive
Levodopa	Matsuda (2003)	3 TBI	VS	No	Positive
Nonbenzodia	zepine sedative				
Zolpidem	Cohen (2008)	1 anoxic	Lethargic	No	Positive
	Shames (2008)	1 anoxic	MCS	No	Positive
	Singh (2008)	1 TBI	MCS	No	No effect
	Brefel-Courbon (2007)	1 hypoxic	Akinetic mutism	Yes	Positive
	Clauss (2006)	2 TBI, 1 anoxic	VS	No	Positive
	Clauss (2000)	1 TBI	Semi-comatose	No	Positive
GABA agonist					
Baclofen	Sarà (2007)	1 non-TBI	VS	No	Positive


Adapted from Demertzi et al, Expert Rev Neurotherapeutics, 2008

Amantadine

- Dopaminergic agent (Parkinson)
- Enteral administration, 6 weeks treatment (200mg/2*day)
- Side effects (seizure)

Giacino & Whyte et al, N Engl J Med, 2012

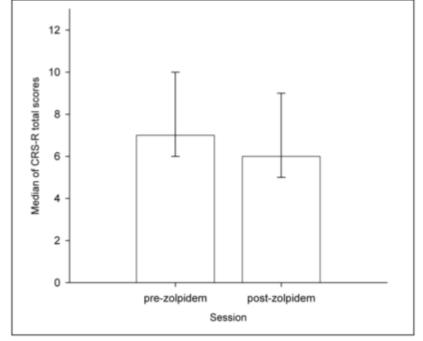
Schnakers et al, J Neurol Neurosurg Psychiatry 2008

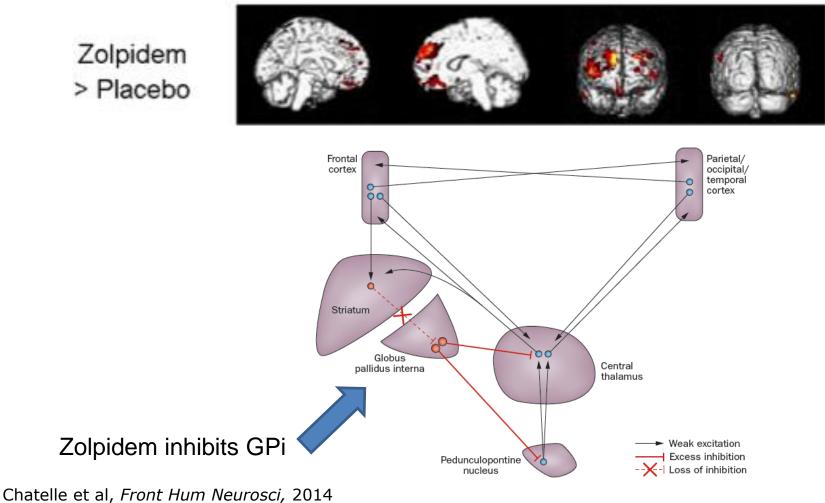
Zolpidem

- GABAergic agent
- Enteral/oral administration (10mg)
- No side effects (sleep)

- 5% responders dramatic effects! RCT
- 20% (12/60) improved behaviors after zolpidem but in only 1 patient changed of diagnosis (regained functional communication) Open-label

Whyte et al, Am J Phys Med Rehabil, 2009 & 2014 Thonnard & Gosseries et al, *Funct Neurol*, 2013




Figure 1 - Significant decrease of CRS-R total scores (ranging from 0 to 23) after zolpidem intake (interquartile range represented by errors bars) in the entire sample (n=60).

N=3

A. Brain metabolism in zolpidem responders

Williams et al, Elife, 2013

Pharmacological treatments conclusion

- Only a few pharmacological treatments
- Side effects / habituation
- Next:

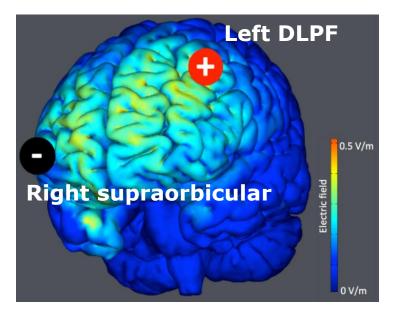
Apomorphine multimodal trial Zolpidem responders phenotype

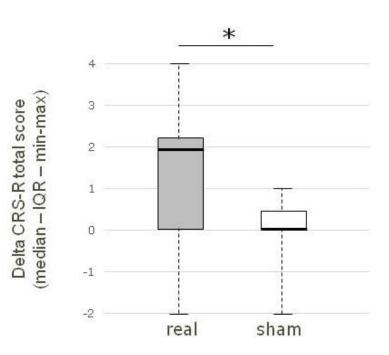
CLINICAL STUDY PROTOCOL published: 19 March 2019 doi: 10.3389/fneur.2019.00248

Treating Disorders of Consciousness With Apomorphine: Protocol for a Double-Blind Randomized Controlled Trial Using Multimodal Assessments

Leandro R. D. Sanz^{1,2}, Nicolas Lejeune^{1,2,3,4}, Séverine Blandiaux^{1,2}, Estelle Bonin^{1,2}, Aurore Thibaut^{1,2,5,6}, Johan Stender⁷, Neal M. Farber⁸, Ross D. Zafonte^{5,6}, Nicholas D. Schiff⁹, Steven Laureys^{1,2} and Olivia Gosseries^{1,2*}

Non-invasive brain stimulation tDCS


tDCS single session


ARTICLES

tDCS in patients with disorders of consciousness

Sham-controlled randomized double-blind study

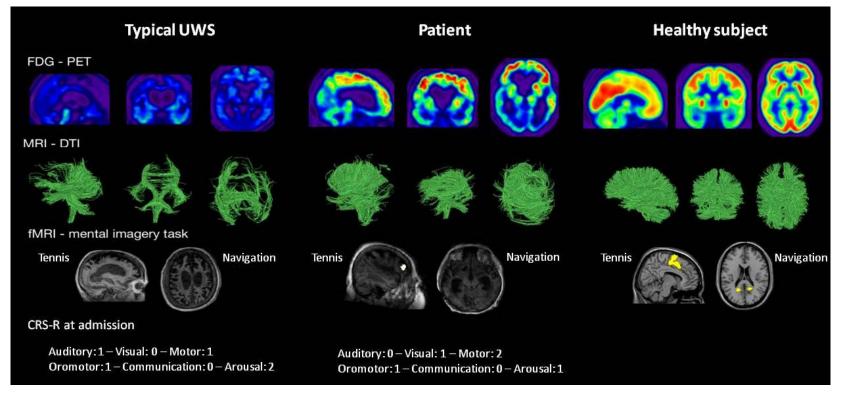
Crossover RCT (n=55)

COMA

SCIENCE GROUP

MCS

n=30


- ➔ No adverse events
- → Clinical improvement in MCS only
- ➔ 13/30 responders (5 >1y post-insult)

Thibaut et al., Neurology, 2014

tDCS to unveil covert consciousness

- 67yo woman in UWS for 4 years after a subarachnoid hemorrhage
- Out of 7 standardized CRS-R she showed 1 localization to pain
- She demonstrated consistent response to command <u>only</u> after tDCS
- Neuroimaging exams were consistent with the diagnosis of MCS*

→ tDCS may facilitate motor execution of the command when cognitive functions are preserved
Thibaut et al

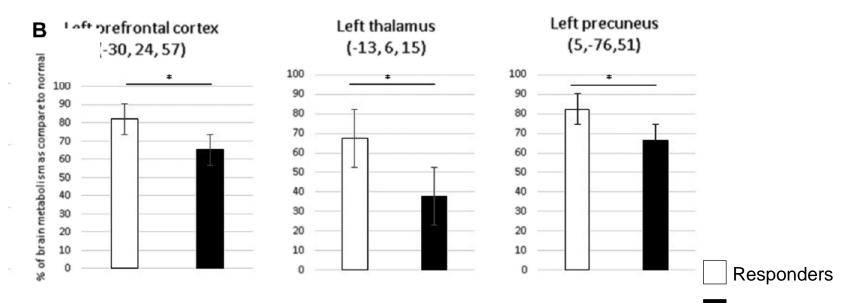
Thibaut et al., Brain Stimulation, 2018

Neural correlates of responsiveness

CrossMark

Brain Stimulation 8 (2015) 1116-1123

	Contents lists available at ScienceDirect	*	BRAIN
	Brain Stimulation		
SEVIER	journal homepage: www.brainstimjrnl.com		


Clinical Response to tDCS Depends on Residual Brain Metabolism and Grey Matter Integrity in Patients With Minimally Conscious State

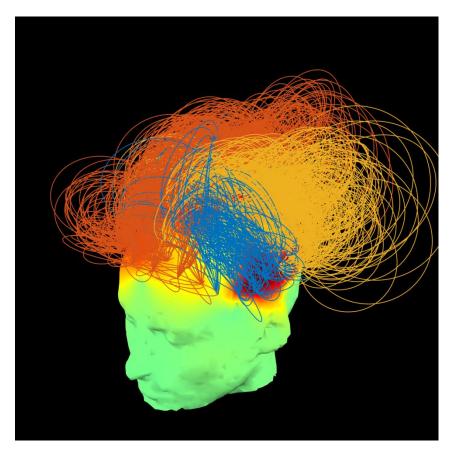
EL

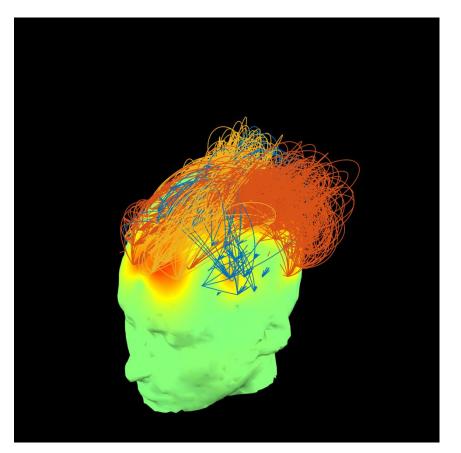
Aurore Thibaut^{a,*,1}, Carol Di Perri^{a,1}, Camille Chatelle^{b,c}, Marie-Aurélie Bruno^a, Mohamed Ali Bahri^d, Sarah Wannez^a, Andrea Piarulli^{a,e}, Claire Bernard^f, Charlotte Martial^a, Lizette Heine^a, Roland Hustinx^f, Steven Laureys^a

8 tDCS responders versus 13 tDCS non-responders

Regional brain metabolism

Thibaut et al., Brain Stimulation 2015

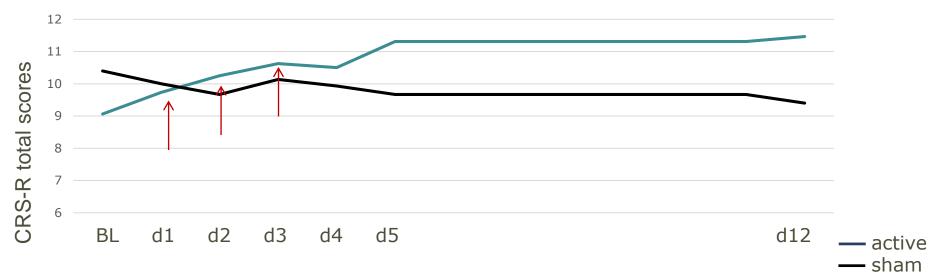




Brain connectivity – theta band

8 tDCS responders

14 tDCS non-responders



Repeated tDCS

Double-blind crossover RCT (16 chronic minimally conscious pts) 5 sessions – 20 min prefrontal tDCS

→ Active session: significant time evolution (p<0.001)</p>

Some patients responded after 1, 2 or 3 days of tDCS

7 responders (9/16 – 56%) & 7 duration of the effects (1 week)

Single stim: 43% responders – effect size : 0.38 versus 0.57

Repeated tDCS

CrossMark

Archives of Physical Medicine and Rehabilitation

Archives of Physical Medicine and Rehabilitation 2014;95:283-9

ORIGINAL ARTICLE

clinically

Transcranial Direct Current Stimulation Effects in Disorders of Consciousness

5 sessions over DFPI C

7 VS and 6 MCS - chronic

in patients who improved

➔ Moderate clinical effects

Changes of EEG background

Efthymios Angelakis, PhD,^{a,b} Evangelia Liouta, MSc,^{a,b} Nikos Andreadis, PhD,^a Stephanos Korfias, MD,^{a,b} Periklis Ktonas, PhD,^a George Stranjalis, MD, PhD,^{a,b} Damianos E. Sakas, MD, PhD^{a,b}

From the ^aHellenic Center for Neurosurgical Research "Prof. Petros Kokkalis," Athens; and ^bEvangelismos Hospital, Department of Neurosurgery, Medical School, National and Kapodistrian University of Athens, Athens, Greece.

5 sessions over M1 or DFPLC
7 VS and 3 MCS - chronic
→ All MCS showed clinical improvement immediately after treatment

Journal of the Neurological Sciences 375 (2017) 464-470

Contents lists available at ScienceDirect

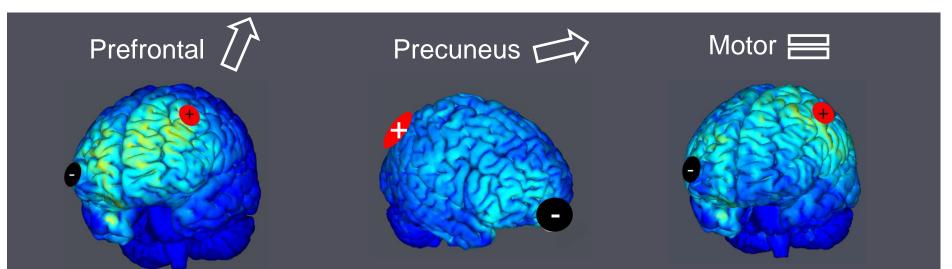
Journal of the Neurological Sciences

journal homepage: www.elsevier.com/locate/jns

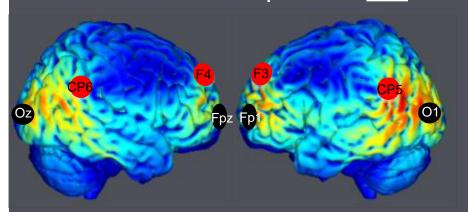
Repeated transcranial direct current stimulation in prolonged disorders of consciousness: A double-blind cross-over study

Anna Estraneo ^a,*, Angelo Pascarella ^a, Pasquale Moretta ^a, Orsola Masotta ^a, Salvatore Fiorenza ^a, Grazia Chirico ^a, Emanuela Crispino ^a, Vincenzo Loreto ^a, Luigi Trojano ^{a,b}

^a Neurorehabilitation Unit and Research Lab. for Disorder of Consciousness, Maugeri ICS, Telese Terme, Italy
^b Neuropsychology Lab., Dept. of Psychology, Second University of Naples, Caserta, Italy



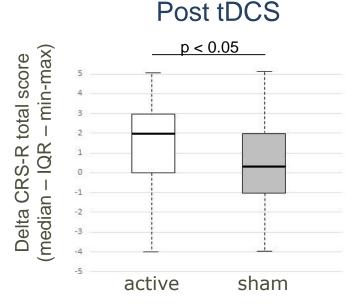
ders 🌔



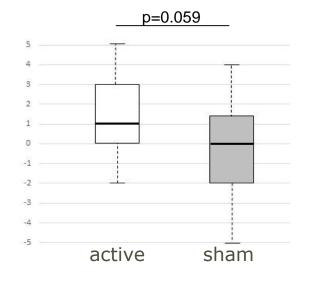
Stimulating different brain regions COMA

SCIENCE GROUP

Multichannel frontoparietal


Group level: Prefrontal tDCS best area to target

Single-subject level: Patient's tailored montage


Thibaut et al, 2014, 2017 Huang et al, 2017 Martens et al, 2019

Clinical translation

- Feasibility of tDCS for daily use
 - By relatives/caregivers (20 sessions)
- 27 MCS patients completed the study compliance: 93±14%
 - No clinical effects
- 22 MCS patients received ≥80% tDCS sessions
 - Significant effects & trend at 8-week follow-up no AE

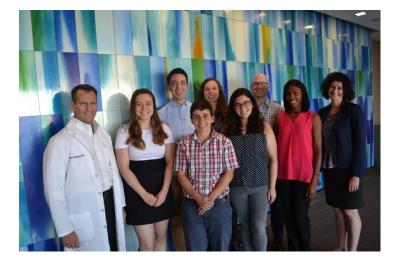
8 weeks follow-up

Martens et al, Brain Stim 2018

Conclusions

COMA Science Group

Pharmacological treatments


- Amantadine in TBI → other etiologies?
- Zolpidem 5% \rightarrow phenotype of responders
- Apomorphine → randomized clinical trials

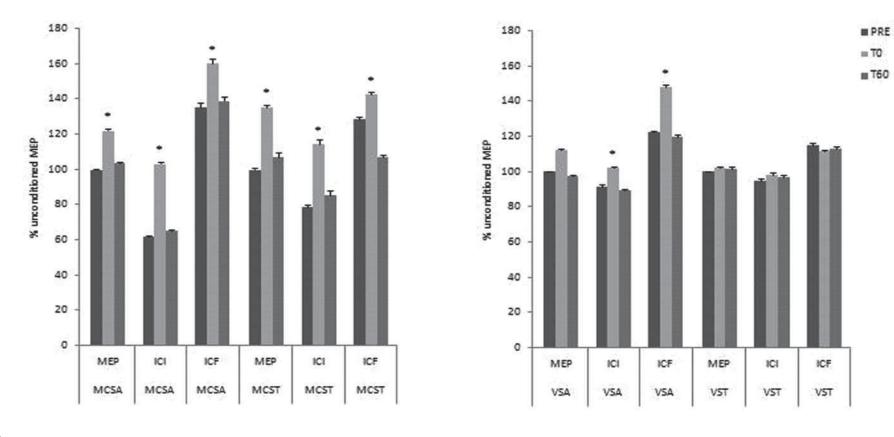
NIBS

- tDCS is safe in severely brain-injured patients
- Prefrontal tDCS → consistent clinical improvement
- Repeated tDCS → increase duration of the effects
 → increase number of responders
- Need patients' tailored montage based on individual brain lesions

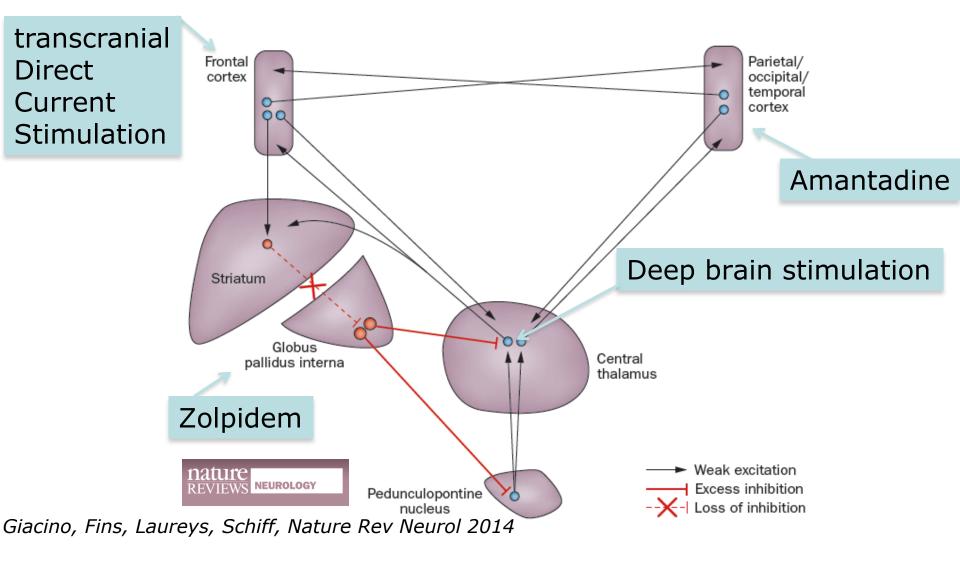
THANK YOU

de Liège

geraldine.martens@ulg.ac.be gmartens@partners.org



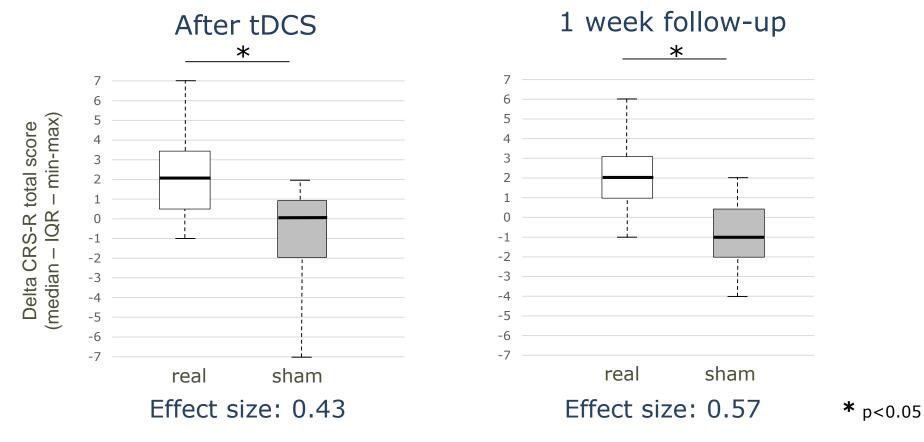
Additional slides



tDCS – diagnostic tool?

ILIS, EMCS & MCS & 4 VS/UWS

Mesocircuit model

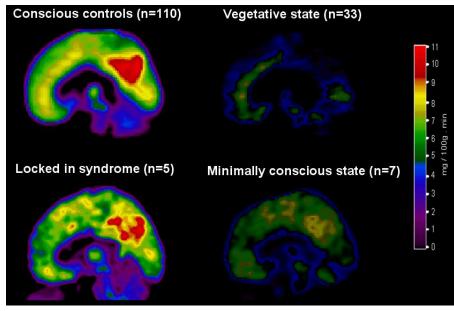


COM

SCIENCE GROUP

16 patients in MCS (> 3months; 12 TBI; 47±16 y)

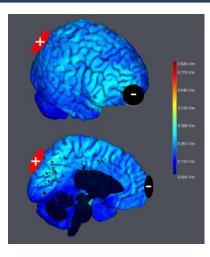
Treatment effect: delta CRS-R day 5 & day 12 (follow-up)



Thibaut et al., Brain Injury, 2017

Precuneus: critical hub for consciousness

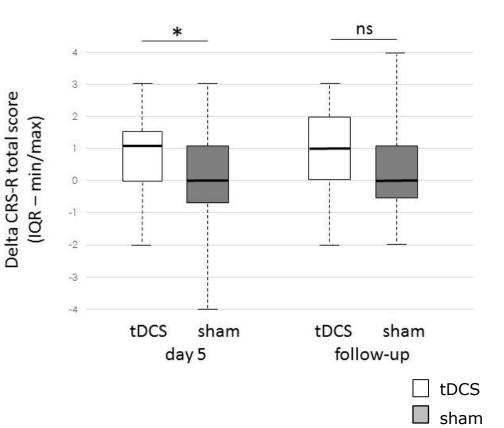
Laureys et al, Lancet Neurology, 2004


Anode: posterior parietal cortex Cathode: right SOR 2mA; 20min 5 tDCS sessions

Active and sham – 5d washout

Huang et al, Bain Stimulation, 2017

tDCS – Precuneus

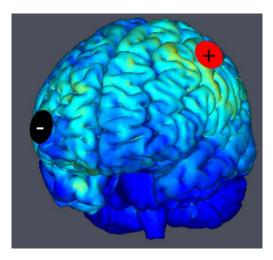

Repeated stimulation of the posterior parietal cortex in patients in minimally conscious state: A sham-controlled randomized clinical trial

33 MCS >3 months post-insult ($57\pm11y$; 20 TBI)

9 responders (27%) Sub-acute > chronic

No effect at 5day follow-up

Effect size : 0.31



tDCS – motor cortex

Motor cortex: common & efficient tDCS target

For patients with DOC?

- → Immobilization, paresis...
- \rightarrow Improve behavioral responsiveness
- → Covert consciousness

		Record Fo	orm			
Patient:	Date:				1	
AUDITORY FUNCTIO	ON SCALE					
4 - Consistent Moveme	nt to Command *					
3 - Reproducible Mover	ment to Command *					
2 - Localization to Sour	d					
1 - Auditory Startle						
0 - None						
VISUAL FUNCTION				 		
5 - Object Recognition	*			 	_	
4 - Object Localization:	Reaching *					
3 - Visual Pursuit *						
2 - Fixation *						
1 - Visual Statio						
None						
MOTOR FUNCTION						
6 - Functional Object U	se [†]					
5 - Automatic Motor Re	sponse *					
4 - Object Manipulation	*					
3 - Localization to Noxi	ous Stimulation *					
2 - Flexion Withdrawal						
1 - Abnormal Posturing						
0 - None/Flaccid						
CROMOTOR/VERB	AL FUNCTION COAL	E				
3 - Intelligione de la	11					
2 - Vocalization/Oral M	ovement					
1 - Oral Reflexive Move	ement					
0 - None						
COMMUNICATION S				 		
2 - Functional: Accurat	e [†]					
1 - Non-Functional: Int	entional *					
0 - None						
AROUSAL SCALE						
3 - Attention						
2 - Eye Opening w/o St	imulation					
1 - Eye Opening with S	timulation					
0 - Unarousable						

Denotes emergence from MCS¹ Denotes MCS^{*}

Martens et al., submitted

Kalmar & Giacino, 2004

COMA

SCIENCE GROUP

tDCS – motor cortex

Motor cortex: common & efficient tDCS target

For patients with DOC?

- → Immobilization, paresis...
- \rightarrow Improve behavioral responsiveness
- → Covert consciousness

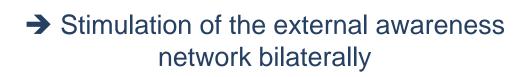
Group level (n=10): no significant improvement (p=0.55; ES=0.10)

Single-subject level: 2 responders

Single stimulation & small sample size

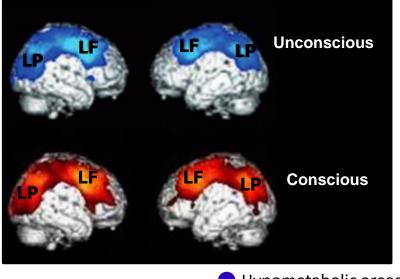
Martens et al., submitted

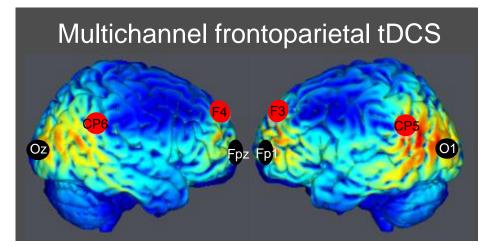
JF	K COMA RECO	OVERY S	 REVIS	SED «	2004		
Patient:	Date:						
AUDITORY FUNCT	ON SCALE		-				
4 - Consistent Movem	ent to Command *						
3 - Reproducible Move	ement to Command *						
2 - Localization to Sou	ind						
1 - Auditory Startle							
0 - None							
VISUAL FUNCTION	SCALE		 				
5 - Object Recognition	*						
4 - Object Localization	Reaching *						
3 - Visual Pursuit *							
2 - Fixation *							
1 - Visual Statio						-	
None							
MOTOR FUNCTION	SCALE						
6 - Functional Object	Jse [†]						
5 - Automatic Motor R	esponse *						
4 - Object Manipulation *							
3 - Localization to Nox	tious Stimulation *						
2 - Flexion Withdrawa							
1 - Abnormal Posturin	a						
0 - None/Flaccid							
ROMOTOR/VERE	AL FUNCTION COAL	E					
3 - Intelligione - Intellig							
2 - Vocalization/Oral M	Novement						
1 - Oral Reflexive Movement							
0 - None							
COMMUNICATION	SCALE						
2 - Functional: Accura	ate †						
1 - Non-Functional: In	tentional *						
0 - None							
AROUSAL SCALE							
3 - Attention							
2 - Eye Opening w/o Stimulation							
1 - Eye Opening with	Stimulation						
0 - Unarousable							
TOTAL SCORE							


Denotes emergence from MCS[†]

60

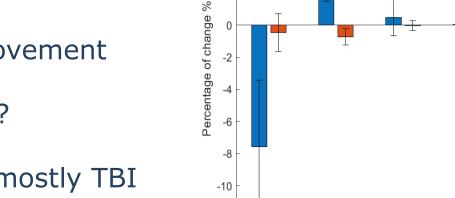
SCIENCE GROUP


Fronto-parietal multichannel tDCS


Frontoparietal network External awareness network Critical for consciousness recovery

COMA

SCIENCE GROUP


Hypometabolic areas

Fronto-parietal multichannel tDCS

46 patients with prolonged DOC. VS and MCS, TBI and non-TBI 4 anodes and 4 cathodes – 1mA; 20min Single stimulation – active & sham Behavioral & EEG assessments

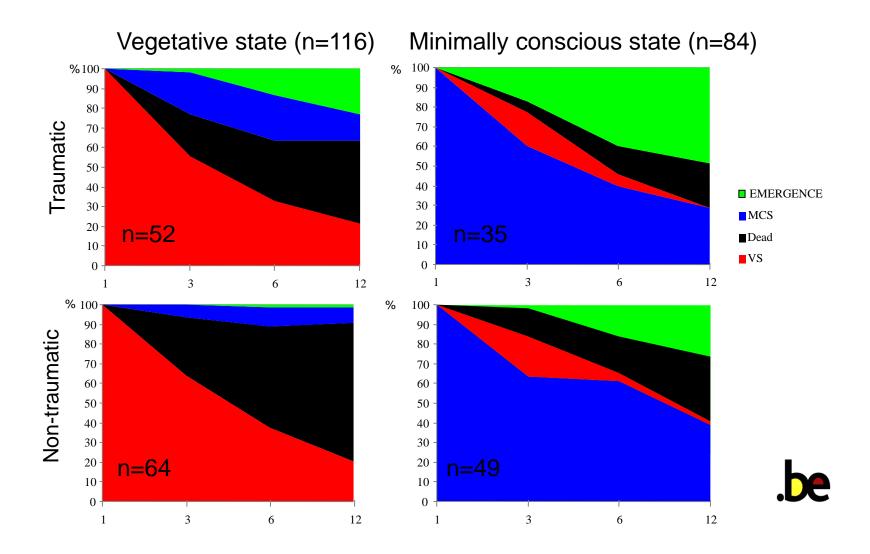
- Group level: no improvement 1 mA not enough?
 1 session not enough?
- 6 responders (13%) mostly TBI
- EEG in responders: increase in theta complexity after active tDCS no changes after sham tDCS

Delta

Theta

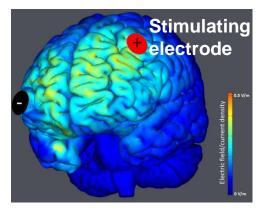
Alpha

Beta1


2

Beta₂

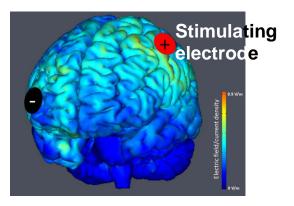
Prognostic



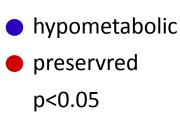
Bruno et al, Coma and disorders of consciousness, Eds Schnakers and Laureys, 2012

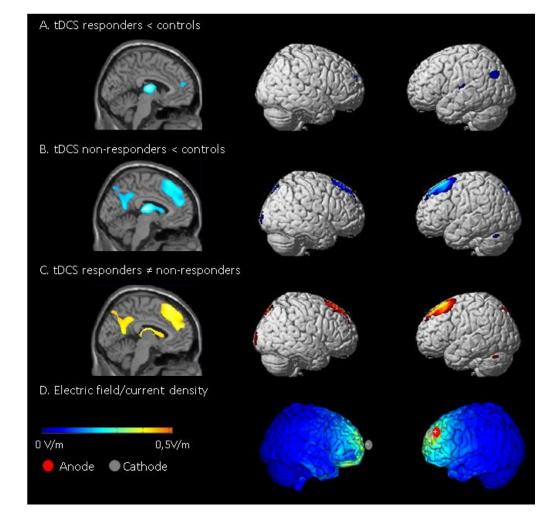
transcranial Direct Current Stimulation - tDCS

Prefrontal stimulation


2 electrodes (or more) Weak electrical current (1-2mA)

→ Membrane polarization Anode: / excitability Cathode: \ excitability


→ Long term effects
 Neural excitability & plasticity (LTP-LTD)
 Ion channels (Na⁺, Ca²⁺)
 NMDA receptors

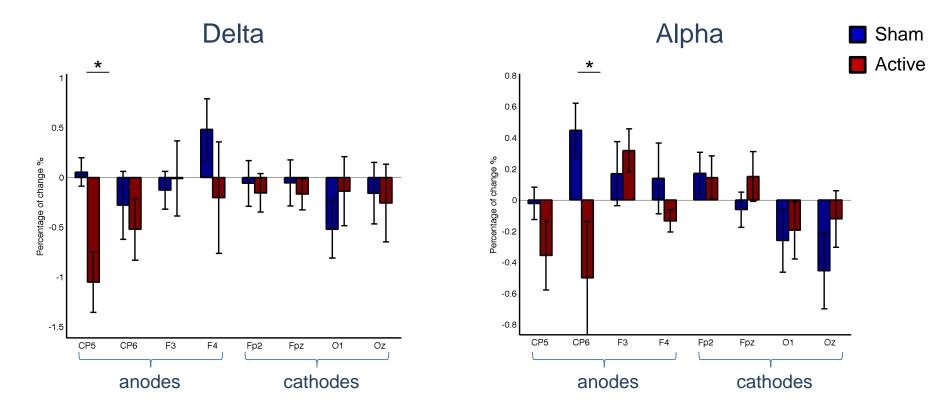

Nitsche et al., J Physiol 2000 Nitsche et al., Neuroscientist 2010

Motor stimulation

Neural correlates

COMA

SCIENCE GROUP


COMA SCIENCE GROUP

fMRI 16 chronic MCS – 6 tDCS responders

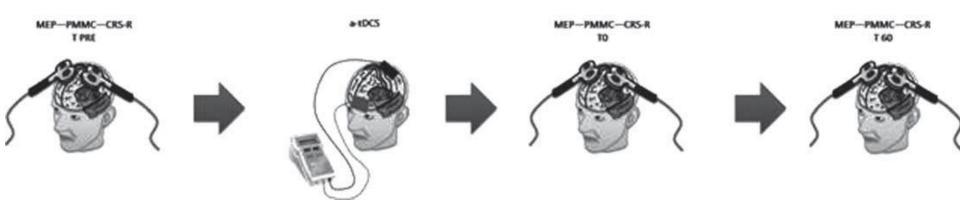
Cavaliere et al. 2016 Frontiers Cell Neurosci

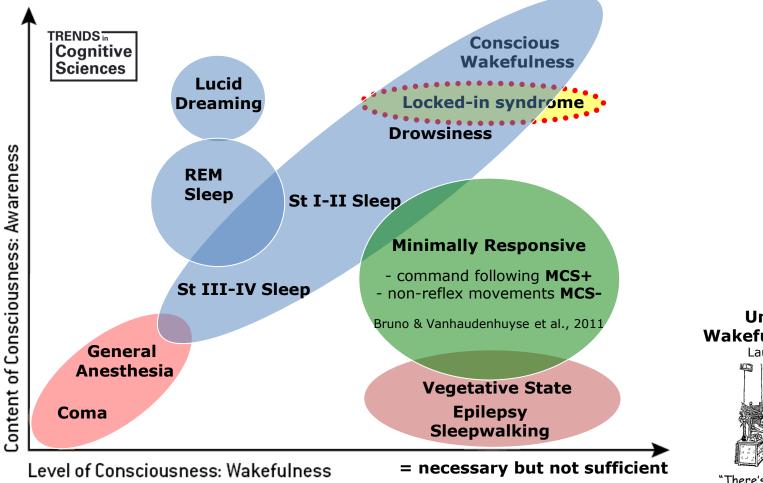
Measure of complexity: LZW estimation per band and electrode **Percentage of change** = (Post_LZW – Pre_LZW)/Pre_LZW*100 %)

LZW significantly decreases with tDCS under anodes, indicating that complexity decreases with tDCS in these bands → more structure in the data following tDCS?

COMA

SCIENCE GROUP


Conclusions


tDCS – diagnostic tool?

tDCS & TMS

25 chronic DOC (12 VS/UWS; 10 MCS; 2 EMCS;1 LIS) Anode: OFC (Fpz) & cathode: Cz TMS: MEP, RMT, ICI, ICF

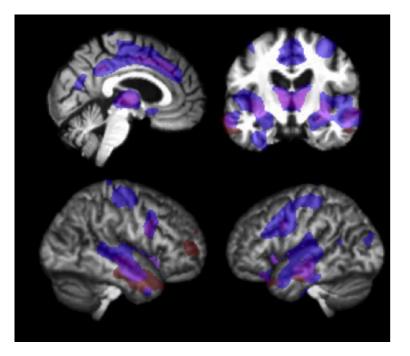
What is consciousness?

Laureys, Trends in Cognitive Sciences, 2005

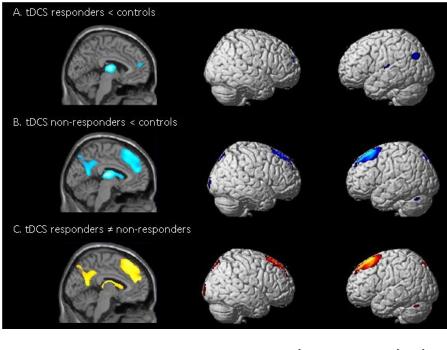
Unresponsive Wakefulness Syndrome Laureys et al., 2010

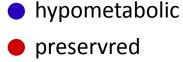
COMA

SCIENCE GROUP


"There's nothing we can do... he'll always be a vegetable."

- No severe adverse effects
- Modulates spontaneous neuronal activity
- Inexpensive
- Reliable sham condition (for research)
- Easy to administer (→ clinical translation)


Neural correlates



- More atrophic in responders
- More atrophic in non-responders
- Overlapping

Brain metabolism – PET-scan

COMA SCIENCE GROUP