

ICOS

INTEGRATED CARBON OBSERVATION SYSTEM

Quantification of the 2018 drought for European forests and impacts of stomatal and non stomatal limitation of photosynthesis

Stomata open to allow carbon dioxide (CO₂) to enter a leaf and water vapor to leave.

European 2018 drought

European Drought Observatory, combined drought indicator (CDI) *Drought taskforce ->* Philosophical transaction of the royal society B

What we know from 2003 : Anomalies

Temperatures

Ciai et al., 2005 (Nature)

Photoynthesis and respiration

A bit of theory

Non-stomatal

Stomatal

A bit of theory

A bit of modeling

gs can be obtained from PM equation

$$g_{s,H2O} = \frac{LEG_a\gamma}{s(R_n - G - S) + \rho C_p C_a VPD_a - LE(s + \gamma)}$$

 $\frac{g_{s,H2O}}{1.6} = g_{s,CO2}$

Figure from *Zhou et al., 2019*

Stomatal and non stomatal limitation of photosynthesis : models

Non stomatal limitation

Changes in **apparent V**_{cmax} with measured C_i values **Stomatal limitation**

Changes in C_i which are associated with changes in **g1** (changes in the GPP-gs slope)

g1 is inversely proportional to iWUE

Quantification of drought

• In lack of soil and pre-dawn leaf water potential at flux tower sites , Relative Extractable Water (REW):

$$REW_{t} = \frac{SWC_{t} - SWC_{WP}}{SWC_{FC} - SWC_{WP}}$$

REW varies from 1 (Field capacity) and 0 (wiliting point)

Soil humidity sensors

Cumulated over the root zone

Ecosystem stations

Results : stomatal limitation

Results : non stomatal limitation

REW

Degree of limitation

We quantify the degree of limitation by :

- Fixing V_{cmax} at unstressed value and computing GPP with observed C_i
- Fixing G_1 at unstressed value and compute GPP with observed V_{cmax} values

Compute the ratio of GPP_{modelled}/GPP_{observed}

Degree of stomatal and non stomatal reduction

2

REW

0

1

3

is the dominant mechanism \rightarrow Decrease of apparent Vcmax could be the result of both diffusional effects (mesophyll conductance) or biochemical effects

Focus on 3 beech forests

- FR-HES, DK-SOR and DE-HAI are 3 beech forests
- We observe non-stomatal limitation at all 3 sites

In term of water use efficiency (iWUE) we observe :

- Constant g1 at DK-SOR (constant iWUE)
- Decreasing g1 at FR-HES (increased iWUE) which has a visible impact on GPP
- Increasing g1 at DE-HAI (decreased iWUE) but with no visible impact on GPP (GPP is already too low)

-> unsolved question !

Implications for drought modeling

Carbon dioxide enters, while water and oxygen exit, through a leaf's stomata.

$$g_{s,H20} = g_0 + 1.6(1 + \frac{g_1}{\sqrt{VPD}})\frac{GPP}{C_a}$$

How should plante regulate stomata ? (Cowan & Farquhar, 1977)

Stomata regulate both photosynthesis and transpiration Stomata should maximise :

 $A - \lambda E$

where $\boldsymbol{\lambda}$ is the carbon cost of water.

 $g1\sim\sqrt{\frac{1}{\lambda}}$

If $\lambda = \frac{\delta A}{\delta E} = constant$ (water spent now can't be spent later) **but does not apply when water availbility decrease !** -> when soil water depletes, the cost should increase ($\lambda \nearrow$ and g1 \searrow) *Makëla et al., 1996*

Results from this study do no support this $! \rightarrow$ the costs of stomatal opening are probably not well identified Ideas :

- Loss of hydraulic conductivity
- Limit non-stomatal limitation

Dewar et al., 2018

Conclusions

- Non stomatal limitation was the dominant short term mechanism limiting GPP in forest at flux tower sites
- Apparent $V_{\rm cmax}$ has proven a useful way of modeling these NSL
- Future optimal conductance models should take NSL into accounts
- REW has proven a very useful index of edaphic drought at flux tower sites

Thank you !

ICOS

INTEGRATED CARBON OBSERVATION SYSTEM