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Early biomarkers are needed to identify individuals at high risk of preclinical Alzheimer’s disease and to better understand the

pathophysiological processes of disease progression. Preclinical Alzheimer’s disease EEG changes would be non-invasive and cheap

screening tools and could also help to predict future progression to clinical Alzheimer’s disease. However, the impact of amyloid-b

deposition and neurodegeneration on EEG biomarkers needs to be elucidated. We included participants from the INSIGHT-preAD

cohort, which is an ongoing single-centre multimodal observational study that was designed to identify risk factors and markers of

progression to clinical Alzheimer’s disease in 318 cognitively normal individuals aged 70–85 years with a subjective memory

complaint. We divided the subjects into four groups, according to their amyloid status (based on 18F-florbetapir PET) and

neurodegeneration status (evidenced by 18F-fluorodeoxyglucose PET brain metabolism in Alzheimer’s disease signature regions).

The first group was amyloid-positive and neurodegeneration-positive, which corresponds to stage 2 of preclinical Alzheimer’s

disease. The second group was amyloid-positive and neurodegeneration-negative, which corresponds to stage 1 of preclinical

Alzheimer’s disease. The third group was amyloid-negative and neurodegeneration-positive, which corresponds to ‘suspected

non-Alzheimer’s pathophysiology’. The last group was the control group, defined by amyloid-negative and neurodegeneration-

negative subjects. We analysed 314 baseline 256-channel high-density eyes closed 1-min resting state EEG recordings. EEG bio-

markers included spectral measures, algorithmic complexity and functional connectivity assessed with a novel information-theoretic

measure, weighted symbolic mutual information. The most prominent effects of neurodegeneration on EEG metrics were localized

in frontocentral regions with an increase in high frequency oscillations (higher beta and gamma power) and a decrease in low

frequency oscillations (lower delta power), higher spectral entropy, higher complexity and increased functional connectivity

measured by weighted symbolic mutual information in theta band. Neurodegeneration was associated with a widespread increase

of median spectral frequency. We found a non-linear relationship between amyloid burden and EEG metrics in neurodegeneration-

positive subjects, either following a U-shape curve for delta power or an inverted U-shape curve for the other metrics, meaning that

EEG patterns are modulated differently depending on the degree of amyloid burden. This finding suggests initial compensatory

mechanisms that are overwhelmed for the highest amyloid load. Together, these results indicate that EEG metrics are useful

biomarkers for the preclinical stage of Alzheimer’s disease.
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Hôpital Pitié-Salpêtrière, Institute of Memory and Alzheimer’s Disease (IM2A), Department of Neurology, 47–83 Boulevard de
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Introduction
Alzheimer’s disease is the most common form of dementia,

as it accounts for an estimated 60–80% of cases. The

pathophysiological process of Alzheimer’s disease begins

many years before the onset of symptoms (Bateman

et al., 2012; Villemagne et al., 2013). It is essential to diag-

nose Alzheimer’s disease as early as possible because pa-

tients will be more likely to benefit from disease-modifying

treatments if treated early in the disease course, before

major brain damage has occurred (Sperling et al., 2011).

It is therefore important to develop biomarkers that are

sensitive to this early, ‘preclinical’ stage of Alzheimer’s dis-

ease even before mild cognitive impairment (MCI) occurs.

At the preclinical stage subjects are cognitively unimpaired

but show evidence of cortical amyloid-b deposition, which

is considered to be the most upstream process in the patho-

logical cascade of Alzheimer’s disease (Jack et al., 2013)

and is measured by amyloid PET or decreased amyloid-

b1–42 and amyloid-b1–42/amyloid-b1–40 ratio in the CSF.

Amyloid-b deposition can be associated with pathologic

tau deposits, measured by tau PET or elevated CSF phos-

phorylated tau and to neurodegeneration that is revealed

by elevated CSF total tau, 18F-fluorodeoxyglucose (18F-

FDG) PET hypometabolism in an Alzheimer’s disease-like

pattern and atrophy on MRI (Jack et al., 2018).

Biomarkers for Alzheimer’s disease are important not

only for identifying individuals at high risk of preclinical

Alzheimer’s disease, but also to better understand the

pathophysiological processes of disease progression.

The Investigation of Alzheimer’s Predictors in Subjective

Memory Complainers (INSIGHT-preAD) study is an on-

going longitudinal observational study that was designed

to identify risk factors and markers of progression to clin-

ical Alzheimer’s disease in 318 cognitively normal individ-

uals with a subjective memory complaint (Dubois et al.,

2018). Among the several multimodal assessments, EEGs

were performed every 12 months. In our study we focused

on the analysis of baseline EEG, aiming to identify electro-

physiological biomarkers, including functional connectivity,

that are sensitive to the preclinical stage of Alzheimer’s

disease. EEG has many advantages as it is a non-invasive,

cheap and reproducible technique that directly measures

neural activity with a good temporal resolution.

There is already a rich literature on the use of EEG bio-

markers in MCI and Alzheimer’s disease, such as spectral

measures and synchronization between brain regions

(Babiloni et al., 2016). Patients with Alzheimer’s disease

or MCI usually show slowing of oscillatory brain activity,

reduced EEG complexity and reduced synchrony (Grunwald

et al., 2001; Jeong, 2004; Babiloni et al., 2010; Stam,

2010). Decreased alpha power correlated with hippocampal

atrophy and lower cognitive status (Babiloni et al., 2006,

2009; Luckhaus et al., 2008). Growing evidence shows that
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Alzheimer’s disease targets cortical neuronal networks

related to cognitive functions, which is revealed by the im-

pairment in functional connectivity in long range networks

(Babiloni et al., 2016). There are several types of measures

of functional connectivity using EEG or magnetoencephalo-

graphy (MEG) including spectral coherence, synchroniza-

tion likelihood or information theory indexes. A decrease

of alpha coherence, an increase of delta total coherence and

an abnormal alpha fronto-parietal coupling have been

described in Alzheimer’s disease (Jelic et al., 2000;

Babiloni et al., 2009). A reduction of alpha and beta syn-

chronization likelihood was shown in MCI and Alzheimer’s

disease (Stam et al., 2003). However, the usefulness of EEG

characteristics as biomarkers for the evaluation of preclin-

ical Alzheimer’s disease is not yet fully established, as most

studies have focused on EEG biomarkers at later stages of

the disease, after the onset of symptoms. One recent study

of the preclinical and prodromal stages of Alzheimer’s dis-

ease using MEG demonstrated that the effects of amyloid-b
deposition were expressed as a prefrontal alpha power in-

crement (Nakamura et al., 2018). An EEG study in older

people with subjective memory complaints found no asso-

ciation between cortical amyloid load and functional con-

nectivity (Teipel et al., 2018), whereas another study using

MEG in cognitively normal individuals at risk for

Alzheimer’s disease showed altered functional connectivity

in the default mode network (DMN) (Nakamura et al.,

2017). These results suggest that spectral power and func-

tional connectivity, as measured by MEG or EEG, could

potentially be sensitive biomarkers for the preclinical stage

of Alzheimer’s disease, but more studies are needed in this

field. Moreover, very few studies of early stages of

Alzheimer’s disease consider neurodegeneration information

when selecting subjects, whereas it has been suggested that

studies combining an abnormal amyloid biomarker with an

abnormal neurodegeneration biomarker provide much more

powerful prediction of future cognitive decline and conver-

sion to clinical Alzheimer’s disease than studies focusing on

an abnormal amyloid status alone (Knopman et al., 2013;

Vos et al., 2013; Wirth et al., 2013; Mormino et al., 2014;

Toledo et al., 2014; Burnham et al., 2016; Soldan et al.,

2016).

Our aim was to analyse EEG changes that take place in

subjects at high risk of preclinical Alzheimer’s disease and

to assess the impact of amyloid load and Alzheimer’s dis-

ease topography-specific neurodegeneration on EEG met-

rics. To evaluate if EEG metrics’ changes were a

consequence of neurodegeneration, amyloid burden, or a

combination of the two, we divided the whole INSIGHT-

preAD cohort into four groups of subjects depending on

their amyloid status (evidenced by 18F-florbetapir PET) and

neurodegeneration status (revealed by 18F-FDG PET). The

first group was amyloid-positive and neurodegeneration-

positive (A + N + ), which corresponds to stage 2 of preclin-

ical Alzheimer’s disease according to Sperling et al. (2011).

The second group was amyloid-positive and neurodegen-

eration-negative (A + N�), which corresponds to stage 1

of preclinical Alzheimer’s disease according to Sperling

et al. (2011). These first two groups belong to

Alzheimer’s disease continuum according to Jack et al.

(2018). The third group was amyloid-negative and neuro-

degeneration-positive (A�N + ), which corresponds to ‘sus-

pected non-Alzheimer’s pathophysiology’ (SNAP) (Jack

et al., 2012). The last group was the control group, defined

by amyloid-negative and neurodegeneration-negative sub-

jects (A�N�). We hypothesized that amyloid-positive

and/or neurodegeneration-positive subjects would present

specific EEG patterns and functional connectivity differ-

ences compared to control subjects. Moreover, we hypothe-

sized that these EEG patterns would be modulated

differently depending on the degree of severity of amyloid

burden or hypometabolism.

To assess functional connectivity, we used weighted sym-

bolic mutual information (wSMI), which is a novel measure

to quantify global information sharing that was introduced

to index consciousness in patients recovering from a coma

(King et al., 2013). The advantages of this information-the-

oretic measure are its robustness to common-source EEG

artefacts and its ability to easily detect non-linear coupling.

We decided to focus on wSMI in theta (4–8 Hz) and alpha

(8–12 Hz) bands as the dominant resting state rhythms are

typically observed at theta and alpha frequencies and these

rhythms show maximum changes in Alzheimer’s disease

patients (Blinowska et al., 2017); moreover, wSMI was

shown to better discriminate between different states of

consciousness in the theta band (King et al., 2013; Sitt

et al., 2014).

The main objective of our research was to identify resting

state EEG biomarkers of preclinical Alzheimer’s disease and

SNAP and to evaluate the impact of amyloid burden and

neurodegeneration on EEG metrics. Electrophysiological

biomarkers included spectral measures, algorithmic com-

plexity and functional connectivity assessed with wSMI.

The other aims were the exploration of cofactors involved

in EEG metrics differences between the two groups, includ-

ing apolipoprotein E (APOE) genotype, age, gender, edu-

cational level and hippocampal volume.

Materials and methods

INSIGHT-preAD study design and
participants

Participants were recruited into the INSIGHT-preAD study
cohort at Pitié-Salpêtrière University Hospital, Paris, France.
The INSIGHT-preAD study has already been thoroughly
described (Dubois et al., 2018). This cohort currently includes
baseline data of 318 cognitively normal individuals, between
70 and 85 years old, with subjective memory complaints and
unimpaired cognition [Mini Mental State Examination
(MMSE) score 527 and Clinical Dementia Rating score 0],
no evidence of episodic memory deficit [Free and Cued
Selective Reminding Test (FCSRT) total recall score 541].
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Demographic, cognitive, functional, biological, genetic, gen-
omic, imaging including brain structural and functional MRI,
18F-FDG PET and 18F-florbetapir PET, electrophysiological
and other assessments were performed at baseline and regu-
larly during follow-up. EEGs were performed every 12
months.

The ethics committee of the Pitié-Salpêtrière University
Hospital approved the study protocol. Written informed con-
sent according to the Declaration of Helsinki was provided by
all participants.

INSIGHT-EEG study participants

Of the 318 subjects of the INSIGHT-preAD cohort, we ana-
lysed baseline EEGs of 314 subjects; the EEG data of three
subjects was rejected due to excessive EEG artefacts and one
subject did not undergo 18F-FDG PET. Based on amyloid
status (evidenced by 18F-florbetapir PET) and neurodegenera-
tion status (evidenced by 18F-FDG PET brain metabolism in
Alzheimer’s disease signature regions), we classified the sub-
jects into four groups: A + N + , A + N�, A�N + and A�N�
(control group).

PET acquisition and processing

PET scans were acquired 50 min after injection of 370 MBq
(10 mCi) 18F-florbetapir or 30 min after injection of 2 MBq/kg
18F-FDG. Reconstructed images were analysed with a pipeline
developed by the Centre d’Acquisition et Traitement des
Images (http://cati-neuroimaging.com) (Supplementary mater-
ial). A 18F-florbetapir-PET standardized uptake value ratio
(SUVR) threshold of 0.7918 was used to dichotomize subjects
into amyloid-positive and -negative groups (Dubois et al.,
2018; Habert et al., 2018).

The same image assessment pipeline was applied to measure
brain glucose metabolism on 18F-FDG PET scans. Cortical
metabolic indices were calculated in four bilateral regions of
interest that are specifically affected by Alzheimer’s disease
(Jack et al., 2012): posterior cingulate cortex, inferior parietal
lobule, precuneus, and inferior temporal gyrus, and the pons
was used as the reference region. Calculation of the neurode-
generation cut-off value is detailed in the Supplementary ma-
terial. In the INSIGHT-preAD study, subjects were considered
neurodegeneration-positive if the mean 18F-FDG PET SUVR of
the four Alzheimer’s disease signature regions was 52.27.

EEG acquisition and processing

EEG data were acquired with a high-density 256-channel EGI
system (Electrical Geodesics Inc.) with a sampling rate of
250 Hz and a vertex reference. During the recording, patients
were instructed to keep awake and relaxed. The total length of
the recording was 2 min, during which participants alternated
30-s segments of eyes closed and eyes open conditions. Sixty
seconds of eyes closed resting state recording were selected for
the analysis. For EEG data processing we used a pipeline that
automates processing of EEG recordings with automated arte-
fact removal and extraction of EEG measures (Sitt et al., 2014;
Engemann et al., 2015, 2018). A band-pass filtering (from 0.5
to 45 Hz) and a notch filter at 50 Hz and 100 Hz were applied.
Data were cut into 1-s epochs. Bad channels and bad epochs

were rejected with a procedure that is detailed in the
Supplementary material.

Calculation and analysis of EEG
metrics

We analysed 314 high density 256-channel EEG recordings
from INSIGHT-preAD baseline data. For the calculation of
EEG metrics, we analysed the values of the first 224 electrodes,
which were the scalp (non-facial) electrodes. For each record-
ing, we extracted a set of measures organized according to a
theory-driven taxonomy (Sitt et al., 2014). Power spectral
density (PSD), median spectral frequency (MSF) and spectral
entropy measure dynamics of brain signal at a single electrode
site and are based on spectral frequency content. Algorithmic
complexity estimates the complexity of a signal based on its
compressibility. It measures dynamics of brain signal at a
single electrode site and is based on information theory.
wSMI is also an information-theoretic metric and estimates
functional connectivity between brain regions. For our main
analysis, we calculated 10 EEG metrics: PSD in delta (1–4 Hz),
theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), gamma (30–
45 Hz), MSF, spectral entropy, algorithmic complexity, wSMI
in theta and alpha band. The EEG metrics were averaged
across all epochs (60 s recording). PSD was normalized as
described in Sitt et al. (2014). In a supplementary analysis,
we compared the results of functional connectivity measured
by wSMI to two additional ‘traditional’ functional connectivity
metrics, namely phase locking value (PLV) and weighted phase
lag index (wPLI) (Supplementary material). All markers were
computed using NICE (https://github.com/nice-tools/nice) and
MNE-Python (https://github.com/mne-tools/mne-python). The
collection of scripts used are publicly available (URL will be
made available upon request).

Statistical analysis

Statistical analyses were performed using R software, version
3.5.0. We compared baseline characteristics between the four
groups using one-way ANOVA for continuous variables and
�2 test for categorical variables. When global test was signifi-
cant, post hoc Tukey test was performed for continuous vari-
ables and pairwise �2 test with Benjamini-Hochberg correction
for categorical variables, to determine which groups differed
from each other.

Local regression of average EEG metrics in function

of amyloid SUVR and FDG SUVR

First, we used local regression (LOESS) to study the relation-
ship between average EEG metrics (mean value across all scalp
electrodes), mean amyloid SUVR and mean 18F-FDG SUVR.

EEG metrics analysis

To study the impact of amyloid load, brain metabolism, age,
gender, educational level, APOE e4 and hippocampal volume
on EEG metrics, we performed two types of analyses. The first
analysis was on the mean value of each metric across all scalp
(non-facial) electrodes. The second was on the value of each
metric at each scalp electrode so there were 224 values for
each metric per participant. For wSMI, connectivity measures
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were summarized by calculating the median value from each
electrode to all the other electrodes.

Multiple models were performed to evaluate the impact of
main effects and interactions. Type II tests were performed. P-
values were corrected for multiple testing on 10 measures with
the Benjamini-Hochberg false discovery rate (BH-FDR)
procedure.

For the analysis of average EEG metrics, multiple linear re-
gressions were performed. Simple linear regressions were first
performed to evaluate if amyloid load or brain metabolism
should be included as categorical variables (A + , A�, N + ,
N�) or as continuous variables (amyloid SUVR, mean 18F-
FDG SUVR), by maximizing the coefficient of determination
R2, depending on the EEG metrics. The effects of interest were
included in multiple models as well as interaction between
amyloid load and brain metabolism.

For the analysis of the value of each metric at each electrode,
linear mixed models were carried out with the effects of inter-
est as fixed effects as well as the electrode number, and the
subject as random effect. Interactions between amyloid load,
brain metabolism and electrode number were included in the
models as well as all two-way interactions between these three
effects. We performed a cluster-based permutation test with a
threshold-free cluster enhancement (TFCE) method (Smith and
Nichols, 2009) to correct for multiple comparisons on 224
electrodes and to see which electrodes showed statistically sig-
nificant differences for pairwise comparisons between the fol-
lowing groups: A + N + versus A�N�, A + N� versus A�N�,
A�N + versus A�N�, A + versus A�, and N + versus N�.
The cluster-based permutation test is detailed in the
Supplementary material. We generated scalp topographical
maps using MNE-Python (Gramfort et al., 2013).

Functional connectivity analysis at source level

To provide anatomically based interpretation of neural activ-
ity, we did a source level functional connectivity analysis on a
representative sample of the four groups of participants
(Supplementary material).

Data availability

The data that support the findings of this study are available
from the corresponding author, upon reasonable request.

Results

Population baseline characteristics
analysis

The mean age of all participants was 76.1 years [standard

deviation (SD) 3.5] and 67.8% of the participants had a

high educational level (Table 1). There were no differences

between the four groups for age and educational level.

There were more females in A�N� (66.3%) and A + N�

(74.6%) groups compared to A + N + group (36.0%). The

proportion of APOE e4 carriers was higher in A + N + and

A + N� groups than in A�N + and A�N� groups (44.0%

and 34.9% versus 5.9% and 14.3%, respectively). The four

groups did not differ for cognitive scores except for the

FCSRT delayed free recall where A + N + group had signifi-

cantly lower scores than A + N� and A�N� groups [10.4

(SD 2.5) versus 11.8 (SD 2.3) and 12.0 (SD 2.1), respect-

ively]. The mean 18F-FDG PET SUVR was 2.2 (SD 0.1) in

the A + N + group, 2.2 (SD 0.1) in the A�N + group, 2.5

(SD 0.2) in the A + N� group and 2.6 (SD 0.2) in the

A�N� group. The mean amyloid SUVR was 1.1 (SD

0.2) in the A + N + group, 1.0 (SD 0.2) in the A + N�

group, 0.7 (SD 0.1) in the A�N + group and 0.7 (SD

0.1) in the A�N� group. The total hippocampal volume

measured on structural MRI was significantly lower in

A + N + subjects compared to A�N� subjects [2.6 (SD

0.2) versus 2.8 (SD 0.3), respectively].

Local regression of average EEG
metrics on amyloid SUVR and FDG
SUVR

As a first exploratory step, we used local regression to

study the relationship between average EEG metrics and

mean amyloid SUVR (Fig. 1) and mean 18F-FDG SUVR

(Fig. 3).

The relationship between amyloid SUVR and PSD delta

followed a U-shape curve whereas the relationship between

amyloid SUVR and PSD beta, PSD gamma, MSF, spectral

entropy and complexity followed an inverted U-shape

curve. Amyloid SUVR inflection points values were be-

tween 0.96 and 0.98 for all the previous EEG measures.

The relationship was less clear between amyloid burden,

PSD alpha and PSD theta. The degree of severity of amyl-

oid load did not seem to have an impact on wSMI theta

and wSMI alpha. To better understand the relationship

between amyloid load and EEG metrics we did local regres-

sion of average EEG metrics on amyloid SUVR first for

N + subjects only (Fig. 2) and second for N� subjects

only (Supplementary Fig. 1). Interestingly, in N + subjects,

local regression of EEG metrics on amyloid SUVR showed

much more obvious inverted U-shape curves for intermedi-

ate to very high amyloid load than the previous regression

on the whole cohort, for PSD beta, PSD gamma, MSF,

spectral entropy, complexity and also for wSMI theta.

Moreover, in N + subjects, the relationship between PSD

delta and amyloid SUVR followed a more pronounced U-

shape curve. After exceeding a certain level of amyloid

load, complexity, spectral entropy, MSF, PSD beta, PSD

gamma and wSMI theta decreased markedly and PSD

delta increased noticeably. Amyloid burden did not show

any noticeable effect on EEG measures in N� subjects

(Supplementary Fig. 1). To summarize, the degree of sever-

ity of amyloid burden had a strong impact on EEG metrics

in the presence of neurodegeneration, with increased high

frequency oscillations for intermediate amyloid burden and

a slowing of brain oscillations for high to very high amyl-

oid load.

Local regression of average EEG metrics on mean 18F-

FDG SUVR (Fig. 3) showed a trend towards increased
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complexity, PSD beta, PSD gamma, spectral entropy, MSF

and wSMI theta and decreased PSD delta when brain me-

tabolism decreased. The relations between brain metabol-

ism, PSD alpha and PSD theta were less clear. The level of

brain metabolism did not seem to have an impact on wSMI

alpha. Similar trends were found in local regression of EEG

metrics on 18F-FDG SUVR separately for A + and A� sub-

jects (Supplementary Figs 2 and 3). Thus, as a main effect,

neurodegeneration in Alzheimer’s disease signature regions

seemed to increase high frequency oscillations, complexity,

spectral entropy and functional connectivity measured by

wSMI theta, except when neurodegeneration was asso-

ciated with very high amyloid load, where the trend of

EEG metrics reversed.

Multiple linear regression of average
EEG metrics in function of amyloid
load and brain metabolism

We carried out multiple linear regression of average EEG

metrics on all scalp electrodes to assess the impact of amyl-

oid load and brain metabolism on EEG measures, adjusting

on the following potential confounding variables: age,

gender, education level, APOE e4 status and hippocampal

volume (Table 2).

We studied the impact of brain metabolism on EEG met-

rics (Table 2 and Fig. 4). N + subjects had higher PSD

gamma and higher MSF than N� subjects (P = 0.0157

and P = 0.0064, respectively). A decrease in mean 18F-

FDG SUVR was associated with higher PSD theta and

higher wSMI theta (P = 0.0203 and P = 0.0452, respect-

ively). N + subjects showed a trend towards higher spectral

entropy (P = 0.1665) and lower PSD delta (P = 0.1067). As

previous local regression suggested that amyloid load had

an impact on average EEG metrics only in N + subjects and

not in N� subjects, we analysed the interaction between

amyloid load and brain metabolism (Table 2 and Fig. 5).

There was a significant interaction between amyloid SUVR

and neurodegeneration status for complexity (P = 0.0217),

PSD beta (P = 0.0348) and MSF (P = 0.0136) and a trend

towards significance for spectral entropy (P = 0.0669), PSD

gamma (P = 0.0691) and PSD delta (P = 0.1225). With

increasing amyloid load, N + subjects showed decreased

complexity, MSF and PSD beta and presented a trend to-

wards decreased spectral entropy, decreased PSD gamma

and increased PSD delta, meaning a slowing of brain

Table 1 Comparison of baseline characteristics between the four groups

All participants A�N� (control) A�N + A + N� A + N + P-valuea

Demographics

Number of subjects 314 175 (55.73%) 51 (16.24%) 63 (20.06%) 25 (7.96%) ..

Age, years 76.07 � 3.47 75.62 � 3.39 76.33 � 3.64 76.81 � 3.19 76.88 � 4.01 0.057

Males 116 (36.94%) 59 (33.71%) 25 (49.02%) 16 (25.40%) 16 (64.00%) ..

Females 198 (63.06%) 116 (66.29%)e 26 (50.98%)f 47 (74.60%)e,g 9 (36.00%)f,h 0.001*

High educational levelb 213 (67.83%) 124 (70.86%) 36 (70.59%) 35 (55.56%) 18 (72.00%) 0.141

APOE "4 allele 61 (19.43%) 25 (14.29%)e,f 3 (5.88%)e,f 22 (34.92%)g,h 11 (44.00%)g,h 50.001*

Cognitive tests

Mini-Mental State Examination 28.66 � 0.95 28.73 � 0.98 28.71 � 0.92 28.44 � 0.92 28.60 � 0.87 0.199

Free and Cued Selective Reminding Test

Immediate Free Recall 29.96 � 5.41 30.35 � 5.36 30.10 � 5.45 29.65 � 5.37 27.68 � 5.45 0.131

Immediate Total Recall 46.08 � 1.98 46.18 � 1.95 45.76 � 2.21 46.19 � 1.88 45.72 � 1.95 0.427

Delayed Free Recall 11.83 � 2.27 12.03 � 2.11e 11.84 � 2.45 11.84 � 2.32e 10.44 � 2.47f,h 0.013*

Delayed Total Recall 15.67 � 0.63 15.68 � 0.63 15.63 � 0.75 15.74 � 0.48 15.56 � 0.71 0.613

Frontal Assessment Battery 16.39 � 1.69 16.51 � 1.67 16.60 � 1.70 16.02 � 1.68 16.12 � 1.72 0.160
18F-FDG PET imaging

Mean FDG SUVRsc 2.45 � 0.25 2.56 � 0.20e,g 2.15 � 0.11f,h 2.52 � 0.20e,g 2.15 � 0.12f,h 5 0.001*
18F-florbetapir PET imaging

SUVRs 0.78 � 0.19 0.68 � 0.05e,f 0.70 � 0.06e,f 1.00 � 0.17e,g,h 1.09 � 0.24f,g,h 5 0.001*

Volumetric MRI, cm3

Total hippocampal volumed 2.71 � 0.31 2.76 � 0.30e 2.66 � 0.33 2.65 � 0.35 2.56 � 0.21 h 0.004*

Data are mean � SD or number (%).
aP-value for the comparison between the four groups. P-values were calculated by a one-way ANOVA for continuous data and a Chi2 test for categorical data. *P-value 5 0.05.
bOn a scale of 1–8, where 1 = primary education and 8 = higher education, high was defined as scores 46.
c18F-FDG PET indices partial-volume corrected.
dNormalized to the mean total intracranial volume.

Following indicate which groups significantly differ:
eGroup differs from A + N + .
fGroup differs from A + N�.
gGroup differs from A�N + .
hGroup differs from A�N�.
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Figure 2 Local regression of average EEG metrics across all scalp electrodes as a function of amyloid SUVR for neurode-

generation positive subjects only. SE = spectral entropy.

Figure 1 Local regression of average EEG metrics across all scalp electrodes as a function of amyloid SUVR. SE = spectral

entropy.
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oscillations. N + subjects showed a trend towards higher

PSD theta in the presence of amyloid positivity compared

to N + A� subjects (P = 0.1064). In N� subjects, amyloid

load did not appear to have an impact on average EEG

metrics. If not considering the interaction between amyloid

load and neurodegeneration, amyloid load alone did

not show a significant impact on average EEG metrics

(Table 2 and Supplementary Fig. 4). This supports the

fact that amyloid load has an impact on average EEG met-

rics only if associated with neurodegeneration. Results did

not stay statistically significant after multiplicity correction

on 10 EEG metrics.

Relationship between average EEG
metrics, age, gender, education,
APOE e4 and hippocampal volume

Males had higher average wSMI theta (FDR-corrected

P50.0001) and lower PSD delta (FDR-corrected

P = 0.0256) compared to females (Table 2). No significant

relationship was found between gender and the other EEG

metrics (Supplementary Fig. 5). There was no significant

relationship between EEG metrics and educational level,

age and hippocampal volume. wSMI theta was higher in

the presence of APOE e4 genotype (Supplementary Fig. 6)

than in the absence of APOE e4 genotype (P = 0.0493). No

significant relationship was found between APOE e4 and

the other EEG metrics.

224 Electrodes analysis:
topographical differences across
EEG measures and groups

We evaluated topographical differences across EEG meas-

ures between the control group (A�N�) and the three

other groups (A + N + , A + N� and A�N + )

(Supplementary Table 1 and Fig. 6), then between N +

and N� subjects (Supplementary Fig. 7) and finally be-

tween A + and A� subjects (Supplementary Fig. 8). The

objectives were to assess the discrimination capacity of

the different EEG metrics between groups and to better

understand the impact of amyloid and neurodegeneration

on EEG measures. All P-values were adjusted on APOE e4
status, gender, education level, age and hippocampal

volume.

The A�N + group showed maximum EEG changes com-

pared to A�N� control group. A�N + subjects had lower

PSD delta in frontocentral regions and right temporal

region, higher PSD beta, complexity, spectral entropy and

wSMI theta in frontocentral regions and higher PSD

gamma in frontocentral and temporal bilateral regions,

compared to A�N� group. The A�N + group presented

a widespread increase of MSF in frontocentral and parieto-

temporal regions. Thus, several EEG measures were effi-

cient indices in discriminating A�N + subjects from

A�N� subjects. The A + N + group showed only an in-

crease in PSD gamma in left frontotemporal region and a

Figure 3 Local regression of average EEG metrics across all scalp electrodes as a function of mean FDG SUVR.

FDG = fluorodeoxyglucose; SE = spectral entropy.
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discrete increase in MSF in left temporal region, compared

to the A�N� group. The A + N + group showed a trend

towards increased wSMI theta in centro-parieto-temporal

regions but did not reach statistical significance. The

A + N� group showed significantly increased wSMI alpha

in parieto-occipital regions compared to the A�N� group.

We compared the N + group to the N� group

(Supplementary Fig. 7) and found that N + subjects pre-

sented similar EEG changes than the A�N + group (as

described earlier) although the EEG changes were less

marked. N + subjects presented increased MSF in fronto-

central and parieto-temporal regions and increased PSD

gamma in frontal and temporal bilateral regions. N + sub-

jects had a discrete diminution of PSD delta in frontocen-

tral regions and a discrete increase in wSMI theta, spectral

entropy and complexity in frontocentral regions. There was

a trend toward increased PSD beta in frontocentral regions

in N + subjects but it did not reach statistical significance.

MSF and PSD gamma were the most powerful metrics to

discriminate between N + and N� subjects (Supplementary

Table 1; P = 0.0093 and P = 0.0182 for main effects of

MSF and PSD gamma, respectively). Although there

was a significant interaction between amyloid status

and electrodes for wSMI alpha in a linear mixed

model (P5 0.0001 and FDR-corrected P = 0.0003;

Supplementary Table 1), the comparison of A + versus

A� group (Supplementary Fig. 8) showed only a trend to-

wards increased wSMI alpha in parieto-occipital regions

but did not reach cluster statistical significance.

Comparison of wSMI with
‘traditional’ functional connectivity
measures

Results are detailed in the Supplementary material.

Functional connectivity analysis at
source level

Results of functional connectivity source analysis are

described in the Supplementary material.

Discussion
To our knowledge, this is the first study to demonstrate

EEG changes in preclinical Alzheimer’s disease and

SNAP. Moreover, we have explored the effects of

Alzheimer’s disease topography-specific neurodegeneration

and amyloid-b deposition on EEG metrics. The most prom-

inent effects of neurodegeneration on EEG metrics were

localized in frontocentral regions with an increase in high

frequency oscillations (higher beta and gamma power) and

a decrease in low frequency oscillations (lower delta

power), higher spectral entropy, higher complexity and

increased functional connectivity measured by wSMI inT
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theta band. Neurodegeneration was associated to a wide-

spread increase of MSF. Interestingly, in the absence of

neurodegeneration, at stage 1 of preclinical Alzheimer’s dis-

ease according to Sperling et al. (2011), amyloid burden

did not have any impact on average EEG metrics but had

a local effect marked by an increased functional connectiv-

ity measured by wSMI alpha in parieto-occipital regions.

Importantly, in N + subjects, we found a non-linear re-

lationship between amyloid burden and EEG metrics, either

following a U-shape curve for delta power or an inverted

U-shape curve for PSD beta, PSD gamma, MSF, complex-

ity, spectral entropy and wSMI theta. This means that in

the presence of neurodegeneration, EEG patterns are modu-

lated differently depending on the degree of severity of

amyloid burden. After N + subjects exceed a certain thresh-

old of amyloid load, the whole trend of EEG metrics re-

verses, meaning increased delta power and decreased beta

and gamma power, MSF, spectral entropy, complexity and

wSMI in theta band, with an EEG pattern getting close to

the one observed in MCI and clinical Alzheimer’s disease.

The fact that N + subjects have opposite EEG trends for

intermediate amyloid load (i.e. increased high frequency

oscillations) and high to very high amyloid load (i.e. slow-

ing of brain oscillations) can explain why A + N + subjects

showed less EEG changes than A�N + subjects, with only

a discrete increase of PSD gamma and MSF. Indeed, in the

A + N + group, some subjects have intermediate amyloid

load and others have very high amyloid load, so in the

Figure 4 Estimated marginal means from multiple linear regressions of average EEG metrics according to brain metabolism.

Amyloid load and brain metabolism are used either as continuous or binary measures, depending on each EEG metric to maximize R-squared

values. (A) Brain metabolism as binary measure (N + versus N�). (B) Brain metabolism as continuous measure (mean FDG SUVR). Estimated

marginal means and standard deviation are depicted; co-variables in the models were: age, education level, gender, APOE e4 status, hippocampal

volume and florbetapir (either binary or continuous). P-values are indicated with *P5 0.05; **P5 0.01. n.s. = not significant;

FDG = fluorodeoxyglucose; SE = spectral entropy.
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A + N + group some subjects have increased high frequency

oscillations and others have a slowing of brain oscillations;

these effects going in opposite directions, in the end at

A + N + group level very little EEG changes are visible,

while EEG changes are actually present at individual level.

Therefore, it seems best to individualize two different

EEG phases in N + subjects, depending on the level of

amyloid burden. We will first focus on the results for the

first EEG phase in preclinical Alzheimer’s disease subjects

presenting subthreshold to intermediate amyloid burden,

before amyloid load exceeds a critical threshold.

Increasing high frequency spectral power in frontocentral

regions is in line with a recent study, which showed a func-

tional frontal upregulation revealed by an increased frontal

alpha power in preclinical Alzheimer’s disease (Nakamura

et al., 2018). Compared to this previous study, we found a

frontal upregulation in higher frequency bands that were

beta (12–30 Hz) and gamma (30–45 Hz). Increased frontal

functional upregulation has also been shown in other stu-

dies with an increased functional connectivity in frontal

regions (Mormino et al., 2011; Jones et al., 2016). In an

inverse way we found decreased frontal delta power in the

presence of neurodegeneration, for subthreshold amyloid

SUVR. A study by Nakamura et al. (2018) reported a nega-

tive correlation between regional metabolism in Alzheimer’s

disease signature regions and frontal delta power in an

amyloid-positive group, which included MCI and cogni-

tively normal subjects, MCI subjects showing higher frontal

Figure 5 Estimated marginal means from multiple linear regressions of average EEG metrics according to interactions be-

tween amyloid load and brain metabolism. Amyloid load and brain metabolism are used either as continuous or binary measures,

depending on each EEG metric to maximize R-squared values. (A) Interaction between amyloid SUVR and FDG status. (B) Interaction between

amyloid SUVR and mean FDG SUVR. (C) Interaction between mean FDG SUVR and amyloid status. Estimated marginal means and standard

deviation are depicted; co-variables in the models were: age, education level, gender, APOE e4 status, hippocampal volume and Florbetapir (either

binary or continuous). P-values are indicated with *P5 0.05. FDG = fluorodeoxyglucose; SE = spectral entropy.
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Figure 6 224 electrodes topographical maps of EEG metrics. The topographical 2D projection (top = front) of each measure [nor-

malized power spectral density in delta (d), theta (y), alpha (a), beta (b), gamma (�), median spectral frequency (MSF), spectral entropy (SE),

algorithmic complexity (K) and weighted symbolic mutual information in theta band and alpha band (wSMI y and wSMI a)] is plotted for the

A + N + group, the A�N + group, A + N� group and control group A�N� (columns). Statistics were done on 224 electrodes by non-parametric

cluster permutation test. The three last columns indicate non-parametric cluster-based permutation test results for the pairwise comparisons:

A + N + versus A�N�; A�N + versus A�N�; and A + N� versus A�N� for each EEG metric. The topographical maps in the three last

columns are colour-coded according to the cluster permutation tests P-values (colour: P5 0.05, greyscale: P4 0.05). Clusters of electrodes

whose EEG metrics’ values are significantly different from the control group (A�N�) are depicted.
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delta power than cognitively normal subjects. At first sight

these results could seem discrepant with our study but can

be explained first by the fact that we studied cognitively

normal subjects only and not MCI subjects; and second, we

found increased delta power when neurodegeneration was

associated to high amyloid burden, similarly to Nakamura

et al. (2018), thus confirming that delta power increase is a

marker of disease progression within the Alzheimer’s dis-

ease continuum.

The first hypothesis to explain an increase in frontal high

frequency oscillations concomitant with a decrease in low

frequency oscillations in N + subjects with subthreshold to

intermediate amyloid load is a compensatory mechanism,

which was also proposed in previous studies (Mormino

et al., 2011; Lim et al., 2014; Jones et al., 2016). A suffi-

cient level of compensation is needed to maintain normal

cognitive function despite amyloid burden and hypometa-

bolism in preclinical Alzheimer’s disease. Compensatory

mechanisms would then fail once amyloid burden exceeds

a certain level, explaining the reversal of EEG metrics

trend, with a slowing of brain oscillations revealed by

increased delta power and decreased beta and gamma

power, with a spectral pattern getting close to the one typ-

ically found in MCI and Alzheimer’s disease. Another ex-

planation is that as participants in the INSIGHT-preAD

study are selected on normal cognition, subjects with neu-

rodegeneration may have a particularly high cognitive re-

serve, which is revealed by baseline higher spectral power

in frontal regions, reduced low frequency oscillations and

higher functional connectivity (Cohen et al., 2009; Lim

et al., 2014); this cognitive reserve would be altered as

amyloid load increases, which would explain why subjects

with neurodegeneration and very high amyloid load show

slowing of brain oscillations and lower functional

connectivity.

We found a local increase of functional connectivity mea-

sured by wSMI alpha in parieto-occipital regions in subjects

at stage 1 of preclinical Alzheimer’s disease. This could be

explained by abnormal transient neuronal hyperexcitability

related to amyloid-b deposition with a relative decrease in

synaptic inhibition (Busche et al., 2008; Palop and Mucke,

2010; Nakamura et al., 2018). The ‘acceleration’ hypoth-

esis suggests that once amyloid-b deposition is initiated by

independent events, a milieu of higher functional connect-

ivity hastens this deposition, which eventually leads to the

functional disconnection or metabolic deterioration in the

subjects with amyloid burden (Cohen et al., 2009; de Haan

et al., 2012; Johnson et al., 2014; Lim et al., 2014). The

metabolic demands associated with high connectivity may

be the detrimental phenomenon that triggers downstream

cellular and molecular events associated with Alzheimer’s

disease (Jones et al., 2016). Previous work in animal

models has shown that intermediate levels of amyloid-b
enhance synaptic activity presynaptically (Abramov et al.,

2009), whereas abnormally high levels of amyloid-b impair

synaptic activity by inducing post-synaptic depression

(Palop and Mucke, 2010). This is consistent with our

results showing basically two different EEG phases in pre-

clinical Alzheimer’s disease stage 2. In the early preclinical

stage that is characterized by neurodegeneration combined

with intermediate levels of amyloid-b, there is an increase

in brain oscillations and functional connectivity due to

compensation and/or amyloid-b-related excitotoxicity.

Then, the increase in brain oscillations and functional con-

nectivity would hasten amyloid-b deposition. In a later pre-

clinical stage characterized by neurodegeneration combined

with high to very high levels of amyloid-b, there is a

slowing of brain oscillations and reduced functional con-

nectivity due to compensatory mechanisms failure and/or

post-synaptic depression, with an EEG pattern getting

close to the one observed in MCI and Alzheimer’s disease.

The breakdown of initial functional compensation would

facilitate accelerated tau-related neurodegenerative pro-

cesses (Jones et al., 2017).

In our study, we showed that a decrease in brain metab-

olism in Alzheimer’s disease signature regions was asso-

ciated with higher theta power. These results are in line

with the study by Stomrud et al. (2010) on a small

sample of cognitively normal subjects (n = 33) showing

that increased CSF total tau and phosphorylated tau as

well as increased phosphorylated tau/amyloid-b1–42 ratio

in the CSF correlated with increased theta power, whereas

amyloid-b1–42 in itself was not correlated with theta power.

It has been previously suggested that increased theta power

could be linked to neuronal degeneration but may not be

specific to Alzheimer’s disease (Nakamura et al., 2018).

To our knowledge, our work is the first to study com-

plexity and spectral entropy in subjects with preclinical

Alzheimer’s disease, coupled with metabolic evidence of

neurodegeneration and amyloid-b biomarker information.

The increased complexity and spectral entropy observed

in frontal regions in the presence of neurodegeneration

could also be explained by compensatory mechanisms.

Compensation would then fail with increasing amyloid

burden, with an EEG pattern becoming less complex and

more regular, approximating the one observed in MCI/

Alzheimer’s disease (Hornero et al., 2009; Staudinger and

Polikar, 2011; Al-Nuaimi et al., 2018).

One of the main strengths of our study was the use of a

high-performing and practical EEG processing pipeline with

automated artefact elimination and extraction of several

validated EEG biomarkers. This tool avoids the need for

the time-consuming manual removal of artefacts and the

risk of possible human biases. Effective artefact removal

is particularly important in a population of elderly subjects.

Our results suggest that the EEG measures extracted with

this pipeline can be successfully employed in a wide range

of practical contexts whenever spectral or information-

theory biomarkers are needed. wSMI has proved effective

in assessing functional connectivity in previous studies

(King et al., 2013; Sitt et al., 2014; Engemann et al.,

2015, 2018) because unlike several traditional synchrony

measures it minimizes common-source artefacts and pro-

vides an efficient way to detect non-linear coupling.

EEG biomarkers of preclinical Alzheimer BRAIN 2019: Page 13 of 17 | 13

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/advance-article-abstract/doi/10.1093/brain/aw

z150/5519996 by Bibliotheque Fac de M
edecine user on 20 June 2019



Moreover, wSMI has already proven sensitive to detect ab-

errant networks in other neurodegenerative conditions,

including Parkinson’s disease (Melloni et al., 2015) and

behavioural variant frontotemporal dementia (Dottori

et al., 2017). Our study supports the idea that EEG being

a non-invasive, cheap and widely available technique, could

be used as a screening tool for identifying individuals at

high risk of preclinical Alzheimer’s disease and future cog-

nitive decline. Moreover, EEG biomarkers seem to be

useful tools to measure and monitor neurodegeneration.

Another novelty of our work is the division of our study

population in four groups, based on amyloid and neurode-

generation criteria, in contrast to the more commonly used

selection of individuals at risk for Alzheimer’s disease based

on amyloid biomarker alone with a dichotomous classifica-

tion of subjects as amyloid-negative or positive. First, amyl-

oid deposition alone does not necessarily represent

progression to clinical Alzheimer’s disease as both neuro-

pathological and PET data show evidence of extensive

amyloid-b pathology in cognitively normal older people

(Bennett et al., 2006; Morris et al., 2010; Jagust, 2016).

Second, it has been shown that neurodegeneration, particu-

larly synapse loss, is the aspect of Alzheimer’s disease

neuropathological change that correlates most closely

with symptom onset and cognitive decline (Soldan et al.,

2016; Jack et al., 2018) and several studies using 18F-FDG

PET showed that cerebral metabolic rate of glucose reduc-

tion predicted cognitive decline from normal elderly cogni-

tion to MCI/Alzheimer’s disease with a high accuracy,

decliners showing greater reduction of 18F-FDG SUVR

values (de Leon et al., 2001; Jagust et al., 2006; Mosconi

et al., 2009, 2010). A study by Teipel et al. (2018) found

no association between cortical amyloid load and func-

tional connectivity in the INSIGHT-preAD cohort, which

is explainable first by the fact that authors only assessed the

impact of amyloid load and not the effect of neurodegen-

eration on functional connectivity; and second, they used

phase lag index to measure functional connectivity, which

is affected by noise and volume conduction. The study of

four groups of subjects depending on their amyloid and

neurodegeneration status enabled us to explore EEG

changes at different stages of preclinical Alzheimer’s disease

(stages 1 and 2) and to study SNAP subjects, who are also

at risk of future cognitive decline (Caroli et al., 2015).

Moreover, we were able to assess independently the effects

of neurodegeneration and amyloid burden on EEG metrics.

Our results showed increased wSMI theta in APOE e4
carriers. This is consistent with other studies showing

increased functional connectivity in cognitively normal

APOE e4 carriers (Filbey et al., 2006; Kramer et al.,

2008), whereas other studies found reduced brain activity

in APOE e4 carriers (Lind et al., 2006) or no differences in

functional connectivity according to APOE genotype

(Bassett et al., 2006; Nakamura et al., 2017). We found

that males had higher functional connectivity measured by

wSMI theta; however, this result should be interpreted with

caution as there was some gender imbalance between

groups. Some studies have found higher functional connect-

ivity in males (Allen et al., 2011; Filippi et al., 2013),

whereas others have reported that gender has a relatively

small (Bluhm et al., 2008) or lack of effect (Weissman-

Fogel et al., 2010) on resting state networks. Thus, further

studies are needed to clarify the impact of gender and

APOE e4 genotype on EEG metrics.

Our study presents some limitations. We divided the

INSIGHT-preAD cohort into four groups of subjects

based on 18F-florbetapir PET and 18F-FDG PET thresholds.

However, principally for amyloid burden, this dichotomous

distinction between A + and A� categories is questionable

as A� subjects are not necessarily completely free of amyl-

oid, especially subjects that are slightly below the threshold.

In the A�N + (SNAP) group some subjects had subthres-

hold amyloid load so would be close to stage 2 of preclin-

ical Alzheimer’s disease. In the A + N + group the

population was heterogeneous, as some subjects had inter-

mediate amyloid burden and others had high to very high

amyloid burden, making it difficult to interpret the results

at A + N + group level, as EEG metrics went into opposite

directions depending on the degree of severity of amyloid

burden. For that reason, we decided it was best to analyse

amyloid load as a continuous variable and to describe two

EEG phases in stage 2 of preclinical Alzheimer’s disease

(for intermediate amyloid load and high to very high amyl-

oid burden). Tau marker was not available, which is an-

other limitation of this study, especially with regards to the

recent NIA-AA research framework (Jack et al., 2018),

which stipulates that only individuals with both amyloid-

b and pathologic tau biomarkers would be considered to

have Alzheimer’s disease. However, it has been shown that

there is a strong correlation between 18F-FDG PET hypo-

metabolism in Alzheimer’s disease-signature regions and

tau pathology, and also between hippocampal atrophy

and tau pathology (Gómez-Isla et al., 1997; Nelson et al.,

2012). As in our study A + N + subjects not only had a

combination of high 18F-florbetapir retention and low
18F-FDG PET metabolism but also presented significant

hippocampal volume reduction, it means that they have a

high probability of pathologic tau deposits. We decided to

do our principal analysis at scalp level and mainly use glo-

bally-averaged EEG measures so that the procedure would

stay simple, keeping in mind that it could be applied as a

possible routine screening tool in the future to identify in-

dividuals at high risk of preclinical Alzheimer’s disease. To

have a better interpretation in terms of cerebral regions we

did functional connectivity analysis at source level on four

samples of subjects (Supplementary material), but due to

lack of power, we did not evidence any significant differ-

ences in functional connectivity at source level. Source ana-

lysis on a larger number of subjects will need to be done in

future studies. Finally, the analysis of longitudinal EEG

data in the INSIGHT-preAD cohort will be most interesting

to monitor evolution of EEG metrics during follow-up, es-

pecially in patients who will cognitively decline and evolve

to prodromal Alzheimer’s disease.
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To conclude, our work identified several EEG biomarkers

that are effective indices of Alzheimer’s disease topography-

specific neurodegeneration. As these EEG biomarkers are

modulated by the degree of severity of amyloid load, they

will possibly help to distinguish between different stages of

preclinical Alzheimer’s disease. Our findings need to be

replicated in further studies with a longitudinal analysis

of EEG changes to finely assess the temporal evolution of

these associations.
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Burnham SC, Bourgeat P, Doré V, Savage G, Brown B, Laws S, et al.

Clinical and cognitive trajectories in cognitively healthy elderly in-

dividuals with suspected non-Alzheimer’s disease pathophysiology

(SNAP) or Alzheimer’s disease pathology: a longitudinal study.

Lancet Neurol 2016; 15: 1044–53.

EEG biomarkers of preclinical Alzheimer BRAIN 2019: Page 15 of 17 | 15

D
ow

nloaded from
 https://academ

ic.oup.com
/brain/advance-article-abstract/doi/10.1093/brain/aw

z150/5519996 by Bibliotheque Fac de M
edecine user on 20 June 2019

https://academic.oup.com/brainj/article-lookup/doi/10.1093/brainj/awz150#supplementary-data
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5576287/bin/13195_2017_288_MOESM3_ESM.docx
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5576287/bin/13195_2017_288_MOESM3_ESM.docx
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5576287/bin/13195_2017_288_MOESM3_ESM.docx


Busche MA, Eichhoff G, Adelsberger H, Abramowski D, Wiederhold

K-H, Haass C, et al. Clusters of hyperactive neurons near amyloid

plaques in a mouse model of Alzheimer’s disease. Science 2008; 321:

1686–9.

Caroli A, Prestia A, Galluzzi S, Ferrari C, van der Flier WM,

Ossenkoppele R, et al. Mild cognitive impairment with suspected

nonamyloid pathology (SNAP): prediction of progression.

Neurology 2015; 84: 508–15.

Cohen AD, Price JC, Weissfeld LA, James J, Rosario BL, Bi W, et al.

Basal cerebral metabolism may modulate the cognitive effects of A

in mild cognitive impairment: an example of brain reserve.

J Neurosci 2009; 29: 14770–8.

de Haan W, Mott K, van Straaten ECW, Scheltens P, Stam CJ.

Activity dependent degeneration explains hub vulnerability in

Alzheimer’s disease. PLoS Comput Biol 2012; 8: e1002582.

de Leon MJ, Convit A, Wolf OT, Tarshish CY, DeSanti S, Rusinek H,

et al. Prediction of cognitive decline in normal elderly subjects with

2-[18F]fluoro-2-deoxy-D-glucose/positron-emission tomography

(FDG/PET). Proc Natl Acad Sci USA 2001; 98: 10966–71.

Dottori M, Sedeño L, Martorell Caro M, Alifano F, Hesse E, Mikulan

E, et al. Towards affordable biomarkers of frontotemporal demen-

tia: a classification study via network’s information sharing. Sci Rep

2017; 7: 3822.
Drzezga A, Lautenschlager N, Siebner H, Riemenschneider M, Willoch

F, Minoshima S, et al. Cerebral metabolic changes accompanying

conversion of mild cognitive impairment into Alzheimer’s disease: a

PET follow-up study. Eur J Nucl Med Mol Imaging 2003; 30:

1104–13.
Dubois B, Epelbaum S, Nyasse F, Bakardjian H, Gagliardi G,

Uspenskaya O, et al. Cognitive and neuroimaging features and

brain b-amyloidosis in individuals at risk of Alzheimer’s disease

(INSIGHT-preAD): a longitudinal observational study. Lancet

Neurol 2018; 17: 335–46.

Engemann D, Raimondo F, King J-R, Jas M, Gramfort A, Dehaene S.

Automated measurement and prediction of consciousness in vegeta-

tive and minimally conscious patients. In: ICML Workshop on

Statistics, Machine Learning and Neuroscience 2015, Lille, France,

2015.

Engemann DA, Raimondo F, King J-R, Rohaut B, Louppe G, Faugeras

F, et al. Robust EEG-based cross-site and cross-protocol classifica-

tion of states of consciousness. Brain J Neurol 2018; 141: 3179–92.

Filbey FM, Slack KJ, Sunderland TP, Cohen RM. Functional magnetic

resonance imaging and magnetoencephalography differences asso-

ciated with APOE"4 in young healthy adults. Neuroreport 2006;

17: 1585–90.

Filippi M, Valsasina P, Misci P, Falini A, Comi G, Rocca MA. The

organization of intrinsic brain activity differs between genders: a

resting-state fMRI study in a large cohort of young healthy subjects.

Hum Brain Mapp 2013; 34: 1330–43.
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