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Holomorphic Cohomological Convolution and
Hadamard Product

by

Christophe Dubussy and Jean-Pierre Schneiders

Abstract

In this article we explain the link between Pohlen’s extended Hadamard product and the
holomorphic cohomological convolution on C∗. For this purpose we introduce a general-
ized Hadamard product, which is defined even if the holomorphic functions do not vanish
at infinity, as well as a notion of strongly convolvable sets.
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§1. The extended Hadamard product

Classically, the Hadamard product of two formal power series A(z) =
∑+∞
n=0 anz

n

and B(z) =
∑+∞
n=0 bnz

n is defined by setting

(A ⋆ B)(z) =

+∞∑
n=0

anbnz
n.

Using Taylor expansions, one can thus define the Hadamard product f1 ⋆f2 of two

germs f1 and f2 of holomorphic functions at the origin. Exploiting the Cauchy

integral representation, one obtains the formula

(f1 ⋆ f2)(z) =
1

2iπ

∫
C(0,r)+

f1(ζ)f2

(z
ζ

) dζ
ζ
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(Bât. B37), 4000 Liège, Belgium;
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(Bât. B37), 4000 Liège, Belgium;
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for all z in a neighborhood of 0, C(0, r)+ being a small, positively oriented circle

centered at the origin (see e.g. [19, Chap. VI.3] for an introduction and [1, 8, 14]

for some applications).

In his thesis [17] (see also [16]), Pohlen introduced the more general notion

of a Hadamard product for holomorphic functions defined on open subsets of the

Riemann sphere P = C∪{∞} which do not necessarily contain the origin. This new

definition led to interesting applications (e.g. [12] and [15]). In this introduction,

we shall recall the construction and the results of Pohlen.

Definition 1.1. Let P be the Riemann sphere equipped with its canonical struc-

ture of a complex manifold. Let Ω be an open subset of P. One sets

H(Ω) =
{
f ∈ O(Ω) : f(∞) = 0

}
if ∞ ∈ Ω and H(Ω) = O(Ω) otherwise.

Definition 1.2. We set M = (P×P)\{(0,∞), (∞, 0)} and extend the complex

multiplication continuously as a map · : M → P. We then have

∞ · a = a · ∞ =∞

if a ∈ P is not equal to zero. If A, B are subsets of P such that A × B ⊂ M , one

sets

A ·B =
{
a · b : a ∈ A, b ∈ B

}
.

One also extends the inversion z 7→ z−1 continuously from C∗ to P by setting

0−1 =∞ and ∞−1 = 0. If S ⊂ P, one sets

S−1 =
{
z : z−1 ∈ S

}
.

For the rest of the article, we shall often drop the point and write the multi-

plication as a concatenation.

Definition 1.3. Two open subsets Ω1,Ω2 ⊂ P are called star-eligible if

(1) Ω1 and Ω2 are proper subsets of P,
(2) (P \Ω1)× (P \Ω2) ⊂M ,

(3) (P \Ω1)(P \Ω2) ̸= P.

In this case, the star product of Ω1 and Ω2, denoted Ω1 ⋆ Ω2, is defined by

Ω1 ⋆ Ω2 = P \((P \Ω1)(P \Ω2)).

For the several equivalent definitions of the index/winding number of a cycle

c in C, we refer to [18]. For any cycle c in C, one sets Ind(c,∞) = 0.
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Definition 1.4. Let Ω be a nonempty, open subset of P, K be a nonempty, com-

pact subset of Ω and c be a cycle in Ω\(K ∪ {0} ∪ {∞}). If ∞ /∈ K and

Ind(c, z) =

{
1 if z ∈ K,
0 if z ∈ P \Ω,

then c is called a Cauchy cycle for K in Ω. If ∞ ∈ Ω and

Ind(c, z) =

{
0 if z ∈ K,
−1 if z ∈ P \Ω,

then c is called an anti-Cauchy cycle for K in Ω.

In [17, Lem. 2.3.1], Pohlen refers to ad hoc explicit constructions which ensure

that Cauchy and anti-Cauchy cycles always exist for any Ω and any K. In the next

section we shall see that this existence can easily be obtained by using singular

homology.

Let Ω1 and Ω2 be two star-eligible open subsets of P. Note that, if z ∈ Ω1⋆Ω2,

then z(P \Ω2)
−1 is a closed subset of Ω1.

Definition 1.5. Let z ∈ (Ω1 ⋆ Ω2)\{0,∞}. A Hadamard cycle for z(P \Ω2)
−1 in

Ω1 is a cycle c in Ω1\(z(P \Ω2)
−1 ∪ {0} ∪ {∞}) which satisfies the condition given

in the following table.

Ω2 Ω1

0,∞ ∞ 0

0,∞ cc+ or acc− acc− cc+ cc

∞ acc− acc− — —

0 cc+ — cc+ —

acc — — —

This table should be understood in the following way. The header row and

the first column indicate which of these elements are in Ω1 and Ω2 respectively.

The abbreviation cc (resp. acc) means that cycle c is a Cauchy (resp. anti-Cauchy)

cycle for z(P \Ω2)
−1 in Ω1. The abbreviation cc+ (resp. acc−) means that cycle c

is a Cauchy (resp. anti-Cauchy) cycle with the extra condition Ind(c, 0) = 1 (resp.

Ind(c, 0) = −1). A dash means that this case cannot occur. (See Figure 1 for an

example of Hadamard cycle.)

One can now extend the standard Hadamard product.



24 C. Dubussy and J.-P. Schneiders

Definition 1.6. Let f1 ∈ H(Ω1) and f2 ∈ H(Ω2). For each z ∈ (Ω1 ⋆Ω2)\{0,∞}
one sets

(f1 ⋆ f2)(z) =
1

2iπ

∫
cz

f1(ζ)f2

(z
ζ

) dζ
ζ
,

where cz is a Hadamard cycle for z(P \Ω2)
−1 in Ω1. One can check that this integral

does not depend on the chosen Hadamard cycle (see [17, Lem. 3.4.2]). The function

f1 ⋆ f2 is called the Hadamard product of f1 and f2.

0
•

P \Ω1

>

>

z(P \Ω2)
−1

Figure 1. A Hadamard cycle for z(P \Ω2)
−1 in Ω1, in the case where 0,∞ ∈ Ω1

and ∞ ∈ Ω2, 0 /∈ Ω2.

Proposition 1.7 ([17, Lem. 3.4.5, Prop. 3.6.4]). The Hadamard product f1 ⋆ f2
can be continuously extended to Ω1 ⋆ Ω2. If 0 ∈ Ω1 ⋆ Ω2 (resp. ∞ ∈ Ω1 ⋆ Ω2), one

has (f1 ⋆ f2)(0) = f1(0)f2(0) (resp. (f1 ⋆ f2)(∞) = 0). Moreover, f1 ⋆ f2 is an

element of H(Ω1 ⋆ Ω2).

Proposition 1.8 ([17, Prop. 3.6.1]). The Hadamard product is commutative.

In all this framework, the hypothesis f(∞) = 0, when ∞ ∈ Ω, is widely

used. In the next section we shall provide a more general definition of Hadamard

cycles and Hadamard product, based on singular homology theory, which does not

require the vanishing condition at infinity.

§2. Generalized Hadamard cycles

For classical facts about singular homology, we refer to [7] and [9]. For a gen-

eral background on sheaf theory and derived functors, we refer to [10]. For a
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sheaf-theoretic definition of the Borel–Moore homology and the link with singular

homology on HLC-spaces, we refer to [3].

Let us recall that on any topological space X, there is an orientation complex

ωX which is canonically isomorphic to ZX [n] if X is an oriented, topological man-

ifold of pure dimension n. On a topological space X, the Borel–Moore homology

(resp. Borel–Moore homology with compact support) of degree k is defined by

BMHk(X) := H−k(X,ωX) (resp. BMHc
k(X) := H−k

c (X,ωX)).

Definition 2.1. Let X be an oriented, topological manifold of pure dimension n.

The orientation class of X is the class

αX ∈ BMHn(X) ≃ H−n(X,ZX [n]) ≃ H0(X,ZX)

corresponding to the constant section 1 of ZX .

Let X be a topological manifold X of pure dimension n. Since X is homo-

logically locally connected, the complex RΓc(X,ωX) is canonically isomorphic to

the complex of singular chains on X. Hence, BMHc
k(X) is isomorphic to the usual

singular homology group of degree k, Hk(X). Now let K be a compact subset of

X and consider the two canonical excision distinguished triangles

RΓX\K(X,ωX)→ RΓ(X,ωX)→ RΓ(K,ωX)
+−→

and

RΓc(X\K,ωX)→ RΓc(X,ωX)→ RΓ(K,ωX)
+−→ .

The second triangle implies that H−n(K,ωX) is canonically isomorphic to the

relative singular homology group Hn(X,X\K). Hence, we get a sequence of mor-

phisms
BMHn(X)→ H−n(K,ωX)

∼−→ Hn(X,X\K)

and αX ∈ BMHn(X) induces a relative orientation class αX,K ∈ Hn(X,X\K).

Proposition 2.2. Let Ω be a proper, open subset of C and let F = C \Ω. There
is a canonical isomorphism

H1(Ω)
∼−→ H0

c (F,ZF )

given by

[c] 7→ (z 7→ Indz(c)).

Proof. Let us consider the excision distinguished triangle

(2.1) RΓc(Ω, ωC)→ RΓc(C, ωC)→ RΓc(F, ωC)
+1−−→ .
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It induces a long exact sequence

· · · H2(Ω) H2(C) H−2RΓc(F, ωF )

H1(Ω) H1(C) H−1RΓc(F, ωF ) · · · .

Since C is contractible, one has H2(C) ≃ H1(C) ≃ {0}. Therefore, taking into

account that ωF ≃ ZF [2], one gets a canonical isomorphism

δ : H0
c (F,ZF )

∼−→ H1(Ω).

Let z ∈ F . Applying (2.1) with C \{z},C and {z}, one gets an isomorphism

δz : Z ≃ H0
c ({z},Z{z})

∼−→ H1(C \{z}).

Clearly, δ−1
z ([c]) = Indz(c). Moreover, by [10, Prop. 1.3.6], there is a commutative

diagram

H0
c (F,ZF )

δ //

iz

��

H1(Ω)

jz

��
H0
c ({z},Z{z})

δz

// H1(C \{z}),

where iz(f) = f(z) and jz([c]) = [c]. Hence, one sees that δ−1([c])(z) = Indz(c).

Since this argument is valid for all z ∈ F , the conclusion follows.

To introduce our definition of generalized Hadamard cycles, we have to be in

the same setting as Pohlen. However, looking at Definition 1.3, we find it more

natural to start with closed subsets instead of open ones.

Definition 2.3. Two closed subsets S1 and S2 of P are star-eligible if S1, S2 and

S1S2 are proper and if S1 × S2 ⊂M .

For the rest of the section we fix S1 and S2, two star-eligible closed subsets of

P. If z ∈ C∗ \S1S2, S1 is a compact subset of P \zS−1
2 and, thus, a compact subset

of P \(zS−1
2 ∪ ({0,∞}\S1)). Moreover, one has(
P \(zS−1

2 ∪ ({0,∞}\S1))
)
\S1 = P \(S1 ∪ zS−1

2 ∪ {0} ∪ {∞}).

Let z ∈ C∗ \S1S2.

Definition 2.4. A generalized Hadamard cycle for S1 in P \(zS−1
2 ∪ ({0,∞}\S1))

is a representative c of the class in H1(P \(S1 ∪ zS−1
2 ∪ {0} ∪ {∞})) which is the
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image of

− αP \(zS−1
2 ∪({0,∞}\S1)),S1

∈ H2

(
P \(zS−1

2 ∪ ({0,∞}\S1)),P \(S1 ∪ zS−1
2 ∪ {0} ∪ {∞})

)
by the canonical map

H2

(
P \(zS−1

2 ∪ ({0,∞}\S1)),P \(S1 ∪ zS−1
2 ∪ {0} ∪ {∞})

)
��

H1(P \(S1 ∪ zS−1
2 ∪ {0} ∪ {∞})).

(See Figure 2 for an example of generalized Hadamard cycle.)

0
•

S1

>

>

zS−1
2

Figure 2. A generalized Hadamard cycle for S1 in P \(zS−1
2 ∪ ({0,∞}\S1)), in the

case where 0,∞ /∈ S1 and 0 ∈ S2, ∞ /∈ S2.

Our aim is now to define a product

O(P \S1)×O(P \S2)→ O(C∗ \S1S2)

which generalizes the extended Hadamard product of Pohlen.

Definition 2.5. Let f1 ∈ O(P \S1) and f2 ∈ O(P \S2). For each z ∈ C∗ \S1S2 we

set

(f1 ⋆ f2)(z) =
1

2iπ

∫
cz

f1(ζ)f2

(z
ζ

) dζ
ζ
,

where cz is a generalized Hadamard cycle for S1 in P \(zS−1
2 ∪ ({0,∞}\S1)). Since

two generalized Hadamard cycles are homologous, the definition does not depend
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on the chosen generalized Hadamard cycle. The function f1 ⋆ f2 is called the

generalized Hadamard product of f1 and f2.

Lemma 2.6. Let f1 ∈ O(P \S1) and f2 ∈ O(P \S2). For each compact subset K

of C∗ \S1S2, there is a cycle cK in P \(S1 ∪KS−1
2 ∪ {0} ∪ {∞}) such that

(f1 ⋆ f2)(z) =
1

2iπ

∫
cK

f1(ζ)f2

(z
ζ

) dζ
ζ

for all z ∈ K.

Proof. There is a relative orientation class

αP \(KS−1
2 ∪({0,∞}\S1)),S1

∈ H2

(
P \(KS−1

2 ∪ ({0,∞}\S1)),P \(S1 ∪KS−1
2 ∪ {0} ∪ {∞})

)
.

We choose cK to be a representative of the class in H1(P \(S1∪KS−1
2 ∪{0}∪{∞}))

which is the image of −αP \(KS−1
2 ∪({0,∞}\S1)),S1

by the canonical map

H2

(
(P \(KS−1

2 ∪ ({0,∞}\S1)),P \(S1 ∪KS−1
2 ∪ {0} ∪ {∞})

)
��

H1(P \(S1 ∪KS−1
2 ∪ {0} ∪ {∞})).

For each z ∈ K, there is a canonical commutative diagram

H2

(
P \(KS−1

2 ∪ ({0,∞}\S1)),P \(S1 ∪KS−1
2 ∪ {0} ∪ {∞})

)
**

��

H1(P \(S1 ∪KS−1
2 ∪ {0} ∪ {∞}))

��
H1(P \(S1 ∪ zS−1

2 ∪ {0} ∪ {∞}))

H2

(
P \(zS−1

2 ∪ ({0,∞}\S1)),P \(S1 ∪ zS−1
2 ∪ {0} ∪ {∞})

)
.

44

Obviously, αP \(zS−1
2 ∪({0,∞}\S1)),S1

is the image of αP \(KS−1
2 ∪({0,∞}\S1)),S1

by

the left vertical map. Therefore, by the commutativity of the diagram, one can

deduce that cK is a generalized Hadamard cycle for S1 in P \(zS−1
2 ∪ ({0,∞}\S1))

for all z ∈ K. Hence the conclusion.
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Proposition 2.7. The generalized Hadamard product is a well-defined map

O(P \S1)×O(P \S2)→ O(C∗ \S1S2).

Proof. Let f1 ∈ O(P \S1) and f2 ∈ O(P \S2). We have to check that f1 ⋆ f2 is

holomorphic on C∗ \S1S2. Since it is a local property, it is enough to prove that

f1 ⋆ f2 is holomorphic on each small open disk D ⊂ C∗ \S1S2. Let D be such a

disk. By Lemma 2.6 there is a cycle cD such that

(f1 ⋆ f2)(z) =
1

2iπ

∫
cD

f1(ζ)f2

(z
ζ

) dζ
ζ

for all z ∈ D. We conclude by differentiation under the integral sign.

We shall now prove that our product is a good generalization of the extended

Hadamard product of Pohlen. By doing so, the reader shall see why we chose such

a sign convention in Definition 2.4.

Proposition 2.8. Let f1 ∈ H(P \S1) and f2 ∈ H(P \S2). Let z ∈ C∗ \S1S2. Let

cz be a generalized Hadamard cycle for S1 in P \(zS−1
2 ∪ ({0,∞}\S1)) and dz be

a Hadamard cycle for zS−1
2 in P \S1. Then

1

2iπ

∫
cz

f1(ζ)f2

(z
ζ

) dζ
ζ

=
1

2iπ

∫
dz

f1(ζ)f2

(z
ζ

) dζ
ζ
.

Proof. We treat the case where 0,∞ /∈ S1 and 0 ∈ S2, ∞ /∈ S2 and leave the

others to the reader. By construction, it is clear that cz satisfies

Ind(cz, w) =

{
0 if w ∈ zS−1

2 ∪ {0},
−1 if w ∈ S1.

Let c′z be a cycle P \(S1 ∪ zS−1
2 ∪ {0} ∪ {∞}) such that

Ind(c′z, w) =

{
0 if w ∈ zS−1

2 ∪ S1,

−1 if w = 0.

Since dz is acc−, it is clear by Proposition 2.2 that dz is homologous to cz + c′z in

P \(S1 ∪ zS−1
2 ∪ {0} ∪ {∞}). We then have∫
cz

f1(ζ)f2

(z
ζ

) dζ
ζ

=

∫
dz

f1(ζ)f2

(z
ζ

) dζ
ζ
−
∫
c′z

f1(ζ)f2

(z
ζ

) dζ
ζ
.



30 C. Dubussy and J.-P. Schneiders

Moreover, by the residue theorem,

−
∫
c′z

f1(ζ)f2

(z
ζ

) dζ
ζ

= 2iπResζ=0

(f1(ζ)
ζ

f2

(z
ζ

))
= 2iπ lim

ζ→0

(
f1(ζ)f2

(z
ζ

))
= 2iπf1(0)f2(∞) = 0.

Hence the conclusion.

Remark 2.9. Of course, the generalized Hadamard product is no longer commu-

tative if the functions do not vanish at infinity. For example, let S1 and S2 be as

in the proof of the previous proposition. Let f1 ∈ O(P \S1) and f2 ∈ O(P \S2). By

a similar computation, one sees that

f1 ⋆ f2 − f2 ⋆ f1 = f1(0)f2(∞).

Despite the lack of commutativity, the generalized Hadamard cycles are more

symmetric with respect to 0 and ∞. In Section 5 we shall explain how one can

define a convolution between 1-forms which have (not necessarily isolated) singu-

larities at 0 and ∞. Generalized Hadamard cycles are key ingredients to compute

such a convolution (see also Section 6). Moreover, the commutativity shall even-

tually be obtained thanks to quotient spaces that naturally occur in this context.

§3. The holomorphic integration map

Let X be a complex manifold of complex dimension dX and r ∈ Z. Recall that
Cr∞,X admits a decomposition in bi-types

Cr∞,X ≃
⊕
p+q=r

Cp,q∞,X

which induces a decomposition of the exterior derivative d as

d = ∂ + ∂,

where

∂ : Cp,q∞,X → C
p+1,q
∞,X and ∂ : Cp,q∞,X → C

p,q+1
∞,X .

Similarly, DbrX admits a decomposition in bi-types

DbrX ≃
⊕
p+q=r

Dbp,qX

and an associated decomposition of the distributional exterior derivative. More-

over, for any open subset U of X, we have a canonical isomorphism

DbrX(U) ≃ Γc(U, C2dX−r
∞,X )′
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between the space of complex distributional r-forms and the topological dual of the

space of infinitely differentiable complex differential (2dX−r)-forms with compact

support which induces the similar isomorphism

Dbp,qX (U) ≃ Γc(U, CdX−p,dX−q
∞,X )′.

In the sequel, we denote by ΩpX the sheaf of holomorphic differential p-forms on X

and we set for short ΩX = ΩdXX . Of course, ΩpX is canonically isomorphic to both

the kernel of

∂ : Cp,0∞,X → C
p,1
∞,X

and the kernel of

∂ : Dbp,0X → Db
p,1
X .

The double complex C•,•∞,X (resp. Db•,•X ) is the infinitely differentiable (resp.

distributional) Dolbeault complex of X. By construction, the associated simple

complex is the infinitely differentiable (resp. distributional) de Rham complex

C•∞,X (resp. Db•X) of X. Moreover, we have the following chains of canonical quasi-

isomorphisms:

CX ≃ C•∞,X ≃ Db
•
X and ΩpX ≃ C

p,•
∞,X ≃ Db

p,•
X ,

which are given by de Rham and Dolbeault lemmas.

Let f : X → Y be a holomorphic map from X to a complex manifold Y of

complex dimension dY and let V be an arbitrary open subset of Y . It follows from

the holomorphy of f that the pullback

f∗ : Cr∞,Y (V )→ Cr∞,X(f−1(V ))

sends Cp,q∞,Y (V ) into Cp,q∞,X(f−1(V )) if p+ q = r. In particular,

∂(f∗ω) = f∗(∂ω) and ∂(f∗ω) = f∗(∂ω)

for all ω ∈ Cp,q∞,Y (V ). By topological duality, it follows that there are canonical

pushforward morphisms∫
f

: Γf−proper(f
−1(V ),Db2dY −r

Y )→ Γ(V,Db2dX−r
Y )

and ∫
f

: Γf−proper(f
−1(V ),DbdY −p,dY −q

Y )→ Γ(V,DbdX−p,dX−q
Y )

between distributional forms with f -proper support on f−1(V ) and distributional

forms on V and that these morphisms commute with ∂ and ∂. In particular, we
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get a morphism of double complexes of sheaves of the form∫
f

: f!Db•+dX ,•+dXX → Db•+dY ,•+dYY .

Moreover, if f is a surjective submersion, one can show that the pushforward of a

distributional form associated with an infinitely differentiable form with f -proper

support is itself associated with an infinitely differentiable form which can be

computed by integration over the fibers of f . This shows that, in this case, the

preceding morphism factors through a morphism of the form∫
f

: f! C•+dX ,•+dX∞,X → C•+dY ,•+dY∞,Y .

Thanks to the quasi-isomorphisms

Ωp+dXX ≃ Dbp+dX ,•X and Ωp+dYY ≃ Dbp+dY ,•Y ,

this gives us a morphism∫
f

: Rf!Ω
p+dX
X [dX ]→ Ωp+dYY [dY ]

in the derived category for each p ∈ Z. In the particular case where p = 0, we get

the morphism ∫
f

: Rf!ΩX [dX ]→ ΩY [dY ],

which is usually called the holomorphic integration map along the fibers of f (see

e.g. [10, p. 129]). Note that, if g : Y → Z is another holomorphic map between

complex manifolds, then the well-known relation (g ◦ f)∗ = f∗ ◦ g∗ entails that∫
g◦f =

∫
g
◦
∫
f
.

§4. Holomorphic cohomological convolution

Definition 4.1. Let (G,µ) be a locally compact complex Lie group of complex

dimension n. Two closed subsets S1 and S2 of G are said to be convolvable if

S1 × S2 is µ-proper, i.e. if

(S1 × S2) ∩ µ−1(K)

is a compact subset of G×G for any compact subset K of G.

Remark 4.2. A proper map on a locally compact topological space is universally

closed, in particular closed (see e.g. [2]). Hence, if S1 and S2 are convolvable closed

subsets of G, then µ|S1×S2
is a proper map and S1+S2 = µ|S1×S2

(S1×S2) is closed.
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Definition 4.3. Two distributional 2n-forms u1 and u2 of G are convolvable if

the support S1 of u1 and the support S2 of u2 are convolvable. In that case, the

convolution product of u1 and u2 is a distributional 2n-form on G defined by

u1 ⋆ u2 =

∫
µ

(u1 ⊠ u2) :=

∫
µ

(p∗1u1 ∧ p∗2u2),

where p1, p2 : G×G→ G are the two canonical projections.

Remark 4.4. By choosing a Haar form ν on G, one can define the convolution

product of two distributions by means of the isomorphism DbG ≃ Db2nG given by ν

(see e.g. [4]).

Remark 4.5. If we define

ϕ : G×G→ G×G and ψ : G×G→ G×G

by setting ϕ(g1, g2) = (g1, µ(g1, g2)) and ψ(g1, g2) = (g1, µ(g
−1
1 , g2)), we see that ϕ

and ψ are reciprocal biholomorphic bijections and that the diagram

G×G
ϕ

∼ //

µ
##

G×G

p2
{{

G

is commutative. This shows in particular that µ is a surjective submersion and that

the preceding procedure allows us to define the convolution product of infinitely

differentiable forms also.

Let S1 and S2 be two convolvable closed subsets of G. By construction, the

convolution of distributions on G is the composition of the external product of

distributions

ΓS1
(G,Db2nG )⊗ ΓS2

(G,Db2nG )→ ΓS1×S2
(G×G,Db4nG×G)

and the map ∫
µ

: ΓS1×S2(G×G,Db
4n
G×G)→ Γµ(S1×S2)(G,Db

2n
G )

induced by the integration map along the fibers of µ,∫
µ

: Γµ−proper(G×G,Db4nG×G)→ Γ(G,Db2nG )

and the fact that S1 and S2 are convolvable. It is thus natural to define the

convolution of cohomology classes of holomorphic forms on G as follows.
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Definition 4.6. Let S1, S2 be two convolvable closed subsets of G. Consider the

external product morphisms

RΓS1
(G,Ωp+nG )[n]⊗ RΓS2

(G,Ωq+nG )[n]→ RΓS1×S2
(G×G,Ωp+q+2n

G×G )[2n]

and the morphisms∫
µ

: RΓS1×S2
(G×G,Ωp+q+2n

G×G )[2n]→ RΓµ(S1×S2)(G,Ω
p+q+n
G )[n],

induced by the holomorphic integration map and the fact that S1×S2 is µ-proper.

By composition, these morphisms give derived category morphisms

⋆(G,µ) : RΓS1
(G,Ωp+nG )[n]⊗ RΓS2

(G,Ωq+nG )[n]→ RΓµ(S1×S2)(G,Ω
p+q+n
G )[n],

that we call the holomorphic convolution morphisms of G. Going to cohomology

groups, these morphisms give rise to the morphisms

⋆(G,µ) : H
r+n
S1

(G,Ωp+nG )⊗Hs+n
S2

(G,Ωq+nG )→ Hr+s+n
µ(S1×S2)

(G,Ωp+q+nG ),

that we call the holomorphic cohomological convolution morphisms of G.

Remark 4.7. Consider the diagram

Hn
S1
(G,ΩG)⊗Hn

S2
(G,ΩG) // Hn

µ(S1×S2)
(G,ΩG)

ΓS1(G,Db
2n
G )⊗ ΓS2(G,Db

2n
G ) //

OO

Γµ(S1×S2)(G,Db
2n
G ),

OO

where the vertical arrows are given by the Dolbeault complex of ΩG and the top

(resp. the bottom) horizontal arrow is given by the holomorphic cohomological

morphism of G with p = q = r = s = 0 (resp. the convolution product of distri-

butions). Obviously, by the definitions, this diagram is commutative. This remark

will allow us to perform explicit computations in the next section.

§5. Multiplicative convolution on C∗

In this section we will consider the case where the group G is the group C∗ formed

by the set of nonzero complex numbers endowed with complex multiplication

(noted as a concatenation). We will assume that S1, S2 are convolvable proper

closed subsets of C∗ (note that this means that S1 ∩ KS−1
2 is compact for any

compact subset K of C∗) such that S1S2 is also a proper subset of C∗ and we will
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show how to compute the holomorphic cohomological convolution morphism

(5.1) ⋆ : H1
S1
(C∗,ΩC∗)⊗H1

S2
(C∗,ΩC∗)→ H1

S1S2
(C∗,ΩC∗)

by means of path integral formulas.

Proposition 5.1. Let S be a proper closed subset of C∗, then there is a canonical

isomorphism

Hr
S(C

∗,ΩC∗) ≃

{
Ω(C∗ \S)/Ω(C∗) if r = 1,

0 otherwise.

Proof. Any open subset of C is a Stein manifold.

Thanks to this proposition, one can see that (5.1) can be interpreted as a

bilinear map

⋆ : Ω(C∗ \S1)/Ω(C∗)× Ω(C∗ \S2)/Ω(C∗)→ Ω(C∗ \S1S2)/Ω(C∗).

Now let ω1 ∈ Ω(C∗ \S1) and ω2 ∈ Ω(C∗ \S2) be two given holomorphic forms.

Ideally, we would like to obtain a formula of the form

[ω1] ⋆ [ω2] = [ω],

where ω is a holomorphic form on C∗ \S1S2 which can be computed from ω1 and

ω2 by some path integral.

It is in general not possible to find such a nice formula. However, we will show

that for any relatively compact open subset U of C∗ and any open neighborhood

V of S1S2 in C∗, there is a holomorphic form ω on U \V , which can be computed

from ω1 and ω2 by some path integral and which is such that

[ω] ∈ Ω(U\V )/Ω(U) ≃ H1
V ∩U (U,ΩC∗)

coincides with the image of [ω1] ⋆ [ω2] by the canonical restriction morphism

H1
S1S2

(C∗,ΩC∗)→ H1
V ∩U (U,ΩC∗).

Thanks to the following lemma, this is in fact sufficient to completely compute

[ω1] ⋆ [ω2].

Lemma 5.2. Let S be a closed subset of C∗. Then

H1
S(C

∗,ΩC∗) ≃ lim←−
U∈Urc,V ∈VS

H1
V ∩U (U,ΩC∗),

where Urc denotes the set of relatively compact open subsets of C∗ ordered by ⊂
and VS denotes the set of open neighborhoods of S in C∗ ordered by ⊃.
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Proof. This follows from the Mittag-Leffler theorem for projective systems (see

e.g. [10, Prop. 2.7.1]).

To be able to specify the kind of path integral we need, let us first introduce

the following definition.

Definition 5.3. Let F and G be two closed subsets of C∗ which have a compact

intersection and let W be an open neighborhood of F ∩ G. A relative Hadamard

cycle for F with respect to G in W is a relative 1-cycle

c ∈ Z1(W \ F, (W \ F ) ∩ (W \G))

such that its class

[c] ∈ H1(W \ F, (W \ F ) ∩ (W \G))

is the image of the relative orientation class

αW,F∩G ∈ H2(W,W \ (F ∩G))

by the Mayer–Vietoris morphism

H2(W,W \ (F ∩G))→ H1(W \ F, (W \ F ) ∩ (W \G))

associated with the decomposition

(W,W \ (F ∩G)) = ((W \ F ) ∪W, (W \ F ) ∪ (W \G)).

(See Figure 3 for an example of relative Hadamard cycle.)

Remark 5.4. Let c ∈ Z1(W \ F, (W \ F ) ∩ (W \G)) be such that the associated

class [c] ∈ H1(W \ F, (W \ F )∩ (W \G)) is the image of [W ]F∩G by the sequence

of canonical maps

H2(W,W \ (F ∩G))→ H1(W \ (F ∩G))
= H1((W \ F ) ∪ (W \G))
→ H1((W \ F ) ∪ (W \G),W \G)
→ H1(W \ F, (W \ F ) ∩ (W \G)).

By construction, c is a relative Hadamard cycle for F with respect to G in W .

With this definition in hand, we can now state the main result of this section.

Theorem 5.5. Let S1 and S2 be two convolvable proper closed subsets of C∗ such

that S1S2 ̸= C∗ and let us assume that ω1 = f1 dz and ω2 = f2 dz with f1 ∈
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W

GF

Figure 3. In grey, a relative Hadamard cycle for F with respect to G in W .

O(C∗ \S1), f2 ∈ O(C∗ \S2). Fix a relatively compact open subset U of C∗ and an

open neighborhood V of S1S2 in C∗. Then the image of

[ω1] ⋆ [ω2] ∈ Ω(C∗ \S1S2)/Ω(C∗) ≃ H1
S1S2

(C∗,ΩC∗)

in

Ω(U \ V )/Ω(U) ≃ H1
V ∩U (U,ΩC∗)

is the class of the form ω = fdz ∈ Ω(U \ V ) where

f(z) =

∫
c

f1(ζ)f2

(z
ζ

) dζ
ζ

and c is a relative Hadamard cycle for S1 with respect to US−1
2 in C∗ \(U \V )S−1

2 .

Lemma 5.6. Let S1 and S2 be convolvable closed subsets of C∗ and let W be a

fundamental system of compact neighborhoods of 1 in C∗. Then

(1) the set SW1 = WS1 (resp. SW2 = WS2, S
W
1 SW2 = W 2S1S2) is a closed neigh-

borhood of S1 (resp. S2, S1S2) in C∗ for any W ∈ W;

(2) the closed subsets SW1 and SW2 are convolvable in C∗ for any W ∈ W;

(3) one has
⋂
W∈W SW1 = S1,

⋂
W∈W SW2 = S2 and

⋂
W∈W SW1 SW2 = S1S2;

(4) in particular, if S1 and S2 are proper convolvable closed subsets of C∗ such

that S1S2 ̸= C∗, if U is a relatively compact open subset of C∗ and if V is

an open neighborhood of S1S2 in C∗, then there is W ∈ W such that SW1 and

SW2 are convolvable proper closed subsets of C∗ such that SW1 SW2 ̸= C∗ and

SW1 SW2 ∩ U ⊂ V .
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Proof.

(1) This follows from the fact that FK is closed in C∗ if F (resp. K) is closed

(resp. compact) in C∗ and from the fact that (zW )W∈W is a fundamental

system of neighborhoods of z ∈ C∗.

(2) This follows from the inclusion

SW1 ∩K(SW2 )−1 =WS1 ∩KW−1S−1
2 ⊂W (S1 ∩KW−2S−1

2 )

which is satisfied for any compact subset K of C∗.

(3) This is clear since for any closed subset F of C∗ and any z ̸∈ F there isW ∈ W
such that zW−1 ∩ F = ∅.

(4) By contradiction, assume that

SW1 SW2 ∩ U ∩ (C∗ \V ) ̸= ∅

for all W ∈ W. Then, by compactness,⋂
W∈W

(SW1 SW2 ∩ U ∩ (C∗ \V )) = S1S2 ∩ U ∩ (C∗ \V ) ̸= ∅,

but this contradicts the fact that S1S2 ∩ U ⊂ V .

Lemma 5.7. Let S be a proper closed subset of C∗ and let ω ∈ Ω(C∗ \S). Assume

that ω admits an infinitely differentiable extension to C∗ and denote by ω such an

extension. Then [ω], seen as an element of H1
S(C

∗,ΩC∗), is the image of

[∂ω] ∈ H1(ΓS(C∗, C1,•∞,C∗))

by the canonical morphism obtained by applying H1 to the composition in the

derived category of the canonical morphism

ΓS(C∗, C1,•∞,C∗)→ RΓS(C∗, C1,•∞,C∗)

and the inverse of the canonical isomorphism

RΓS(C∗,ΩC∗)
∼−→ RΓS(C∗, C1,•∞,C∗).

Proof. It follows from the distinguished triangle

RΓS(C∗,ΩC∗)→ RΓ(C∗,ΩC∗)→ RΓ(C∗ \S,ΩC∗)
+1−−→

that RΓS(C∗,ΩC∗) is canonically isomorphic to the mapping cone M(ρS) of the

restriction morphism

ρS : C1,•∞,C∗(C∗)→ C1,•∞,C∗(C∗ \S)
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shifted by −1. We know that M [ρS ][−1] is a complex concentrated in degrees 0, 1

and 2 of the form

C1,0∞,C∗(C∗)→ C1,1∞,C∗(C∗)⊕ C1,0∞,C∗(C∗ \S)→ C1,1∞,C∗(C∗ \S),

where the differentials in degrees 0 and 1 are given by the matrices(
∂

−ρS

)
and

(
−ρS −∂

)
.

What we have to show is that(
∂ω

0

)
and

(
0

ω

)
are two 1-cycles of this complex which are in the same cohomology class. This is

clear since (
∂

−ρS

)
ω +

(
0

ω

)
=

(
∂ω

0

)
.

Proof of Theorem 5.5. Let U and V be as in the statement of the theorem. Thanks

to Lemma 5.6, we know that it is possible to find a closed neighborhood S1 of S1

and a closed neighborhood S2 of S2 in C∗ such that S1 and S2 are convolvable

and

S1S2 ∩ U ⊂ V.

Let f1 (resp. f2) be an infinitely differentiable function on C∗ which coincides

with f1 (resp. f2) on C∗ \S1 (resp. C∗ \S2) and set

ω1 = f1(z) dz and ω2 = f2(z) dz.

It follows from Lemma 5.7 that the image of

[ω1] ∈ Ω(C∗ \S1)/Ω(C∗) ≃ H1
S1
(C∗,ΩC∗)

by the canonical morphism

H1
S1
(C∗,ΩC∗)→ H1

S1
(C∗,ΩC∗)

is the same as the image of

[∂ω1] ∈ H1(ΓS1
(C∗, C(1,•)∞,C∗))

by the canonical morphism

H1(ΓS1
(C∗, C(1,•)∞,C∗))→ H1

S1
(C∗,ΩC∗)
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considered in this lemma. A similar conclusion is true for the image of

[ω2] ∈ Ω(C∗ \S2)/Ω(C∗) ≃ H1
S2
(C∗,ΩC∗)

in H1
S2
(C∗,ΩC∗). Therefore, the image of

[ω1] ⋆ [ω2] ∈ Ω(C∗ \S1S2)/Ω(C∗) ≃ H1
S1S2

(C∗,ΩC∗)

in H1
S1S2

(C∗,ΩC∗) is the same as the image of [∂ω1 ⋆ ∂ω2] by the canonical mor-

phism

H1(ΓS1S2(C
∗, C(1,•)∞,C∗))→ H1

S1S2
(C∗,ΩC∗).

Let us note p1, p2 : C∗×C∗ → C∗, the two canonical projections and consider

the commutative diagram

C∗×C∗ ϕ //

µ
$$

C∗×C∗

p2zz

ψ
oo

C∗,

where ϕ(z1, z2) = (z1, z1z2) and ψ(ζ, z) = (ζ, z/ζ). Since ϕ ◦ ψ = id = ψ ◦ ϕ, we
have ∫

µ

=

∫
p2

◦
∫
ϕ

=

∫
p2

◦ ψ∗.

Therefore,

∂ω1 ⋆ ∂ω2 =

∫
µ

(∂ω1 ⊠ ∂ω2)

=

∫
p2

(ψ∗(p∗1∂ω1 ∧ p∗2∂ω2))

=

∫
p2

(p∗1∂ω1 ∧ h∗∂ω2),

where h(ζ, z) = z/ζ. Since

∂ω1 =
∂f1

∂z
(z)dz ∧ dz and ∂ω2 =

∂f2

∂z
(z)dz ∧ dz,

we have

h∗∂ω2 =
∂f2

∂z

(z
ζ

)
d
(z
ζ

)
∧ d
(z
ζ

)
=
∂f2

∂z

(z
ζ

)ζdz − z dζ
ζ2

∧ ζ dz − z dζ
ζ2
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and

p∗1∂ω1 ∧ h∗∂ω2 =
∂f1

∂z
(ζ)

∂f2

∂z

(z
ζ

)dζ
ζ
∧ dζ
ζ
∧ dz ∧ dz.

Therefore,

∂ω1 ⋆ ∂ω2 =

(∫
C∗

∂f1

∂z
(ζ)

∂f2

∂z

(z
ζ

)dζ
ζ
∧ dζ
ζ

)
dz ∧ dz.

Since f1 coincides with f1 on C∗ \S1, one has

supp
(
ζ 7→

∂f1

∂z
(ζ)
)
⊂ S1.

Similarly, one has

supp
(
ζ 7→

∂f2

∂z

(z
ζ

))
⊂ zS−1

2 .

Hence,

ζ 7→
∂f1

∂z
(ζ)

∂f2

∂z

(z
ζ

)
is an infinitely differentiable function on C∗ supported by S1 ∩ zS−1

2 which is a

compact subset of C∗.

Since U is a relatively compact open subset of C∗ and S1 and S2 are convolv-

able closed subsets of C∗,

K = S1 ∩ US−1
2

is a compact subset of C∗. Let c be a singular infinitely differentiable 2-chain of

C∗ such that

[c] ∈ H2(C∗,C∗ \K)

is the relative orientation class αC∗,K . Then, on U , one has

∂ω1 ⋆ ∂ω2 =

(∫
c

∂f1

∂z
(ζ)

∂f2

∂z

(z
ζ

)dζ
ζ
∧ dζ
ζ

)
dz ∧ dz,

since the integrated form is supported by S1∩zS−1
2 ⊂ K for any z ∈ U . Moreover,

the function f2 is infinitely differentiable on C∗ and the chain c is supported by a

compact subset of C∗. Thus, the function

f : z 7→
∫
c

∂f1

∂z
(ζ)f2

(z
ζ

)
dζ ∧ dζ

ζ

is infinitely differentiable on C∗ and

∂f

∂z
(z) =

∫
c

∂f1

∂z
(ζ)

∂f2

∂z

(z
ζ

)dζ
ζ
∧ dζ
ζ
.
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Therefore, on U , one has

∂ω1 ⋆ ∂ω2 = ∂ω

where ω = f(z) dz. Since supp(∂ω1 ⋆ ∂ω2) ⊂ S1S2, the function f is holomorphic

on U \ S1S2 and it follows from what precedes that

([ω1] ⋆ [ω2])|U = [ω|U ]

in

Ω(U\S1S2)/Ω(U) ≃ H1
(S1S2)∩U (U,ΩC∗).

Let us now show how to compute [ω|U ] in Ω(U \V )/Ω(U) by means of f1 and

f2 alone. Since V is an open neighborhood of S1S2,

S1 ∩ (U \ V )S−1
2 = ∅.

Therefore,

C∗ = (C∗ \S1) ∪
(
C∗ \((U \ V )S−1

2 )
)

and, replacing c if necessary by a barycentric subdivision, we may assume that

c = c1 + c2, where

supp c1 ⊂ C∗ \S1 and supp c2 ⊂ C∗ \((U \ V )S−1
2 ).

Since supp
∂f1

∂z ⊂ S1, it is then clear that

f(z) =

∫
c2

∂f1

∂z
(ζ)f2

(z
ζ

)
dζ ∧ dζ

ζ
.

Moreover, for any z ∈ U \ V one has

C∗ \zS−1
2 ⊃ C∗ \((U \ V )S−1

2 ) ⊃ supp c2

and since the function ζ 7→ f2(z/ζ) is holomorphic on C∗ \zS−1
2 , it follows that

f(z) =

∫
c2

∂

∂ζ

(
f1(ζ)f2

(z
ζ

)1
ζ

)
dζ ∧ dζ

=

∫
∂c2

f1(ζ)f2

(z
ζ

) dζ
ζ
.

By construction,

supp(∂c) ⊂ C∗ \K = (C∗ \S1) ∪ (C∗ \US−1
2 ).

Replacing c, if necessary, by one of its barycentric subdivisions, we may thus

assume that ∂c = c′1 + c′2 where supp c′1 ⊂ C∗ \S1 and supp c′2 ⊂ C∗ \US−1
2 . Since

∂c1 + ∂c2 = ∂c = c′1 + c′2,
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there is a chain c3 such that

∂c2 − c′2 = c3 = c′1 − ∂c1.

Since supp c′2 ⊂ C∗ \US−1
2 , the function

z 7→
∫
c′2

f1(ζ)f2

(z
ζ

) dζ
ζ

is clearly holomorphic on U . Hence, the image of [ω|U ] in Ω(U\V )/Ω(U) is [g(z) dz],

where g is the holomorphic function on U \ V defined by setting

g(z) =

∫
c3

f1(ζ)f2

(z
ζ

) dζ
ζ
.

Since

supp(∂c2 − c′2) ⊂
(
C∗ \((U \ V )S−1

2 )
)
∪ (C∗ \US−1

2 ) = C∗ \((U \ V )S−1
2 )

and

supp(c′1 − ∂c1) ⊂ (C∗ \S1) ∪ (C∗ \S1) = C∗ \S1,

it is clear that

supp c3 ⊂ (C∗ \S1) ∩
(
C∗ \((U \ V )S−1

2 )
)
.

Therefore, we have in fact

g(z) =

∫
c3

f1(ζ)f2

(z
ζ

) dζ
ζ

for any z ∈ U \ V . Moreover, since ∂c3 = ∂c′1 = −∂c′2, it is clear that

supp ∂c3 ⊂ (C∗ \S1) ∩ (C∗ \US−1
2 ).

So,

c3 ∈ Z1

(
(C∗ \S1) ∩

(
C∗ \((U \ V )S−1

2 )
)
, (C∗ \S1) ∩ (C∗ \US−1

2 )
)

and it follows by construction that it is a relative Hadamard cycle for S1 with

respect to US−1
2 in C∗ \(U \ V )S−1

2 (apply Remark 5.4 with F = S1, G = US−1
2

and W = C∗ \((U \ V )S−1
2 )). Thus, c3 is also a relative Hadamard cycle for S1

with respect to US−1
2 in C∗ \(U \ V )S−1

2 .

To conclude, it remains to show that if c′3 is another relative Hadamard cycle

for S1 with respect to US−1
2 in C∗ \(U \ V )S−1

2 and if

ǧ(z) =

∫
c′3

f1(ζ)f2

(z
ζ

) dζ
ζ
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for any z ∈ U \ V , then [g(z) dz] = [ǧ(z) dz] in Ω(U\V )/Ω(U). For such a c′3, we

have [c3] = [c′3] in

H1

(
(C∗ \S1) ∩ (C∗ \(U \ V )S−1

2 ), (C∗ \S1) ∩ (C∗ \US−1
2 )
)
.

Therefore, c′3 = c3 + c4 + ∂c5 where c4 is a 1-chain of (C∗ \S1) ∩ (C∗ \US−1
2 ) and

c5 is a 2-chain of (C∗ \S1) ∩ (C∗ \(U \ V )S−1
2 ). It follows that the function

ǧ : z 7→
∫
c′3

f1(ζ)f2

(z
ζ

) dζ
ζ

is a holomorphic function on U \ V and that

ǧ(z) = g(z) +

∫
c4

f1(ζ)f2

(z
ζ

) dζ
ζ

on U \ V . Since

z 7→
∫
c4

f1(ζ)f2

(z
ζ

) dζ
ζ

is clearly holomorphic on U , we have [g(z) dz] = [ǧ(z) dz] in Ω(U\V )/Ω(U) as

expected.

§6. The case of strongly convolvable sets

It is natural to ask whether one can compute the holomorphic cohomological multi-

plicative convolution on C∗ thanks to a global formula, by adding extra conditions

on S1 and S2. Recalling Definition 2.3, we are led to introduce the following one.

Definition 6.1. Let S1 and S2 be two convolvable proper closed subsets of C∗

such that S1S2 ̸= C∗. These two closed sets are said to be strongly convolvable if,

furthermore, S1 and S2 are star-eligible, that is to say, if S1 × S2 ⊂M . (Here (.)

denotes the closure in P).

Remark 6.2. One can find convolvable proper closed subsets of C∗ which are not

strongly convolvable. For example, consider

S1 =
{
(2m)! : m ∈ N

}
and S2 =

{
1

(2n+1)!
: n ∈ N

}
.

We shall now highlight the link with the generalized Hadamard product. Re-

call Definitions 2.4 and 2.5.

Proposition 6.3. Let S1 and S2 be two strongly convolvable proper closed subsets

of C∗. Assume that ω1 = f1 dz and ω2 = f2 dz with f1 ∈ O(C∗ \S1) and f2 ∈
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O(C∗ \S2). For all z ∈ C∗ \S1S2, let cz be a generalized Hadamard cycle for S1 in

P \(zS−1
2 ∪ ({0,∞}\S1)). Then

[ω1] ⋆ [ω2] = [f dz] ∈ Ω(C∗ \S1S2)/Ω(C∗),

where

f(z) = −
∫
cz

f1(ζ)f2

(z
ζ

) dζ
ζ

for all z ∈ C∗ \S1S2.

Proof. Let U be a relatively compact open subset of C∗ and V an open neighbor-

hood of S1S2 in C∗. Let c be a relative Hadamard cycle for S1 with respect to

US−1
2 in C∗ \(U\V )S−1

2 . Then, by a similar argument to the proof of Lemma 2.6,

it is clear that the image of [cz] by the sequence of canonical maps

H1(P \(S1 ∪ zS−1
2 ∪ {0} ∪ {∞})) = H1(C∗ \(S1 ∪ zS−1

2 ))

��
BMH1(C∗ \(S1 ∪ zS−1

2 ))

��
BMH1

(
(C∗ \S1) ∩ (C∗ \(U \ V )S−1

2 )
)

��
H1

(
(C∗ \S1) ∩ (C∗ \(U \ V )S−1

2 ), (C∗ \S1) ∩ (C∗ \US−1
2 )
)

is [−c] for all z ∈ U\V . Hence∫
c

f1(ζ)f2

(z
ζ

) dζ
ζ

= −
∫
cz

f1(ζ)f2

(z
ζ

) dζ
ζ
∀ z ∈ U\V .

Since this argument is valid for all U and all V , the conclusion follows from The-

orem 5.5.

In this context, we set (f1 ⋆ f2)(z) =
1

2iπ

∫
cz
f1(ζ)f2(

z
ζ )

dζ
ζ . If f1 ∈ O(P \S1)

and f2 ∈ O(P \S2), this really coincides with the generalized Hadamard product.

Remark 6.4. Let S1 and S2 be two strongly convolvable proper closed subsets

of C∗. Let us make an identification f dz ↔ −2iπf between holomorphic 1-forms

and holomorphic functions. Then, by the previous proposition, the holomorphic

cohomological convolution morphism

H1
S1
(C∗,ΩC∗)⊗H1

S2
(C∗,ΩC∗)→ H1

S1S2
(C∗,ΩC∗)
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can be seen as a bilinear map

O(C∗ \S1)/O(C∗)×O(C∗ \S2)/O(C∗)→ O(C∗ \S1S2)/O(C∗),

which can be computed by

[f1] ⋆ [f2] = [f1 ⋆ f2].

For the following example, we use the notation D(0, R) = {z ∈ C : |z| < R}
with R > 0.

Example 6.5. Let S = C∗ \D(0, s) and T = C∗ \D(0, t) with s > 0, t > 0 and

let

f ∈ O(C∗ \S) = O(D(0, s)\{0}) and g ∈ O(C∗ \T ) = O(D(0, t)\{0})

be two holomorphic functions. Then S and T are strongly convolvable proper

closed subsets of C∗ and we can write f(z) =
∑+∞
n=−∞ anz

n, g(z) =
∑+∞
n=−∞ bnz

n.

Since the polar part of f (resp. g) is holomorphic on C∗, we have [f ] = [
∑+∞
n=0 anz

n]

in O(D(0, s)\{0})/O(C∗) and [g] = [
∑+∞
n=0 bnz

n] in O(D(0, t)\{0})/O(C∗). Using

the preceding remark, we see that the holomorphic cohomological convolution

[f ] ⋆ [g] is given by

[f ⋆ g] =

[
+∞∑
n=0

anbnz
n

]
,

since the generalized Hadamard product coincides with the usual one in this case.

Let us now state a trivial proposition.

Proposition 6.6. Let S1 and S2 be two convolvable closed subsets of C∗ and

S′
1 ⊂ S1, S

′
2 ⊂ S2 two closed subsets. Then S′

1 and S′
2 are convolvable and the

diagram

H1
S1
(C∗,ΩC∗)⊗H1

S2
(C∗,ΩC∗) // H1

S1S2
(C∗,ΩC∗)

H1
S′
1
(C∗,ΩC∗)⊗H1

S′
2
(C∗,ΩC∗)

OO

// H1
S′
1S

′
2
(C∗,ΩC∗),

OO

where the horizontal arrows are given by the holomorphic cohomological convolu-

tion morphisms, is commutative.

Example 6.5 combined with Proposition 6.6 allows us to compute several other

examples.
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Example 6.7. Let S1 = S2 = (−∞,−1]. The principal determination of the

function z 7→ ln(1+z) is holomorphic on C∗ \S1. Moreover, S1 and S2 are strongly

convolvable and thus, there is g ∈ O(C∗ \[1,+∞)) such that

[ln(1 + z)] ⋆ [ln(1 + z)] = [g].

Using the previous results, one has

([ln(1 + z)] ⋆ [ln(1 + z)])|D(0,1) = [ln(1 + z)|D(0,1)] ⋆ [ln(1 + z)|D(0,1)]

=

[
+∞∑
n=1

(−1)n+1

n
zn

]
⋆

[
+∞∑
n=1

(−1)n+1

n
zn

]

=

[ ∞∑
n=1

zn

n2

]
= [Li2(z)]|D(0,1),

where Li2 is the principal dilogarithm function, holomorphic on O(C∗ \[1,+∞)).

Hence, there is h ∈ O(C∗) such that

g|D(0,1) − Li2|D(0,1) = h.

By the uniqueness of the analytic continuation, one deduces that g − Li2 = h on

C∗ \[1,+∞) and, thus, that

[ln(1 + z)] ⋆ [ln(1 + z)] = [Li2(z)]

in O(C∗ \S1S2)/O(C∗).

§7. Further applications

As we saw, the holomorphic cohomological convolution is well fitted to study the

Hadamard product in the noncompact setting. It should therefore be a good tool to

study Hadamard convolution operators associated with convolvable closed subsets

of C∗ (see e.g. [11] for the compact setting). Actually, this point of view has already

been fruitful in the additive version of the holomorphic cohomological convolution.

In [5], we defined a natural notion of convolution between analytic functionals with

noncompact convex carrier (generalizing the work of Méril in [13]) and showed

compatibility with the additive holomorphic cohomological convolution, modulo

some growth conditions. We also explained that this convolution is transformed

into a product by the enhanced Laplace transform studied in [6]. Hence, the coho-

mological framework offers additional clarity concerning these contour-integration

transformations.
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