Holomorphic Cohomological Convolution and Hadamard Product

by
Christophe Dubussy and Jean-Pierre Schneiders

Abstract

In this article, we explain the link between Pohlen’s extended Hadamard product and the holomorphic cohomological convolution on \mathbb{C}^*. For this purpose, we introduce a generalized Hadamard product, which is defined even if the holomorphic functions do not vanish at infinity, as well as a notion of strongly convolvable sets.

2010 Mathematics Subject Classification: Primary 44A35; Secondary 55N10, 55N30.
Keywords: Hadamard product, multiplicative convolution, singular homology.

§ 1. The extended Hadamard product

Classically, the Hadamard product of two formal power series $A(z) = \sum_{n=0}^{+\infty} a_n z^n$ and $B(z) = \sum_{n=0}^{+\infty} b_n z^n$ is defined by setting

$$(A \ast B)(z) = \sum_{n=0}^{+\infty} a_n b_n z^n.$$

Using Taylor expansions, one can thus define the Hadamard product $f_1 \ast f_2$ of two germs f_1 and f_2 of holomorphic functions at the origin. Exploiting the Cauchy’s integral representation, one obtains the formula

$$(f_1 \ast f_2)(z) = \frac{1}{2\pi i} \int_{C(0,r)^+} f_1(\zeta) f_2 \left(\frac{z}{\zeta} \right) \frac{d\zeta}{\zeta}$$

Communicated by T. Mochizuki. Received December 18, 2018. Revised October 17, 2019.

C. Dubussy: Bât. B37, Analyse algébrique, Quartier Polytech 1, Allée de la découverte 12, 4000 Liège 1, Belgique; e-mail: C.Dubussy@uliege.be

J.-P. Schneiders: Bât. B37, Analyse algébrique, Quartier Polytech 1, Allée de la découverte 12, 4000 Liège 1, Belgique; e-mail: jpschneiders@uliege.be

© 201x Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.
for all z in a neighborhood of 0, $C(0,r)^+$ being a small positively oriented circle centered at the origin (see e.g. [19, Chapter VI.3] for an introduction and [1, 8, 14] for some applications).

In his thesis [17] (see also [16]), Timo Pohlen introduced the more general notion of Hadamard product for holomorphic functions defined on open subsets of the Riemann sphere $\mathbb{P} = \mathbb{C} \cup \{\infty\}$ which do not necessarily contain the origin. This new definition led to interesting applications, (e.g. [12] and [15]). In this introduction, we shall recall the construction and the results of T. Pohlen.

Definition 1.1. Let \mathbb{P} be the Riemann sphere equipped with its canonical structure of complex manifold. Let Ω be an open subset of \mathbb{P}. One sets

$$H(\Omega) = \{f \in O(\Omega) : f(\infty) = 0\}$$

if $\infty \in \Omega$ and $H(\Omega) = O(\Omega)$ otherwise.

Definition 1.2. We set $M = (\mathbb{P} \times \mathbb{P}) \setminus \{(0,\infty), (\infty,0)\}$ and extend the complex multiplication continuously as a map $\cdot : M \to \mathbb{P}$. We then have

$$\infty \cdot a = a \cdot \infty = \infty$$

if $a \in \mathbb{P}$ is not equal to zero. If A,B are subsets of \mathbb{P} such that $A \times B \subset M$, one sets

$$A \cdot B = \{a \cdot b : a \in A, b \in B\}.$$

One also extends the inversion $z \mapsto z^{-1}$ continuously from \mathbb{C}^* to \mathbb{P} by setting $0^{-1} = \infty$ and $\infty^{-1} = 0$. If $S \subset \mathbb{P}$, one sets

$$S^{-1} = \{z : z^{-1} \in S\}.$$

For the rest of the article, we shall often drop the point and write the multiplication as a concatenation.

Definition 1.3. Two open subsets $\Omega_1, \Omega_2 \subset \mathbb{P}$ are called *star-eligible* if

1. Ω_1 and Ω_2 are proper subsets of \mathbb{P},
2. $(\mathbb{P} \setminus \Omega_1) \times (\mathbb{P} \setminus \Omega_2) \subset M$,
3. $(\mathbb{P} \setminus \Omega_1)(\mathbb{P} \setminus \Omega_2) \neq \mathbb{P}$.

In this case, the *star product* of Ω_1 and Ω_2, noted $\Omega_1 \ast \Omega_2$, is defined by

$$\Omega_1 \ast \Omega_2 = \mathbb{P} \setminus ((\mathbb{P} \setminus \Omega_1)(\mathbb{P} \setminus \Omega_2)).$$
For the several equivalent definitions of the index/winding number of a cycle \(c \) in \(C \), we refer to [18]. For any cycle \(c \) in \(C \), one sets \(\text{Ind}(c, \infty) = 0 \).

Definition 1.4. Let \(\Omega \) be a non-empty open subset of \(\mathbb{P} \), \(K \) be a non-empty compact subset of \(\Omega \) and \(c \) be a cycle in \(\Omega \setminus (K \cup \{0\} \cup \{\infty\}) \). If \(\infty \notin K \) and

\[
\text{Ind}(c, z) = \begin{cases} 1 & \text{if } z \in K \\ 0 & \text{if } z \in \mathbb{P} \setminus \Omega, \end{cases}
\]

then \(c \) is called a Cauchy cycle for \(K \) in \(\Omega \). If \(\infty \in \Omega \) and

\[
\text{Ind}(c, z) = \begin{cases} 0 & \text{if } z \in K \\ -1 & \text{if } z \in \mathbb{P} \setminus \Omega, \end{cases}
\]

then \(c \) is called an anti-Cauchy cycle for \(K \) in \(\Omega \).

In [17], Lemma 2.3.1, T. Pohlen refers to ad hoc explicit constructions which ensure that Cauchy and anti-Cauchy cycles always exist for any \(\Omega \) and any \(K \). In the next section, we shall see that this existence can easily be obtained by using singular homology.

Let \(\Omega_1 \) and \(\Omega_2 \) be two star-eligible open subsets of \(\mathbb{P} \). Note that, if \(z \in \Omega_1 \ast \Omega_2 \), then \(z(\mathbb{P} \setminus \Omega_2)^{-1} \) is a closed subset of \(\Omega_1 \).

Definition 1.5. Let \(z \in (\Omega_1 \ast \Omega_2) \setminus \{0, \infty\} \). A Hadamard cycle for \(z(\mathbb{P} \setminus \Omega_2)^{-1} \) in \(\Omega_1 \) is a cycle \(c \) in \(\Omega_1 \setminus (z(\mathbb{P} \setminus \Omega_2)^{-1} \cup \{0\} \cup \{\infty\}) \) which satisfies the condition given in the table:

<table>
<thead>
<tr>
<th>(\Omega_2)</th>
<th>(\Omega_1)</th>
<th>0, (\infty)</th>
<th>(\infty)</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, (\infty)</td>
<td>cc(^+) or acc(^-)</td>
<td>acc(^-)</td>
<td>cc(^+)</td>
<td>cc</td>
</tr>
<tr>
<td>(\infty)</td>
<td>acc(^-)</td>
<td>acc(^-)</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>0</td>
<td>cc(^+)</td>
<td>/</td>
<td>cc(^+)</td>
<td>/</td>
</tr>
<tr>
<td>acc</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
</tbody>
</table>

This table should be understood in the following way: The elements in the first row and the first column tell which of these elements are in \(\Omega_1 \) and \(\Omega_2 \) respectively. The abbreviation cc (resp. acc) means that \(c \) is a Cauchy (resp. anti-Cauchy) cycle for \(z(\mathbb{P} \setminus \Omega_2)^{-1} \) in \(\Omega_1 \). The abbreviation cc\(^+\) (resp. acc\(^-\)) means that \(c \) is a Cauchy (resp. anti-Cauchy) cycle with the extra condition \(\text{Ind}(c, 0) = 1 \) (resp. \(\text{Ind}(c, 0) = -1 \)). A "/" means that this case cannot occur.
One can now extend the standard Hadamard product.

Definition 1.6. Let $f_1 \in \mathcal{H}(\Omega_1)$ and $f_2 \in \mathcal{H}(\Omega_2)$. For each $z \in (\Omega_1 \ast \Omega_2) \setminus \{0, \infty\}$ one sets

$$(f_1 \ast f_2)(z) = \frac{1}{2\pi i} \int_{c_z} f_1(\zeta)f_2\left(\frac{z}{\zeta}\right) \frac{d\zeta}{\zeta},$$

where c_z is a Hadamard cycle for $z(\mathbb{P} \setminus \Omega_2)^{-1}$ in Ω_1. One can check that this integral does not depend on the chosen Hadamard cycle (see Lemma 3.4.2 in [17]). The function $f_1 \ast f_2$ is called the Hadamard product of f_1 and f_2.

Proposition 1.7 ([17], Lemma 3.4.5, Proposition 3.6.4). The Hadamard product $f_1 \ast f_2$ can be continuously extended to $\Omega_1 \ast \Omega_2$. If $0 \in \Omega_1 \ast \Omega_2$ (resp. $\infty \in \Omega_1 \ast \Omega_2$), one has $(f_1 \ast f_2)(0) = f_1(0)f_2(0)$ (resp. $(f_1 \ast f_2)(\infty) = 0$). Moreover, $f_1 \ast f_2$ is an element of $\mathcal{H}(\Omega_1 \ast \Omega_2)$.

Proposition 1.8 ([17], Proposition 3.6.1). The Hadamard product is commutative.

In all this framework, the hypothesis $f(\infty) = 0$, when $\infty \in \Omega$, is highly used. In the next section, we shall provide a more general definition of Hadamard cycles and Hadamard product, based on singular homology theory, which does not require the vanishing condition at infinity.
§2. Generalized Hadamard cycles

For classical facts about singular homology, we refer to \cite{7} and \cite{9}. For a general background on sheaf theory and derived functors, we refer to \cite{10}. For a sheaf-theoretic definition of the Borel-Moore homology and the link with singular homology on HLC-spaces, we refer to \cite{3}.

Let us recall that on any topological space X, there is an orientation complex ω_X which is canonically isomorphic to $\mathbb{Z}_X[n]$ if X is an oriented topological manifold of pure dimension n. On a topological space X, the Borel-Moore homology (resp. Borel-Moore homology with compact support) of degree k is defined by

$$BMH_k(X) := H^{-k}(X, \omega_X), \quad BMH^c_k(X) := H^{-k}_c(X, \omega_X).$$

Definition 2.1. Let X be an oriented topological manifold of pure dimension n. The orientation class of X is the class $\alpha_X \in BMH_n(X) \simeq H^{-n}(X, \mathbb{Z}_X[n]) \simeq H^0(X, \mathbb{Z}_X)$ corresponding to the constant section 1 of \mathbb{Z}_X.

Let X be a topological manifold X of pure dimension n. Since X is homologically locally connected, the complex $R\Gamma_c(X, \omega_X)$ is canonically isomorphic to the complex of singular chains on X. Hence, $BMH^c_k(X)$ is isomorphic to the usual singular homology group of degree k, $H_k(X)$. Now, let K be a compact subset of X and consider the two canonical excision distinguished triangles

$$R\Gamma(X, \omega_X) \to R\Gamma(K, \omega_X) \to R\Gamma(X \setminus K, \omega_X) \xrightarrow{\partial}$$

and

$$R\Gamma_c(X \setminus K, \omega_X) \to R\Gamma_c(X, \omega_X) \to R\Gamma_c(K, \omega_X) \xrightarrow{\partial}.$$

The second triangle implies that $H^{-n}(K, \omega_X)$ is canonically isomorphic to the relative singular homology group $H_n(X, X \setminus K)$. Hence, we get a sequence of morphisms

$$BMH_n(X) \to H^{-n}(K, \omega_X) \xrightarrow{\sim} H_n(X, X \setminus K)$$

and $\alpha_X \in BMH_n(X)$ induces a relative orientation class $\alpha_{X,K} \in H_n(X, X \setminus K)$.

Proposition 2.2. Let Ω be a proper open subset of \mathbb{C} and let $F = \mathbb{C} \setminus \Omega$. There is a canonical isomorphism

$$H_1(\Omega) \xrightarrow{\sim} H^0_c(F, \mathbb{Z}_F)$$

given by

$$[c] \mapsto (z \mapsto \text{Ind}_z(c)).$$
Proof. Let us consider the excision distinguished triangle
\[
R\gamma_c(\Omega, \omega_C) \to R\gamma_c(C, \omega_C) \to R\gamma_c(F, \omega_F) \xrightarrow{\pi}\.
\]
It induces a long exact sequence
\[
\cdots \to H_2(\Omega) \to H_2(C) \to H^{-2}R\gamma_c(F, \omega_F) \xrightarrow{\delta} H_1(\Omega) \to H_1(C) \to H^{-1}R\gamma_c(F, \omega_F) \to \cdots
\]
Since \(C \) is contractible, one has \(H_2(C) \simeq H_1(C) \simeq \{0\} \). Therefore, taking into account that \(\omega_F \simeq \mathbb{Z}_F[2] \), one gets a canonical isomorphism
\[
\delta : H^0_c(F, \mathbb{Z}_F) \xrightarrow{\sim} H_1(\Omega).
\]
Let \(z \in F \). Applying (2.1) with \(C \{z\} \), \(C \) and \(\{z\} \), one gets an isomorphism
\[
\delta_z : \mathbb{Z} \simeq H^0_c(\{z\}, \mathbb{Z}_F) \xrightarrow{\sim} H_1(C \{z\}).
\]
Clearly, \(\delta_z^{-1}(c) = \text{Ind}_z(c) \). Moreover, by Proposition 1.3.6 in [10], there is a commutative diagram
\[
\begin{array}{ccc}
H^0_c(F, \mathbb{Z}_F) & \xrightarrow{\delta} & H_1(\Omega) \\
\downarrow i_z & & \downarrow j_z \\
H^0_c(\{z\}, \mathbb{Z}_F) & \xrightarrow{\delta_z} & H_1(C \{z\})
\end{array}
\]
where \(i_z(f) = f(z) \) and \(j_z([c]) = [c] \). Hence, one sees that \(\delta^{-1}([c])(z) = \text{Ind}_z(c) \).

To introduce our definition of generalized Hadamard cycles, we have to be in the same setting as T. Pohlen. However, looking at Definition 1.3 we find it more natural to start with closed subsets instead of open ones.

Definition 2.3. Two closed subsets \(S_1 \) and \(S_2 \) of \(P \) are **star-eligible** if \(S_1 \) and \(S_2 \) are proper and if \(S_1 \times S_2 \subset M \).

For the rest of the section we fix \(S_1 \) and \(S_2 \), two star-eligible closed subsets of \(P \). If \(z \in \mathbb{C}^* \setminus S_1S_2 \), \(S_1 \) is a compact subset of \(P \setminus zS_2^{-1} \) and, thus, a compact subset of \(P \setminus (zS_2^{-1} \cup \{0,\infty\} \setminus S_1) \). Moreover, one has
\[
(P \setminus (zS_2^{-1} \cup \{0,\infty\} \setminus S_1)) \setminus S_1 = P \setminus (S_1 \cup zS_2^{-1} \cup \{0\} \cup \{\infty\}).
\]
Let \(z \in \mathbb{C}^* \setminus S_1S_2 \).
Definition 2.4. A generalized Hadamard cycle for S_1 in $\mathbb{P}(zS^{-1}_2 \cup \{0, \infty\} \setminus S_1)$ is a representative c of the class in $H_1(\mathbb{P}(S_1 \cup zS^{-1}_2 \cup \{0\} \cup \{\infty\})$ which is the image of

$$-\alpha_{\mathbb{P}(zS^{-1}_2 \cup \{0, \infty\} \setminus S_1),S_1} \in H_2(\mathbb{P}(zS^{-1}_2 \cup \{0, \infty\} \setminus S_1),\mathbb{P}(S_1 \cup zS^{-1}_2 \cup \{0\} \cup \{\infty\}))$$

by the canonical map

$$H_2(\mathbb{P}(zS^{-1}_2 \cup \{0, \infty\} \setminus S_1),\mathbb{P}(S_1 \cup zS^{-1}_2 \cup \{0\} \cup \{\infty\})) \downarrow \downarrow H_1(\mathbb{P}(S_1 \cup zS^{-1}_2 \cup \{0\} \cup \{\infty\})).$$

Figure 2: A generalized Hadamard cycle for S_1 in $\mathbb{P}(zS^{-1}_2 \cup \{0, \infty\} \setminus S_1)$, in the case where $0, \infty \notin S_1$ and $0 \in S_2, \infty \notin S_2$.

Our aim is now to define a product

$$\mathcal{O}(\mathbb{P} \setminus S_1) \times \mathcal{O}(\mathbb{P} \setminus S_2) \to \mathcal{O}(\mathbb{C}^* \setminus S_1S_2)$$

which generalizes the extended Hadamard product of T. Pohlen.

Definition 2.5. Let $f_1 \in \mathcal{O}(\mathbb{P} \setminus S_1)$ and $f_2 \in \mathcal{O}(\mathbb{P} \setminus S_2)$. For each $z \in \mathbb{C}^* \setminus S_1S_2$ we set

$$(f_1 \star f_2)(z) = \frac{1}{2\pi i} \int_{c_z} f_1(\zeta)f_2 \left(\frac{z}{\zeta} \right) \frac{d\zeta}{\zeta},$$

where c_z is a generalized Hadamard cycle for S_1 in $\mathbb{P}(zS^{-1}_2 \cup \{0, \infty\} \setminus S_1)$. Since two generalized Hadamard cycles are homologous, the definition does not depend
on the chosen generalized Hadamard cycle. The function \(f_1 \star f_2\) is called the
generalized Hadamard product of \(f_1\) and \(f_2\).

Lemma 2.6. Let \(f_1 \in \mathcal{O}(\mathbb{P} \setminus S_1)\) and \(f_2 \in \mathcal{O}(\mathbb{P} \setminus S_2)\). For each compact subset \(K\) of \(\mathbb{C}^* \setminus S_1 S_2\), there is a cycle \(c_K\) in \(\mathbb{P} \setminus (S_1 \cup KS_2^{-1} \cup \{0\} \cup \{\infty\})\) such that

\[
(f_1 \star f_2)(z) = \frac{1}{2i\pi} \int_{c_K} f_1(\zeta) f_2 \left(\frac{z}{\zeta} \right) \frac{d\zeta}{\zeta},
\]

for all \(z \in K\).

Proof. There is a relative orientation class

\[
\alpha_{\mathbb{P} \setminus (KS_2^{-1} \cup \{0, \infty\} \setminus S_1), S_1} \in H_2(\mathbb{P} \setminus (KS_2^{-1} \cup \{0, \infty\} \setminus S_1), \mathbb{P} \setminus (S_1 \cup KS_2^{-1} \cup \{0\} \cup \{\infty\}))
\]

We choose \(c_K\) to be a representative of the class in \(H_1(\mathbb{P} \setminus (S_1 \cup KS_2^{-1} \cup \{0\} \cup \{\infty\}))\) which is the image of \(-\alpha_{\mathbb{P} \setminus (KS_2^{-1} \cup \{0, \infty\} \setminus S_1), S_1}\) by the canonical map

\[
H_2(\mathbb{P} \setminus (KS_2^{-1} \cup \{0, \infty\} \setminus S_1), \mathbb{P} \setminus (S_1 \cup KS_2^{-1} \cup \{0\} \cup \{\infty\})) \to H_1(\mathbb{P} \setminus (S_1 \cup KS_2^{-1} \cup \{0\} \cup \{\infty\})).
\]

For each \(z \in K\), there is a canonical commutative diagram

\[
\begin{align*}
H_2(\mathbb{P} \setminus (KS_2^{-1} \cup \{0, \infty\} \setminus S_1), \mathbb{P} \setminus (S_1 \cup KS_2^{-1} \cup \{0\} \cup \{\infty\})) & \to H_1(\mathbb{P} \setminus (S_1 \cup KS_2^{-1} \cup \{0\} \cup \{\infty\})) \\
& \downarrow \\
H_1(\mathbb{P} \setminus (S_1 \cup KS_2^{-1} \cup \{0\} \cup \{\infty\})) & \downarrow \\
& \downarrow \\
H_1(\mathbb{P} \setminus (S_1 \cup zS_2^{-1} \cup \{0\} \cup \{\infty\})) & \\
\end{align*}
\]

Obviously, \(\alpha_{\mathbb{P} \setminus (zS_2^{-1} \cup \{0, \infty\} \setminus S_1), S_1}\) is the image of \(\alpha_{\mathbb{P} \setminus (KS_2^{-1} \cup \{0, \infty\} \setminus S_1), S_1}\) by the left vertical map. Therefore, by the commutativity of the diagram, one can deduce that \(c_K\) is a generalized Hadamard cycle for \(S_1\) in \(\mathbb{P} \setminus (zS_2^{-1} \cup \{0, \infty\} \setminus S_1)\), for all \(z \in K\). Hence the conclusion.

Proposition 2.7. The generalized Hadamard product is a well-defined map

\[
\mathcal{O}(\mathbb{P} \setminus S_1) \times \mathcal{O}(\mathbb{P} \setminus S_2) \to \mathcal{O}(\mathbb{C}^* \setminus S_1 S_2).
\]
Proof. Let $f_1 \in \mathcal{O}(\mathbb{P} \setminus S_1)$ and $f_2 \in \mathcal{O}(\mathbb{P} \setminus S_2)$. We have to check that $f_1 \ast f_2$ is holomorphic on $\mathbb{C}^* \setminus S_1 S_2$. Since it is a local property, it is enough to prove that $f_1 \ast f_2$ is holomorphic on each small open disk $D \subset \mathbb{C}^* \setminus S_1 S_2$. Let D be such a disk. By Lemma 2.6 there is a cycle c_D such that
\[
(f_1 \ast f_2)(z) = \frac{1}{2\pi i} \int_{c_D} f_1(\zeta)f_2 \left(\frac{z}{\zeta} \right) \frac{d\zeta}{\zeta},
\]
for all $z \in D$. We conclude by derivation under the integral sign.

We shall now prove that our product is a good generalization of the extended Hadamard product of T. Pohlen. By doing so, the reader shall see why we chose such a sign convention in Definition 2.4.

Proposition 2.8. Let $f_1 \in \mathcal{H}(\mathbb{P} \setminus S_1)$ and $f_2 \in \mathcal{H}(\mathbb{P} \setminus S_2)$. Let $z \in \mathbb{C}^* \setminus S_1 S_2$. Let c_z be a generalized Hadamard cycle for S_1 in $\mathbb{P} \setminus (zS_2^{-1} \cup \{0, \infty\} \setminus S_1)$ and d_z be a Hadamard cycle for zS_2^{-1} in $\mathbb{P} \setminus S_1$. Then,
\[
\frac{1}{2\pi i} \int_{c_z} f_1(\zeta)f_2 \left(\frac{z}{\zeta} \right) \frac{d\zeta}{\zeta} = \frac{1}{2\pi i} \int_{d_z} f_1(\zeta)f_2 \left(\frac{z}{\zeta} \right) \frac{d\zeta}{\zeta} - \frac{1}{2\pi i} \int_{c'_z} f_1(\zeta)f_2 \left(\frac{z}{\zeta} \right) \frac{d\zeta}{\zeta}.
\]

Proof. We treat the case where $0, \infty \notin S_1$ and $0 \in S_2, \infty \notin S_2$ and leave the other ones to the reader. By construction, it is clear that c_z verifies
\[
\text{Ind}(c_z, w) = \begin{cases} 0 & \text{if } w \in zS_2^{-1} \cup \{0\} \\ -1 & \text{if } w \in S_1,
\end{cases}
\]
Let c'_z be a cycle $\mathbb{P} \setminus (S_1 \cup zS_2^{-1} \cup \{0\} \cup \{\infty\})$ such that
\[
\text{Ind}(c'_z, w) = \begin{cases} 0 & \text{if } w \in zS_2^{-1} \cup S_1 \\ -1 & \text{if } w = 0.
\end{cases}
\]
Since d_z is acc$^-$, it is clear, by Proposition 2.2, that d_z is homologous to $c_z + c'_z$ in $\mathbb{P} \setminus (S_1 \cup zS_2^{-1} \cup \{0\} \cup \{\infty\})$. We then have
\[
\int_{c_z} f_1(\zeta)f_2 \left(\frac{z}{\zeta} \right) \frac{d\zeta}{\zeta} = \int_{d_z} f_1(\zeta)f_2 \left(\frac{z}{\zeta} \right) \frac{d\zeta}{\zeta} - \int_{c'_z} f_1(\zeta)f_2 \left(\frac{z}{\zeta} \right) \frac{d\zeta}{\zeta}.
\]
Moreover, by the residue theorem,
\[
- \int_{c'_z} f_1(\zeta)f_2 \left(\frac{z}{\zeta} \right) \frac{d\zeta}{\zeta} = 2\pi \text{Res}_{\zeta=0} \left(\frac{f_1(\zeta)f_2 \left(\frac{z}{\zeta} \right)}{\zeta} \right) = 2\pi \lim_{\zeta \to 0} \left(f_1(\zeta)f_2 \left(\frac{z}{\zeta} \right) \right) = 2\pi f_1(0)f_2(\infty) = 0.
\]
Hence the conclusion.
Remark 2.9. Of course, the generalized Hadamard product is no longer commutative if the functions do not vanish at infinity. For example, let S_1 and S_2 be as in the proof of the previous proposition. Let $f_1 \in \mathcal{O}(\mathbb{P} \setminus S_1)$ and $f_2 \in \mathcal{O}(\mathbb{P} \setminus S_2)$. By a similar computation, one sees that

$$f_1 \star f_2 - f_2 \star f_1 = f_1(0)f_2(\infty).$$

Despite the lack of commutativity, the generalized Hadamard cycles are more symmetric with respect to 0 and ∞. In the section 5, we shall explain how one can define a convolution between 1-forms which have (not necessarily isolated) singularities at 0 and ∞. Generalized Hadamard cycles are key ingredients to compute such a convolution (see also section 6). Moreover, the commutativity shall eventually be obtained thanks to quotient spaces that naturally occur in this context.

§3. The holomorphic integration map

Let X be a complex manifold of complex dimension d_X and $r \in \mathbb{Z}$. Recall that $\mathcal{C}^r_{\infty,X}$ admits a decomposition in bi-types

$$\mathcal{C}^r_{\infty,X} \simeq \bigoplus_{p+q=r} \mathcal{C}^{p,q}_{\infty,X}$$

which induces a decomposition of the exterior derivative d as

$$d = \partial + \overline{\partial},$$

where

$$\partial : \mathcal{C}^{p,q}_{\infty,X} \to \mathcal{C}^{p+1,q}_{\infty,X} \quad \text{and} \quad \overline{\partial} : \mathcal{C}^{p,q}_{\infty,X} \to \mathcal{C}^{p,q+1}_{\infty,X}.$$

Similarly, $\mathcal{D}b^r_X$ admits a decomposition in bi-types

$$\mathcal{D}b^r_X \simeq \bigoplus_{p+q=r} \mathcal{D}b^{p,q}_X$$

and an associated decomposition of the distributional exterior derivative. Moreover, for any open subset U of X, we have a canonical isomorphism

$$\mathcal{D}b^r_X(U) \simeq \Gamma_c(U, \mathcal{C}^{2d_X-r}_{\infty,X})'$$

between the space of complex distributional r-forms and the topological dual of the space of infinitely differentiable complex differential $(2d_X-r)$-forms with compact support which induces the similar isomorphism

$$\mathcal{D}b^{p,q}_X(U) \simeq \Gamma_c(U, \mathcal{C}^{d_X-p,d_X-q}_{\infty,X})'.$$
In the sequel, we denote by Ω^p_X the sheaf of holomorphic differential p-forms on X and we set for short $\Omega_X = \Omega^d_X$. Of course, Ω^p_X is canonically isomorphic to both the kernel of
\[\partial : C^{p,0}_\infty,X \to C^{p,1}_\infty,X \]
and the kernel of
\[\partial : D^{p,0}_\infty,X \to D^{p,1}_\infty,X. \]

The double complex $C^*\cdot\cdot_{\infty,X}$ (resp. $D^*\cdot\cdot_{\infty,X}$) is the infinitely differentiable (resp. distributional) Dolbeault complex of X. By construction, the associated simple complex is the infinitely differentiable (resp. distributional) de Rham complex $C^*\cdot\cdot_{\infty,X}$ (resp. $D^*\cdot\cdot_{\infty,X}$) of X. Moreover, we have the following chains of canonical quasi-isomorphisms:
\[C^*_X \simeq C^*\cdot\cdot_{\infty,X} \simeq D^*\cdot\cdot_{\infty,X} \quad \text{and} \quad \Omega^p_X \simeq C^{p,\cdot\cdot}_{\infty,X} \simeq D^{p,\cdot\cdot}_{\infty,X}, \]
which are given by de Rham and Dolbeault lemmas.

Let $f : X \to Y$ be a holomorphic map from X to a complex manifold Y of complex dimension d_Y and let V be an arbitrary open subset of Y. It follows from the holomorphy of f that the pullback
\[f^* : C^{p,q}_\infty,Y(V) \to C^{p,q}_\infty,X(f^{-1}(V)) \]
sends $C^{p,q}_\infty,Y(V)$ into $C^{p,q}_\infty,X(f^{-1}(V))$ if $p + q = r$. In particular,
\[\partial(f^*\omega) = f^*(\partial\omega) \quad \text{and} \quad \overline{\partial}(f^*\omega) = f^*(\overline{\partial}\omega) \]
for all $\omega \in C^{p,q}_\infty,Y(V)$. By topological duality, it follows that there are canonical pushforward morphisms
\[\int_f : \Gamma_{f\text{-proper}}(f^{-1}(V), D^{2d_Y-r}_{\infty,Y}) \to \Gamma(V, D^{2d_X-r}_{\infty,X}) \]
and
\[\int_f : \Gamma_{f\text{-proper}}(f^{-1}(V), D^{2d_Y-p,d_Y-q}_{\infty,Y}) \to \Gamma(V, D^{2d_X-p,d_X-q}_{\infty,X}) \]
between distributional forms with f-proper support on $f^{-1}(V)$ and distributional forms on V and that these morphisms commute with ∂ and $\overline{\partial}$. In particular, we get a morphism of double complexes of sheaves of the form
\[\int_f : f! : D^{*\cdot\cdot_{\infty,X}+d_X,*\cdot\cdot_{\infty,X}} \to D^{*\cdot\cdot_{\infty,Y}+d_Y,*\cdot\cdot_{\infty,Y}}. \]
Moreover, if f is a surjective submersion, one can show that the pushforward of a distributional form associated with an infinitely differentiable form with f-proper
support is itself associated with an infinitely differentiable form which can be computed by integration over the fibers of \(f \). This shows that, in this case, the preceding morphism factors through a morphism of the form

\[
\int_f : f_! \mathcal{C}_{\infty,X}^{\star+d_X} \to \mathcal{C}_{\infty,Y}^{\star+d_Y}.
\]

Thanks to the quasi-isomorphisms

\[
\Omega_X^{p+d_X} \simeq \mathcal{D}b_X^{p+d_X} \quad \text{and} \quad \Omega_Y^{p+d_Y} \simeq \mathcal{D}b_Y^{p+d_Y},
\]

this gives us a morphism

\[
\int_f : Rf_! \Omega_X^{p+d_X}[d_X] \to \Omega_Y^{p+d_Y}[d_Y]
\]

in the derived category for each \(p \in \mathbb{Z} \). In the particular case where \(p = 0 \), we get the morphism

\[
\int_f : Rf_! \Omega_X[d_X] \to \Omega_Y[d_Y]
\]

which is usually called the holomorphic integration map along the fibers of \(f \) (see e.g. [10, p. 129]). Note that, if \(g : Y \to Z \) is another holomorphic map between complex manifolds, then the well known relation \((g \circ f)^* = f^* \circ g^* \) entails that \(\int_{g \circ f} = \int_g \circ \int_f \).

§4. Holomorphic cohomological convolution

Definition 4.1. Let \((G, \mu)\) be a locally compact complex Lie group of complex dimension \(n \). Two closed subsets \(S_1 \) and \(S_2 \) of \(G \) are said to be **convolvable** if \(S_1 \times S_2 \) is \(\mu \)-proper, i.e. if

\[
(S_1 \times S_2) \cap \mu^{-1}(K)
\]

is a compact subset of \(G \times G \) for any compact subset \(K \) of \(G \).

Remark 4.2. A proper map on a locally compact topological space is universally closed, in particular closed (see e.g. [2]). Hence, if \(S_1 \) and \(S_2 \) are convolvable closed subsets of \(G \), then \(\mu|_{S_1 \times S_2} \) is a proper map and \(S_1 + S_2 = \mu|_{S_1 \times S_2}(S_1 \times S_2) \) is closed.

Definition 4.3. Two distributional \(2n \)-forms \(u_1 \) and \(u_2 \) of \(G \) are **convolvable** if the support \(S_1 \) of \(u_1 \) and the support \(S_2 \) of \(u_2 \) are convolvable. In that case, the convolution product of \(u_1 \) and \(u_2 \) is a distributional \(2n \)-form on \(G \) defined by

\[
u_1 \ast u_2 \equiv \int_\mu (u_1 \boxtimes u_2) := \int_\mu (p_1^* u_1 \wedge p_2^* u_2),\]
where \(p_1, p_2 : G \times G \to G \) are the two canonical projections.

Remark 4.4. By choosing a Haar form \(\nu \) on \(G \), one can define the convolution product of two distributions by means of the isomorphism \(\mathcal{D}b_G \cong \mathcal{D}b_G^{2n} \) given by \(\nu \) (see e.g. [4]).

Remark 4.5. If we define

\[
\phi : G \times G \to G \times G \quad \text{and} \quad \psi : G \times G \to G \times G
\]

by setting \(\phi(g_1, g_2) = (g_1, \mu(g_1, g_2)) \) and \(\psi(g_1, g_2) = (g_1, \mu(g_1^{-1}, g_2)) \), we see that \(\phi \) and \(\psi \) are reciprocal biholomorphic bijections and that the diagram

\[
\begin{array}{ccc}
G \times G & \xrightarrow{\sim} & G \times G \\
\downarrow{\mu} & & \downarrow{\mu_2} \\
G & \xleftarrow{p_2} & G
\end{array}
\]

is commutative. This shows in particular that \(\mu \) is a surjective submersion and that the preceding procedure allows us also to define the convolution product of infinitely differentiable forms.

Let \(S_1 \) and \(S_2 \) be two convolvable closed subsets of \(G \). By construction, the convolution of distributions on \(G \) is the composition of the external product of distributions

\[
\Gamma_{S_1}(G, \mathcal{D}b_G^{2n}) \otimes \Gamma_{S_2}(G, \mathcal{D}b_G^{2n}) \to \Gamma_{S_1 \times S_2}(G \times G, \mathcal{D}b_{G \times G}^{2n})
\]

and the map

\[
\int_\mu : \Gamma_{S_1 \times S_2}(G \times G, \mathcal{D}b_{G \times G}^{4n}) \to \Gamma_{\mu(S_1 \times S_2)}(G, \mathcal{D}b_G^{2n})
\]

induced by the integration map along the fibers of \(\mu \)

\[
\int_\mu : \Gamma_{\mu-\text{proper}}(G \times G, \mathcal{D}b_{G \times G}^{4n}) \to \Gamma(G, \mathcal{D}b_G^{2n})
\]

and the fact that \(S_1 \) and \(S_2 \) are convolvable. It is thus natural to define the convolution of cohomology classes of holomorphic forms on \(G \) as follows :

Definition 4.6. Let \(S_1, S_2 \) be two convolvable closed subsets of \(G \). Consider the external product morphisms

\[
R\Gamma_{S_1}(G, \Omega_G^{p+n})[n] \otimes R\Gamma_{S_2}(G, \Omega_G^{p,n})[n] \to R\Gamma_{S_1 \times S_2}(G \times G, \Omega_{G \times G}^{p+n+2n})[2n]
\]
and the morphisms

\[\int_{\mu} : R\Gamma_{S_1 \times S_2} (G \times G, \Omega^{p+q+2n}_{G \times G})[2n] \to R\Gamma_{\mu(S_1 \times S_2)} (G, \Omega^{p+q+n}_{G})[n], \]

induced by the holomorphic integration map and the fact that \(S_1 \times S_2 \) is \(\mu \)-proper. By composition, these morphisms give derived category morphisms

\[\ast_{(G, \mu)} : R\Gamma_{S_1} (G, \Omega^{p+n}_{G})[n] \otimes R\Gamma_{S_2} (G, \Omega^{q+n}_{G})[n] \to R\Gamma_{\mu(S_1 \times S_2)} (G, \Omega^{p+q+n}_{G})[n], \]

that we call the holomorphic convolution morphisms of \(G \). Going to cohomology groups, these morphisms give rise to the morphisms

\[\ast_{(G, \mu)} : H^{p+n}_{S_1} (G, \Omega^{p+n}_{G}) \otimes H^{q+n}_{S_2} (G, \Omega^{q+n}_{G}) \to H^{p+q+n}_{\mu(S_1 \times S_2)} (G, \Omega^{p+q+n}_{G}), \]

that we call the holomorphic cohomological convolution morphisms of \(G \).

Remark 4.7. Consider the diagram

\[\begin{array}{ccc}
H^p_{S_1} (G, \Omega_G) \otimes H^q_{S_2} (G, \Omega_G) & \to & H^r_{\mu(S_1 \times S_2)} (G, \Omega_G) \\
\Gamma_{S_1} (G, \mathcal{D}b^2_{G}) \otimes \Gamma_{S_2} (G, \mathcal{D}b^2_{G}) & \text{\longleftarrow} & \Gamma_{\mu(S_1 \times S_2)} (G, \mathcal{D}b^2_{G})
\end{array} \]

where the vertical arrows are given by the Dolbeault complex of \(\Omega_G \) and the top (resp. bottom) horizontal arrow is given by the holomorphic cohomological morphism of \(G \) with \(p = q = r = s = 0 \) (resp. the convolution product of distributions). Obviously, by the definitions, this diagram is commutative. This remark will allow to perform explicit computations in the next section.

§5. Multiplicative convolution on \(\mathbb{C}^* \)

In this section, we will consider the case where the group \(G \) is the group \(\mathbb{C}^* \) formed by the set of non-zero complex numbers endowed with the complex multiplication (noted as a concatenation). We will assume that \(S_1, S_2 \) are convolvable proper closed subsets of \(\mathbb{C}^* \) (remark that this means that \(S_1 \cap KS_2^{-1} \) is compact for any compact subset \(K \) of \(\mathbb{C}^* \)) such that \(S_1S_2 \) is also a proper subset of \(\mathbb{C}^* \) and we will show how to compute the holomorphic cohomological convolution morphism

\[\ast : H^1_{S_1} (\mathbb{C}^*, \Omega_{\mathbb{C}^*}) \otimes H^1_{S_2} (\mathbb{C}^*, \Omega_{\mathbb{C}^*}) \to H^1_{S_1S_2} (\mathbb{C}^*, \Omega_{\mathbb{C}^*}) \]

by means of path integral formulas.
Proposition 5.1. Let S be a proper closed subset of \mathbb{C}^*, then there is a canonical isomorphism
\[
H^r_S(\mathbb{C}^*, \Omega_{\mathbb{C}^*}) \simeq \begin{cases} \Omega(\mathbb{C}^* \setminus S)/\Omega(\mathbb{C}^*) & \text{if } r = 1, \\ 0 & \text{otherwise.} \end{cases}
\]

Proof. Any open subset of \mathbb{C} is a Stein manifold. \hfill \Box

Thanks to this proposition, one can see that (5.1) can be interpreted as a bilinear map
\[
\star : \Omega(\mathbb{C}^* \setminus S)/\Omega(\mathbb{C}^*) \times \Omega(\mathbb{C}^*) \rightarrow \Omega(\mathbb{C}^* \setminus S)/\Omega(\mathbb{C}^*).
\]
Now, let $\omega_1 \in \Omega(\mathbb{C}^* \setminus S_1)$ and $\omega_2 \in \Omega(\mathbb{C}^* \setminus S_2)$ be two given holomorphic forms. Ideally, we would like to obtain a formula of the form
\[
[\omega_1] \star [\omega_2] = [\omega]
\]
where ω is a holomorphic form on $\mathbb{C}^* \setminus S_1 S_2$ which can be computed from ω_1 and ω_2 by some path integral.

It is in general not possible to find such a nice formula. However, we will show that for any relatively compact open subset U of \mathbb{C}^* and any open neighbourhood V of $S_1 S_2$ in \mathbb{C}^*, there is a holomorphic form ω on $U \setminus V$ which can be computed from ω_1 and ω_2 by some path integral and which is such that
\[
[\omega] \in \Omega(U \setminus V)/\Omega(U) \simeq H^1_{U \setminus V}^*(U, \Omega_{\mathbb{C}^*})
\]
coincides with the image of $[\omega_1] \star [\omega_2]$ by the canonical restriction morphism
\[
H^1_{S_1 S_2}^*(\mathbb{C}^*, \Omega_{\mathbb{C}^*}) \rightarrow H^1_{U \setminus V}^*(U, \Omega_{\mathbb{C}^*}).
\]
Thanks to the following lemma, this is in fact sufficient to completely compute $[\omega_1] \star [\omega_2]$.

Lemma 5.2. Let S be a closed subset of \mathbb{C}^*. Then
\[
H^1_S(\mathbb{C}^*, \Omega_{\mathbb{C}^*}) \simeq \lim_{\substack{U \in \mathcal{U}_c, V \in \mathcal{V}_S}} H^1_{U \setminus V}^*(U, \Omega_{\mathbb{C}^*})
\]
where \mathcal{U}_c denotes the set of relatively compact open subsets of \mathbb{C}^* ordered by \subset and \mathcal{V}_S denotes the set of open neighbourhoods of S in \mathbb{C}^* ordered by \supset.

Proof. This follows from the Mittag-Leffler theorem for projective systems (see e.g. Proposition 2.7.1 in [10]). \hfill \Box

To be able to specify the kind of path integral we need, let us first introduce the following definition:
Definition 5.3. Let F and G be two closed subsets of \mathbb{C}^* which have a compact intersection and let W be an open neighbourhood of $F \cap G$. A *relative Hadamard cycle for F with respect to G in W* is a relative 1-cycle

$$c \in Z_1(W \setminus F, (W \setminus F) \cap (W \setminus G))$$

such that its class

$$[c] \in H_1(W \setminus F, (W \setminus F) \cap (W \setminus G))$$

is the image of the relative orientation class

$$\alpha_{W,F \cap G} \in H_2(W,W \setminus (F \cap G))$$

by the Mayer-Vietoris morphism

$$H_2(W,W \setminus (F \cap G)) \to H_1(W \setminus F, (W \setminus F) \cap (W \setminus G))$$

associated with the decomposition

$$(W,W \setminus (F \cap G)) = ((W \setminus F) \cup W, (W \setminus F) \cup (W \setminus G)).$$

Remark 5.4. Let $c \in Z_1(W \setminus F, (W \setminus F) \cap (W \setminus G))$ such that the associated class $[c] \in H_1(W \setminus F, (W \setminus F) \cap (W \setminus G))$ is the image of $[W]_{F \cap G}$ by the sequence of canonical maps

$$H_2(W,W \setminus (F \cap G)) \to H_1(W \setminus (F \cap G))$$

$$= H_1((W \setminus F) \cup (W \setminus G))$$

$$\to H_1((W \setminus F) \cup (W \setminus G), W \setminus G)$$

$$\to H_1(W \setminus F, (W \setminus F) \cap (W \setminus G)).$$

By construction, c is a relative Hadamard cycle for F with respect to G in W.
With this definition at hand, we can now state the main result of this section.

Theorem 5.5. Let S_1 and S_2 be two convolvable proper closed subsets of \mathbb{C}^* such that $S_1S_2 \neq \mathbb{C}^*$ and let us assume that $\omega_1 = f_1dz$ and $\omega_2 = f_2dz$ with $f_1 \in \mathcal{O}(\mathbb{C}^* \setminus S_1), f_2 \in \mathcal{O}(\mathbb{C}^* \setminus S_2)$. Fix a relatively compact open subset U of \mathbb{C}^* and an open neighbourhood V of S_1S_2 in \mathbb{C}^*. Then, the image of $[\omega_1] \ast [\omega_2] \in \Omega(\mathbb{C}^* \setminus S_1S_2)/\Omega(\mathbb{C}^*) \simeq H^1_{S_1S_2}(\mathbb{C}^*, \Omega_{\mathbb{C}^*})$ in

$$\Omega(U \setminus \mathbb{C}^* \setminus U)/\Omega(U) \simeq H^1_{\mathbb{C}^* \setminus U}(U, \Omega_{\mathbb{C}^*})$$

is the class of the form $\omega = fdz \in \Omega(U \setminus \mathbb{C}^* \setminus U)$ where

$$f(z) = \int_c f_1(\zeta)f_2 \left(\frac{z}{\zeta} \right) \frac{d\zeta}{\zeta}$$

and c is a relative Hadamard cycle for S_1 with respect to $\mathbb{C}^*=1$ in $\mathbb{C}^* \setminus \mathbb{C}^* \setminus V')$.

Lemma 5.6. Let S_1 and S_2 be convolvable closed subsets of \mathbb{C}^* and let W be a fundamental system of compact neighbourhoods of 1 in \mathbb{C}^*. Then

1. The set $S_1^W = WS_1$ (resp. $S_2^W = WS_2$, $S_1^W S_2^W = W^2 S_1 S_2$) is a closed neighbourhood of S_1 (resp. $S_2, S_1 S_2$) in \mathbb{C}^* for any $W \in \mathcal{W}$.
2. The closed subsets S_1^W and S_2^W are convolvable in \mathbb{C}^* for any $W \in \mathcal{W}$.
3. One has $\bigcap_{W \in \mathcal{W}} S_1^W = S_1$, $\bigcap_{W \in \mathcal{W}} S_2^W = S_2$, and $\bigcap_{W \in \mathcal{W}} S_1^W S_2^W = S_1 S_2$.

Figure 3: In grey, a relative Hadamard cycle for F with respect to G in W.

4. In particular, if S_1 and S_2 are proper convolvable closed subsets of \mathbb{C}^* such that $S_1 S_2 \neq \mathbb{C}^*$, if U is a relatively compact open subset of \mathbb{C}^* and if V is an open neighbourhood of $S_1 S_2$ in \mathbb{C}^*, then there is $W \in \mathcal{W}$ such that S_1^W and S_2^W are convolvable proper closed subsets of \mathbb{C}^* such that $S_1^W S_2^W \neq \mathbb{C}^*$ and $S_1^W S_2^W \cap U \subset V$.

Proof. (1) This follows from the fact that FK is closed in \mathbb{C}^* if F (resp. K) is closed (resp. compact) in \mathbb{C}^* and from the fact that $(zW)_{W \in \mathcal{W}}$ is a fundamental system of neighbourhoods of $z \in \mathbb{C}^*$.

(2) This follows from the inclusion

$$S_1^W \cap K(S_2^W)^{-1} = WS_1 \cap KW^{-1}S_2^{-1} \subset W(S_1 \cap KW^{-2}S_2^{-1})$$

which is satisfied for any compact subset K of \mathbb{C}^*.

(3) This is clear since for any closed subset F of \mathbb{C}^* and any $z \notin F$ there is $W \in \mathcal{W}$ such that $zW^{-1} \cap F = \emptyset$.

(4) By contradiction, assume that

$$S_1^W S_2^W \cap U \cap (\mathbb{C}^* \setminus V) \neq \emptyset$$

for all $W \in \mathcal{W}$. Then, by compactness,

$$\bigcap_{W \in \mathcal{W}} (S_1^W S_2^W \cap U \cap (\mathbb{C}^* \setminus V)) = S_1 S_2 \cap U \cap (\mathbb{C}^* \setminus V) \neq \emptyset,$$

but this contradicts the fact that $S_1 S_2 \cap U \subset V$. \square

Lemma 5.7. Let S be a proper closed subset of \mathbb{C}^* and let $\omega \in \Omega(\mathbb{C}^* \setminus S)$. Assume that ω admits an infinitely differentiable extension to \mathbb{C}^* and denote by $\tilde{\omega}$ such an extension. Then $[\tilde{\omega}]$, seen as an element of $H^1_S(\mathbb{C}^*, \Omega_{\mathbb{C}^*})$, is the image of

$$[\tilde{\partial} \omega] \in H^1(\Gamma_S(\mathbb{C}^*, C^1_{\infty, \mathbb{C}^*}))$$

by the canonical morphism obtained by applying H^1 to the composition in the derived category of the canonical morphism

$$\Gamma_S(\mathbb{C}^*, C^1_{\infty, \mathbb{C}^*}) \to R\Gamma_S(\mathbb{C}^*, C^1_{\infty, \mathbb{C}^*})$$

and the inverse of the canonical isomorphism

$$R\Gamma_S(\mathbb{C}^*, \Omega_{\mathbb{C}^*}) \cong R\Gamma(\mathbb{C}^*, \Omega_{\mathbb{C}^*}) \cong R\Gamma(\mathbb{C}^* \setminus S, \Omega_{\mathbb{C}^*}) \cong \mathbb{C}^*.$$

Proof. It follows from the distinguished triangle

$$R\Gamma_S(\mathbb{C}^*, \Omega_{\mathbb{C}^*}) \to R\Gamma(\mathbb{C}^*, \Omega_{\mathbb{C}^*}) \to R\Gamma(\mathbb{C}^* \setminus S, \Omega_{\mathbb{C}^*}) \cong \mathbb{C}^*.$$
that $R\Gamma_S(C^*,\Omega_{C^*})$ is canonically isomorphic to the mapping cone $M(\rho_S)$ of the restriction morphism

$$\rho_S : C^1_{\infty,C^*}(C^*) \to C^1_{\infty,C^*}(C^* \setminus S)$$

shifted by -1. We know that $M[\rho_S][-1]$ is a complex concentrated in degrees 0, 1 and 2 of the form

$$C^0_{\infty,C^*}(C^*) \to C^1_{\infty,C^*}(C^*) \oplus C^0_{\infty,C^*}(C^* \setminus S) \to C^1_{\infty,C^*}(C^* \setminus S)$$

where the differentials in degree 0 and 1 are given by the matrices

$$\begin{pmatrix} \bar{\partial} \\ -\rho_S \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} -\rho_S - \bar{\partial} \end{pmatrix}$$

What we have to show is that

$$\begin{pmatrix} \bar{\partial} \\ 0 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 0 \\ \omega \end{pmatrix}$$

are two 1-cycles of this complex which are in the same cohomology class. This is clear since

$$\begin{pmatrix} \bar{\partial} \\ -\rho_S \end{pmatrix} \omega + \begin{pmatrix} 0 \\ \omega \end{pmatrix} = \begin{pmatrix} \bar{\partial} \omega \\ 0 \end{pmatrix}.$$

Proof of Theorem 5.5. Let U and V be as in the statement of the theorem. Thanks to Lemma 5.6, we know that it is possible to find a closed neighbourhood S_1 of S_1 and a closed neighbourhood S_2 of S_2 in C^* such that $S_1 \cap S_2 \subset U \subset V$.

Let f_1 (resp. f_2) be an infinitely differentiable function on C^* which coincides with f_1 (resp. f_2) on $C^* \setminus S_1$ (resp. $C^* \setminus S_2$) and set

$$\omega_1 = f_1(z) \, dz \quad \text{and} \quad \omega_2 = f_2(z) \, dz.$$

It follows from Lemma 5.7 that the image of

$$[\omega_1] \in \Omega(C^* \setminus S_1)/\Omega(C^*) \simeq H^1_{S_1}(C^*,\Omega_{C^*})$$

by the canonical morphism

$$H^1_{S_1}(C^*,\Omega_{C^*}) \to H^1_{S_2}(C^*,\Omega_{C^*})$$
is the same as the image of
\[[\partial \omega_1] \in H^1(\Gamma_{S_1}(C^*, C^{(1,\bullet)}_{\infty,C^*})) \]
by the canonical morphism
\[H^1(\Gamma_{S_1}(C^*, C^{(1,\bullet)}_{\infty,C^*})) \to H^1_{S_1}(C^*, \Omega_{C^*}) \]
considered in this lemma. A similar conclusion is true for the image of
\[[\omega_2] \in \Omega(C^* \setminus S_2)/\Omega(C^*) \cong H^1_{S_1}(C^*, \Omega_{C^*}) \]
in \(H^1_{S_1}(C^*, \Omega_{C^*}) \). Therefore, the image of
\[[\omega_1] \star [\omega_2] \in \Omega(C^* \setminus S_1S_2)/\Omega(C^*) \cong H^1_{S_1S_2}(C^*, \Omega_{C^*}) \]
in \(H^1_{S_1S_2}(C^*, \Omega_{C^*}) \) is the same as the image of \([\partial \omega_1 \star \partial \omega_2] \) by the canonical morphism
\[H^1(\Gamma_{S_1S_2}(C^*, C^{(1,\bullet)}_{\infty,C^*})) \to H^1_{S_1S_2}(C^*, \Omega_{C^*}). \]

Let us note \(p_1, p_2 : C^* \times C^* \to C^* \) the two canonical projections and consider the commutative diagram
\[
\begin{array}{ccc}
C^* \times C^* & \overset{\phi}{\longrightarrow} & C^* \times C^* \\
\mu \downarrow & & \downarrow \psi \\
C^* & \overset{p_2}{\longrightarrow} & C^* \\
\end{array}
\]
where \(\phi(z_1, z_2) = (z_1, z_1z_2) \) and \(\psi(\zeta, z) = (\zeta, z/\zeta) \). Since \(\phi \circ \psi = \id = \psi \circ \phi \), we have
\[
\int_\mu = \int_{p_2} \circ \int_p = \int_{p_2} \circ \psi^*.
\]
Therefore,
\[
\begin{align*}
\partial \omega_1 \star \partial \omega_2 &= \int_\mu (\partial \omega_1 \otimes \partial \omega_2) \\
&= \int_{p_2} \left(\psi^*(p_1^* \partial \omega_1 \wedge p_2^* \partial \omega_2) \right) \\
&= \int_{p_2} \left(p_1^* \partial \omega_1 \wedge h^* \partial \omega_2) \right),
\end{align*}
\]
where \(h(\zeta, z) = z/\zeta \). Since
\[
\begin{align*}
\partial \omega_1 &= \frac{\partial f_1}{\partial z}(z)d\zeta \wedge dz \quad \text{and} \quad \partial \omega_2 = \frac{\partial f_2}{\partial z}(z)d\zeta \wedge dz,
\end{align*}
\]
we have
\[h^* \partial \omega_2 = \frac{\partial f_2}{\partial \xi} \left(\frac{z}{\xi} \right) d \left(\frac{z}{\xi} \right) \]
\[= \frac{\partial f_2}{\partial \xi} \left(\frac{z}{\xi} \right) \frac{\zeta d\zeta - zd\xi}{\xi^2} \wedge \frac{\zeta d\zeta - zd\zeta}{\xi^2} \]
and
\[p_1^* \partial \omega_1 \wedge h^* \partial \omega_2 = \frac{\partial f_1}{\partial \xi} (\zeta) \frac{\partial f_2}{\partial \zeta} \left(\frac{z}{\zeta} \right) \frac{d\zeta}{\zeta} \wedge \frac{d\zeta}{\zeta} \wedge d\zeta \wedge dz. \]
Therefore,
\[\partial \omega_1 \wedge \partial \omega_2 = \left(\int_{C^*} \frac{\partial f_1}{\partial \xi} (\zeta) \frac{\partial f_2}{\partial \zeta} \left(\frac{z}{\zeta} \right) \frac{d\zeta}{\zeta} \wedge \frac{d\zeta}{\zeta} \wedge d\zeta \wedge dz. \right. \]
Since \(f_1 \) coincides with \(f_1 \) on \(C^* \setminus S_1 \), one has
\[\text{supp} \left(\zeta \mapsto \frac{\partial f_1}{\partial \xi} (\zeta) \right) \subset S_1. \]
Similarly, one has
\[\text{supp} \left(\zeta \mapsto \frac{\partial f_2}{\partial \zeta} \left(\frac{z}{\zeta} \right) \right) \subset zS_2^{-1}. \]
Hence,
\[\zeta \mapsto \frac{\partial f_1}{\partial \xi} (\zeta) \frac{\partial f_2}{\partial \zeta} \left(\frac{z}{\zeta} \right) \]
is an infinitely differentiable function on \(C^* \) supported by \(S_1 \cap zS_2^{-1} \) which is a compact subset of \(C^* \).

Since \(U \) is a relatively compact open subset of \(C^* \) and \(S_1 \) and \(S_2 \) are convolvable closed subsets of \(C^* \),
\[K = S_1 \cap US_2^{-1} \]
is a compact subset of \(C^* \). Let \(c \) be a singular infinitely differentiable 2-chain of \(C^* \) such that
\[[c] \in H_2(C^*, C^* \setminus K) \]
is the relative orientation class \(\alpha_{C^*, K} \). Then, on \(U \), one has
\[\partial \omega_1 \wedge \partial \omega_2 = \left(\int_{c} \frac{\partial f_1}{\partial \xi} (\zeta) \frac{\partial f_2}{\partial \zeta} \left(\frac{z}{\zeta} \right) \frac{d\zeta}{\zeta} \wedge \frac{d\zeta}{\zeta} \wedge d\zeta \wedge dz, \right. \]

since the integrated form is supported by \(S_1 \cap zS_2^{-1} \subset K \) for any \(z \in U \). Moreover, the function \(f_2 \) is infinitely differentiable on \(C^* \) and the chain \(c \) is supported by a
compact subset of \mathbb{C}^*. Thus, the function
\[
f : z \mapsto \int_c \frac{\partial f_1}{\partial \overline{z}}(\zeta) f_2 \left(\frac{z}{\zeta} \right) d\zeta \wedge \frac{d\zeta}{\zeta}
\]
is infinitely differentiable on \mathbb{C}^* and
\[
\frac{\partial f}{\partial \overline{z}}(z) = \int_c \frac{\partial f_1}{\partial \overline{z}}(\zeta) \frac{\partial f_2}{\partial \overline{z}} \left(\frac{z}{\zeta} \right) d\zeta \wedge \frac{d\zeta}{\zeta}
\]
Therefore, on U, one has
\[
[\partial \omega_1 \star \partial \omega_2]_{\Omega(U)} = [\omega_1 \star \omega_2]_{\Omega(U)}
\]
in
\[
\Omega(U \setminus S_1 S_2)/\Omega(U) \simeq H^1(S_1 S_2) \cap \Omega(U \setminus S_1 S_2).
\]

Let us now show how to compute $[\omega_{U}]$ in $\Omega(U \setminus V)/\Omega(U)$ by means of f_1 and f_2 alone. Since V is an open neighbourhood of $S_1 S_2$, we may assume that $c = c_1 + c_2$ where

\[
supp c_1 \subset \mathbb{C}^* \setminus S_1 \quad \text{and} \quad supp c_2 \subset \mathbb{C}^* \setminus ((\overline{U} \setminus V) S_2^{-1}).
\]

Since $\supp \frac{\partial f}{\partial \overline{z}} \subset S_1$, it is then clear that
\[
f(z) = \int_{c_2} \frac{\partial f_1}{\partial \overline{z}}(\zeta) f_2 \left(\frac{z}{\zeta} \right) d\zeta \wedge \frac{d\zeta}{\zeta}.
\]
Moreover, for any $z \in \overline{U} \setminus V$ one has
\[
\mathbb{C}^* \setminus z S_2^{-1} \supset \mathbb{C}^* \setminus ((\overline{U} \setminus V) S_2^{-1}) \supset supp c_2
\]
and since the function $\zeta \mapsto f_2(z/\zeta)$ is holomorphic on $\mathbb{C}^* \setminus z S_2^{-1}$, it follows that
\[
f(z) = \int_{c_2} \frac{\partial}{\partial \zeta} \left(f_1(\zeta) f_2 \left(\frac{z}{\zeta} \right) \frac{1}{\zeta} \right) d\zeta \wedge d\zeta.
\]
\[
\int_{\partial c} f_1(\zeta) f_2 \left(\frac{z}{\zeta} \right) \frac{d\zeta}{\zeta}
\]

By construction,

\[\text{supp}(\partial c) \subset C^* \setminus K = (C^* \setminus S_1) \cup (C^* \setminus U S_2^{-1}).\]

Replacing, if necessary, \(c\) by a one of its barycentric subdivisions, we may thus assume that \(\partial c = c'_1 + c'_2\) where \(\text{supp} c'_1 \subset C^* \setminus S_1\) and \(\text{supp} c'_2 \subset C^* \setminus U S_2^{-1}\). Since

\[\partial c_1 + \partial c_2 = \partial c = c'_1 + c'_2,\]

there is a chain \(c_3\) such that

\[\partial c_2 - c'_2 = c_3 = c'_1 - \partial c_1.\]

Since \(\text{supp} c'_2 \subset C^* \setminus U S_2^{-1}\), the function

\[z \mapsto \int_{c'_2} f_1(\zeta) f_2 \left(\frac{z}{\zeta} \right) \frac{d\zeta}{\zeta}\]

is clearly holomorphic on \(U\). Hence, the image of \([\omega | U] \in \Omega(U \setminus V) / \Omega(U)\) is \([g(z)dz]\) where \(g\) is the holomorphic function on \(U \setminus V\) defined by setting

\[g(z) = \int_{c_3} f_1(\zeta) f_2 \left(\frac{z}{\zeta} \right) \frac{d\zeta}{\zeta}.
\]

Since

\[\text{supp}(\partial c_2 - c'_2) \subset (C^* \setminus ((U \setminus V) S_2^{-1})) \cup (C^* \setminus U S_2^{-1}) = C^* \setminus ((U \setminus V) S_2^{-1})\]

and

\[\text{supp}(c'_1 - \partial c_1) \subset (C^* \setminus S_1) \cup (C^* \setminus S_1) = C^* \setminus S_1,\]

it is clear that

\[\text{supp} c_3 \subset (C^* \setminus S_1) \cap (C^* \setminus ((U \setminus V) S_2^{-1})).\]

Therefore, we have in fact

\[g(z) = \int_{c_3} f_1(\zeta) f_2 \left(\frac{z}{\zeta} \right) \frac{d\zeta}{\zeta}\]

for any \(z \in U \setminus V\). Moreover, since \(\partial c_3 = \partial c'_1 = -\partial c'_2\), it is clear that

\[\text{supp} \partial c_3 \subset (C^* \setminus S_1) \cap (C^* \setminus U S_2^{-1}).\]

So,

\[c_3 \in Z_1((C^* \setminus S_1) \cap (C^* \setminus ((U \setminus V) S_2^{-1}))), (C^* \setminus S_1) \cap (C^* \setminus U S_2^{-1})).\]
and it follows by construction that it is a relative Hadamard cycle for S_1 with
respect to $\overline{US_2^{-1}}$ in $C^* \setminus (U \setminus V)S_2^{-1}$ (apply Remark 5.4 with $F = S_1$, $G = \overline{US_2^{-1}}$ and $W = C^* \setminus ((U \setminus V)S_2^{-1})$). Thus, c_3 is also a relative Hadamard cycle for S_1 with respect to $\overline{US_2^{-1}}$ in $C^* \setminus (U \setminus V)S_2^{-1}$.

To conclude, it remains to show that if c'_3 is another relative Hadamard cycle
for S_1 with respect to $\overline{US_2^{-1}}$ in $C^* \setminus (U \setminus V)S_2^{-1}$ and if

$$\hat{g}(z) = \int_{c_3} f_1(\zeta)f_2 \left(\frac{z}{\zeta} \right) \frac{d\zeta}{\zeta}$$

for any $z \in U \setminus V$, then $[g(z)dz] = [\hat{g}(z)dz]$ in $\Omega(U \setminus V)/\Omega(U)$. For such a c'_3, we have $[c_3] = [c'_3]$ in

$$H_1((C^* \setminus S_1) \cap (C^* \setminus (U \setminus V)S_2^{-1}), (C^* \setminus S_1) \cap (C^* \setminus U)S_2^{-1})$$

Therefore, $c'_3 = c_3 + c_4 + \partial c_5$ where c_4 is a 1-chain of $(C^* \setminus S_1) \cap (C^* \setminus U)S_2^{-1}$ and c_5 is a 2-chain of $(C^* \setminus S_1) \cap (C^* \setminus (U \setminus V)S_2^{-1})$. It follows that the function

$$\hat{g} : z \mapsto \int_{c'_3} f_1(\zeta)f_2 \left(\frac{z}{\zeta} \right) \frac{d\zeta}{\zeta}$$

is a holomorphic function on $U \setminus V$ and that

$$\hat{g}(z) = g(z) + \int_{c_4} f_1(\zeta)f_2 \left(\frac{z}{\zeta} \right) \frac{d\zeta}{\zeta}$$

on $U \setminus V$. Since

$$z \mapsto \int_{c_4} f_1(\zeta)f_2 \left(\frac{z}{\zeta} \right) \frac{d\zeta}{\zeta}$$

is clearly holomorphic on U, we have $[g(z)dz] = [\hat{g}(z)dz]$ in $\Omega(U \setminus V)/\Omega(U)$ as expected.

§ 6. The case of strongly convolvable sets

It is natural to ask whether one can compute the holomorphic cohomological multi-
plicative convolution on C^* thanks to a global formula, by adding extra-conditions
on S_1 and S_2. Recalling Definition 2.3, we are led to introduce the following one :

Definition 6.1. Let S_1 and S_2 be two convolvable proper closed subsets of C^*
such that $S_1S_2 \neq C^*$. These two closed sets are said to be strongly convolvable if,
furthermore, $\overline{S_1}$ and $\overline{S_2}$ are star-eligible, that is to say, if $\overline{S_1} \times \overline{S_2} \subset M$. (Here $\overline{\cdot}$
denotes the closure in \mathbb{P}.)
Remark 6.2. One can find convolvable proper closed subsets of \mathbb{C}^* which are not strongly convolvable. For example, consider

$$S_1 = \{(2m)! : m \in \mathbb{N}\} \quad \text{and} \quad S_2 = \left\{ \frac{1}{(2n+1)!} : n \in \mathbb{N} \right\}.$$

We shall now highlight the link with the generalized Hadamard product. Recall Definitions 2.4 and 2.5.

Proposition 6.3. Let S_1 and S_2 be two strongly convolvable proper closed subsets of \mathbb{C}^*. Assume that $\omega_1 = f_1 dz$ and $\omega_2 = f_2 dz$ with $f_1 \in \mathcal{O}(\mathbb{C}^* \setminus S_1)$ and $f_2 \in \mathcal{O}(\mathbb{C}^* \setminus S_2)$. For all $z \in \mathbb{C}^* \setminus S_1 S_2$, let c_z be a generalized Hadamard cycle for S_1 in $\mathbb{P} \setminus (z\mathbb{S}_2^{-1} \cup \{0, \infty\} \setminus S_1))$. Then

$$[\omega_1] \ast [\omega_2] = [fdz] \in \Omega(\mathbb{C}^* \setminus S_1 S_2)/\Omega(\mathbb{C}^*),$$

where

$$f(z) = -\int_{c_z} f_1(\zeta) f_2 \left(\frac{z}{\zeta} \right) \frac{d\zeta}{\zeta}$$

for all $z \in \mathbb{C}^* \setminus S_1 S_2$.

Proof. Let U be a relatively compact open subset of \mathbb{C}^* and V an open neighbourhood of $S_1 S_2$ in \mathbb{C}^*. Let c be a relative Hadamard cycle for S_1 with respect to $\mathbb{U} S_2^{-1}$ in $\mathbb{C}^* \setminus (\mathbb{U} \setminus V) S_2^{-1}$. Then, by a similar argument as in the proof of Lemma 2.6, it is clear that the image of $[c_z]$ by the sequence of canonical maps

$$H_1(\mathbb{P} \setminus (S_1 \cup z\mathbb{S}_2^{-1} \cup \{0\} \cup \{\infty\})) = H_1(\mathbb{C}^* \setminus (S_1 \cup z\mathbb{S}_2^{-1}))$$

is $[-c]$ for all $z \in \mathbb{U} \setminus V$. Hence

$$\int_{c} f_1(\zeta) f_2 \left(\frac{z}{\zeta} \right) \frac{d\zeta}{\zeta} = -\int_{c_z} f_1(\zeta) f_2 \left(\frac{z}{\zeta} \right) \frac{d\zeta}{\zeta}, \quad \forall z \in U \setminus V.$$

Since this argument is valid for all U and all V, the conclusion follows from Theorem 5.5. \qed
In this context, we set \((f_1 \star f_2)(z) = \frac{1}{2\pi i} \int_C f_1(\zeta) f_2 \left(\frac{z}{\zeta} \right) \frac{d\zeta}{\zeta}\). If \(f_1 \in \mathcal{O}(\mathbb{P} \setminus \mathcal{S}_1)\) and \(f_2 \in \mathcal{O}(\mathbb{P} \setminus \mathcal{S}_2)\), this really coincides with the generalized Hadamard product.

Remark 6.4. Let \(S_1\) and \(S_2\) be two strongly convolvable proper closed subsets of \(\mathbb{C}^*\). Let us make an identification \(fdz \leftrightarrow -2\pi i f\) between holomorphic 1-forms and holomorphic functions. Then, by the previous proposition, the holomorphic cohomological convolution morphism

\[H^1_{S_1}(\mathbb{C}^*, \Omega_{\mathbb{C}^*}) \otimes H^1_{S_2}(\mathbb{C}^*, \Omega_{\mathbb{C}^*}) \to H^1_{S_1 \setminus S_2}(\mathbb{C}^*, \Omega_{\mathbb{C}^*}) \]

can be seen as a bilinear map

\[\mathcal{O}(\mathbb{C}^* \setminus S_1) / \mathcal{O}(\mathbb{C}^*) \times \mathcal{O}(\mathbb{C}^* \setminus S_2) / \mathcal{O}(\mathbb{C}^*) \to \mathcal{O}(\mathbb{C}^* \setminus S_1 S_2) / \mathcal{O}(\mathbb{C}^*) \]

which can be computed by

\[[f_1] \star [f_2] = [f_1 \star f_2]. \]

For the following example, we use the notation \(D(0, R) = \{ z \in \mathbb{C} : |z| < R \}\) with \(R > 0\).

Example 6.5. Let \(S = \mathbb{C}^* \setminus D(0, s)\) and \(T = \mathbb{C}^* \setminus D(0, t)\) with \(s > 0, t > 0\) and let

\[f \in \mathcal{O}(\mathbb{C}^* \setminus S) = \mathcal{O}(D(0, s) \setminus \{0\}) \quad \text{and} \quad g \in \mathcal{O}(\mathbb{C}^* \setminus T) = \mathcal{O}(D(0, t) \setminus \{0\}) \]

be two holomorphic functions. Then, \(S\) and \(T\) are strongly convolvable proper closed subsets of \(\mathbb{C}^*\) and we can write \(f(z) = \sum_{n=-\infty}^{+\infty} a_n z^n\), \(g(z) = \sum_{n=-\infty}^{+\infty} b_n z^n\). Since the polar part of \(f\) (resp. \(g\)) is holomorphic on \(\mathbb{C}^*\), we have \([f] = \left[\sum_{n=0}^{+\infty} a_n z^n \right]\) in \(\mathcal{O}(D(0, s) \setminus \{0\}) / \mathcal{O}(\mathbb{C}^*)\) and \([g] = \left[\sum_{n=0}^{+\infty} b_n z^n \right]\) in \(\mathcal{O}(D(0, t) \setminus \{0\}) / \mathcal{O}(\mathbb{C}^*)\). Using the preceding remark, we see that the holomorphic cohomological convolution \([f] \star [g]\) is given by

\[[f \star g] = \left[\sum_{n=0}^{+\infty} a_n b_n z^n \right], \]

since the generalized Hadamard product coincides with the usual one in this case.

Let us now state a trivial proposition:

Proposition 6.6. Let \(S_1\) and \(S_2\) be two convolvable closed subsets of \(\mathbb{C}^*\) and \(S'_1 \subset S_1, S'_2 \subset S_2\) two closed subsets. Then, \(S'_1 \setminus S'_2\) are convolvable and the diagram
where the horizontal arrows are given by the holomorphic cohomological convolution morphisms, is commutative.

Example 6.5 combined with Proposition 6.6 allows to compute several other examples.

Example 6.7. Let $S_1 = S_2 = (-\infty, -1]$. The principal determination of the function $z \mapsto \ln(1+z)$ is holomorphic on $\mathbb{C}^* \setminus S_1$. Moreover, S_1 and S_2 are strongly convolvable and thus, there is $g \in \mathcal{O}(\mathbb{C}^* \setminus [1, +\infty))$ such that

$$[\ln(1+z)] \star [\ln(1+z)] = [g].$$

Using the previous results, one has

$$([\ln(1+z)] \star [\ln(1+z)])|_{D(0,1)} = [\ln(1+z)]|_{D(0,1)} \star [\ln(1+z)]|_{D(0,1)}$$

$$= \left[\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n} z^n \right] \star \left[\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n} z^n \right]$$

$$= \left[\sum_{n=1}^{+\infty} \frac{z^n}{n^2} \right]$$

$$= [\text{Li}_2(z)]|_{D(0,1)},$$

where Li_2 is the principal dilogarithm function, holomorphic on $\mathcal{O}(\mathbb{C}^* \setminus [1, +\infty))$.

Hence, there is $h \in \mathcal{O}(\mathbb{C}^*)$ such that

$$g|_{D(0,1)} - \text{Li}_2|_{D(0,1)} = h.$$

By the uniqueness of the analytic continuation, one deduces that $g - \text{Li}_2 = h$ on $\mathbb{C}^* \setminus [1, +\infty)$ and, thus, that

$$[\ln(1+z)] \star [\ln(1+z)] = [\text{Li}_2(z)]$$

in $\mathcal{O}(\mathbb{C}^* \setminus S_1 S_2)/\mathcal{O}(\mathbb{C}^*)$.

§7. Further applications

As we saw, the holomorphic cohomological convolution is well-fitted to study the Hadamard product in the non-compact setting. It should therefore be a good tool
to study Hadamard convolution operators associated with convolvable closed subsets of C^* (see e.g. [11] for the compact setting). Actually, this point of view has already been fruitful in the additive version of the holomorphic cohomological convolution. In [5], we defined a natural notion of convolution between analytic functionals with non-compact convex carrier (generalizing the work of A. Mérit in [13]) and showed the compatibility with the additive holomorphic cohomological convolution, modulo some growth conditions. We also explained that this convolution is transformed into a product by the enhanced Laplace transform studied in [6]. Hence, the cohomological framework offers an additional clarity concerning these contour-integration transformations.

Acknowledgements

The first author was supported by a FNRS grant (ASP 111496F).

References

