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ABSTRACT

Studies in plant pathology, agronomy, and plant breeding requiring disease
severity assessment often use quantitative ordinal scales (i.e., a special type of
ordinal scale that uses defined numeric ranges); a frequently used example of
such a scale is the Horsfall-Barratt scale. Parametric proportional odds
models (POMs) may be used to analyze the ratings obtained from quantitative
ordinal scales directly, without converting ratings to percent area affected
using range midpoints of such scales (currently a standard procedure). Our
aim was to evaluate the performance of the POM for comparing treatments
using ordinal estimates of disease severity relative to two alternatives,
the midpoint conversions (MCs) and nearest percent estimates (NPEs).
A simulation method was implemented and the parameters of the
simulation estimated using actual disease severity data from the field.

The criterion for comparison of the three approaches was the power of
the hypothesis test (the probability to reject the null hypothesis when it
is false). Most often, NPEs had superior performance. The performance
of the POM was never inferior to using the MC at severity <40%.
Especially at low disease severity (£10%), the POM was superior to
using the MC method. Thus, for early onset of disease or for comparing
treatments with severities <40%, the POM is preferable for analyzing
disease severity data based on quantitative ordinal scales when
comparing treatments and at severities >40% is equivalent to other
methods.
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Plant pathologists face many situations in which the measurement
of nearest percent estimates (NPEs) of disease severity is time-
consuming or impractical. In such situations, researchers have often
used an ordinal scale of measurement (Bock et al. 2010b; Shah and
Madden 2004). An ordinal scale depicts the order or ranking of
measurements, but the difference among the classes is generally
neither equal nor equivalent andmay be qualitative or quantitative, or
some combination thereof. Madden et al. (2007) also suggested that
although one reason for using an ordinal scale is for convenience and
speed of rating, another reason is that a rater may not be capable of
easily distinguishing differences in severity within an ordinal class.
Indeed, rater NPEs of disease severity are notoriously variable (Bock
et al. 2009; Nita et al. 2003; Nutter et al. 1993). Therefore, NPEs of
diseasemay beof questionablevalue if severity cannot be determined
accurately and reliably.
Ordinal scales are commonly used as an alternative toNPEswhen

assessing disease severity. Such ordinal scales may be qualitative—

that is, the severity of disease obtainedwith an ordinal rating scale
is an ordered numeric variable, but the rating scale is based on
descriptions of symptoms (Agresti 2007, 2010; Larrabee et al.
2014; Madden et al. 2007). In contrast, an ordinal scale with
classes describing defined, consecutive numeric ranges (or
intervals) can be termed a quantitative ordinal scale; with plant
disease, this special form of the ordinal scale is generally based on
the percent area with symptoms. As an example, the Horsfall-
Barratt (HB) scale divides the percent scale into 12 consecutive
logarithmic-based intervals of severity between 0 and 100%
(Horsfall and Barratt 1945). Several quantitative ordinal scales
have been developed that subdivide the percent scale into
different numbers of classes and varying interval sizes (Bardsley
and Ngugi 2013; Chiang et al. 2014; Forbes and Korva 1994;
Hartung and Piepho 2007; Hunter 1983; Hunter and Roberts
1978). As another example, Chiang et al. (2014) indicated that a
10% linear scale that emphasizes severities £50%disease, and has
additional grades at low severities (£10%), may be a good choice
for assessing disease severity when use of a quantitative ordinal
scale is preferred. In contrast, qualitative ordinal rating scales are
based on descriptions of symptoms (Madden et al. 2007). Al-
though both quantitative and qualitative ordinal rating scales
share the same structure (i.e., 1-to-n classes), quantitative ordinal
scale classes are described by intervals of increasing and consec-
utively defined numeric magnitude.
In this article, we focus solely on quantitative ordinal scales. In

regard to the nature of the particular quantitative ordinal scale used,
Snedecor and Cochran (1989) and Madden et al. (2007) stated that
for scaleswith classes of equal interval sizes, standard analyses such
as analysis of variance (ANOVA)may be appropriate for the ordinal
measurements, but only if the classes used in the scale represent
equal intervals on an underlying continuous ratio scale (e.g., the
percent scale). However, scales with unequal interval sizes between
0 and 100% severities are often used in visual estimates of plant
disease assessment, such as the HB scale and the amended 10%
scale (Chiang et al. 2014) mentioned above. If one is using data
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based on a scale with unequal sized intervals between 0 and 100%,
one should not apply ANOVA directly to the scale values; instead,
the recommended approach is to use the midpoint of the severity
range for each class (Bock et al. 2010a, b; Chiang et al. 2014;
Madden et al. 2007; Nita et al. 2003). However, use of the midpoint
might amplify imprecision of quantitative values used in sub-
sequent analysis, especially when the interval size is wider. In such
cases, using themidpoint of the severity range for each classmay be
an unreliable procedure.
A proportional odds model, also known as an ordered logistic

model, is an appealingmethod to choosewhen analyzing qualitative
ordinal rating scale data (Agresti 2007). The use of the proportional
odds model has been discussed previously in relation to studies in
plant pathology (Fu et al. 2012; Henderson et al. 2007; Landschoot
et al. 2013; Paul and Munkvold 2004; Shah and Madden 2004).
Indeed, the proportional odds model can be used to analyze directly
the ratings obtained from disease scales with unequal class widths
(e.g., the HB scale), without the need for conversion of ratings to
percentages based on class midpoints (Madden et al. 2007).
Moreover, the model can incorporate covariate effects in the same
way as ordinary regression analysis. These useful features of the
proportional odds model make it possible to compare estimates
from studies using different response scales. Potential disadvan-
tages of the proportional oddsmodel include the need for sufficiently
large numbers of observations for each experimental unit (Shah and
Madden 2004) as well as the assumption that the slopes are the same
for all categories (Agresti 2007, 2010; Fu et al. 2012; Schabenberger
and Pierce 2002).
In this study, we compare treatments based on ordinal scale data

either (i) converted to the midpoint of the corresponding disease
severity range of the ordinal class and use of a standard parametric
analytical technique (a t test in this case) or (ii) using the
proportional odds model applied directly to the ordinal class data
(without midpoint conversion). This idea is novel and deals with
the data using different points of view. Midpoint conversion
followed by a t test regards the data set as “measurement” data. In
contrast, if a proportional odds model is used, the data set is
considered as “count” data. To the best of our knowledge, there have
been no previous studies that present the advantages and disadvan-
tages of the proportional odds model when used to compare
treatments based on quantitative ordinal scale estimates of plant
disease severity.
We hypothesize that there may be advantages, in some cases, to

using a proportional odds model to compare treatments based on
ordinal scale estimates of plant disease severity compared with the
midpoint conversion procedure. In addition, we wish to determine
how large the sample size should be for each experimental unit
when using a proportional oddsmodel. In this article, we focused on
severity levels£50%, so the data presented here are directly relevant
to the ranges of disease severities most often observed in the field
for many pathosystems (Kranz 1977) and most often in the range of
greatest interest to plant pathologists.

MATERIALS AND METHODS

General approach. Based on estimates of disease severity
using a quantitative ordinal scale, the performance of the
proportional odds model analyzing ordinal class data was
compared with using midpoint conversion of the ordinal class
intervals analyzed using a parametric t test for comparison of
treatments (e.g., varieties, fungicides, etc.). We first considered
the characteristics (i.e., structure or widths of the intervals) of the
quantitative ordinal scale. Subsequently, a simulation method
was employed to execute the study. The parameters of the
simulationmethodwere estimated using disease severity estimate
data collected previously from the field. Power analysis (the
power of the hypothesis test) was used as the criterion for
comparison.

Three types of scale were taken into account. The first type was
the percentage scale, a continuous ratio scale based on NPEs (with
disease severity estimated by the raters to the nearest 1%). The
second type was the HB quantitative ordinal scale (using only 5 of
the 10 categories of the scale representing 0+ to 3, 3+ to 6, 6+ to 12,
12+ to 25, and 25+ to 50% disease severity; assigned the ordinal
classes of 1, 2, 3, 4, and 5, respectively) (Horsfall and Barratt 1945).
For simplification, we regarded the disease severity as 50% when
the disease severity >50%. The third type was an amended 10%
quantitative ordinal scale based on 10% linear intervals emphasiz-
ing severities £50% diseasewith additional classes at low severities
(seven classes representing 0+ to 1, 1+ to 4, 4+ to 10, 10+ to 20, 20+ to
30, 30+ to 40, and 40+ to 50% disease severity; assigned the ordinal
classes 1, 2, 3, 4, 5, 6, and 7, respectively) (Chiang et al. 2014). As
with the HB scale, we regarded the disease severity as 50% when
the disease severity >50%.
A standard procedure is that NPEs are converted to the appropriate

class of the quantitative ordinal scale for data analysis or performing
simulations (Bock et al. 2010a; Chiang et al. 2014; Nita et al. 2003).
The scale data are subsequently converted to the appropriate interval
midpoint value of each class for analysis using a t test.

Disease assessment data. We used two previously collected
data sets to estimate the required parameters: rater estimates of the
severity of citrus canker, caused by Xanthomonas citri [Hasse]
Gabriel et al. on leaves of grapefruit (Citrus × paradisi Macfad.),
and rater estimates of the severity of Septoria leaf blotch (SLB)
caused by Zymoseptoria tritici (Desm.) Quaedvlieg & Crous on
leaves of winter wheat (Triticum aestivum L.). The data sets were
described previously (Bock et al. 2008a, b, 2015; Chiang et al.
2017a; El Jarroudi et al. 2015).
Briefly, the citrus canker data set comprised assessments of a

sample of 210 diseased leaves by three different raters along with
the actual (true) disease values. Actual disease severitywasmeasured
on a leaf-by-leaf basis using image analysis (ASSESS; American
Phytopathological Society, St. Paul, MN). Rater NPEs of disease
severities and image analysis measurements were for each of the
210 leaves on two separate occasions. The SLB data set comprised
rater-estimated and actual severity data from samples of leaves of
winter wheat from plants both in control plots and plots receiving
fungicides in field experiments in the Grand-Duchy of Luxem-
bourg. As for the citrus canker data set, actual disease severity
was measured on a leaf-by-leaf basis using image analysis and
ASSESS software (Lamari 2002). Four raters assessed the severity
of SLB on the wheat leaves and represent different hypothetical
rater types used in the study (Bock et al. 2015; Chiang et al. 2017a;
El Jarroudi et al. 2015). Raters 3 and 4 overestimated except at
extremely high severities, whereas rater 2 underestimated and
rater 1 had relatively accurate estimates. This spectrum was
considered to provide a fair representation of the rater population.
In 2006, 345 leaves from control plots and 240 leaves from
fungicide-treated plots were photographed, image analyzed, and
assessed; in 2007, 201 leaves from control plots and 171 leaves
from fungicide-treated plots were photographed, image analyzed,
and assessed (a grand total of 957 leaves).

Simulation study. As in several previous studies (Bock et al.
2010a; Chiang et al. 2014, 2016a, b, 2017b), a two-stage simulation
approach was employed to approximate the mechanisms governing
sampling of specimens for disease severity estimation in relation to
hypothesis testing. This simulation method considered both the
variation in symptom severity among individuals in a field plot (an
error at stage I) and the error rate in assessment (an error at stage II).
The algorithm in the simulation process was as follows.
First, two normally distributed, hypothetical populations of

plants with disease (treatments A and B) were compared. An actual
severity (Yactual) value for a treatment was selected. A linear model
was used to describe the relationship between the mean rater-
estimated severity (µrater) and the actual severity (Yactual) (Bock
et al. 2010a; Chiang et al. 2014, 2016a, b). The standard deviation of
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the rater mean estimate (srater) was regarded as a function of Yactual
determined by the rater estimates of severity using the real data from
the field. The relationships are as follows (equations 1 and 2):

µrater = qYactual (1)

srater = f ðYactualÞ (2)

A linear relationship between estimated disease and actual disease
severity is generally observed (Bock et al. 2008a, b; Forbes and
Korva 1994; Nita et al. 2003; Nutter and Esker 2006; Sherwood
et al. 1983), so we used a generalized rater distribution describing
an unbiased rate (q = 1).
Second, according to previous articles (Bock et al. 2010a; Chiang

et al. 2014, 2016a, b; Forbes and Korva 1994), the frequency (y) of
NPEs of specific actual disease severities by raters was assumed to
follow a log-normal distribution (a positively skewed distribution;
equation 3). That is,

y;Lognormal
�
µ; r2

�
(3)

with parameters _‘ < µ < ‘; 0 < r < ‘. This will be denoted loge
(y);Normal (µ, r2). Thus, themean of loge (y) is µ and the variance
of loge (y) is r2. The two parameters (µ and r2) of equation 3 were
acquired from µrater and srater in equations 1 and 2. Their
relationships are as follows (equations 4 and 5):
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Third, a simulation value (NPE) based on the distribution of rater-
estimated disease severities was obtained using equation 3. An
example and further discussion of the simulation process is
described in the Appendix.

Relationship between severity and srater. To establish the
relationship between the standard deviation of the rater mean NPE
(srater) and the actual disease severity for estimates, the rater
estimates from 0 to 100% were divided into consecutive groupings
with an approximately equivalent number of estimates in each
interval.
Here, we used both data sets and subsets thereof to obtain results

based on a range of rater precision. In order to present these
contrasting rater abilities, we combined the data for the four raters
from the SLB study (data set 1), only raters 3 and 4 from the SLB
study (data set 2), all raters from the citrus canker study (data set
3), only rater 2 from the SLB study (data set 4), and only rater 1
from the SLB study (data set 5). For each of the above data sets, the
data were subjected to nonlinear regression techniques, and a
solution (e.g., hyperbolic or parabolic) was found to be best suited
to describe the relationships between the standard deviations of
the rater mean NPE and the actual disease severities. The
parameters, the corresponding standard error, and the coefficient
of determination (R2) for each of the scenarios were used to
evaluate the appropriateness of the model (i.e., hyperbolic or
parabolic). These analyses were calculated using SAS software
(version 9.4; SAS Institute, Cary, NC).

The proportional odds model. When response categories are
ordered, the logits can utilize the ordering.A cumulative probability
for Y is the probability that Y falls at or below a particular point
(Agresti 2007). For outcome category j, the cumulative probability
is as follows (equation 6):

PðY £ jÞ= p1 + p2 +⋯pj; j= 1; 2;⋯; J (6)

The logits of the cumulative probabilities are shown in
equation 7:

logit½PðY £ jÞ� = log
�

PðY £ jÞ
1 _PðY £ jÞ

�
= log

�
p1 + p2 +⋯pj
pj + 1 +⋯+ pJ

�
(7)

j = 1, 2,…, J _ 1. These are called cumulative logits. For example,
for J = 3, models use both of the following (equation 8):

logit½PðY £ 1Þ�= log
�

p1
p2 + p3

�
and

logit½PðY £ 2Þ�= log
�
p1 + p2
p3

�
(8)

Each cumulative logit uses all of the response categories. For only
one explanatory variable x, the model shown in equation 9 has
parameter b describing the effect of x on the log odds of response in
category j or below:

logit½PðY £ jÞ�=aj + bx; j= 1; 2;⋯; J _ 1 (9)

Here, let x= 1 for those sampled from treatmentA and x= 0 for those
sampled from treatment B. The variable x is called an indicator
variable. It indicates categories for the predictors. A model for
cumulative logit j looks like a binary logistic regression model in
which categories 1 _ j combine to form a single category and
categories j + 1 to J form a second category. Thus, it can calculate the
degree of the estimated odds that treatment A trends in a lower
severity direction rather than a higher severity direction (i.e., Y £ j
rather thanY> j) as comparedwith the estimatedodds for treatmentB.
The common effect b for each j implies an assumption that the

curves have the same shape in order to obtain model parsimony in
equation 9. The score test of the proportional odds assumption can
be used to test the hypothesis that the effects are the same for each
cumulative logit. That is, the score test compares themodelwith one
parameter for x to a more complex model with the different
parameters for each j (Agresti 2007, 2010).

Power analysis. The power of the hypothesis test using a
simulation procedurewas used to compare the performance of each
of the rater precision characteristics and for comparing the methods
of rating and analyzing the quantitative ordinal scale. Assuming
two treatments, A and B, are applied to developing epidemics, the
disease severity distribution of treatment A has mean µA and that of
treatment B has mean µB = µA + µD, where µD represents the
difference between the means of the two severity distributions. The
standard deviations (j) of the disease severity distributions of
treatments A and B are assumed to be equal. This approach was
applied to both the midpoint data analyzed using a t test and to the
class ratings analyzed using the proportional odds model.
Thus, there were five assessment and/or analysis methods that

were compared: NPEs (nearest NPE values analyzed using a t test),
HB-MC (HB scale andmidpoint conversion analyzed using a t test),
HB-POM (HB scale analyzed using a proportional odds model),
AM-MC (amended 10% scale andmidpoint analyzed using a t test),
and AM-POM (amended 10% scale analyzed using a proportional
odds model).
To calculate the probability that H0 is rejected, the simulation

procedure outlined abovewas repeated 5,000 times. A proportional
odds model or a t test were performed using the HB and AM scale
data (the proportional odds model was run first, followed by the
t test on each set). NPEs were subject only to a t test. Thus, using
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each of the five methods (NPE, HB-MC, HB-POM, AM-MC, and
AM-POM), the proportion of occasions that H0 was rejected in the
5,000 simulations was plotted against sample size (which may be
described as the number of replicates in each treatment) for a range of
set disease severity populationmeans of 1, 5, 10, 20, 30, and 40%. For
each test, the difference between the population means (µΔ) was
assumed to be either 0 or 5% in order to identify the rate of type I
and type II error.

The effect of aggregated distribution of disease severity
data. In a previous section, disease severity was assumed to have a
normal distribution. However, disease severity patterns are often
aggregated (heterogeneous), for example, owing to aggregation of
inoculum sources and/ormicroclimate effects. Under an aggregated
distribution,wewould expect to havemore data pointswith extreme
disease severities. Thus, to test the effect of an aggregated distribution
of disease in treatments A and B, additional simulations using the t
distribution, which has a longer tail than the normal distribution, in
place of the normal distribution described above were also run and
the results presented.

Software and code used in the analyses. The statistical
analyses and simulations were performed in R software (R Core
Team 2018). The rtnorm function of the msm package (Jackson
2016) was used to generate the truncated-normal random variables
for the simulation study. The reason for using the truncated-normal
distribution, rather than a normal distribution, was based on the
fact that the actual severities cannot be negative values. For an
aggregated distribution of disease severity data, the rtt function of
the crch package (Messner et al. 2018) was used to generate the
truncated t random variables for the simulation study. In addition,
when the truncated t random variables were simulated, the
corresponding degrees of freedom (sample size _ 1) were adjusted.
The log-normal random variables were generated using the rlnorm
function of the stats package, which is stored in R. In order to apply
a proportional odds model to the simulation dataset, we used the
vgam package in R (Yee 2018). The vglm function was used to
calculate the corresponding parameters and standard errors.

RESULTS

Comparison of assessment methods and data sets. In
order to demonstrate how the five methods were compared, we
provide a simple example (Fig. 1): (i) the assessment methods
consist of the simulated NPEs (Fig. 1A); (ii) the HB scale data are
transformed from the NPEs (Fig. 1B); (iii) the ordinal scale data
(Fig. 1C) and (iv) the midpoint-transformed data (Fig. 1D) are
obtained from the HB scale data. Thus, the midpoint approach
regards the data as “continuous measurement” data amenable to
analysis using a t test, whereas the ordinal data are considered as
“count” data, and a proportional odds model is used for analysis. In
this example, j, µA, and µΔ equal 5, 10, and 5%, respectively. The
sample size per treatment equals 20.
A comparison of data sets 4 and 5 with data sets 1, 2, and 3 shows

that data sets 4 and 5 had smaller standard deviations for the rater
mean estimates at severities £30%, indicating more precise data
over this range (Fig. 2). For data sets 1, 2, and 3, there are larger and
more diverse rater errors in estimation than for the actual disease
severity at severities £30%; specifically, the quality of the estimates
by raters 1 and 2 (data sets 4 and 5) from the SLB data set is better.

Effect of rater precision, assessment, and analysis methods
on the power of the hypothesis test. At low disease severity
(£10%) (Fig. 3), the results show that when using the standard
deviation of the rater mean estimates for data sets 1 and 2 (estimates
by less accurateorprecise raters), the performanceof theproportional
odds model is superior to that of the midpoint conversion of the
intervalmethod (first and second columns of Fig. 3), regardless of the
nature of the quantitative ordinal scale used (HB-POMorAM-POM).
With data set 3, no method is noticeably superior (third column of
Fig. 3). Similarly, when using the standard deviation of the rater
mean estimates for data sets 4 and 5 (fourth and fifth columns of
Fig. 3), the performance of the proportional odds model
approximates that of the midpoint conversion of the interval
method. That is, as the standard deviations of mean estimated
severity (using data sets 4 and 5) are lower (more accurate or
precise raters), the advantage of the proportional odds model
gradually diminishes. Indeed, for raters 1 and 2 (SLB data), the
NPEs are slightly superior in performance comparedwith all other

Fig. 1. Flowchart presenting the analytical methods for comparing three fun-
damental approaches to analyze quantitative ordinal scale estimates of plant
disease severity for comparing two treatments, A and B. A, The simulated
nearest percent estimates (NPEs) prior to use of the t test to compare samples.
B, The Horsfall-Barratt (HB) scale data transformed from NPEs. C, The layout
of the count data for analysis using a proportional odds model based on counts
of data in classes in B. D, The midpoint data converted from the HB scale data
in B prior to the use of the t test. In this test, the difference between the
population means (µΔ) is assumed to be 5%. j (the standard deviation of
treatment A or B) = 5%, µA (the mean of the disease severity distribution of
treatment A) = 10%. Gray boxes present sample severity data using different
scales; white boxes represent data analysis method; solid arrows represent data
transformation steps; and dashed arrows represent the data used for the analysis
(a t test or the proportional odds model) and power analysis steps.

Fig. 2. Relationships between the standard deviations of the estimated means
and the actual severity by four raters for severity of Septoria leaf blotch (SLB)
(data set 1), raters 3 and 4 only for severity of SLB (data set 2), citrus canker
(data set 3), rater 2 only for severity of SLB (data set 4), and rater 1 only for
severity of SLB (data set 5). The parabolic regression solution,
srater = aY2

actual + bYactual + c, was the most suitable fit for the standard devi-
ations of severity estimates of SLB and the hyperbolic regression solution,
srater = ða×YactualÞ=ðb+YactualÞ, was the most suitable fit for the standard
deviations of estimates of severity of citrus canker. Coefficients of de-
termination (R2) were 0.92, 0.61, 0.95, 0.92, and 0.63 for data sets 1 through
5, respectively.
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methods. The relationship between the standard deviation of rater
mean NPEs and the actual mean disease severities plays a critical
role in the performance of the proportional oddsmodel. Especially
at low disease severity (£10%), the proportional odds model is
usually superior to and never inferior to themidpoint conversion of
the interval method. Thus, for early stages of disease (i.e., low
severities), the proportional odds model is preferable for
analyzing quantitative disease severity estimation data based on
ordinal scales when comparing treatments.
As severity equals or exceeds 20% (Fig. 4), there is not much

difference between using the midpoint of the severity range method
and using the proportional odds model. Nevertheless, the pro-
portional odds model is not inferior to using the midpoint of the
severity range at severities of 20 to 30%, especially when using the
AM scale. This accounts for the significant effect that the actual
severity has on the power. At a severity of 40% (Fig. 4), there is a
much lower power when using HB-MC; and in this case, the
proportional odds model is virtually ineffective. This is an artifact
attributable to empty cells and data sparseness in the data sets and
the simulation, where we imposed a maximum severity of 50%.
Thus, in this study, the power using the proportional odds model for
analyzing the HB scale data (HB-POM) approaches zero.
When severity is lower or srater (the standard deviation of the

rater mean estimate) is larger, more data aggregates in the same
classes so it is difficult to differentiate between themeans by using a

t test to analyze the midpoint-transformed values. We use graphics
to explain this phenomenon (Fig. 5). For the same simulated data
presented in Figure 1 (j = 5%, µA = 10%, and sample size = 20), we
compared twomethods based on the HB scale: (i) the count data for
using a proportional odds model (Fig. 5A) and (ii) the midpoint
conversion of the interval prior to the use of the t test (Fig. 5B). The
difference (µΔ) between the population means (treatments A and B)
is assumed to be 5%, such that µA = 10% and µB = 15%. The
relationship between the standard deviation of the rater mean NPE
and the actual disease severity was established by using the data
from the four raters estimating severity of SLB (data set 1). For the
simulated NPEs and using a t test to compare the treatment
difference, the null hypothesis is rejected because theP value equals
0.048 if the type I error rate is assumed to be 0.05. When the count
data for each class are analyzed using the proportional odds model,
the null hypothesis is rejected with a P value of 0.041 (Fig. 5A).
However, the P value for the midpoint conversion of the HB data is
0.175 (Fig. 5B); thus,we conclude that the null hypothesis cannot be
rejected (here, the difference between the means of the two severity
distributions is not significant). In this case, the power is higher
when using the proportional odds model. Also, for any fixed scale j,
the estimated odds that treatment A trends in a lower severity
direction rather than a higher severity direction (i.e.,Y£ j rather than
Y > j) are exp(1.216) = 3.374 times the estimated odds for treatment
B (the estimates for b and its standard error in equation 9 are 1.216

Fig. 3. Relationships between the probability of rejecting H0 (when this hypothesis is false) and sample sizes (n = 15 to 50) for the different scales and analysis
methods used at different disease severity means of treatment A (µA = 1, 5, and 10% disease severity in rows 1 through 3, respectively). The difference between the
population means of treatments A and B (µΔ) is assumed to be 5%, j (the standard deviation of treatment A or B) = 5%, with significance tested at P = 0.05. Here,
two normally distributed, hypothetical populations of plants with disease (treatments A and B) were compared. The five scales and analysis methods were as
follows: NPE = nearest percent estimates and analysis with a t test, HB-MC = the Horsfall-Barratt scale with midpoint conversion and analysis with a t test, HB-
POM = the Horsfall-Barratt scale taking ordinal values and analysis with the proportional odds model, AM-MC = an amended 10% scale with midpoint conversion
and analysis with a t test, and AM-POM = an amended 10% scale taking ordinal values and analysis with the proportional odds model. Data set 1 is based on all
four rater estimates of severity of Septoria leaf blotch (SLB) on leaves of winter wheat. Data set 2 is based on rater 3 and rater 4 estimates for severity of SLB. Data
set 3 is based on estimates of severity of citrus canker on leaves of grapefruit by three raters on two occasions. Data set 4 is based on estimates by only rater 2 for
severity of SLB. Data set 5 is based on estimates by only rater 1 for severity of SLB.
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and 0.595, respectively). An association exists, with lower disease
severity when using treatment A compared with treatment B.
Accordingly, for this example (and any similar ones), the power is
higher when using the proportional odds model compared with the
midpoint conversion.
We often found a lower power when using the HB scale for

hypothesis testing compared with other methods at severities from
20 to 40%, regardless of whether we used the midpoint conversion
of the interval or the proportional oddsmodel. This is attributable to
the increasing size of the HB scale intervals (25+ to 50%).
Therefore, the interval width is also an important factor affecting
the power of a hypothesis test.

Test of goodness of fit of the proportional odds assumption.
We tested the assumption that the curves in equation 9 have the same
shape. That is, is it appropriate to fit a proportional oddsmodel with
different slopes for different treatments and subsequently use a
nested-model deviance test to assess whether the slopes are the
same? We used the boxplots of P values versus sample sizes to
explore whether using the proportional odds model meets the
assumption (Fig. 6). If the P value is assumed to be 0.05, all of the
analyses show that the proportional odds model meets the requirement
(i.e., showed no evidence of lack of fit).

Effect of the difference between sample means (mΔ) and
type I error rates. Increasing the difference between the population
means increased the power of the hypothesis test for all assessment

methods. When µΔ is ³10%, the power is near 1 for all methods. As
for the effect of sample standard deviation, when the standard
deviation of the severity distribution is large (e.g., j ³10%), the
hypothesis test has lower power, regardless of assessment method.
As µΔ = 10% and j = 10%, the tendencies of the power for all
methods are the same as already presented in Figures 3 and 4 (data
not shown).
Similar to testing type II error rates, the relationships between the

probability of rejectingH0 (when this hypothesis is true) at different
sample sizes, the actual severities, and the standard deviations of the
rater mean estimates for the different assessment methods were
calculated. There was almost no effect of rater method on type I
error rate (Supplementary Figs. S1 and S2).

Using the t distribution to describe populations of disease
severity. We found that using the t distribution in place of the
normal distribution resulted in patterns that were almost the same
(Supplementary Figs. S3 and S4). However, at low disease
severities of 1 and 5% in the citrus canker study (data set 3), the
proportional odds models (HB-POM or AM-POM) slightly
outperformed the NPEs (third column of Supplementary Fig. S3
versus third column of Fig. 3). It was observed that when using the t
distribution rather than the normal distribution, the overall power of
hypothesis testing decreased slightly. This is not surprising because
the t distribution has more variability than the standard normal
distribution.

Fig. 4. Relationships between the probability of rejecting H0 (when this hypothesis is false) and sample sizes (n = 15 to 50) for the different scales and analysis
methods used at different disease severity means of treatment A (µA = 20, 30, and 40% disease severity in rows 1 through 3, respectively). The difference between
the population means of treatments A and B (µΔ) is assumed to be 5%, j (the standard deviation of treatment A or B) = 5%, with significance tested at P = 0.05.
Here, two normally distributed, hypothetical populations of plants with disease (treatments A and B) were compared. The five scales and analysis methods were as
follows: NPE = nearest percent estimates and analysis with a t test, HB-MC = the Horsfall-Barratt scale with midpoint conversion and analysis with a t test, HB-
POM = the Horsfall-Barratt scale taking ordinal values and analysis with the proportional odds model, AM-MC = an amended 10% scale with midpoint conversion
and analysis with a t test, and AM-POM = an amended 10% scale taking ordinal values and analysis with the proportional odds model. Data set 1 is based on all
four rater estimates of severity of Septoria leaf blotch (SLB) on leaves of winter wheat. Data set 2 is based on rater 3 and rater 4 estimates for severity of SLB. Data
set 3 is based on estimates of severity of citrus canker on leaves of grapefruit by three raters on two occasions. Data set 4 is based on estimates by only rater 2 for
severity of SLB. Data set 5 is based on estimates by only rater 1 for severity of SLB.
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DISCUSSION

Our results show that the performance of the proportional odds
model is never inferior to using the midpoint (currently a standard
procedure) of quantitative ordinal scale classes at severities <40%.
Particularlywhen considering early stages of disease (£10%disease
severity), using an amended 10% ordinal scale (a linear scale with
10% intervals emphasizing severities £50% disease, and with
additional intervals at severities <10%) and a proportional odds
model to analyze directly the ratings obtained from disease scales is
preferable to converting ratings tomidpoint percentages of the class
range. Kranz (1977) stated thatmost often plant disease is present at
severities <50% (leaves often abscise if disease becomes too severe,
making it difficult to obtain data on these samples), so the data
presented here are of great practical value for assessments in the
range of disease most often observed in the field for many
pathosystems. Based on our results, using the proportional odds
model to compare treatments based on ordinal estimates of disease
severity can be recommended because it reduced the risk of a type II
error with such data.

The impact of the standard deviations of the rater mean
estimates. We found that less precise raters that have larger
standard deviations of the rater mean estimates (e.g., data set 1) at
low disease severities (£10%) have a lower power for any of the
methods or scales used (e.g., the comparison between data set 1 and
data set 5 for a severity of 5%). The power ofNPEs and themidpoint
of the interval method decreases dramatically relative to the power
of the proportional odds model. Thus, when using the proportional
oddsmodel, the powerwas greater comparedwith all othermethods
at low disease severity (£10%) when data are imprecise (data sets 1
and 2).Whenvisually estimating amean disease severity, imprecise
estimates compared with the actual values are the result of
inaccurate individual estimates (Bock et al. 2016). This inaccuracy
of individual estimates of the sample and the resulting imprecision
is the cause of type II error observed in the analysis (Parker et al.

1995). This imprecision can have a major impact on hypothesis
testing at low disease severities and thus not only are proportional
odds models preferable in this range, the choice of scale is also
critical—selecting a scale with narrow intervals at low severities is
important, as is accomplished with the AM scale (Chiang et al.
2014). These observations on the importance of accurate estimates
at these low disease severities accentuate the need to utilize
assessment aids such as standard area diagrams to maximize
accuracy of individual estimates (Del Ponte et al. 2017) to further
minimize type II errors.

The influence of the actual mean severity of the samples.
Besides the imprecision and resulting standard deviations of the
rater mean estimates affecting the power of the hypothesis test, our
results show that the actual severity is another significant factor.
From the plot of empirical data, we found that the smaller the mean
severity, the more skewed the frequency of observations. That is, all
actual values or estimates at lowmean disease severities (at least up
to 5 to 10%) experience an invisible “barrier” at zero (Bock et al.
2010b). Thus, as the severity approaches 20%, the frequencies of
the severity data tend to resemble a normal distribution as compared
with low disease severity (£10%) frequencies. In these cases, the
advantage of the proportional odds model gradually diminishes.
There is no advantage at severities >20% (but no disadvantage,
either). Therefore, these two factors (srater and the actual severity)
are related to the power of hypothesis testing of the resulting
samples.

The characteristics of the quantitative ordinal scale. It is
clear that the nature of the quantitative ordinal scale used (i.e., the
structure or widths of the intervals) is also critical to the outcome
of the analysis of the results. This has been demonstrated in the
discipline of plant pathology in previous studies (Chiang et al. 2014,
2016a; Hartung and Piepho 2007; Liu et al. 2019), and these
findings are entirely consistent with the results of analyses based on
ordinal scales used in other disciplines (Spilker 1996; Svensson
2000). The number of levels of the ordered categorical responses

Fig. 5. Comparison of two methods of analysis using quantitative ordinal scale data of disease severity based on the Horsfall-Barratt (HB) scale: A, count data for
each scale category used for analysis with the proportional odds model (POM); and B, midpoint conversion of the interval prior to the use of the t test to compare
two treatments, A and B. For the same simulated data in Figure 1 (the standard deviation of treatment A or B [j] = 5%, the mean of the disease severity distribution
of treatment A [µA] = 10%, and sample size = 20), the difference (µΔ) between the population means for treatments A and B (µA and µB, respectively) is assumed to
be 5%. The relationship between the standard deviation of the rater mean nearest percent estimate (NPE) and the actual disease severity was established by using
the data from four raters who estimated the severity of Septoria leaf blotch on leaves of winter wheat (data set 1). The graph in A shows a P value of 0.041; hence,
H0 is rejected. However, the graph in B shows that the P value is 0.175, in which case we conclude that H0 cannot be rejected. Accordingly, for this case, the power
is higher when using the proportional odds model.
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and asymmetry of the frequency distributions (Abreu et al. 2008;
Javaras and Ripley 2007) have been reported to play a role in the
quality of the resulting analysis. Our results demonstrate these same
characteristics.

Pros and cons of using a proportional odds model for
comparing treatments. Although NPEs were almost invariably
superior, the results of this study indicate that, when comparing
treatments, the performance of the proportional oddsmodel is never

Fig. 6. Boxplots of the P values versus sample sizes to present a score test of the proportional odds assumption that the effects are the same for each cumulative
probability. The five rows correspond to different levels of mean disease severity, from 1 to 30%. The horizontal line at the bottom of each graph indicates P = 0.05.
The relationship between the standard deviation of the disease rater mean nearest percent estimate and the actual disease severity was established using the data
from the four raters who assessed the severity of Septoria leaf blotch (SLB) on leaves of winter wheat (data set 1, the first and second columns) and the data from
the three raters who assessed the severity of citrus canker on leaves of grapefruit (data set 3, the third and fourth columns). HB = Horsfall-Barratt scale and AM =
amended 10% scale.
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inferior to that of the midpoint method at severities <40%. Especially
at low disease severity (£10%), the proportional odds model is
clearly superior to the midpoint conversion method. So, the
proportional odds analysis actually improves differentiation pre-
cisely where it is most needed in many studies in plant pathology.
Differentiating treatments to determine the onewith the least severe
disease can be important, for example, when comparing fungicide
treatments or comparing disease resistance among genotypes.
However, the proportional odds method has limitations; it works
well only if there are sufficiently large numbers of observations for
each experimental unit (Shah and Madden 2004). The question
remains how large a number of observations must be collected
before a proportional odds model can be successfully applied? Our
simulation of the proportional odds model required that the number
of observations for each experimental unit be at least 15 before this
model could be applied for most practical uses.
In this article, to simplify the information offered by the intervals

in the ordinal scale, we regarded the disease severity as 50% when
the disease severity >50%. The reason is that most often plant
disease is present at severities <50%. However, this simplification
will lead to more data aggregating at the same grade in the scale,
rendering the proportional odds model virtually ineffective. Thus,
in the case of this study, we observed an artifact attributable to
limiting the maximum disease severity to 50% in conjunction with
using the HB scale (as seenwith the severity of 40% in Fig. 4). If the
maximum imposed severity of 50% is removed (the number of
grades in the scale will be increased), the power will elevate for any
methods discussed (data not shown). However, too many divisions
represented in an ordinal scale might negate the assumed advantage
of simplicity offered by these scales. If the structure or width of the
intervals is carefully chosen (e.g., an amended 10% interval ordinal
scale emphasizing severities£50%diseasewith additional grades at
low severities), the limitation of the proportional oddsmodelwill be
minimized, even at a severity of 40%.

The effect of aggregation of disease severity data. The
better performance of the proportional oddsmodel is seenmainly at
low disease severity (£10%) and when estimates are less precise.
Aggregated distribution of disease severity often occurs in data
taken in the field. Thus, it is appropriate for the t distribution to be
used in place of the normal distribution to account for the
aggregated distribution. In such cases, the proportional odds model
is superior to the midpoint conversion of the interval method
regardless of whether the normal distribution or the t distribution is
used. This further confirms themerits of using the proportional odds
model in conjunction with quantitative ordinal scale data, rather
than using a midpoint conversion.

Conclusions. Although a proportional odds model improves
differentiation precisely in the range of diseasemost often observed
in the field formany pathosystemswhere quantitative ordinal scales
are chosen, most plant pathologists are not familiar with this
analytical method. We therefore include a detailed description of
the computer software used to implement the proportional odds
model as a supplementary file (Supplementary Data File S1). We
believe that the results and tools of our study will be helpful in
improving the outcome of treatment comparisons in botanical
epidemiology and related areas of research.

APPENDIX

Simulation studies for rater distribution of severity
estimates. We provide an example to demonstrate the algorithm
for simulation studies of a rater estimation distribution. For µA =
40% at treatment A, an actual severity value (Yactual) of 45% could
be selected. Moreover, the difference between µA (40%) and Yactual
(45%) is the variation in area affected among individuals in a field
plot.Wedesignated this as the error at stage I.According to equation
1, the mean of a generalized rater estimation distribution (a log-
normal distribution) equals 45% if q = 1. Subsequently, a certain

simulation value (e.g., 47, 41, 37%, etc.) could be drawn from this
log-normal distribution. The difference between the above
simulated value (e.g., 47, 41, 37%, etc.) and Yactual (45%) is the
error rate in assessment. We designated this as the error at stage II.
Furthermore, an actual severity (Yactual) of 30% or even 20% (or any
other value) might be selected during the simulation process,
because the population (A or B) is normally distributed to mimic
variation in infection among individuals in a field plot population.
Thus, both the variation in infection among individuals in a field
plot and the error rate in assessment were considered in the
simulation process.
In this study, the severity as assessed by a generalized rater is

assumed to be a log-normal distribution. A beta-distribution could
be an alternative to the log-normal distribution. A beta-distribution
is bounded at both ends (0, 1), whereas the log-normal is only
bounded at the lower end (0, ‘) and the log-normal distribution has
the advantage that the tails do not tend to infinity (i.e., the
probability is small when the value of the x-axis is beyond 100%).
Based on simulations of the random variables representing the rater
log-normal and beta-distributions of severity estimates, the two
distributions look very much alike except that the log-normal
distribution has a longer tail than the beta-distribution. In general,
there is a positively skewed distribution for disease at low severities.
As severities approach midrange severity measurements, the
symmetrical bell-shaped distribution resembles a normal distribu-
tion. The two distributions can be made very flexible by choosing
different shape parameters based on empirical data. So, the two
distributions are realistic for estimation of disease severity on the
percent scale (0 to 100%) (Supplementary Fig. S5).
To describe the frequency of NPEs of specific actual disease

severities by raters, a log-normal distribution is assumed in this
study. The reason is that the two parameters (µ and r2) of a log-
normal distribution can be directly expressed by equations 4 and 5
(presented in the Materials and Methods). However, the two
parameters (a and b) of a beta-distribution cannot be expressed in a
closed form; hence, they must be addressed using specific software
to calculate these values of a and b (Bain and Engelhardt 1992).
Furthermore, it is unlikely that using a beta-distribution would
make any difference to the conclusions of this study. That is, the
analysis using either distributionwill give comparable results (K. S.
Chiang, unpublished data). Thus, it is reasonable that a log-normal
distribution is assumed to describe the frequency of NPEs of
specific actual disease severities by raters.
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