Refined Altimetry in the Eastern Boundary Upwelling Systems Implications on eddy transport estimates

[Joan Miro, 1925] Arthur Capet, Evan Mason, Vincent Rossi, Charles Troupin, Yannice Faugere, Isabelle Pujol and Ananda Pascual

Refined Altimetry in the Eastern Boundary Upwelling Systems Implications for eddy transport estimates

[George Luks, 1919]

Arthur Capet, Evan Mason, Vincent Rossi, Charles Troupin, Yannice Faugere, Isabelle Pujol and Ananda Pascual

New SSALTO/Duacs AVISO sea level anomalies released in April 2014

Poster I.9. Isabel PUJOL : New release of MyOcean/Ssalto/DUACS products: 21 years of high resolution Sea Level products reprocessed.

Delayed time, gridded, reference sea level anomalies $1993 \rightarrow 2013$

New SSALTO/Duacs AVISO sea level anomalies released in April 2014

Poster I.9. Isabel PUJOL : New release of MyOcean/Ssalto/DUACS products: 21 years of high resolution Sea Level products reprocessed.

Delayed time, gridded, reference sea level anomalies $1993 \rightarrow 2013$

- **DT10**:
 - 1/3° Mercator Grid
- DT14:
 - 1/4° Cartesian Grid
 - Refined correlation scales
 - Reduced subsampling and filtering of the along track data \rightarrow Finer resolution in DT14.

1. SSALTO/Duacs revision : Where lies the difference ?

Root Mean Square Difference

$$RMS = \sqrt{\langle (DT14 - DT10)^2 \rangle}$$

Eddy Kinetic Energy

 $EKE = \frac{u'^2 + v'^2}{2}$

Eastern Boundary Upwelling Systems (EBUS)

DT14 also alters the temporal variability

• Skill Score :

$$S = \frac{4(1+R)}{2(\frac{\sigma_{sat}}{\sigma_{drift}} + \frac{\sigma_{drift}}{\sigma_{sat}})^2}$$
[Taylor, 2001]

 $\begin{array}{l} S=1 \rightarrow Perfect \ match \\ S=0 \ \rightarrow No \ match \end{array}$

- R : Correlation coefficient
- σ_{sat} : Standard deviation Satellite
- σ_{drift} : Standard deviation Drifters

California Canary • Skill Score : 415 450 485 357 327 316 426 190 0.9 **Skill Score** $\frac{4(1+R)}{2(\frac{\sigma_{sat}}{\sigma_{drift}} + \frac{\sigma_{drift}}{\sigma_{sat}})^2}$ 0.8 S =0.7 0.6 DT14 0.5 **DT10** 0.4 **Humboldt Benguela** 1 139 120 93 54 236 181 128 92 0.9 0.9 0.8 0.7 0.6 0.5 0.4 600 450 300 150 0 600 450 300 150 0 Distance from coast - [km] Distance from coast - [km] Offshore ← Offshore ← Coast Coast

• Skill Score :

$$S = \frac{4(1+R)}{2(\frac{\sigma_{sat}}{\sigma_{drift}} + \frac{\sigma_{drift}}{\sigma_{sat}})^2}$$

 \rightarrow Decrease nearshore

• Skill Score :

$$S = \frac{4(1+R)}{2(\frac{\sigma_{sat}}{\sigma_{drift}} + \frac{\sigma_{drift}}{\sigma_{sat}})^2}$$

- \rightarrow Decrease nearshore
- \rightarrow Improved by **DT14**

• Skill Score :

$$S = \frac{4(1+R)}{2(\frac{\sigma_{sat}}{\sigma_{drift}} + \frac{\sigma_{drift}}{\sigma_{sat}})^2}$$

- \rightarrow Decrease nearshore
- \rightarrow Improved by **DT14**
- \rightarrow Particularly nearshore

1. SSALTO/Duacs revision : Where lies the difference ?

→ DT 2014 enhances the representation of mesoscale circulation in the EBUS

2. What is the role of mesoscale activity in the EBUS ?

Eastern Boundary Upwelling Systems (EBUS)

- Upwelling of nutrient rich water
- Highly productive regions
- 20 % of global fish catch on 1% of Earth surface

Drivers of NPP variability

[Lachkar & Gruber, 2012, Biogeosciences]

Drivers of NPP variability

More EKE → Less Production

[Lachkar & Gruber, 2012, Biogeosciences]

More EKE \rightarrow Less Production

[Gruber et al 2011, Nature]

More EKE \rightarrow Less Production

[Gruber et al 2011, Nature]

Mesoscale activity in the EBUS

Offshore export

[Combes et al 2011, Progress in Oceanography]

2. What is the role of mesoscale activity in the EBUS ?

→ Eddies inhibit NPP with offshore export of nutrient-rich waters

3. What is the impact of DT14 altimetry on eddy transport estimates?

Altimetry → Eddies

Eddy tracking [Mason et al., 2014]

Poster I.8. Evan Mason : A new sea surface height based code for mesoscale oceanic eddy tracking

 More Eddies using DT14

- More Eddies using **DT14**
- Increase near the coast

80

70

60 🖉

- ⁵⁰ 40 100 30

20

10

80

70

60 🔗 50 |

- 0 40 30 30

50

20

10

0

0

150

I 50

- More Eddies using DT14
- Increase near the coast
- Highest eddy densities within 300 km

More eddies \rightarrow more transport ?

More eddies \rightarrow more transport ?

Eddy transport estimates 300 km

Q [Sv] : Eddy export (0-300 km) \rightarrow (>300km)

T [Years] : Duration of the tracking experiment

- n [-] : Number of Eddies Crossing the boundary
- V_i [m³] : Individual Eddy Volume

Eddy transport estimates 300 km

Q [Sv] : Eddy export (0-300 km) \rightarrow (>300km)

T [Years] : Duration of the tracking experiment

n [-] : Number of Eddies Crossing the boundary

V_i [m³] : Individual Eddy Volume

Volume estimates require vertical information

- Interest : Q_{14}/Q_{10}
- Axial Symmetry :

$$V = \pi \int [R(z)]^2 dz$$

• Separability :

$$R(z) = r.H(z)$$

 \rightarrow Simplification

$$\frac{Q_{14}}{Q_{10}} = \frac{\sum_{i=1}^{n_{14}} r_{14,i}^2}{\sum_{j=1}^{n_{10}} r_{10,j}^2}$$

Volume estimates require vertical information

- Interest : $\frac{Q_{14}}{Q_{10}}$
- Axial Symmetry :

$$V = \pi \int [R(z)]^2 dz$$

• Separability :

$$R(z) = r.H(z)$$

 \rightarrow Simplification

cation
$$\frac{Q_{14}}{Q_{10}} = \frac{\sum_{i=1}^{n_{14}} \widehat{r}_{14,i}^2}{\sum_{j=1}^{n_{10}} \widehat{r}_{10,j}^2}$$

Eddy properties also changed !

Eddy properties also changed ! More small eddies Less large eddies 80 Eddies per year **DT14** 60 **DT10** 40 20 200 50 100 150 \mathbf{O} Eddy radius - [km]

3. What is the impact of DT14 altimetry on eddy transport estimates?

→ DT14 depicts more abundant and smaller eddies, which leads to smaller transport estimates

Conclusions

Conclusions (1 / 2)

→ DT 2014 enhances the representation of mesoscale circulation in the EBUS

Geostrophic velocities : Satellite VS Drifters

Offshore
— Coast

Conclusions (1 / 2) \rightarrow Implications

→ DT 2014 enhances the representation of mesoscale circulation in the EBUS

Conclusions (1 / 2) \rightarrow Implications

→ DT 2014 enhances the representation of mesoscale circulation in the EBUS

Conclusions (2 / 2)

→ DT14 depicts more abundant and smaller eddies, which leads to smaller transport estimates

n: **+12.4%**

Q: -12.5%

Conclusions (2 / 2) \rightarrow Implications

SCIENTIFIC REPORTS

OPEN

Horizontal eddy energy flux in the world oceans diagnosed from altimetry data

SUBJECT AREAS: HYDROLOGY OCEAN SCIENCES ENVIRONMENTAL SCIENCES PHYSICAL OCEANOGRAPHY

Chi Xu¹, Xiao-Dong Shang¹ & Rui Xin Huang²

¹ State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China, 510301, ²Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.

Sciencexpress

Oceanic Mass Transport by Mesoscale Eddies

Zhengguang Zhang,¹ Wei Wang,^{1*} Bo Qiu²

¹Physical Oceanography Lab, Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao, P. R. China. ²Department of Oceanography, University of Hawaii at Manoa, Honolulu, HI, USA

*Corresponding author. Physical Oceanography Lab, 5 Yushan Road, Qingdao 266003, P. R. China. E-mail: wei@ouc.edu.cn

ARTICLE

Received 23 Jun 2013 | Accepted 22 Jan 2014 | Published 18 Feb 2014

DOI: 10.1038/ncomms4294

Global heat and salt transports by eddy movement

Changming Dong^{1,2,3}, James C. McWilliams², Yu Liu³ & Dake Chen¹

Conclusions (2 / 2) \rightarrow Implications

scientific REP<mark>PRTS</mark>

OPEN

Horizontal eddy energy flux in the world oceans diagnosed from altimetry data

SUBJECT AREAS: HYDROLOGY OCEAN SCIENCES ENVIRONMENTAL SCIENCES PHYSICAL OCEANOGRAPHY

Chi Xu¹, Xiao-Dong Shang¹ & Rui Xin Huang²

¹ State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhau, China, 510301, ²Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.

Sciencexpress

Oceanic Mass Transport by Mesoscale Eddies

Zhengguang Zhang,¹ Wei Wang,^{1*} Bo Qiu²

¹Physical Oceanography Lab, Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao, P. R. China. ²Department of Oceanography, University of Hawaii at Manoa, Honolulu, HI, USA

*Corresponding author. Physical Oceanography Lab, 5 Yushan Road, Qingdao 266003, P. R. China. E-mail: wei@ouc.edu.cn

Thank you for your attention

- More information on
 - AVISO DT 2014 revision
 Poster I.9. Isabel PUJOL
 - Eddy Tracking

Poster I.8. Evan MASON

Poster II.5. Romain Escudier

Geostophic velocity magnitude Satellite VS Drifters

• Percentage Bias :

$$PB = \frac{\overline{(v_{sat} - v_{drift})}}{\overline{v_{drift}}}$$

 \rightarrow Systematic underestimation.

→ Improved by DT14but still consequent[28-52 %] → [18-36 %]DT10 DT14

Mesoscale activity in the EBUS

Offshore export and Subduction

3. What is the impact of DT14 altimetry on eddy transport estimates?

→ DT14 depicts more abundant and smaller eddies, which leads to smaller transport estimates

	California	Canary	Humboldt	Benguela	Average
n ₁₄ /n ₁₀	+8.5%	+18.2%	+11.1%	+11.8%	+12.4%
Q_{14}/Q_{10}	-13.8%	-10.5%	-16.1%	-9.6%%	-12.5%
<mark>Q</mark> 14 (S∨)	[5.0 – 14.9]	[2.8 - 8.5]	[4.3 – 13.1]	[3.6 – 10.9]	