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Towards robust prediction of the dynamics of the
Antarctic ice sheet:

Uncertainty quantification of sea-level rise projections and grounding-line retreat
with essential ice-sheet models

Bulthuis Kevin

Abstract

Recent progress in the modelling of the dynamics of the Antarctic ice sheet has led to a paradigm
shift in the perception of the Antarctic ice sheet in a changing climate. New understanding of
the dynamics of the Antarctic ice sheet now suggests that the response of the Antarctic ice sheet
to climate change will be driven by instability mechanisms in marine sectors. As concerns have
grown about the response of the Antarctic ice sheet in a warming climate, interest has grown
simultaneously in predicting with quantified uncertainty the evolution of the Antarctic ice sheet
and in clarifying the role played by uncertainties in predicting the response of the Antarctic ice
sheet to climate change.

Essential ice-sheet models have recently emerged as computationally efficient ice-sheet
models for large-scale and long-term simulations of the ice-sheet dynamics and integration into
Earth system models. Essential ice-sheet models, such as the fast Elementary Thermomechan-
ical Ice Sheet (f.ETISh) model developed at the Université Libre de Bruxelles, achieve compu-
tational tractability by representing essential mechanisms and feedbacks of ice-sheet thermody-
namics through reduced-order models and appropriate parameterisations. Given their compu-
tational tractability, essential ice-sheet models combined with methods from the field of uncer-
tainty quantification provide opportunities for more comprehensive analyses of the impact of
uncertainty in ice-sheet models and for expanding the range of uncertainty quantification meth-
ods employed in ice-sheet modelling.

The main contributions of this thesis are twofold. On the one hand, we contribute a new as-
sessment and new understanding of the impact of uncertainties on the multicentennial response
of the Antarctic ice sheet. On the other hand, we contribute new methods for uncertainty quan-
tification of geometrical characteristics of the spatial response of physics-based computational
models, with, as a motivation in glaciology, a focus on predicting with quantified uncertainty
the retreat of the grounded region of the Antarctic ice sheet.

For the first contribution, we carry out new probabilistic projections of the multicentennial
response of the Antarctic ice sheet to climate change using the f.ETISh model. We apply meth-
ods from the field of uncertainty quantification to the f.ETISh model to investigate the influence
of several sources of uncertainty, namely sources of uncertainty in atmospheric forcing, basal
sliding, grounding-line flux parameterisation, calving, sub-shelf melting, ice-shelf rheology, and
bedrock relation, on the continental response on the Antarctic ice sheet. We provide new proba-
bilistic projections of the contribution of the Antarctic ice sheet to future sea-level rise; we carry
out stochastic sensitivity analysis to determine the most influential sources of uncertainty; and
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we provide new probabilistic projections of the retreat of the grounded portion of the Antarctic
ice sheet.

For the second contribution, we propose to address uncertainty quantification of geomet-
rical characteristics of the spatial response of physics-based computational models within the
probabilistic context of the random set theory. We contribute to the development of the concept
of confidence sets that either contain or are contained within an excursion set of the spatial re-
sponse with a specified probability level. We propose a new multifidelity quantile-based method
for the estimation of such confidence sets and we demonstrate the performance of the proposed
method on an application concerned with predicting with quantified uncertainty the retreat of
the Antarctic ice sheet.

In addition to these two main contributions, we contribute to two additional pieces of re-
search pertaining to the computation of Sobol indices in global sensitivity analysis in small-data
settings using the recently introduced probabilistic learning on manifolds (PLoM) and to a multi-
model comparison of the projections of the contribution of the Antarctic ice sheet to global mean
sea-level rise.

Key-words: Uncertainty quantification, probabilistic projections, confidence sets, essential ice-
sheet models, Antarctic ice sheet.
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Vers des prédictions robustes de la dynamique de la
calotte polaire de l’Antarctique:

Quantification de l’incertitude sur les projections de l’augmentation du niveau
des mers et du retrait de la ligne d’ancrage à l’aide de modèles glaciologiques

essentiels

Bulthuis Kevin

Résumé

Les progrès récents effectués dans la modélisation de la dynamique de la calotte polaire
de l’Antarctique ont donné lieu à un changement de paradigme vis-à-vis de la perception de
la calotte polaire de l’Antarctique face au changement climatique. Une meilleure compréhen-
sion de la dynamique de la calotte polaire de l’Antarctique suggère désormais que la réponse
de la calotte polaire de l’Antarctique au changement climatique sera déterminée par des mé-
canismes d’instabilité dans les régions marines. Tandis qu’un nouvel engouement se porte sur
une meilleure compréhension de la réponse de la calotte polaire de l’Antarctique au change-
ment climatique, un intérêt particulier se porte simultanément vers le besoin de quantifier les
incertitudes sur l’évolution de la calotte polaire de l’Antarctique ainsi que de clarifier le rôle
joué par les incertitudes sur le comportement de la calotte polaire de l’Antarctique en réponse
au changement climatique.

D’un point de vue numérique, les modèles glaciologiques dits essentiels ont récemment été
développés afin de fournir des modèles numériques efficaces en temps de calcul dans le but de
réaliser des simulations à grande échelle et sur le long terme de la dynamique des calottes po-
laires ainsi que dans l’optique de coupler le comportement des calottes polaires avec des modèles
globaux du sytème terrestre. L’efficacité en temps de calcul de ces modèles glaciologiques es-
sentiels, tels que le modèle f.ETISh (fast Elementary Thermomechanical Ice Sheet) développé à
l’Université Libre de Bruxelles, repose sur une modélisation des mécanismes et des rétroactions
essentiels gouvernant la thermodynamique des calottes polaires au travers de modèles d’ordre
réduit et de paramétrisations. Vu l’efficacité en temps de calcul des modèles glaciologiques
essentiels, l’utilisation de ces modèles en complément des méthodes du domaine de la quan-
tification des incertitudes offrent de nombreuses opportunités afin de mener des analyses plus
complètes de l’impact des incertitudes dans les modèles glaciologiques ainsi que de développer
de nouvelles méthodes du domaine de la quantification des incertitudes dans le cadre de la mod-
élisation glaciologique.

Les contributions de cette thèse sont doubles. D’une part, nous contribuons à une nou-
velle estimation et une nouvelle compréhension de l’impact des incertitudes sur la réponse de
la calotte polaire de l’Antarctique dans les prochains siècles. D’autre part, nous contribuons
au développement de nouvelles méthodes pour la quantification des incertitudes sur les carac-
téristiques géométriques de la réponse spatiale de modèles physiques numériques avec, comme
motivation en glaciologie, un intérêt particulier vers la prédiction sous incertitudes du retrait de
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la région de la calotte polaire de l’Antarctique en contact avec le lit rocheux.

Dans le cadre de la première contribution, nous réalisons de nouvelles projections proba-
bilistes de la réponse de la calotte polaire de l’Antarctique au changement climatique au cours
des prochains siècles à l’aide du modèle numérique f.ETISh. Nous appliquons des méthodes
du domaine de la quantification des incertitudes au modèle numérique f.ETISh afin d’étudier
l’impact de différentes sources d’incertitude sur la réponse continentale de la calotte polaire de
l’Antarctique. Les sources d’incertitude étudiées sont relatives au forçage atmosphérique, au
glissement basal, à la paramétrisation du flux à la ligne d’ancrage, au vêlage, à la fonte sous
les barrières de glace, à la rhéologie des barrières de glace et à la relaxation du lit rocheux.
Nous réalisons de nouvelles projections probabilistes de la contribution de la calotte polaire
de l’Antarctique à l’augmentation future du niveau des mers; nous réalisons une analyse de
sensibilité afin de déterminer les sources d’incertitude les plus influentes; et nous réalisons de
nouvelles projections probabilistes du retrait de la région de la calotte polaire de l’Antarctique
en contact avec le lit rocheux.

Dans le cadre de la seconde contribution, nous étudions la quantification des incertitudes
sur les caractéristiques géométriques de la réponse spatiale de modèles physiques numériques
dans le cadre de la théorie des ensembles aléatoires. Dans le cadre de la théorie des ensem-
bles aléatoires, nous développons le concept de régions de confiance qui contiennent ou bien
sont inclus dans un ensemble d’excursion de la réponse spatiale du modèle numérique avec
un niveau donné de probabilité. Afin d’estimer ces régions de confiance, nous proposons de
formuler l’estimation de ces régions de confiance dans une famille d’ensembles paramétrés
comme un problème d’estimation de quantiles d’une variable aléatoire et nous proposons une
nouvelle méthode de type multifidélité pour estimer ces quantiles. Finalement, nous démon-
trons l’efficacité de cette nouvelle méthode dans le cadre d’une application relative au retrait de
la région de la calotte polaire de l’Antarctique en contact avec le lit rocheux.

En plus de ces deux contributions principales, nous contribuons à deux travaux de recherche
additionnels. D’une part, nous contribuons à un travail de recherche relatif au calcul des indices
de Sobol en analyse de sensibilité dans le cadre de petits ensembles de données à l’aide d’une
nouvelle méthode d’apprentissage probabiliste sur des variétés géométriques. D’autre part, nous
fournissons une comparaison multimodèle de différentes projections de la contribution de la
calotte polaire de l’Antarctique à l’augmentation du niveau des mers.

Mots-clés: Quantification des incertitudes, projections probabilistes, régions de confiance, mod-
èles glaciologiques essentiels, calotte polaire de l’Antarctique.

viii



Acknowledgements

First and foremost, I would like to express my greatest gratitude to my supervisors Maarten
Arnst and Frank Pattyn for their help and support throughout these four years. I do think that it
was not an easy task to bring engineers and glaciologists together, but they were able to share
their respective enthusiasm for stochastic modelling and glaciology with me to achieve this piece
of work.

Maarten, dit manuscript is bijna net zo veel je werk als mijn werk. Ik zou graag je hartelijk
danken voor je aandacht en je begeleiding tijdens dit doctoraat. Ik dank je om constant dit werk
proberen te verbeteren. Als voor mij was glaciologie een nieuw onderwerp van studie voor
jou and je hebt constant alle details proberen te verstaan. Dankzij je advies heb ik veel van de
wetenschappelijke visie geleerd.

Frank, dat was een groot plezier je te ontmoeten. Ik zou graag je hartelijk danken voor alle
je advies met glaciologie and je enthousiasme. Misschien was soms delen van mijn werk een
beetje te technisch om alles te verstaan. Sorry! I hoop dat dit manuscript je (een beetje) zal
bijlichten! Ik verwacht ook met jou opnieuw te zingen.

I would like to gratefully acknowledge the members of the jury, Benjamin Dewals, Catherine
Ritz, Christian Soize, and Jean-Louis Tison, for their interest in this work. I sincerely appre-
ciate the time they spent reviewing and evaluating this thesis. I would like to thank warmly
Jean-Louis Tison for being in my thesis committee for this PhD thesis and Christian Soize for
giving me the (unique) opportunity to work with him.

I would like to warmly thank all my colleagues from Aerospace and Mechanical Engineer-
ing for providing me such a pleasant and enjoyable work place. Thanks to Joffrey and Kim
for sharing the same office during these four years (sometimes a bit sad when none of you
was there) and Joffrey for being my running partner. Thanks to the Automotive Engineering
Research group (Denis, Eduardo, Maxime, Pablo, Simon), the technicians (Antonio, Antoine,
Mathieu), and other members of the “billiard club” (Asmaa, Laura, Pilou,. . . ) for the fun we had.

I would also like to thank all my colleagues from the GEMICE group (Elise, Konz, Lars,
Sainan, Vio) and more generally from the Laboratory of Glaciology. I did not have much op-
portunity to collaborate and spend time with you but this was definitely a pleasure to meet you.
I wish you good fortune in promoting cryospheric sciences.

Finalement, je tiens à remercier mes amis (avec une dédicace à ceux des mouvements de
jeunesse), mes parents, mes frères, mes grands-parents et ma famille pour leur soutien durant
cette thèse.

ix





Contents

I Modelling ice sheets in the presence of uncertainties 1

1 Introduction 3
1.1 Research Context: Antarctic ice sheet and future sea-level rise . . . . . . . . . 3
1.2 Computational ice-sheet models and uncertainty quantification . . . . . . . . . 8
1.3 Uncertainty quantification: Methods, challenges, and opportunities . . . . . . . 9
1.4 Contributions of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Physics of ice sheets 15
2.1 Physics of ice sheets: overview . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Full-order model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Mechanical problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Thermal problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.3 Closure of the system of equations . . . . . . . . . . . . . . . . . . . . 20
2.2.4 Friction laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Reduced-order models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.1 Shallow-ice approximation . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.2 Shallow-shelf approximation . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Glacial isostasic adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5 Instability mechanisms in marine ice sheets . . . . . . . . . . . . . . . . . . . 37

2.5.1 Marine ice-sheet instability . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5.2 Marine ice-cliff instability . . . . . . . . . . . . . . . . . . . . . . . . 44

2.6 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 The Antarctic ice sheet: Present, future, and challenges 47
3.1 The Antarctic ice-sheet in a nutshell . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Mass balance of the Antarctic ice sheet . . . . . . . . . . . . . . . . . . . . . . 49
3.3 The future of the Antarctic ice sheet under climate change . . . . . . . . . . . 50

3.3.1 Risk of MISI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.2 Risk of MICI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.3 Ice-air interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.4 Ice-ocean interactions . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.5 Bedrock topography and glacial isostatic adjustment . . . . . . . . . . 53

xi



3.4 Computational ice-sheet models: limitations for sea-level rise projections . . . 54
3.4.1 Ice-sheet model initialisation . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.2 Coupling with other components of the Earth system . . . . . . . . . . 55
3.4.3 Uncertainties in computational ice-sheet models . . . . . . . . . . . . 56

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

II Uncertainty Quantification: Theory and Methods 61

4 Uncertainty quantification methods for computational models 63
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Characterisation of uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3 Propagation of uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.1 Monte Carlo sampling method . . . . . . . . . . . . . . . . . . . . . . 67
4.3.2 Surrogate models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3.3 Probabilistic learning on manifolds . . . . . . . . . . . . . . . . . . . 84

4.4 Global sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.4.1 Pearson correlation coefficients . . . . . . . . . . . . . . . . . . . . . 87
4.4.2 Variance-based sensitivity indices . . . . . . . . . . . . . . . . . . . . 87
4.4.3 Generalised sentivity indices . . . . . . . . . . . . . . . . . . . . . . . 95

4.5 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.5.1 Propagation of uncertainties: Branin function . . . . . . . . . . . . . . 96
4.5.2 Sensitivity analysis: Ishigami function . . . . . . . . . . . . . . . . . . 101

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5 A multifidelity quantile-based approach for confidence sets 109
5.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.3 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.4 Random excursion and contour sets . . . . . . . . . . . . . . . . . . . . . . . 113

5.4.1 Excursion and contour sets . . . . . . . . . . . . . . . . . . . . . . . . 113
5.4.2 Capacity functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.4.3 Containment and inclusion functionals . . . . . . . . . . . . . . . . . . 114
5.4.4 Coverage function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.4.5 Vorob’ev quantiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.5 Confidence sets for random excursion and contour sets . . . . . . . . . . . . . 116
5.5.1 Optimisation within a parametric family . . . . . . . . . . . . . . . . . 119

5.6 Spatial discretisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.7 Discretisation of the stochastic dimension . . . . . . . . . . . . . . . . . . . . 126

5.7.1 Membership function . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.7.2 Quantile estimation: Monte Carlo method . . . . . . . . . . . . . . . . 127
5.7.3 Quantile estimation: spectral method . . . . . . . . . . . . . . . . . . 129
5.7.4 Quantile estimation: bifidelity method . . . . . . . . . . . . . . . . . . 131

5.8 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.8.1 Problem set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.8.2 Sources of uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . 135

xii



5.8.3 Membership function . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.8.4 Random variable χh . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.8.5 Quantile estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.8.6 Confidence sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.8.7 Spatial discretisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.A Asymptotic properties in Monte Carlo estimation of quantiles . . . . . . . . . . 143

5.A.1 Monte Carlo quantile estimation based on the distribution function . . . 143
5.A.2 Monte Carlo quantile estimator based on the mid-distribution function . 144

5.B Proof of Theorem 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6 Essential ice-sheet models as an efficient tool for large-scale and long-term simula-
tions and uncertainty quantification 149
6.1 High-fidelity vs essential ice-sheet models . . . . . . . . . . . . . . . . . . . . 149
6.2 Thermomechanical ice-sheet model . . . . . . . . . . . . . . . . . . . . . . . 151

6.2.1 Grounded domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.2.2 Floating domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.3 Interactions with the Earth system . . . . . . . . . . . . . . . . . . . . . . . . 156
6.3.1 Ice-air interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.3.2 Ice-bedrock interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.3.3 Ice-ocean interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.3.4 Calving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.4 Model initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.4.1 Initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.4.2 Input data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.4.3 Inversion of the basal sliding coefficient . . . . . . . . . . . . . . . . . 162

6.5 Numerical implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.5.1 Implementation of grounding-line flux parameterisation . . . . . . . . 163

6.6 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7 Illustration and performance evaluation of uncertainty quantification methods on
ice-sheet model problems 167
7.1 Probabilistic projections of future sea-level rise . . . . . . . . . . . . . . . . . 167

7.1.1 Model problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
7.1.2 Quantity of interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
7.1.3 Sources of uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . 169
7.1.4 Propagation of uncertainties: Monte Carlo method . . . . . . . . . . . 169
7.1.5 Propagation of uncertainties: Surrogate models . . . . . . . . . . . . . 170
7.1.6 Sea-level rise projections . . . . . . . . . . . . . . . . . . . . . . . . . 175
7.1.7 Propagation of uncertainty: Discussion . . . . . . . . . . . . . . . . . 176

7.2 Probabilistic assessment of grounded-ice retreat . . . . . . . . . . . . . . . . . 177
7.2.1 Quantity of interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.2.2 Sources of uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.2.3 Membership function . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
7.2.4 Quantile estimation: Monte Carlo method . . . . . . . . . . . . . . . . 181
7.2.5 Quantile estimation: bifidelity method . . . . . . . . . . . . . . . . . . 182

xiii



7.2.6 Confidence sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
7.3 Computation of Sobol indices by probabilistic learning on manifolds . . . . . . 187

7.3.1 Model problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
7.3.2 Sources of uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . 187
7.3.3 Quantity of interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
7.3.4 Global sensitivity analysis: Monte Carlo method . . . . . . . . . . . . 188
7.3.5 Global sensitivity analysis: Spectral method . . . . . . . . . . . . . . . 188
7.3.6 Global sensitivity analysis: PLoM method . . . . . . . . . . . . . . . . 190
7.3.7 Global sensitivity analysis: Comparison of the numerical methods . . . 191

7.4 Chapter summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 192

8 Uncertainty quantification of the multicentennial response of the Antarctic ice sheet
to climate change 195
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
8.2 Model description and methods . . . . . . . . . . . . . . . . . . . . . . . . . . 198

8.2.1 Ice-sheet model and simulations . . . . . . . . . . . . . . . . . . . . . 198
8.2.2 Sources of uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . 202
8.2.3 Uncertainty quantification methods . . . . . . . . . . . . . . . . . . . 206

8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
8.3.1 Nominal projections . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
8.3.2 Parameters-to-projections relationship . . . . . . . . . . . . . . . . . . 211
8.3.3 Sea-level rise projections . . . . . . . . . . . . . . . . . . . . . . . . . 214
8.3.4 Stochastic sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . 220
8.3.5 Projections of grounded-ice retreat . . . . . . . . . . . . . . . . . . . . 220
8.3.6 Influence of the parameter probability density function . . . . . . . . . 224
8.3.7 Projections under a more plastic sliding law . . . . . . . . . . . . . . . 224
8.3.8 TGL parameterisation . . . . . . . . . . . . . . . . . . . . . . . . . . 225

8.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
8.4.1 Comparison of the sea-level rise projections with previous work . . . . 226
8.4.2 Comparison of the impact of parametric uncertainty with previous work 228
8.4.3 Comparison of projections of grounded-ice retreat with previous work . 228
8.4.4 Projections of ice loss and grounding-line retreat under parametric un-

certainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
8.4.5 Structural uncertainty and limitations . . . . . . . . . . . . . . . . . . 229

8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
8.A Polynomial chaos expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
8.B Sobol sensitivity indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
8.C Confidence regions for grounded ice . . . . . . . . . . . . . . . . . . . . . . . 235
8.D Supplementary figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

9 Multi-model comparison of sea-level rise projections 247
9.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
9.2 Multi-model comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

9.2.1 Short-term sea-level rise projections (2100) . . . . . . . . . . . . . . . 250
9.2.2 Medium-term sea-level rise projections (2300) . . . . . . . . . . . . . 254
9.2.3 Multi-model projections in the SROCC report . . . . . . . . . . . . . . 257

xiv



9.3 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

III Conclusion and directions for future work 273

10 Conclusion and perspectives 275
10.1 Summary and general conclusions . . . . . . . . . . . . . . . . . . . . . . . . 275
10.2 Directions for future research . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

10.2.1 Directions in ice-sheet modelling . . . . . . . . . . . . . . . . . . . . 277
10.2.2 Directions in uncertainty quantification . . . . . . . . . . . . . . . . . 278

IV Appendices 281

A Elements of probability theory 283
A.1 Probability space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

A.1.1 Conditional probability . . . . . . . . . . . . . . . . . . . . . . . . . . 284
A.2 Random variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
A.3 Random vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

A.3.1 Gaussian random vector . . . . . . . . . . . . . . . . . . . . . . . . . 286
A.4 Random field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

A.4.1 Gaussian process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

Bibliography 289

List of Symbols 325

xv





Acronyms

AIS Antarctic ice sheet

CDW Circumpolar Deep Water

EAIS East Antarctic ice sheet

f.ETISh fast Elementary Thermomechanical Ice Sheet

GMSL Global mean sea level

HDMR High-dimensional model representation

HSIC Hilbert-Schmidt independence criterion

i.i.d. independent and identically distributed

NISP Nonintrusive spectral projection

OLS Ordinary Least-Squares

PICO Postdam Ice-shelf Cavity mOdel

RCP Representative Concentration Pathway

RKHS Reproducing Kernel Hilbert Space

PLoM Probabilistic Learning on Manifolds

SIA Shallow-ice approximation

SMB Surface mass balance

SSA Shallow-shelf approximation

UQ Uncertainty quantification

WAIS West Antarctic ice sheet

xvii





Part I

Modelling ice sheets in the presence of
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1
Introduction

“Prediction is very difficult, especially if it’s about the future”
– Niels Bohr

1.1 Research Context: Antarctic ice sheet and future sea-level rise

Coastal areas are home to approximately 28 % of the world’s population, with around 11 %
(680 million people) living in so-called low-elevation coastal zones where land elevation is less
than 10 metres above sea level (Figure 1.1). Low-elevation coastal zones include megacities,
such as Tokyo (∼14 million inhabitants), Mumbai (∼12.5 million inhabitants), New York City
(∼8.4 million inhabitants), and Jakarta (∼9.8 million inhabitants); heavily populated areas, such
as the Bengal Delta, the Nile Delta, and Eastern China; and Small Island Developing States (∼65
million inhabitants). Coastal population is expected to grow significantly during the 21st cen-
tury to exceed one billion people in 2050 [Neumann et al., 2015; Merkens et al., 2016], with
Asia expected to experience the highest absolute growth (238–303 million more inhabitants
compared to 2000) and Africa to experience the highest relative growth rate (153 % to 218 %
increase compared to 2000) [Merkens et al., 2016]. Simultaneously, coastal areas are expected
to experience a significant urbanisation growth particularly in Egypt and sub-Saharan countries
in Western and Eastern Africa. A study by Kulp and Strauss [2019] has recently highlighted that
these estimates may even underestimate the global population at risk from coastal flooding due
to biases in the elevation datasets, with the analysis by Kulp and Strauss [2019] suggesting that
the global population at risk from coastal flooding might be three times greater than previously
estimated. Besides their demographic significance, coastal areas also have an economic signif-
icance by providing opportunities for shipping, trade, ports, fisheries, tourism, food and water
supply, energy, and exploitation of raw materials (for instance, sand and salt). Low-elevation
coastal zones have been estimated to account for 14 % of the global domestic product [Kummu
et al., 2016] and are also characterised by the presence of critical infrastructure such as nuclear
power plants.

One of the key concerns regarding the future of coastal areas is their vulnerability to the risk
of ocean and cryosphere changes (Figure 1.2) as a consequence of natural and anthropogenic
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changes in the climate system. Negative impacts and risks for population and infrastructure
[Wilby et al., 2011; Hallegatte et al., 2013] resulting from ocean and cryosphere changes in-
clude more severe and frequent extreme events associated with high tides, intense storms or
marine heat waves; warmer, more acidic and less productive oceans; sea-level rise; flood and
inundation risks; changing ocean ecosystems; and declining sea ice. Positive impacts include
more opportunities in certain regions for transportation, shipping, tourism, and food supply.
The current understanding of ocean and cryosphere changes and their impacts has been recently
summarised in the IPCC Special Report on the Ocean and Cryosphere in a Changing Climate
(SROCC) [IPCC, 2019], a reference to which we refer for a thorough overview on this topic.

In particular, sea-level rise induced by ocean and cryosphere changes and its impact on
coastal areas are seen as prominent consequences of natural and anthropogenic changes in the
climate system. Future global sea-level change is primarily controlled by thermal expansion
of ocean water, mass loss in glaciers, including ice caps, mass loss in ice sheets in Greenland
and Antartica, and changes in land water storage due to groundwater depletion and reservoir
impoundment. Thermal expansion of ocean water results from the decrease of the density of
ocean water as oceans absorb heat and heat up. Models and observations have suggested that
the oceans have absorbed more than 90 % of the increase in energy in the climate system in the
last decades. Glaciers outside Greenland and Antarctica have a total volume of 0.32± 0.08 m
sea-level equivalent [Farinotti et al., 2019]. The mass balance of mountain glaciers is primarily
determined by the mass balance between snow accumulation and surface melting. The global
trend in glacier recession has been attributed primarily to an increase in surface air tempera-
ture. The Greenland and Antarctic ice sheets hold a volume of 7.2 m and 57.2 m of sea-level
equivalent, respectively. The mass balance of the Greenland ice sheet is determined primarily
by the mass balance between snow accumulation, sublimation, surface melt, and calving. The
current observed mass loss in Greenland has been attributed primarily to an increase in surface
melt attributed to atmospheric warming. On the other hand, the mass balance of the Antarc-
tic ice sheet is determined primarily by the mass balance between snow accumulation and ice
discharge across the grounding line, that is, the transition line between the grounded ice sheet
and its floating ice shelves, with subsequent mass loss through sub-shelf melting and calving.
The current observed mass loss in Antarctica has been dominated by increased mass loss from
marine terminating glaciers in the Amundsen and Bellingshausen Sea sectors [Shepherd et al.,
2018; Rignot et al., 2019] as a result of increased flow speeds, which have been attributed to in-
creased sub-shelf melting due to ocean warming and strengthened sub-shelf circulation. Global
sea level is also affected by withdrawal of freshwater and storage in reservoirs (mainly during
the 20th century) and land water depletion due to domestic, agricultural, and industrial usage.

Human adaptation and mitigation measures to climate change, risk assessment and manage-
ment, and (long-term) robust decision-making should all be crucially informed by projections
of future sea-level rise, ideally in the form of probabilistic projections that provide an assess-
ment of relevant uncertainties. Since the IPCC fifth assessment report (AR5) [Stocker et al.,
2013], considerable progress has been made in the observation of sea-level changes and in the
assessment of future sea-level changes based on expert assessment and computational models;
see, for instance, Kopp et al. [2014, 2017], Le Bars et al. [2017], Bamber et al. [2019], Le
Cozannet et al. [2019], IPCC [2019], and Jevrejeva et al. [2019]. In the SROCC report, the
IPCC [2019] has concluded that there is limited evidence for major changes since AR5 [Church
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et al., 2013] in the projections of the contribution of non-Antarctic components to sea-level rise
in the 21st century (Table 1.1). The SROCC report also concluded that up to 2050, uncertainty
in climate-change-driven future sea-level rise is relatively small, thus providing a robust basis
for short term (≤30 years) adaptation planning. Beyond 2050, uncertainty in climate-change-
driven future sea-level rise increases substantially due to uncertainties in emission scenarios and
associated climate change and the response of the Antarctic ice sheet.

RCP 2.6 RCP 4.5 RCP 8.5

Thermal expansion 0.14 (0.10–0.18) 0.19 (0.14–0.23) 0.27 (0.21–0.33)
Glaciers 0.10 (0.04–0.16) 0.12 (0.06–0.18) 0.16 (0.09–0.23)

Greenland ice sheet 0.06 (0.04–0.10) 0.08 (0.04–0.13) 0.12 (0.07–0.21)
Land water storage 0.04 (−0.01–0.09) 0.04 (−0.01–0.09) 0.04 (−0.01–0.09)

Total 0.35 (0.23–0.48) 0.43 (0.30–0.57) 0.60 (0.43–0.78)

Antarctic ice sheet 0.05 (−0.03–0.14) 0.05 (−0.04–0.13) 0.04 (−0.06–0.12)

Table 1.1: Median values and “likely” ranges (17–83 % probability intervals) for projections
of global mean sea-level rise (in metres) in 2081–2100 relative to 1986–2005 for three RCP
scenarios as estimated in the AR5 report [Church et al., 2013]. Total is the total contribution
due to thermal expansion, glaciers, the Greenland ice sheet, and land water storage. Estimated
projections in the SROCC report [IPCC, 2019] are identical to projections in the AR5 report
except for the contribution of the Antarctic ice sheet.

In the AR5 report, Church et al. [2013] provided a first assessment of the contribution of
the Antarctic ice sheet to sea-level rise relying mainly on extrapolation of existing observations
[Little et al., 2013] and a single limited simulation study [Bindschadler et al., 2013]. This first
assessment suggested a limited contribution of the Antarctic ice sheet in the 21st century. In this
assessment, the future mass balance of the Antarctic ice sheet is attributed to changes in sur-
face mass balance, which result in a negative contribution to sea-level rise due to a widespread
increase in snowfall caused by warmer air temperatures, and to poorly-understood dynamical
changes, which result in a positive contribution to sea-level rise due to the inflow of ice into
the ocean. The assessment by Church et al. [2013], however, pointed out the potential for the
Antarctic ice sheet to contribute significantly to sea-level rise if the collapse of marine basins
in Antarctica is initiated and also mentioned challenges in quantifying this contribution. Since
AR5, understanding of the dynamics of the Antarctic ice sheet has progressed substantially,
owing to new numerical simulations of the dynamic contribution of the Antarctic ice sheet to
sea-level rise and new insights into ice-sheet instability mechanisms and processes controlling
the thinning of ice shelves. New assessments of the contribution of the Antarctic ice sheet to
sea-level rise now suggest that the contribution of the Antarctic ice sheet will be (far) more sig-
nificant than previously assessed in AR5 and will become the primary contributor to sea-level
rise over the next centuries and millennia. However, the evolution of the Antarctic ice sheet
beyond the 21st century has also been recognised as a source of deep uncertainty [IPCC, 2019].
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Figure 1.2: Observed and modelled historical changes in the ocean and the cryosphere since
1950 and projected future changes under the RCP 2.6 and RCP 8.5 emission scenarios. Credit:
IPCC [2019].
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1.2 Computational ice-sheet models and uncertainty quantification

Significant progress has been made since AR5 in the understanding and modelling of key pro-
cesses governing the dynamics of the Antarctic ice sheet [Pattyn et al., 2017; Nowicki and
Seroussi, 2018; Pattyn, 2018], including the migration of the grounding line, feedback and insta-
bility mechanisms [Schoof, 2007a; Pollard et al., 2015], interactions between the ice sheet and
the solid Earth, model initialisation, and sub-shelf melting. Numerical improvements in mod-
elling the dynamics of the Antarctic ice sheet have led to the development of a new generation
of computational ice-sheet models that are amenable to continental simulations of the Antarctic
ice sheet although for continental and (multi-)centennial simulations these models still continue
to rely (heavily) on approximations and parameterisations of the ice-sheet thermodynamics and
the interactions between the ice sheet and other components of the Earth system. Despite these
limitations, this new generation of computational ice-sheet models has now reached a sufficient
degree of maturity and accuracy to provide new sea-level rise projections and new insight into
the response of the Antarctic ice sheet to climate change in contrast with the results in AR5;
see, for instance, Levermann et al. [2014], Ritz et al. [2015], Golledge et al. [2015], DeConto
and Pollard [2016], Schlegel et al. [2018], Bulthuis et al. [2019a], Golledge et al. [2019], and
Levermann et al. [2019] for a list of papers published at the beginning and during this thesis.

As the vulnerability of the Antarctic ice sheet to environmental conditions and the sensitivity
of computational ice-sheet models to model parameters have become more apparent, interest has
grown simultaneously into predicting with quantified uncertainty the evolution of the Antarctic
ice sheet in order to provide more robust predictions of sea-level rise. Although uncertainty in
computational ice-sheet models had already been highlighted in AR5 as a major limitation for
robust predictions of sea-level rise, only a rather limited number of studies had provided insight
into the impact of uncertainty on the behaviour of the Antarctic ice sheet [Larour et al., 2012;
Pattyn et al., 2013; Bindschadler et al., 2013; Nowicki et al., 2013; Durand and Pattyn, 2015].
At the time of the AR5 report, computational ice-sheet models lacked sufficient maturity and
accuracy to lend themselves to being used for uncertainty quantification; by contrast, the new
generation of computational ice-sheet models provides new opportunities to predict with quan-
tified uncertainty and sufficient accuracy the evolution of the Antarctic ice sheet.

From the perspectives of large-scale and (multi-)centennial simulations of the response of
the Antarctic ice sheet, the computational cost of (high-fidelity) computational ice-sheet models
may still be too prohibitive to generate the required number of simulations necessary for uncer-
tainty quantification. Recently, so-called essential ice-sheet models [Winkelmann et al., 2011;
Pollard and DeConto, 2012a; Pattyn, 2017; Quiquet et al., 2018] have emerged as computa-
tionally efficient ice-sheet models for large-scale and long-term simulations and integration into
Earth system models. Essential ice-sheet models, such as the fast Elementary Thermomechan-
ical Ice Sheet (f.ETISh) model [Pattyn, 2017] used in this manuscript, achieve computational
tractability by limiting their complexity to the essential interactions and feedback mechanisms
of ice-sheet flow, including grounding-line migration, instability mechanisms, glacial isostatic
adjustment, and ice-air and ice-ocean interactions. For this reason, essential ice-sheet models
combined with methods from the field of uncertainty quantification provide useful opportuni-
ties for more comprehensive analyses of the impact of uncertainty in ice-sheet models and for
expanding the range of uncertainty quantification methods employed in ice-sheet modelling.
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1.3 Uncertainty quantification: Methods, challenges, and opportu-
nities

The field of uncertainty quantification (UQ) has recently emerged as an interdisciplinary re-
search area concerned with developing theory, methods, algorithms, and software for investigat-
ing the role played by uncertainty in predicting and understanding the behaviour and evolution
of complex systems in science and engineering; see, for instance, Arnst and Ponthot [2014],
Smith [2014], Sullivan [2015], Ghanem et al. [2017], and Soize [2017]. Most of this theory
and these methods are based on probability theory, in the context of which uncertain features
are represented as random variables, random vectors, random fields, random sets, . . . Theory
and methods have been developed or are under development to characterise the sources of un-
certainty in a probabilistic framework (characterisation of uncertainty), to deduce the impact of
sources of uncertainty on a quantity of interest (propagation of uncertainty), and to ascertain the
impact of each source of uncertainty on the uncertainty in the quantity of interest (sensitivity
analysis). Methods from uncertainty quantification have been used in various applications in
science and engineering and are of interest to be applied to uncertainty quantification of com-
putational ice-sheet models. Conversely, challenges and opportunities remain in developing and
applying uncertainty quantification methods to complex physics-based models and for this rea-
son uncertainty quantification in computational ice-sheet models can serve as a motivation to
develop new theory and methods for uncertainty quantification. In the following, we discuss
some existing UQ methods relevant to ice-sheet modelling and challenges and opportunities for
uncertainty quantification motivated by ice-sheet modelling.

Within the probability theory, the characterisation of the uncertain input parameters of a
computational model requires the characterisation of their probability distribution, which is typ-
ically deduced from available information and by using mathematical statistics methods. Given
a probabilistic representation of the uncertain input parameters, a typical model problem in un-
certainty quantification is concerned with the propagation and sensitivity analysis of a limited
number (low-to-moderate stochastic dimension) of uncertain input parameters of a computa-
tional model with a scalar-valued quantity of interest. Within the field of uncertainty quan-
tification, theory and methods are available to estimate various statistical descriptors and the
probability distribution of the quantity of interest, for instance, methods based on Monte Carlo
sampling and surrogate models. Theory and methods are also available for sensitivity analysis,
including variance-based sensitivity indices and their estimation with Monte Carlo sampling or
surrogate models. All these existing methods can be readily applied to the quantification of the
impact of uncertain input parameters on a (scalar-valued) quantity of interest of a computational
ice-sheet model, for instance, the global contribution of an ice sheet to sea-level rise.

Uncertainty quantification methods such as Monte Carlo sampling may lack sufficient ac-
curacy in estimating statistical descriptors of the quantity of interest or sensitivity indices when
only a limited number of evaluations of the computational model is available, which typically
arises for computational models with a high computational cost, for instance, a computational
ice-sheet model. For this reason, opportunities for uncertainty quantification lie in developing
new efficient computational methods to improve the accuracy in such small-data settings, in-
cluding methods based on efficient surrogate models and learning algorithms.
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Within the context of ice-sheet modelling, interest is also directed towards projecting with
quantified uncertainty the spatial retreat of an ice sheet in response to climate change. More gen-
erally, this question raises theoretical and methodological needs for uncertainty quantification of
geometrical characteristics of the spatial and temporal response of physics-based computational
models. Theoretical issues include the probabilistic characterisation of random excursion sets
of (possibly nonstationnary) random fields. Methodological issues include the computational
cost of the computational model, its spatial discretisation, and the discretisation of the stochas-
tic dimension.

Another limitation for robust projections in glaciology stems from fundamental modelling
(structural) uncertainties in computational ice-sheet models. Structural uncertainties encom-
pass discrepancies between computational ice-sheet models and the reality because of imperfect
knowledge or representation of physical processes governing the ice-sheet dynamics, as well as
numerical errors due to numerical approximations and discretisation errors. To address struc-
tural uncertainties in computational models, a typical approach in climate modelling consists in
using ensembles of projections from a range of computational models rather than a single model,
which leads to so-called multi-model ensembles of projections; see, for instance, Burnham and
Anderson [2002] and Link and Barker [2006]. Multi-model ensembles represent a challenge for
uncertainty quantification, including the assessment of model discrepancies and weighting of
multi-model projections.

Other challenges and opportunities for the field of uncertainty quantification relevant to ice-
sheet modelling also include uncertainty quantification in large-scale, long-term, multi-scale,
or multiphysics simulations; uncertainty quantification in the presence of large datasets that are
insufficiently informative and in the presence of partial or missing data; and uncertainty quan-
tification in high stochastic dimension. Challenges and opportunities also exist in clarifying the
role of uncertainty in predicting and understanding the response of complex nonlinear dynami-
cal systems, including in predicting and understanding the impact of sources of uncertainty on
steady states, instabilities, and bifurcations.

1.4 Contributions of the thesis

The main contributions are twofold:

1. New assessment and new understanding of the impact of uncertainties on the multicen-
tennial response of the Antarctic ice sheet.

2. New methods for uncertainty quantification of geometrical characteristics of the spatial
response of physics-based computational models, with, as a motivation in glaciology, a
focus on predicting with quantified uncertainty the retreat of the grounded region of the
Antarctic ice sheet.

During this PhD, we worked first on the first contribution, which led us to identify limitations
and further needs in uncertainty quantification, thus motivating the second contribution.
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For the first contribution, we carried out uncertainty quantification of sea-level rise projec-
tions by using the new fast essential ice-sheet model f.ETISh [Pattyn, 2017]. Based on existing
methods from the field of uncertainty quantification, we applied methods for the propagation of
uncertainty and sensitivity analysis to provide new probabilistic projections of the contribution
of the Antarctic ice sheet to sea-level rise over the next millenium and new assessments of the
impact of parametric uncertainties on these projections. The main results and conclusions of
this work are summarised in the publication [Bulthuis et al., 2019a].

For the second contribution, we proposed to address uncertainty quantification of geomet-
rical characteristics of the spatial response of physics-based computational models within the
probabilistic context of the random set theory, in which we contributed to the development
of the concept of confidence sets of random excursion sets. We proposed a new multifidelity
quantile-based method for the estimation of such confidence sets and we demonstrated the per-
formance of the proposed method on an application concerned with uncertainty quantification
of the retreat of the Antarctic ice sheet. The main results and conclusions of this work are sum-
marised in the manuscript [Bulthuis et al., 2019b], currently under review.

In addition to the two aforementioned main contributions, we contributed during this thesis
to two additional pieces of research also presented in this manuscript:

• In the context of uncertainty quantification in small-data settings, Professors Maarten
Arnst and Christian Soize proposed to improve the accuracy of Monte Carlo estimates
of Sobol indices in global sensitivity analysis using a recently introduced algorithm for
probabilistic learning on manifolds (PLoM) [Soize and Ghanem, 2016]. As an illustration
of the proposed methodology, we carried out simulations of the response of the Antarctic
ice sheet using the f.ETISh model for a set of uncertain parameters. These simulations
were then used to demonstrate the efficiency of the PLoM algorithm as compared with
methods based on Monte Carlo sampling and stochastic expansions. The main results and
conclusions of this work are summarised in the manuscript [Arnst et al., 2019], currently
under review.

• With the Expert Group on Ice Sheet Mass Balance (ISMASS), Professor Frank Pattyn
carried out a review of the mass balance and glaciers since AR5 [Hanna et al., 2020]. In
the context of this review, we provided a multi-model comparison of projections of the
contribution of the Antarctic ice sheet to sea-level rise from different models. Following
this first multi-model comparison, we decided to carry out in this manuscript a more
comprehensive multi-model comparison of projections of the contribution of the Antarctic
ice sheet to sea-level rise, including projections by Bulthuis et al. [2019a], as a fairly
simple way of assessing the impact of structural uncertainty in inducing uncertainty in
sea-level rise projections. This new multi-model comparison is the subject of Chapter 9.

List of contributed publications

In summary, the main contributions of this thesis are summarised in the following two first-
author manuscripts:
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• Bulthuis K., Arnst, M., Sun, S., and Pattyn, F. (2019). Uncertainty quantification of
the multi-centennial response of the Antarctic ice sheet to climate change. Cryosphere,
13(4),1349–1380, https://doi.org/10.5194/tc-13-1349-2019.

E The manuscript [Bulthuis et al., 2019a] is reported in its entirety in Chapter 8.

• Bulthuis K., Pattyn, F., and Arnst, M. A multifidelity quantile-based approach for confi-
dence sets of random excursion sets with application to ice-sheet dynamics. Under review.

E In this thesis: Sections 2–5 (theory and methods) and Section 6 (application) from
Bulthuis et al. [2019b] are reported in Sections 5.4–5.7 and Section 7.2, respectively.

The additional contributions of this thesis are found in the following co-authored manuscripts:

• Hanna, E., Pattyn, F., Francisco Navarro, Vincent Favier, H. G., van den Broeke, M. R.,
Viczaino, M., Pippa L. Whitehouse, C. R., Bulthuis, K., and Smith, B. (2019). Mass
balance of the ice sheets and glaciers – progress since AR5 and challenges. Earth-Sci.
Rev, https://doi.org/10.1016/j.earscirev.2019.102976. In press.

E In this thesis: Chapter 9 is built on Figure 5 and Table 1 from Hanna et al. [2020].

• Arnst M., Soize, C., and Bulthuis, K. Computation of Sobol indices in global sensitivity
indices from small data sets by probabilistic learning on manifolds. Under review.

E In this thesis: Section 5 (illustration) from Arnst et al. [2019] is reported in Sec-
tion 7.3.

1.5 Overview of the thesis

Given its interdisciplinary nature, this thesis has been carried out at the Université de Liège,
in the Stochastic and Computational Modelling group of Professor Maarten Arnst, and at the
Université Libre de Bruxelles, in the Laboratory of Glaciology of Professor Frank Pattyn. Most
chapters of this thesis are written to be “self-contained” so as to enable the reader more inter-
ested or less familiar with the field of uncertainty quantification or with cryospheric science to
focus on specific chapters without requiring a thorough understanding of other chapters. We
structured this manuscript in three consistent parts. It should be noted that the structure of the
manuscript does not reflect the chronological order in which this PhD has been carried out. In
Part I (Chapters 2–3), we provide a general introduction to ice-sheet modelling and uncertainties
in ice-sheet models. In Part II (Chapters 4–5), we discuss and develop theory and methods for
uncertainty quantification in computational models. In Part III (Chapters 6–9), we discuss the
use of essential ice-sheet models for large-scale and long-term simulations of the Antarctic ice
sheet and uncertainty quantification and we apply uncertainty quantification methods discussed
in Part II to predict with quantified uncertainty the response of the Antarctic ice sheet to climate
change over the next centuries. The detailed structure of this thesis is given below.

Chapter 2 presents a review of the physics of ice sheets from a modelling perspective. We
introduce the governing equations for the conservation of mass, momentum, and energy in ice
sheets and the equations for the interactions of the ice sheet with its surrounding environment,

https://doi.org/10.5194/tc-13-1349-2019
https://doi.org/10.1016/j.earscirev.2019.102976
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namely the atmosphere, the bedrock, and the ocean. We discuss reduced-order models of the
ice-sheet dynamics based on the asymptotic behaviour of the full-order model as the aspect ratio
of the ice sheet tends to zero, which leads to the shallow-ice and shallow-shelf approximations.
We also present other aspects of the physics of ice sheets, namely friction at the ice-bedrock
interface, glacial isostatic adjustment, and instability mechanisms in marine ice sheets.

Chapter 3 presents an overview of the present state of the Antarctic ice sheet, its future
evolution in a changing climate, and challenges in the numerical modelling of the dynamics
of the Antarctic ice sheet. Present-day mass balance of the Antarctic ice sheet is determined
by mass gain due to snowfall and mass loss due to ice discharge across the grounding line and
subsequent mass loss through sub-shelf melting and calving. The future state of the Antarctic
ice sheet will be governed by the risk of instabilities in marine basins, changes in ice-air and
ice-ocean interactions, and the potential of the bedrock to provide (de)stabilising conditions for
the grounding line. Challenges in the numerical modelling of the dynamics of the Antarctic ice
sheet include ice-sheet model initialisation, coupling with other components of the Earth sys-
tem, and uncertainties in computational ice-sheet models.

Chapter 4 is an introduction to theory and methods for the analysis of computational mod-
els subject to uncertain parameters within the field of uncertainty quantification. We discuss
methods for the probabilistic characterisation of uncertainty in computational models, the prop-
agation of uncertainty through the computational model to determine a probabilistic character-
isation of a quantity of interest predicted by the computational model, and global sensitivity
analysis to assess the significance of each source of uncertainty in inducing uncertainty in the
quantity of interest. The focus is on nonintrusive methods that do not require any modification
of the source code of the computational model.

Chapter 5 addresses uncertainty quantification of physics-based computational models when
the quantity of interest concerns geometrical characteristics of their spatial response. Based on
the random set theory, we develop the concept of confidence sets that either contain or are con-
tained within an excursion set of the spatial response with a specified probability level. We
seek an optimal confidence set in a parametric family of nested sets, a problem equivalent to a
problem of quantile estimation of a random variable. We propose an efficient bifidelity method
to speed up the computation of confidence sets for computational models with a high computa-
tional cost. Theory and methods are based on the manuscript [Bulthuis et al., 2019b].

Chapter 6 provides an introduction to the numerical modelling of the dynamics of the
Antarctic ice-sheet based on essential ice-sheet models. With a focus on the fast Elementary
Thermomechanical Ice Sheet (f.ETISh) model [Pattyn, 2017], we discuss aspects of the nu-
merical modelling of ice sheets in essential ice-sheet models, including the implementation of
reduced-order models for the ice-sheet flow, of a flux condition for the ice flux at the grounding
line, of an ocean-model coupler for the ice-ocean interactions, and of an elastic lithosphere–
relaxing asthenosphere model for isostatic glacial adjustment.

Chapter 7 addresses the use of theory and methods from the field of uncertainty quantifi-
cation (Chapters 4–5) to assess the impact of uncertain parameters on the continental response
of the Antarctic ice sheet over the next centuries. We demonstrate the interest of uncertainty
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quantification methods, including methods for the propagation of uncertainty, the estimation of
confidence sets of random excursion sets, and sensitivity analysis, by setting up with the f.ETISh
ice-sheet model test problems concerned with the contribution of the Antarctic ice sheet to sea-
level rise and the retreat of the grounded portion of the Antarctic ice sheet in response to climate
change. The test problems for confidence sets of random excursion sets and sensitivity analysis
are presented in the manuscripts [Arnst et al., 2019; Bulthuis et al., 2019b].

Chapter 8 addresses uncertainty quantification of the multicentennial response of the Antarc-
tic ice sheet to climate change. We apply probabilistic methods to the f.ETISh ice-sheet model
to investigate the influence of several sources of uncertainty, namely sources of uncertainty
in atmospheric forcing, basal sliding, grounding-line flux parameterisation, calving, sub-shelf
melting, ice-shelf rheology, and bedrock relaxation. We provide new probabilistic projections
of sea-level rise and grounding-line retreat and we carry out a stochastic sensitivity analysis to
determine the most influential sources of uncertainty. Chapter 8 is a standalone chapter taken
from the publication Bulthuis et al. [2019a].

Chapter 9 provides a qualitative multi-model comparison of sea-level rise projections from
studies published after the AR5 report, including new probabilistic projections carried out in
this thesis. We provide a comparison with projections from the AR5 report and highlight new
advances in the understanding and modelling of the dynamics of the Antarctic ice sheet.

Chapter 10 provides a summary and draws the main conclusions. Some directions for future
research in ice-sheet modelling and uncertainty quantification are also addressed.

Appendix A provides an introduction to the theory of probability to the unfamiliar reader.

Finally, Table 1.2 provides a summary of the content of this manuscript. For each chapter,
we add a mention “SoA” or “NEW” to specify whether the content is more related to a state-
of-the-art review of methods and literature or to novel or original contributions. We also add a
mention “P”, “N”, “M”, or “A” to specify whether the chapter provides a more physical, numer-
ical, methodology-oriented , or application-oriented point of view to the objective of clarifying
the role played by uncertainties in the response of the Antarctic ice sheet to climate change.

Keywords Chapter Content Point of view
Physics of ice sheets / Reduced-order models 2 SoA P

AIS / Mass balance / Instabilities 3 SoA P/N
UQ / Propagation of uncertainty / Sensitivity analysis 4 SoA M

Random excursion sets / Confidence sets 5 NEW M
Numerical modelling / Essential ice-sheet models 6 SoA N

UQ for ice-sheet models / Test problems 7 NEW A
AIS / Changing climate / Probabilistic projections 8 NEW A/P

Multi-model comparison / Sea-level rise projections 9 SoA/NEW P

Table 1.2: Summary of the content of the thesis.
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Physics of ice sheets

This chapter is an introduction to the physics of ice sheets, with a focus on physics-based
reduced-order models and parameterisations relevant for large-scale and long-term numerical
simulations of the Antarctic ice sheet. The dynamics of ice sheets is usually described as the flow
of a nonlinear thermo-viscous fluid spreading under its own weight, subject to mass gain and
loss due to snowfall and melting, and subject to basal friction on the ice-bedrock interface and
water pressure on the ice-ocean interface. In Section 2.2, we first introduce a full-order model
of the ice-sheet dynamics. In Section 2.3, we focus on reduced-order models of the ice-sheet
dynamics based on the asymptotic behaviour of the full-order model as the aspect ratio of the
ice sheet tends to zero. Such reduced-order models lend themselves well to being implemented
into efficient large-scale computational models of the Antarctic ice sheet, such as the f.ETISh
model (see Chapter 6), and to being used for uncertainty quantification (see Chapters 7–8). In
Section 2.4, we present a reduced-order model for the interaction between an ice sheet and the
solid Earth. In Section 2.5, we discuss two instability mechanisms in marine ice sheets, namely
the marine ice-sheet instability (MISI) and the marine ice-cliff instability (MICI), which have
the potential to destabilise and lead to a collapse of marine basins in Antarctica. We introduce
an approximate analytical solution for the ice flux at the grounding line, which may serve as a
parameterisation for the migration of the grounding line in large-scale computational ice-sheet
models (see Chapter 6).

2.1 Physics of ice sheets: overview

Ice sheets are defined as large masses of ice that cover an area greater than 50 000 km2. The
current ice sheets on Earth are the Greenland and Antarctic ice sheets that cover 1.2% and 8.3%
of the global land surface, respectively [Vaughan et al., 2013]. Both ice sheets contain approx-
imately 98% of all freshwater on Earth, with the volume of the Greenland ice sheet and the
Antarctic ice sheet equivalent to 7.2 m and 57.2 m sea-level equivalent, respectively.

On the timescales relevant in glaciology (tens to thousands of years), the overall dynamics
of ice sheets is that of a gravity-driven viscous fluid flowing towards the coastline. The ice flow
is also affected by the thermal state of the ice sheet as the ice softens and becomes less viscous
at higher temperatures. As the ice flow approaches the coastline, it speeds up and collects into

15
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(fast-flowing) ice streams. As the ice sheet flows down the coastline, the ice can become afloat
and the ice sheet extends in the ocean into floating ice shelves (mainly in Antarctica). This
typically arises for so-called marine ice sheets or marine-terminating glaciers whose bedrock is
below sea level. The transition line where the ice becomes afloat is referred to as the grounding
line. At the ice margins (usually at the edges of floating ice shelves), the ice sheet can lose mass
through calving, that is, the breaking of ice chunks from the edge of a glacier.

Ice sheets and ice shelves interact with their surrounding environments, namely the atmo-
sphere, the bedrock, and the ocean. Processes at the interface between the ice and the atmo-
sphere include precipitation (snowfall and rainfall); surface melt and subsequent meltwater
runoff, percolation, retention, or refreezing; evaporation and sublimation; and snow erosion.
All these processes define the surface mass balance of the ice sheet; see, for instance, Lenaerts
et al. [2019]. All these processes also contribute to the surface energy balance of the ice sheet.
The interaction of the ice and the underlying bedrock leads to friction and basal shear stress that
resists ice flow. Processes such as geothermal heat flow, heat dissipation due to basal friction,
and melting (or refreezing) also affect the energy balance of the ice sheet at the ice-bedrock in-
terface. Processes at the interface between the ice and the ocean include melting (or refreezing)
of the ice-shelf base in contact with the ocean and calving at the ice front; see, for instance,
Depoorter et al. [2013], Rignot et al. [2013], and Liu et al. [2015]. At large scale, melting
underneath ice shelves is driven by heat supply in ice-shelf cavities due to ocean circulation.
Processes such as melting (or refreezing) and heat transfer between the ocean and the base of
the ice shelf also affect the energy balance of ice shelves at the ice-ocean interface.

Figure 2.1: Illustration of key drivers of ice-sheet dynamics and their effects on Thwaites Glacier
in Antarctica. Credit: Scambos et al. [2017].

In the following, we describe mathematical models for the underlying physics of ice sheets,
focusing on fundamental ice-flow models and processes that will serve in the framework of this
manuscript. We refer the reader to, for instance, Cuffey and Paterson [2010], Greve and Blatter
[2009a], and van der Veen [2013] for textbooks about the physics of ice sheets and Blatter et al.
[2011], Fowler [2011], and Schoof and Hewitt [2013] for review papers.
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2.2 Full-order model

We are interested in the thermomechanical evolution of an ice sheet in a time interval ]0, τ [
with τ > 0. At any given time t in ]0, τ [, we denote by Ω(t) the domain occupied by the ice.
We assume that Ω(t) is a subset of Rd, with d = 2 or 3. We denote by Γ(t) the boundary of
the domain Ω(t) and we divide Γ(t) into several sections to represent the interfaces of the ice
with other media (atmosphere, bedrock, and ocean). We consider in particular a geometrical
configuration with Γs(t) being the ice-air interface, Γb(t) the ice-bedrock interface, Γw(t) the
ice-ocean interface, Γc(t) the vertical calving front (or ice front) in contact with both the air
and the ocean, and Γu(t) the vertical lateral border of the domain that is not the calving front
(here, we assume Γu(t) to be an ice divide); see Figure 2.2. This geometrical configuration is
representative of a marine ice sheet, that is, an ice sheet that lies on a bedrock below sea level
and usually extends in the ocean into a floating ice shelf. Finally, the grounding line γ(t) is
given by Γb(t) ∩ Γw(t).

∗
∗ ∗∗

Ω(t)

Γs(t)

Γb(t) Γw(t)
Γc(t)

Γu(t)

Figure 2.2: Schematic representation of a marine ice sheet (cross-section). At any time t
in ]0, τ [, Ω(t) denotes the domain occupied by the ice, Γs(t) the ice-air interface, Γb(t) the
ice-bedrock interface, Γw(t) the ice-ocean interface, Γc(t) the calving front, and Γu(t) the ice
divide.

In the following, we introduce a system of equations that govern the evolution of the free
boundaries Γs(t), Γb(t), Γw(t), Γc(t), and Γu(t) and that of the velocity field v, the pres-
sure field p, and the temperature field T , which are defined in the space-time domain Ωτ =
{(x, t) : x ∈ Ω(t), 0 < t < τ}. We also refer the reader to Greve and Blatter [2009a] on which
is based most of the following material.

2.2.1 Mechanical problem

The velocity field v and the pressure field p are governed by the following nonlinear Stokes
equations:

−∇xp+ divx(2ηD) + ρg = 0, in Ω(t) for 0 < t < τ , (2.1)

divx v = 0, in Ω(t) for 0 < t < τ . (2.2)

Here, D = 1
2(∇xv +∇xvT) is the strain-rate tensor, η the ice effective viscosity that depends

nonlinearly on the temperature and the velocity, ρ the mass density of the ice, and g the grav-
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itational acceleration. In Equation (2.1), the stress tensor σ is decomposed into an isotropic
stress tensor −pI , with I being the identity tensor and p = −1

3 tr(σ), and a deviatoric stress
tensor σD = 2ηD. Equation (2.1) is the Stokes equation for low-Reynolds isotropic flows and
expresses the mechanical balance between the pressure gradient, the divergence of the deviatoric
stresses, and the gravitational driving force. Equation (2.2) is the incompressibility constraint.
Equations (2.1) and (2.1) define a quasi-static model in which the pressure and velocity fields
are solved at each time t on an evolving domain.

In large-scale ice-sheet models, the prevailing rheological law for the ice is Glen’s flow law
[Glen, 1955]. According to Glen’s flow law, the constitutive relation for the ice writes as a
power law between the second invariant of the strain-rate tensor and the effective viscosity, that
is,

η = 1
2A
−1/n

( 1√
2
‖D‖F

) 1
n
−1

. (2.3)

Here, 1√
2‖D‖F, in which ‖ · ‖F denotes the Frobenius norm such that ‖D‖2F = tr(D2), is the

effective strain rate (also denoted by de), A the temperature-dependent rheological coefficient,
and n the power-law exponent. The exponent in Equation (2.3) is set to n = 3, thus correspond-
ing to a shear-thinning fluid whose viscosity decreases when shear increases. The temperature
dependence of the rheological coefficient A is expressed in the form of an Arrhenius-type rela-
tionship [Greve and Blatter, 2009a; Cuffey and Paterson, 2010].

The Stokes equations (2.1)–(2.2) are supplemented with boundary conditions that express
the interaction of the ice sheet with its surrounding environment at the different interfaces. At
any given time t in ]0, τ [ and any position x on the interfaces, we denote by n(x, t) the exterior
normal unit vector of the interface pointing outwards of the ice domain and by w(x, t) the rate
of change of the position of the interface (“the interface velocity”).

On the ice-air interface, the boundary conditions write as

σ(n) = 0, on Γs(t) for 0 < t < τ , (2.4)

(w − v) · n = a⊥s , on Γs(t) for 0 < t < τ , (2.5)

where a⊥s is the surface mass balance perpendicular to the ice-air interface, positive in the case
of accumulation and surface refreezing and negative in the case of surface melting and ablation.
Here, we use the notation σ(n) to denote the stress vector, also called the traction vector, acting
on the interface with exterior unit normal vector n. Equation (2.4) expresses mechanical equi-
librium at the ice-air interface when this interface is considered to be a free surface (no surface
tension and negligible air pressure) and Equation (2.5) expresses mass balance at the ice-air
interface.

On the ice-bedrock interface, the boundary conditions write as

τb = −fb(‖vb‖, pe,x)vb, on Γb(t) for 0 < t < τ , (2.6)

(w − v) · n = −a⊥b , on Γb(t) for 0 < t < τ , (2.7)
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where τb is the component of the traction vector tangential to the ice-bedrock interface, vb the
component of the velocity field tangential to the ice-bedrock interface, and a⊥b the mass bal-
ance perpendicular to the ice-bedrock interface, taken positive to account for mass loss due to
ice melting. Equation (2.6) is a Robin-type boundary condition, expressed as a slip boundary
condition, that relates the tangential component of the velocity field to the tangential component
of the traction vector and the positive function fb is the so-called friction law function that is
assumed to depend on the norm of the tangential component of the velocity field, the position x
on the interface, and the effective pressure pe, that is, the difference between the normal stress
at Γb and the water pressure in the subglacial layer underneath Γb. We refer the reader to Sec-
tion 2.2.4 for examples of friction laws commonly used in glaciology. Equation (2.7) expresses
mass balance at the ice-bedrock interface.

On the ice-ocean interface, the boundary conditions write as

σ(n) = −pwn, on Γw(t) for 0 < t < τ , (2.8)

(w − v) · n = −a⊥w , on Γw(t) for 0 < t < τ , (2.9)

where a⊥w is the mass balance perpendicular to the ice-ocean interface, positive in case of melt-
ing undernearth ice shelves and negative in case of refreezing, and pw is the water pressure.
Equation (2.8) expresses mechanical equilibrium at the ice-ocean interface and Equation (2.9)
expresses mass balance at the ice-ocean interface.

At the calving front, the boundary conditions write as

σ(n) = −fwn, on Γc(t) for 0 < t < τ , (2.10)

(w − v) · n = −c⊥f , on Γc(t) for 0 < t < τ , (2.11)

where fw = pw if the ice is in contact with the ocean and fw = 0 if the ice is in contact with
the air and c⊥f is the calving rate perpendicular to the calving front, positive in case of ice loss
by calving.

At the ice divide, the boundary conditions write as

v = 0, on Γu(t) for 0 < t < τ , (2.12)

w · n = 0, on Γu(t) for 0 < t < τ . (2.13)

Equation (2.12) expresses zero velocity at the ice divide and Equation (2.13) expresses that the
ice divide is a fixed boundary in the direction of n.

Finally, a mathematical model must be prescribed for the response of the ice-bedrock in-
terface as a consequence of glacial isostastic adjustment (GIA). We write such a mathematical
model in the following abstract form

w · n = fGIA({pload(s), s ≤ t}), on Γb(t) for 0 < t < τ , (2.14)

where pload is the net load exerted on the bedrock, including the ice-sheet loading. Thus, the GIA
model in Equation (2.14) provides the normal component of the rate of change of the position
of the ice-bedrock interface as a function of the past loading history, including the ice-sheet
loading history. We refer the reader to Section 2.4 for an example of such a GIA model.
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2.2.2 Thermal problem

The temperature field T is required to satisfy the following conservation-of-energy equation:

ρc

(
∂T

∂t
+ v · ∇xT

)
= divx(k∇xT ) + 4η‖D‖2F, in Ω(t) for 0 < t < τ . (2.15)

Here, c and k are the specific heat capacity and the thermal conductivity of the ice, respectively.
Equation (2.15) expresses the energy balance between the rate of change of the internal energy,
the advective internal-energy flux, the conduction of heat, and the rate of viscous dissipation.

On the ice-air interface, the boundary condition writes as

T = Ts, on Γs(t) for 0 < t < τ , (2.16)

where Ts is the surface air temperature.

On the ice-bedrock interface, the boundary condition writes as

k∇xT · n = q⊥geo − τb · vb − ρLa⊥b , on Γb(t) for 0 < t < τ , (2.17)

where q⊥geo is the geothermal heat flux perpendicular to the ice-bedrock interface and L is the
specific latent heat of fusion. Equation (2.15) expresses the heat flux at the ice-bedrock inter-
face as a balance between the geothermal heat flux perpendicular to the ice-bedrock interface,
the rate of heat production due to basal friction at the ice-bedrock interface, and the rate of heat
absorption due to ice melting.

On the ice-ocean interface, the boundary condition writes as

T = Tw, on Γw(t) for 0 < t < τ , (2.18)

where Tw is the ocean temperature.

At the calving front, we impose the no-flux boundary condition

∇xT · n = 0, on Γc(t) for 0 < t < τ . (2.19)

At the ice divide, we impose the no-flux boundary condition

∇xT · n = 0, on Γu(t) for 0 < t < τ . (2.20)

2.2.3 Closure of the system of equations

The full-order model provides a system of equations for the pressure field p, the velocity field v,
the temperature field T , and the evolution of the free boundaries Γs, Γb, Γw, Γc, and Γu. In
addition to the prescription of appropriate initial conditions, this system of equations must be
closed by providing closure equations for the additional unknowns, which we discuss briefly in
the following. The boundary condition (2.6) is closed by prescribing a model for the friction
law; see Section 2.2.4 for a discussion. The mass balance as and the temperature Ts at the ice-
air interface are prescribed, for instance, by coupling the ice-sheet model with an atmospheric
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circulation model. Similarly, the mass balance aw and the temperature Tw at the ice-ocean in-
terface are prescribed, for instance, by coupling the ice-sheet model with an ocean circulation
model that accounts for ocean circulation and heat transfer beneath ice shelves. Approaches to
determine the calving rate cf include damage and fracture mechanics, which is able to simu-
late the development of crevasses in the ice and their propagation; see, for instance, Krug et al.
[2014] and Sun et al. [2017]. A mathematical model must also be prescribed for the response of
the ice-bedrock interface; see Section 2.4 for a discussion.

The mechanical problem in Section 2.2.1 must be supplemented with a mathematical model
for the position/evolution of the grounding line. Formally, this problem can be addressed as a
frictional contact problem in which one seeks to distinguish between a contact zone and a non-
contact zone. For a marine ice sheet, the contact zone is the region where the ice is in contact
with the bedrock and is subject to basal friction (the grounded region), while the non-contact
zone is the region where the ice is not in contact with the bedrock and is subject to water pres-
sure (the floating region). Hence, the (moving) grounding line is associated with the (moving)
contact line. A Stokes-flow contact problem for the dynamics of marine ice sheets is studied the-
oretically in Schoof [2011] and solved numerically in Durand et al. [2009] and Gagliardini et al.
[2013]. More generally, mathematical models and numerical methods for the movement of the
grounding line can be built on theory and methods from applied mathematics and computational
mechanics, including variational inequalities, saddle-point problems, and mortar methods; see,
for instance, Kikuchi and Oden [1988], Wriggers [2006], Wohlmuth [2011], Popp [2012], and
Capatina [2014].

Finally and contrary to the mass balances at the ice-air and ice-ocean interfaces, the mass
balance ab at the ice-bedrock interface must be determined as part of the solution to the ther-
mal problem in Section 2.2.2. Physically, ab corresponds to the basal melting rate and is con-
strained to be either equal to zero (no melting) or strictly positive (melting). In addition, the
basal temperature of the ice is constrained to be equal to or below its pressure melting point.
By definition, the basal melting rate can only be different from zero when the ice temperature
reaches its pressure melting point. Mathematically, these conditions on the basal temperature
and the basal melting rate can be interpreted as the Signori conditions in elastic contact mechan-
ics [Glowinski et al., 1981; Kikuchi and Oden, 1988] or the Karush-Kuhn-Tucker conditions in
optimisation [Nocedal and Wright, 2006], and thus theory and methods from contact mechanics
and optimisation can be used to solve these conditions. We also refer the reader to Calvo et al.
[2003, 2015] and Seroussi [2012] for examples of the use of Signorini conditions in glaciology.

2.2.4 Friction laws

A friction law in large-scale ice-sheet models usually takes the form

τb = −fb(‖vb‖, pe,x)vb, (2.21)

where τb is the component of the traction vector tangential to the ice-bedrock interface, also
referred to as the basal stress or the basal traction, vb the component of the velocity field tan-
gential to the ice-bedrock interface, also referred to as the basal velocity or sliding velocity, and
fb the friction law function that is assumed to depend on the basal velocity vb, the effective
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pressure pe, and the position x on the interface. Using the same notations as before, τb and vb
can be written as σ(n)−(σ(n) ·n)n and v−(v ·n)n, respectively. The function fb is assumed
to be a positive function to indicate that basal friction and basal velocity are always antiparallel
and thus basal friction always opposes ice flow. More generally, the function fb can be multi-
valued to encompass friction laws such as the Coulomb friction law. When Equation (2.21) can
be inverted to yield vb as a function of τb, the resulting equation is often referred to as a sliding
law. The choice of the “best” friction law remains an active source of discussion in glaciology.
Here, we briefly discuss some common friction laws used in ice-sheet models and we refer the
reader to, for instance, Weertman [1957], Greve and Blatter [2009a], Schoof [2010], Brondex
et al. [2017], and Joughin et al. [2019] for further discussions about friction laws in ice-sheet
models. Please note that other examples of friction laws can be found in the field of compu-
tational mechanics for frictional contact problems, including nonlocal friction laws [Oden and
Pires, 1983; Kikuchi and Oden, 1988; Capatina, 2014].

The Coulomb friction law writes asfb(‖vb‖, pe,x) = τc(pe,x)
‖vb‖

if ‖vb‖ > 0

fb(‖vb‖, pe,x) ≤ τc(pe,x) if vb = 0
, (2.22)

where τc is the yield stress. The Coulomb friction law is used to describe sliding over deform-
ing subglacial material such as sand, gravel, or till [Tulaczyk et al., 2000a,b; Schoof, 2006].
The yield stress represents the maximum stress that a plastic subglacial layer can sustain before
deforming plastically and is usually expressed as a linear function of the till cohesion (often as-
sumed to be negligible in ice-sheet models) and the effective pressure based on Mohr–Coulomb
theory. The effective pressure on the till depends on the subglacial hydrology. A common as-
sumption is to consider the till to be cohesionless and hydrostatically connected to the ocean,
thus leading to the water pressure in the subglacial layer being equal to the hydrostatic wa-
ter pressure in the ocean. Examples of more sophisticated subglacial hydrology models can
be found in Le Brocq et al. [2009], Werder et al. [2013], Bueler and van Pelt [2015], and De
Fleurian et al. [2018].

A drawback of the Coulomb friction law is the fact that the relationship between the basal
stress and the basal velocity is multivalued at the origin. To avoid computational difficulties
associated with the Coulomb friction law, alternatives have been proposed in computational
mechanics in the form of regularised Coulomb friction laws that are more suitable for compu-
tational purposes; see, for instance, Campos et al. [1982], Martins and Oden [1983], Kikuchi
and Oden [1988], and Lee and Oden [1993]. In the context of glaciology, Schoof [2010] has
proposed regularised Coulomb friction laws in the form

fb(‖vb‖, pe,x) = fb,reg(‖vb‖,x)τc(pe,x)
‖vb‖

, (2.23)

where fb,reg : [0,∞[×Γb 7→ [0,∞[ is a continuous, non-decreasing function in its first argu-
ment with fb,reg(0,x) = 0 and limu→∞ fb,reg(u,x) = 1 for x on Γb(t). Regularised Coulomb
friction laws behave like the Coulomb friction law at high velocities while being single-valued
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at low velocities. A particular example of fb,reg is given by

fb,reg(‖vb‖,x) =
( ‖vb‖
‖vb‖+ Λ(x)

)p−1
, (2.24)

where p > 1 is a sliding parameter and Λ(x) > 0 is determined by local properties of the
bedrock. Equation (2.24) was originally proposed by Schoof [2005] for glacier sliding on hard
bedrock while accounting for the effect of cavitation, that is, the formation of pressurised basal
water pockets as the ice slides over the bedrock; since then, Equation (2.24), has been also ap-
plied as a regularised Coulomb friction law for sliding over weak till or both hard bedrock and
weak till [Schoof, 2010; Joughin et al., 2019]. Other examples for fb,reg are given, for instance,
in Schoof [2010].

Another common example of friction law in glaciology is the power friction law or Weert-
man’s friction law:

fb(‖vb‖,x) = cb(x)‖vb‖p−1, (2.25)

where cb is the basal friction coefficient and p > 0 is the friction exponent, also written as
p = 1/m, with m the sliding exponent. Weertman’s friction law was originally developed
to describe sliding over hard bedrock [Weertman, 1957]. Weertman’s friction law may also
be interpreted as a regularisation of the Coulomb friction law because Weertman’s friction law
tends to the Coulomb friction law asm approaches infinity. Thus, the sliding exponentm can be
chosen in order to account in some way for till deformation. A drawback of Weertman’s friction
law is the fact that it does not account for the effective pressure on the till. As an alternative,
extensions to Weertman’s friction law can be considered in the form of so-called Budd’s friction
laws [Budd et al., 1984]

fb(‖vb‖, pe,x) = cb(x)pqe‖vb‖p−1, (2.26)

where q ≥ 0. Taking q = 0 leads to Weertman’s friction law.

Figure 2.3 shows a comparison between different sliding laws, namely the Coulomb friction
law, the regularised Coulomb friction law with Equation (2.24), and Weertman’s friction law. In
the case of the Coulomb friction law, the basal stress is equal to the yield stress whenever the
basal velocity is different from zero. Weertman’s friction law provides no upper limit on the
basal stress for finite m but approaches the Coulomb friction law as m approaches infinity. For
the regularised Coulomb friction law, the basal stress increases with increasing basal velocity
but the maximum basal stress is limited by the yield stress. The sliding parameter p controls the
slope of ‖τb‖ at the origin and thus the “level” of regularisation.

2.3 Reduced-order models

Computational ice-sheet models based on the full-order model in Section 2.2 still have a pro-
hibitive computational cost for large-scale and long-term projections and uncertainty quantifi-
cation. As an alternative, reduced-order models of this full-order model have been derived that
take advantage of the small aspect ratio of ice sheets, thus leading to the approximation of the
ice-sheet flow as a thin-film flow. Examples of such reduced-order models of ice-sheet flow are
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Figure 2.3: Illustration of different sliding laws with no dependence on x and pe. Shown are
the Coulomb friction law with τc = 1; the regularised Coulomb friction law with τc = 1 and
regularisation function given by Equation (2.24) with Λ = 1 and sliding parameter p = 2 (solid),
p = 3/2 (dashed), and p = 11/10 (dotted); and Weertman’s sliding law with cb = 1 and sliding
exponent m = 1 (solid), m = 3 (dashed), and m = 10 (dotted). Values are in 0.1 MPa for ‖τb‖
and in m yr−1 for ‖vb‖.

the hydrostatic approximation, the Blatter–Pattyn model, the shallow-ice approximation (SIA),
and the shallow-shelf approximation (SSA) [Greve and Blatter, 2009a; Kirchner et al., 2011].
We focus on the last two approximations in the following.

The SIA and SSA reduced-order models can be derived from the asymptotic behaviour of
the full-order model as the aspect ratio tends to zero in two different mechanical regimes distin-
guished by the significance of membrane and vertical shear stresses. In a 3D Cartesian coordi-
nate system with horizontal x- and y-axes and vertical z-axis, the vertical shear stresses refer to
the components σDxz and σDyz of the deviatoric stress tensor and the membrane stresses refer to
the components σDxx, σDyy, and σDxy of the deviatoric stress tensor, with σDxx and σDyy being also
referred to as the longitudinal or extensional stresses and σDxy to as the lateral shear stress. In
their original derivations, the SIA [Hutter, 1983; Greve and Blatter, 2009a] and SSA [Morland,
1987; MacAyeal, 1989; Weis et al., 1999] reduced-order models are derived from a hydrostatic
approximation of the Stokes equations and by neglecting either the membrane stresses or the ver-
tical shear stresses in the conservation-of-momentum equation. Here, we discuss some aspects
of the SIA and SSA reduced-order models following the formalism in Gerbeau and Perthame
[2001], Fernández-Nieto et al. [2010], and Boutounet et al. [2016] for the asymptotic behaviour
of non-Newtonian fluids with small aspect ratio.

Following the formalism in Gerbeau and Perthame [2001], Fernández-Nieto et al. [2010],
and Boutounet et al. [2016], the dimensionless form of the nonlinear Stokes equations leads
to the identification of three dimensionless numbers, namely an aspect ratio ε = H/L, which
represents the shallowness of the ice sheet, a Reynolds number Re, and a Froude number Fr
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given by

Re = ρU2− 1
nH

1
n 2 1

n
−1

η0
, Fr = U√

gH
, (2.27)

where U is a reference horizontal velocity, H a reference thickness, L a reference horizontal
length, and η0(U/(2H)) 1

n
−1 a reference effective viscosity consistent with the reference strain

rate. As an example, we consider the vertical conservation-of-momentum equation in R2 for an
isothermal ice sheet, that is,

∂p

∂z
= ∂

∂x
(σDxz) + ∂

∂z
(σDzz)− ρg, (2.28)

with x the horizontal coordinate, z the vertical coordinate, and σD the deviatoric stress tensor
expressed as [

σDxx σDxz
σDxz σDzz

]
= 2η0d

1
n
−1

e

 ∂vx
∂x

1
2

(
∂vx
∂z + ∂vz

∂x

)
1
2

(
∂vx
∂z + ∂vz

∂x

)
∂vz
∂z

 , (2.29)

with η0 = 1/(2A1/n), vx the horizontal velocity, vz the vertical velocity, and the effective strain
rate de given by

de =

√(
∂vx
∂x

)2
+ 1

4

(
∂vx
∂z

+ ∂vz
∂x

)2
. (2.30)

The horizontal and vertical coordinates are nondimensionalised as

x̃ = x

L
, z̃ = z

H
= z

εL
, (2.31)

and the unknowns vx, vz , and p are nondimensionalised as

ṽx = vx
U

, ṽz = vz
εU

, p̃ = p

ρgH
, (2.32)

where tildes are used to indicate dimensionless variables. In dimensionless form, Equation (2.28)
writes as

ε
∂

∂z̃

(
2(2d̃e)

1
n
−1∂ṽz

∂z̃

)
− Re
F 2

r

∂p̃

∂z̃
− Re
F 2

r
= −ε ∂

∂x̃

(
(2d̃e)

1
n
−1
(
∂ṽx
∂z̃

+ ε2
∂ṽz
∂x̃

))
, (2.33)

while the dimensionless deviatoric stress tensor and effective strain rate write as[
σ̃Dxx σ̃Dxz
σ̃Dxz σ̃Dzz

]
= ρgH

F 2
r
Re

(2d̃e)
1
n
−1

 2ε∂ṽx∂x̃
(
∂ṽx
∂z̃ + ε2 ∂ṽz∂x̃

)(
∂ṽx
∂z̃ + ε2 ∂ṽz∂x̃

)
2ε∂w̃∂z̃

 , (2.34)

d̃e =

√
ε2
(
∂ṽx
∂x̃

)2
+ 1

4

(
∂ṽx
∂z̃

+ ε2
∂ṽz
∂x̃

)2
. (2.35)

In the dimensionless form of the Stokes equations, the relative size of the aspect ratio ε as
compared with the ratio Re/F 2

r fundamentally determines the significance of vertical shear
and membrane stresses. This leads to the identification of two scaling regimes. In the first
scaling regime, which may be characterised as “slow”, Re/F 2

r is large as compared with ε
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(εRe/F 2
r = O(1)) and vertical shear stresses are significant as compared with membrane

stresses (see Equation (2.34)). In the second scaling regime, which may be characterised as
“rapid”, Re/F 2

r is small as compared with ε (εF 2
r /Re = O(1)) and membrane stresses are sig-

nificant as compared with vertical shear stresses (see Equation (2.34)). In the first scaling regime
and at the leading order, the pressure is hydrostatic and vertical shear stresses are dominant in the
horizontal conservation-of-momentum equations. This leads to the SIA reduced-order model,
which provides an example of a classical lubrication flow in which shearing across the film
thickness balances the pressure gradient or the body force in the film. The SIA reduced-order
model is thus appropriate in regions where basal sliding is weak and the ice flow is dominated by
shearing rather than sliding, that is, the shallow ice approximation is used to represent ice flow
in the interior part of large ice sheets. In the second scaling regime and at the leading order, the
vertical normal stress is hydrostatic and vertical shear stresses are negligible as compared with
membrane stresses in the horizontal conservation-of-momentum equations. This leads to the
SSA reduced-order model, also referred to as the shelfy-stream approximation reduced-order
model, which provides an example of a “free-flow” model where there is no (or almost no) fric-
tion at the base of the fluid film. The SSA reduced-order model is thus appropriate in regions
where basal sliding is important and the ice flow is dominated by membrane stresses rather than
vertical shear stresses, that is, the shallow-shelf approximation is used to represent ice flow in ice
shelves, where basal friction due to the contact with the ocean is negligible, and in fast-flowing
ice streams.

Reduced-order models of the thermal problem can also be derived from a dimensional anal-
ysis; see, for instance, Vergori [2010], Bernabeu [2015], and Meyer and Minchew [2018] for a
discussion of the thermal regime of Stokes flows. The dimensionless form of the thermal prob-
lem leads to the identification of three nondimensionless numbers, namely, the aspect ratio ε, a
Péclet number and a Brinkman number given by

Pe = ρc0WH

k0
, Br = η0U

1
n

+1

k0∆T2 1
n

+1H
1
n
−1

, (2.36)

where c0 is a reference specific heat capacity, k0 a reference thermal conductivity, ∆T a refer-
ence temperature change, and W = εU a reference vertical velocity. In the dimensionless form
of the conservation-of-energy equation, the Péclet number measures the importance of heat ad-
vection to heat conduction and the Brinkman number measures the importance of viscous heat
dissipation to heat conduction. In the slow mechanical scaling regime (SIA) and at the leading
order, vertical heat diffusion is significant as compared to horizontal heat diffusion and viscous
heat dissipation is controlled by vertical shearing. In the fast mechanical scaling regime (SSA)
and at the leading order, vertical heat diffusion is significant as compared to horizontal heat
diffusion and viscous heat dissipation is controlled by longitudinal stresses and lateral shearing.

In the following, we focus on the key aspects of the mathematical formulation of the SIA
and SSA reduced-order models.

2.3.1 Shallow-ice approximation

We consider a 3D Cartesian coordinate system defined by a horizontal reference plane and a
vertical z-axis as depicted in Figure 2.4. We denote by Ω(t) the domain occupied by the ice and
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by ω(t) the support of the ice sheet in the horizontal reference plane. The position of a point in
the ice sheet is denoted by (x, z) where x = (x, y) is the position in the horizontal reference
plane and z is the vertical coordinate measured from the reference horizontal plane. We denote
the velocity field by (v, vz) where v = (vx, vy) is the horizontal velocity and vz the vertical
velocity. The boundary Γ(t) of the domain is divided into the ice-air interface Γs(t), the ice-
bedrock interface Γb(t), and the ice divide. In the context of the SIA reduced-order model, we
do not consider the presence of an ice shelf, that is, we assume no contact of the ice sheet with
the ocean. It should be noted that in this section, solution variables represent the leading-order
approximations to the solution variables of the full-order problem. For convenience of writing,
we do not distinguish in our system of notations the solution variables of the reduced-order
model from the solution variables of the full-order problem.

∗∗ ∗∗z

x

z = s(x , t)

z = b(x , t)

Figure 2.4: Schematic representation of an ice sheet (SIA reduced-order model). At any time t
in ]0, τ [, z = s(x, t) denotes the elevation of the ice-air interface and z = b(x, t) denotes
the elevation of the ice-bedrock interface. In the SIA scaling regime, the vertical profile of
the horizontal velocity can be decomposed into a constant component due to sliding at the ice-
bedrock interface and a non-constant component due to vertical shearing.

In the coordinate system described above, we use the functions s and b to track the position
of the ice-air and ice-bedrock interfaces, respectively, and we denote by h = s − b the ice
thickness. Thus, at any time t in ]0, τ [, the interfaces Γs(t) and Γb(t) can be expressed as

Γs(t) = {(x, z) ∈ Ω(t) : z = s(x, t)} , (2.37)

Γb(t) = {(x, z) ∈ Ω(t) : z = b(x, t)} . (2.38)

At the leading order in the SIA scaling regime, Equations (2.1) and (2.2) reduce to

∂σDxz
∂z

= ∂p

∂x
, in Ω(t) for 0 < t < τ , (2.39)

∂σDyz
∂z

= ∂p

∂y
, in Ω(t) for 0 < t < τ , (2.40)

∂p

∂z
= −ρg, in Ω(t) for 0 < t < τ , (2.41)

∂vx
∂x

+ ∂vy
∂y

+ ∂vz
∂z

= 0, in Ω(t) for 0 < t < τ , (2.42)
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while Glen’s flow law reduces to

∂vx
∂z

= 2A
(√

(σDxz)2 + (σDyz)2
)n−1

σDxz, (2.43)

∂vy
∂z

= 2A
(√

(σDxz)2 + (σDyz)2
)n−1

σDyz. (2.44)

At the leading order, vertical shear stresses in the horizontal plane are dominant as compared
with membrane stresses. Thus, the horizontal conservation-of-momentum equation reduces to
a balance between the vertical gradient of the vertical shear stresses and the horizontal pressure
gradient. Equation (2.41) and the free-surface condition at the ice-air interface indicate that at
the leading order the pressure field is hydrostatic. Injecting the expression for the hydrostatic
pressure into Equations (2.39) and (2.40) and integrating over the vertical direction with the free-
surface condition at the ice-air interface yield analytical expressions for σDxz and σDyz that can
then be injected into Equations (2.43) and (2.44). Integrating the equations thus obtained from
the ice base to an arbitrary position z finally yields an analytical expression for the horizontal
velocity. Futhermore, the vertical velocity vz can be determined by integrating the incompress-
ibility constraint (2.42) from the ice base to an arbitrary position z. Consequently, in the SIA
regime, the velocity field and the pressure field take the following analytical expressions:

v = vb − 2(ρg)n
∫ z

b
A(s− z′)ndz′ ‖∇xs‖n−1∇xs, in Ω(t) for 0 < t < τ , (2.45)

p = ρg(s− z), in Ω(t) for 0 < t < τ , (2.46)

vz = vz|z=b −
∫ z

b
divx v dz′, in Ω(t) for 0 < t < τ , (2.47)

where vb is the horizontal sliding velocity and vz|z=b the vertical velocity at the ice-bedrock
interface determined from the mass balance equation at the ice-bedrock interface.

In the shallow ice approximation, the basal shear stress writes as

τb = −
(
σDxz|z=b
σDyz|z=b

)
= ρgh∇xs ≡ −τd, (2.48)

where τd is often called the (gravitational) driving stress. Thus, in the shallow ice approxi-
mation, the basal shear stress is completely balanced by the gravitational driving stress. As-
suming the friction law to be invertible, the basal velocity vb can then be determined from
Equation (2.48). For Weertman’s friction law, this yields

vb =− 1
cmb
‖τd‖m−1τd = − 1

cmb
(ρgh)m‖∇xs‖m−1∇xs, in ω(t) for 0 < t < τ . (2.49)

In the coordinate system described above, one may derive an exact equation for the evolution
of the ice thickness from the full-order model. Integrating the incompressibility equation (2.2)
over the ice thickness and using Leibniz’s rule and the boundary conditions (2.5) and (2.7) yield
the following exact conservation-of-height equation:

∂h

∂t
+ divx q =

√
1 + ‖∇xs‖2a⊥s −

√
1 + ‖∇xb‖2a⊥b , in ω(t) for 0 < t < τ , (2.50)
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where

q =
∫ s

b
vdz (2.51)

is the vertically integrated horizontal velocity, that is, the ice flux. At the leading order in the
SIA scaling regime, Equation (2.50) reduces to

∂h

∂t
+ divx q = as − ab, in ω(t) for 0 < t < τ , (2.52)

where as is the mass balance at the ice-air interface, ab is the mass balance at the ice-bedrock
interface, and the ice flux q is obtained by integrating Equation (2.45) over the ice thickness,
that is,

q =
∫ s

b
vdz = vbh− 2(ρg)n

∫ s

b
A(s− z)n+1dz ‖∇xs‖n−1∇xs. (2.53)

At the leading order, the temperature field T is required to satisfy the following conservation-
of-energy equation:

ρc

(
∂T

∂t
+ v · ∇xT + vz

∂T

∂z

)
= ∂

∂z

(
k
∂T

∂z

)
+ 2Aσn+1

e , in Ω(t) for 0 < t < τ , (2.54)

where σe is the effective deviatoric stress given by

σe = ρg(s− z)‖∇xs‖. (2.55)

2.3.1.1 Discussion

In the SIA reduced-order model, the pressure and velocity fields are determined analytically
from Equations (2.45)–(2.47). The horizontal velocity field depends on the local slope of the
ice surface elevation. The horizontal velocity field is always antiparallel to the gradient of the
ice surface elevation irrespective of the bedrock topography. The computational burden is in
the evaluation of the temperature field (Equation (2.54)) and the evolution of the ice thickness
(Equation (2.52)). In the SIA reduced-order model, Equation (2.52) for the evolution of the
ice thickness can be interpreted as a nonlinear diffusion equation, whose diffusion coefficient
is a function of the ice thickness and the gradient of the ice surface elevation. Indeed, Equa-
tion (2.52) writes as

∂s

∂t
+ divx(D∇xs) = as − ab −

∂b

∂t
, in ω(t) for 0 < t < τ , (2.56)

with the coefficient of diffusion D given by

D = − 1
cmb

(ρg)mhm+1‖∇xs‖m−1 − 2(ρg)n
∫ s

b
A(s− z)n+1dz ‖∇xs‖n−1. (2.57)

Thus, in the SIA reduced-order model, the ice flow “diffuses” the ice surface, with the diffusion
process that acts more quickly in the presence of large values of the ice thickness or large
gradients of the ice surface elevation.
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2.3.2 Shallow-shelf approximation

We consider a 3D Cartesian coordinate system defined by a horizontal reference plane (for in-
stance, the initial sea-water level) and a vertical z-axis as depicted in Figure 2.5. We denote by
Ω(t) the domain occupied by the ice and by ω(t) the support of the ice sheet in the horizontal
reference plane. To introduce the SSA reduced-order model, we decompose the domain ω(t)
into a grounded region ωg(t) where the ice is grounded and a floating region ωf(t) covered with
the ice shelf and we denote by γ(t) = ωg(t) ∩ ωf(t) the projection of the grounding line in
the horizontal reference plane. Similarly, we decompose Ω(t) into a grounded part Ωg(t) and
a floating part Ωf(t). The position of a point in the ice sheet is denoted by (x, z) where x is
the position in the horizontal reference plane and z is the vertical coordinate measured from the
horizontal reference plane. We denote the velocity field by (v, vz) where v = (vx, vy) is the
horizontal velocity and vz the vertical velocity. The boundary Γ(t) of the domain is divided into
the ice-air interface Γs(t), the ice-bedrock interface Γb(t), the ice-ocean interface Γw(t), the
calving front, and the ice divide. As in Section 2.3.1, solution variables represent the leading-
order approximations to the solution variables of the full-order problem.

∗
∗ ∗∗

z

z = s(x , t)

z = b(x , t) z = l(x , t)
x

Figure 2.5: Schematic representation of a marine ice sheet (SSA reduced-order model). At
any time t in ]0, τ [, z = s(x, t) denotes the elevation of the ice-air interface, z = b(x, t) the
elevation of the ice-bedrock interface, and z = l(x, t) the elevation of the ice-ocean interface.
In the SSA scaling regime, the horizontal velocity is constant in the vertical direction and equal
to the sliding velocity.

In the coordinate system described above, we use the functions s, b, and l to track the posi-
tions of the ice-air interface, the ice-bedrock interface, and the ice-ocean interface, respectively,
and we denote by h the ice thickness. Thus, at any time t in ]0, τ [, the interfaces Γs(t), Γb(t),
and Γw(t) can be expressed as

Γs(t) = {(x, z) ∈ Ω(t) : z = s(x, t)} , (2.58)

Γb(t) = {(x, z) ∈ Ω(t) : z = b(x, t)} , (2.59)

Γw(t) = {(x, z) ∈ Ω(t) : z = l(x, t)} . (2.60)

In the following, we first discuss aspects of the SSA reduced-order model on the disjoint
domains Ωg(t) and Ωf(t) separately and then on the whole domain Ω(t).
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2.3.2.1 Shallow-shelf approximation in ice streams

At the leading order in the SSA scaling regime, Equations (2.1) and (2.2) reduce to

∂vx
∂z

= 0, in Ωg(t) for 0 < t < τ , (2.61)

∂vy
∂z

= 0, in Ωg(t) for 0 < t < τ , (2.62)

∂σzz
∂z

= ρg, in Ωg(t) for 0 < t < τ , (2.63)

∂vx
∂x

+ ∂vy
∂y

+ ∂vz
∂z

= 0, in Ωg(t) for 0 < t < τ . (2.64)

Equations (2.61) and (2.62) indicate that at the leading order vertical shear stresses vanish, that
is, the horizontal velocity is constant in the vertical direction (plug-flow model). Equation (2.63)
and the free-surface condition at the ice-air interface indicate that at the leading order the normal
stress σzz is hydrostatic, that is, σzz = −ρg(s− z). It should be mentionned that while the SIA
scaling regime leads to only the pressure being hydrostatic, the SSA scaling regime leads to
the normal stress being hydrostatic, that is, the deviatoric component of the normal stress is not
negligible. Equation (2.64) is the incompressibility constraint that yields the vertical velocity
when integrating from the ice base to an arbitrary vertical position z.

To derive an equation for the horizontal velocity field in the SSA scaling regime, we first
derive an exact depth-averaged conservation-of-momentum equation from the full-order model.
Integrating the horizontal conservation-of-momentum equation in (2.1) over the ice thickness,
then using Leibniz’s rule to interchange the partial derivatives with respect to the horizontal
coordinates and the integrals over the ice thickness, and finally using the boundary conditions
in Equation (2.4), we obtain the exact depth-averaged conservation-of-momentum equations

∂

∂x

∫ s

b
p dz = ∂

∂x

∫ s

b
σDxx dz + ∂

∂y

∫ s

b
σDxy dz + τb,x −

∂b

∂x
Nb, (2.65)

∂

∂y

∫ s

b
p dz = ∂

∂x

∫ s

b
σDxy dz + ∂

∂y

∫ s

b
σDyy dz + τb,y −

∂b

∂y
Nb, (2.66)

where the stress vector at the ice-bedrock interface has been decomposed into a tangential com-
ponent τb and a normal component −Nbn with Nb ≥ 0. In the SSA scaling regime, Nb is
given by the opposite of σzz at the ice-bedrock interface, that is, Nb = ρgh. By considering
the leading-order approximations (2.61)–(2.63) in Equations (2.65) and (2.66) and using Weert-
man’s sliding law with vb = v (assuming that the bedrock slope is sufficiently small), we obtain
the following approximate depth-averaged conservation-of-momentum equations:

2 ∂

∂x

(
2η̄h∂vx

∂x
+ η̄h

∂vy
∂y

)
+ ∂

∂y

(
η̄h
∂vx
∂y

+ η̄h
∂vy
∂x

)
− cb‖v‖p−1vx = ρgh

∂s

∂x
, (2.67a)

2 ∂
∂y

(
2η̄h∂vy

∂y
+ η̄h

∂vx
∂x

)
+ ∂

∂x

(
η̄h
∂vx
∂y

+ η̄h
∂vy
∂x

)
− cb‖v‖p−1vy = ρgh

∂s

∂y
, (2.67b)

where η̄ is the depth-averaged effective viscosity given by

1
h

∫ s

b
ηdz = 1

2h

∫ s

b
A−

1
ndz d

1
n
−1

e , (2.68)
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in which the effective strain rate de is given by

de =
√(

∂vx
∂x

)2
+
(
∂vy
∂y

)2
+ ∂vx

∂x

∂vy
∂y

+ 1
4

(
∂vx
∂y

+ ∂vy
∂x

)2
. (2.69)

In the SSA scaling regime, the conservation-of-height equation in (2.50) writes as

∂h

∂t
+ divx(hv) = as − ab, in ωg(t) for 0 < t < τ . (2.70)

Equation (2.70) is an advection equation for the ice thickness, that is, the ice flow “transports”
the ice thickness.

At the leading order, the temperature field T is required to satisfy the following conservation-
of-energy equation:

ρc

(
∂T

∂t
+ v · ∇xT + vz

∂T

∂z

)
= ∂

∂z

(
k
∂T

∂z

)
+ 4ηd2

e , in Ωg(t) for 0 < t < τ . (2.71)

2.3.2.2 Shallow-shelf approximation in ice shelves

Leading-order approximations of Equations (2.65) and (2.66) in the SSA scaling regime for ice
shelves are obtained in a similar way to Equation (2.67) in Section 2.3.2.1 but in the absence of
basal friction. Hence, we have at any time t in ]0, τ [

2 ∂

∂x

(
2η̄h∂vx

∂x
+ η̄h

∂vy
∂y

)
+ ∂

∂y

(
η̄h
∂vx
∂y

+ η̄h
∂vy
∂x

)
= ρgh

∂s

∂x
, in ωf(t), (2.72)

2 ∂
∂y

(
2η̄h∂vy

∂y
+ η̄h

∂vx
∂x

)
+ ∂

∂x

(
η̄h
∂vx
∂y

+ η̄h
∂vy
∂x

)
= ρgh

∂s

∂y
, in ωf(t), (2.73)

σzz = −ρg(s− z), in Ωf(t), (2.74)

vz = vz|z=b −
∫ z

b
divx vdz′, in Ωf(t), (2.75)

with
η̄ = 1

h

∫ s

l
ηdz = 1

2h

∫ s

l
A−

1
ndz d

1
n
−1

e . (2.76)

In addition, the conservation-of-height and conservation-of-energy equations take the same form
as in Equations (2.70) (with aw instead of ab) and (2.71), respectively. The temperature field
T in ice shelves is solution to Equation (2.71) with boundary condition T = Ts at the ice-air
interface and boundary condition T = Tw at the ice-ocean interface.

Besides the absence of friction, differences between the SSA reduced-order model in ice
streams and ice shelves lie in the treatment of the boundary conditions. In the coordinate system
described above, the boundary condition (2.8) in the vertical direction writes as

σDxz
∂l

∂x
+ σDyz

∂l

∂y
+ p− σDzz = ρwg(zsl − l), (2.77)

where ρw is the water density and zsl the sea-water level. Neglecting shear stresses at the leading
order and evaluating Equation (2.74) at the ice-shelf base, we obtain

p− σDzz = ρwg(zsl − l)⇒ ρh = ρw(zsl − l), (2.78)
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where the last equation is the so-called floatation condition (Archimedes’ principle). Thus, the
ice surface elevation in ice shelves is given by s = zsl + (1− ρ/ρw)h. At the calving front, the
boundary condition (2.10) in the horizontal directions writes as

−pnx + σDxxnx + σDxyny = −fwnx, (2.79a)

σDxynx − pny + σDyyny = −fwny, (2.79b)

where n = (nx,ny, 0) is the exterior normal unit vector to the calving front. Using Equa-
tion (2.74) and integrating Equations (2.79a) and (2.79b) over the ice thickness yield the bound-
ary conditions

2η̄h
[(

2∂vx
∂x

+ ∂vy
∂y

)
nx + 1

2

(
∂vx
∂y

+ ∂vy
∂x

)
ny

]
= 1

2ρgh
2
(

1− ρ

ρw

)
nx, (2.80a)

2η̄h
[(

2∂vy
∂y

+ ∂vx
∂x

)
ny + 1

2

(
∂vx
∂y

+ ∂vy
∂x

)
nx

]
= 1

2ρgh
2
(

1− ρ

ρw

)
ny. (2.80b)

2.3.2.3 Multi-domain formulation and transmission conditions

Sections 2.3.2.1 and 2.3.2.2 define a multi-domain formulation [Quarteroni and Valli, 1999;
Mathew, 2008] in which the SSA reduced-order model is solved in the disjoint domains ωg(t)
and ωf(t). At each time t in ]0, τ [, the floatation condition in Equation (2.78) can be used to
distinguished between the grounded and floating regions as

ωg(t) = {x ∈ ω(t) : ρh(x, t) > ρw(zsl − b(x, t))} , (2.81)

ωf(t) = {x ∈ ω(t) : ρh(x, t) < ρw(zsl − b(x, t))} , (2.82)

that is, the ice is grounded if the normal stress at the ice base exceeds sea-water pressure at
the bedrock, while the ice is floating if the normal stress at the ice base is inferior to sea-water
pressure at the bedrock. It should be noted that Equations (2.81) and (2.82) are equivalent to
unilateral contact conditions, with the contact and non-contact zones distinguished based on
Archimedes’s principle. In addition, the grounding line is determined as

γ(t) = {x ∈ ω(t) : ρh(x, t) = ρw(zsl − b(x, t))} . (2.83)

A multi-domain formulation requires to impose so-called transmission conditions at the in-
terface between both domains. For the SSA reduced-order model, this leads to impose additional
conditions at the grounding line. Here, we impose the following transmission conditions

JhK = 0, on γ(t) for 0 < t < τ , (2.84)

JvK = 0, on γ(t) for 0 < t < τ , (2.85)
s

2η̄h
(

2∂vx
∂x

+ ∂vy
∂y

)
nx + η̄h

(
∂vx
∂y

+ ∂vy
∂x

)
ny

{
= 0, on γ(t) for 0 < t < τ , (2.86)

s
2η̄h

(
2∂vy
∂y

+ ∂vx
∂x

)
ny + η̄h

(
∂vx
∂y

+ ∂vy
∂x

)
nx

{
= 0, on γ(t) for 0 < t < τ , (2.87)

where n = (nx,ny) is the horizontal normal vector the grounding line and we use the notation
JψK to denote the jump of the variable ψ on γ(t), that is, ψg − ψf , where ψg and ψf indicate the
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limiting values of ψ as γ(t) is approached from ωg(t) and ωf(t), respectively. Equations (2.84)
and (2.85) enforce the continuity of the ice thickness and the horizontal velocity field across the
grounding line, respectively. Equations (2.86) and (2.87) enforce the continuity of the thickness-
integrated stress vector across the grounding line.

2.3.2.4 Discussion

The SSA reduced-order model is essentially a two-dimensional model for the horizontal ve-
locity field; see Equations (2.67a) and (2.67b) for the grounded domain and Equations (2.72)
and (2.73) for the floating domain. While in the SIA reduced-order model the gravitational
driving stress is balanced by shearing within the ice, in the SIA reduced-order model the gravi-
tational driving stress is balanced by the divergence of the membrane stresses and basal friction
only for grounded ice. The SSA reduced-order model represents the simplest model in glaciol-
ogy that incorporates membrane stresses. Contrary to the SIA reduced-order model, membrane
models are nonlocal models in which the gravitational driving stress is balanced by connec-
tion to distant ice all over the domain. It should be mentioned that Equations (2.67a)–(2.67b)
and (2.72)–(2.73) can also be expressed in a vectorial and invariant form. Following Schoof
[2006], we write Equations (2.67a)–(2.67b) and (2.72)–(2.73) as

divx
(
2η̄h[D + tr(D)I]

)
− cb‖v‖p−1v 1ωg(x) = ρgh∇xs. (2.88)

Here, D = 1
2(∇xv +∇xvT ) is the horizontal strain-rate tensor and 1ωg(x) = 1 if x is in ωg

and 0 otherwise. Here, the tensor 2η̄h[D+tr(D)I] represents a thickness-integrated deviatoric
membrane stress tensor, whose diagonal components represent the longitudinal or extensional
stresses and off-diagonal components represent the lateral shear stress. As mentionned in Bueler
and Brown [2009], the trace of this thickness-integrated deviatoric membrane stress tensor is in
general different from zero, thus meaning that the membrane flow is “incompressible” in the
reference horizontal plane.

2.4 Glacial isostasic adjustment

Glacial isostastic adjustment describes the response of the solid Earth, the gravitational field,
and the oceans to the growth and decay of ice sheets. In particular, the post-glacial rebound
refers to the uplift of the solid Earth following the decay of ice sheets. The field of GIA is an
active field of research in glaciology with GIA models of various complexity currently used.
Here, we briefly discuss a simple GIA model commonly used in computational ice-sheet mod-
els and we refer the reader to, for instance, Le Meur and Huybrechts [1996], Ivins and James
[1999], Greve and Blatter [2009b], Whitehouse [2018], and Whitehouse et al. [2019] for further
discussions.

Glacial isostastic adjustment models typically represent the lithosphere as a deformable
solid plate and the underlying asthenosphere as a highly viscous fluid. Then, the response
of the solid Earth is described by using a linear Maxwell viscoelastic rheological model, with
an instantaneous elastic response superposed on a longer-term Newtonian viscous relaxation
response. For instance, in the elastic lithosphere–relaxing asthenosphere (ELRA) GIA model
[Brotchie and Silvester, 1969; Le Meur and Huybrechts, 1996; Huybrechts and de Wolde, 1999;
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Greve and Blatter, 2009b], which we focus on in the following, the lithosphere is described as a
thin elastic plate under ice-sheet loading which relaxes towards an equilibrium position.

In the ELRA GIA model, the Earth’s surface is modelled as an infinite two-dimensional hor-
izontal plane (flat-Earth approximation) assuming the lithosphere thickness to be much smaller
than the Earth’s radius and the ice-sheet extent to be much smaller than the Earth’s surface.
Thus, the ELRA GIA model is defined with respect to a three-dimensional Euclidian space,
whose horizontal reference plane is parallel to the Earth’s surface. At any time t in ]0, τ [ and
position x in R2, we denote by b(x, t) the elevation of the lithosphere, taken positive upward,
and by w(x, t) the vertical displacement of the lithosphere, taken positive downward, with re-
spect to the initial lithosphere elevation b0(x), which we identify as the undisturbed elevation
of the lithosphere in the absence of any ice loading; see Figure 2.6 for an illustration. Finally,
we denote by ω the support of the ice sheet in the horizontal reference plane.

z

x

z = b(x , t)
z = b0(x)

Db

ρa, τa

Lithosphere

Asthenosphere

Figure 2.6: Schematic representation of glacial isostatic adjustment. The ice-sheet loading
deforms the lithosphere that lies on a viscous asthenosphere. In the figure, b(x, t) denotes
the elevation of the lithosphere at a given time t in ]0, τ [, b0(x) the initial elevation of the
lithosphere, Db the flexural rigidity of the lithosphere, and ρa and τa are the density and the
relaxation time of the asthenosphere, respectively.

Assuming the lithosphere to behave like a horizontal elastic thin plate, the equilibrium ver-
tical displacement of the lithosphere weq is required to satisfy the following equation:

Db∆2
xw

eq + ρagw
eq = pload, in R2, (2.89)

where Db is the constant flexural rigidity of the lithosphere, pload the applied vertical load that
exerts on the lithosphere, ∆2

x is the bilaplacian operator, and ρa the density of the underlying
asthenosphere. Equation (2.89) is the equation for the vertical displacement of an infinite plate
supported on a viscous substratum and subject to a vertical load [Hertz, 1884; Nadai, 1963]. As-
suming the only applied vertical load on the lithosphere to be the ice-sheet hydrostatic pressure,
the vertical load pload can be expressed explicitly as

pload(x) =
{
ρgh(x), if x ∈ ω
0, otherwise

. (2.90)
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In order to ensure the uniqueness of a solution to Equation (2.89), appropriate boundary con-
ditions must also be prescribed at infinity. Using the concept of Green’s functions for linear
differential operators, the solution to the linear partial differential equation (2.89) can be estab-
lished for a general applied load pload using a superposition principle. The Green’s function for
the linear differential operator Db∆2

x + ρag writes as [Hertz, 1884; Nadai, 1963]

G(x) = − L2
r

2πDb
kei
(‖x‖
Lr

)
, (2.91)

where kei denotes the zeroth-order Kelvin function (Figure 2.7) and Lr = 4
√
Db/(ρag) is the

so-called radius of relative stiffness (or flexural length scale), which determines the non-locality
of the lithosphere displacement. Using the superposition principle, the solution to the linear
partial differential equation (2.89) can be expressed as

weq(x) = G(x) ∗ pload(x) =
∫
R2
− L2

r
2πDb

kei
(‖x− x′‖

Lr

)
pload(x′)dx′. (2.92)

It should be mentionned that in general the flexural rigidity of the lithosphere is not constant.
In this case, Equation (2.89) has to be extended to take a spatially flexural rigidity into account;
see, for instance, Garcia et al. [2015].
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Figure 2.7: Zeroth-order Kelvin function kei as a function of the scaled distance ‖x‖/Lr. The
Kelvin function kei is derived from the imaginary part of the zeroth-order modified Bessel func-
tion of the second kind. The zeroth-order Kelvin function takes the value zero at approximately
‖x‖ = 4Lr, followed by a slight forebulge.

Finally, the evolution of the bedrock elevation is required to satisfy the following equation:

∂b

∂t
= − 1

τa
(b− b0 + weq), in R2 for 0 < t < τ , (2.93)

b = b0, in R2 at t = 0, (2.94)

where τa is the relaxation time of the asthenosphere. Thus, the evolution of the bedrock ele-
vation is determined as a relaxation equation in which the rate of vertical displacement of the
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lithosphere is related linearly to the deviation of the displacement w from the equilibrium dis-
placement weq. The solution to Equation (2.93) with initial condition (2.94) writes as

b = b0 −
[
1− exp

(
− t

τa

)]
weq, (2.95)

that is, the bedrock topography relaxes exponentially towards its equilibrium position.

2.5 Instability mechanisms in marine ice sheets

2.5.1 Marine ice-sheet instability

The concept of marine ice-sheet instability (MISI) serves as a fundamental mechanism to ex-
plain the potential collapse of marine sectors in Antarctica, that is, sectors where the bedrock lies
below sea level. This concept was first hypothesised several decades ago by Weertman [1974]
and Thomas and Bentley [1978], with further theoretical developments [Schoof, 2007a,b, 2012]
and numerical illustrations [Pattyn et al., 2012, 2013] in the recent years. The MISI hypothesis
states that marine ice sheets lying on upward sloping beds, or retrograde slopes, are inherently
unstable. Figure 2.12 depicts schematically the marine ice-sheet instability. At steady state, the
ice discharge (flux) at the grounding line is equal to the surface accumulation of ice upstream
of the grounding line due to snow precipitation. Assuming a marine ice sheet initially at steady
state on an upward sloping bed, the instability is triggered by a perturbation, for instance, a loss
of ice-shelf buttressing due to oceanic melting, that leads to a slight retreat of the grounding-line
position. Consequently, the grounding line is grounded deeper on the bed with the ice thickness
thicker at the new grounding-line position. Based on a boundary layer theory, Schoof [2007a]
showed that the ice flux at the grounding line (at equilibrium) is an increasing function of the
ice thickness. Then, as the grounding line gets deeper and the ice flux increases, there is an
imbalance between the ice flux at the grounding line and the surface accumulation upstream of
the grounding line. This imbalance pushes the grounding line further inland, thus initiating a
self-sustained retreat of the grounding line that continues until the grounding line reaches a new
stable position, for instance, on a downward sloping bed.

2.5.1.1 Parameterisation of the ice flux at the grounding line

We consider the SSA reduced-order model in 2D in a Cartesian coordinate system with hori-
zontal x-axis and vertical z-axis. We denote by ω(t) the support of the ice sheet, by ωg(t) its
grounded portion, and by ωf(t) its floating portion. We denote by u(x, t) the horizontal velocity,
by h(x, t) the ice thickness, by xg(t) the position of the grounding line, and by xc the position
of the calving front assumed to be fixed. We assume the marine ice sheet to be isothermal and
the bedrock to be fixed (no glacial isostatic adjustment). Based on the floatation condition, the
grounded and floating domains are given by

ωg(t) = {x ∈]0,xc[: ρh(x, t) > ρw(zsl − b(x, t))} , for 0 < t < τ , (2.96)

ωf(t) = {x ∈]0,xc[: ρh(x, t) < ρw(zsl − b(x, t))} , for 0 < t < τ , (2.97)

and at the grounding line

ρh(xg, t) = ρw(zsl − b(xg, t)), for 0 < t < τ . (2.98)
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Figure 2.8: Schematic illustration of the marine ice-sheet instability mechanism.
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Hence, we consider the following SSA reduced-order model:
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, (2.99)
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hg = hf at x = xg for 0 < t < τ

ug = uf at x = xg for 0 < t < τ
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1
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at x = xg for 0 < t < τ

, (2.101)

where we have assumed no basal melting and refreezing at the ice-bedrock and ice-ocean in-
terfaces, that is, ab = 0 and aw = 0, and cb to be constant on the ice-bedrock interface.
Equation (2.99) is the SSA reduced-order model on the grounded domain, Equation (2.100) the
SSA reduced-order model on the floating domain, and Equation (2.101) the transmission condi-
tions at the grounding line.

Based on a boundary layer theory at steady state, Schoof [2007b] derived an analytical
formula for the ice flux at the grounding line for the SSA reduced-order model defined by
Equations (2.99)–(2.101). We can also recover this analytical formula by using an alternative
derivation that relies on the transmission conditions at the grounding line without reference to
the boundary layer theory. Let us consider the following steady-state approximation of Equa-
tions (2.99)–(2.101):



hu = q in ωg(t)

−cb|u|p−1u− ρgh∂h
∂x

= 0 in ωg

∂h

∂x
= u = 0 at x = 0

, (2.102)



hu = q in ωf

2 ∂

∂x

(
A−

1
nh

∣∣∣∣∂u∂x
∣∣∣∣ 1
n
−1 ∂u

∂x

)
− ρg

(
1− ρ

ρw

)
h
∂h

∂x
= 0 in ωf

2A−
1
nh

∣∣∣∣∂u∂x
∣∣∣∣ 1
n
−1 ∂u

∂x
= 1

2ρ
(

1− ρ

ρw

)
gh2 at x = xc

, (2.103)
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hg = hf at x = xg

ug = uf at x = xg
∂ug
∂x

= ∂uf
∂x

at x = xg

, (2.104)

where q is the constant ice flux. Equation (2.102) can be justified formally based on a dimen-
sional analysis of Equation (2.99). Indeed, Schoof [2007b] has shown, that at the leading order
and far from the grounding line, the divergence of the extensional stress is small as compared
with basal friction and the gravitational driving stress. Physically, extensional stresses become
significant only in a narrow transition zone around the grounding line, in which the ice flow
transitioned from a shear-dominated ice flow to an ice flow dominated by extensional stresses.
In addition, Schoof [2007b] has shown that the spatial variation of the bedrock topography is
small as compared with the spatial variation of the ice thickness. Thus, Equation (2.102) rep-
resents the leading-order approximation of Equation (2.99) in the main part of the grounded
ice sheet or equivalently the leading-order outer problem. In order to match the solution to the
outer problem (Equation (2.102)) with the solution in the ice shelf (Equation (2.103)), a match-
ing condition must be prescribed on the ice flux q at the grounding line. In Schoof [2007b],
this condition is determined by first writing Equations (2.99)–(2.101) in a dimensionless form
and then by connecting the solution to the outer problem to the solution in the transition zone
(inner problem) by matched asymptotics. Here, we determine directly this condition from the
dimensional Equations (2.102) and (2.103) and the transmission conditions in Equation (2.104).
Starting from Equation (2.102), the spatial derivative of the velocity in the grounded ice sheet
can be expressed as

−ρg q
u

(
− q

u2

)
∂u

∂x
− cb|u|p−1u = 0⇒ ∂u

∂x
= cb
ρg

|u|p+3

q2 . (2.105)

In the ice shelf, the conservation-of-momentum equation and the boundary condition in Equa-
tion (2.103) yield for the spatial derivative of the velocity

∂u

∂x
=
( 1

4A− 1
n

ρ

(
1− ρ

ρw

)
g

)n
hn. (2.106)

Imposing the transmission conditions at the grounding line (Equation (2.104)), that is, imposing
the continuity of the derivative of the velocity field at the grounding line, leads to the following
analytical formula for the ice flux at the grounding line:

q(xg) =
(
A(ρg)n+1

4ncb

(
1− ρ

ρw

)n) 1
p+1

h
n+p+3
p+1 (xg). (2.107)

Tsai et al. [2015] derived a similar analytical formula for the ice flux at the grounding line
under Coulomb friction condition near the grounding line. Assuming the yield stress to be given
by tanφ(ρgh + ρwgmin(0, b)) with φ the till friction angle, the ice flux at the grounding line
satisfies the following analytical formula:

q(xg) = Q0
8A(ρg)n
4n tanφ

(
1− ρ

ρw

)n−1
hn+2(xg), (2.108)

where Q0 ≈ 0.61 is a numerical coefficient determined from the boundary layer theory.
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Besides their interest in understanding the dynamical behaviour of marine ice sheets, the an-
alytical flux formulae in Equations (2.107) and (2.108) provide parameterisations of the effect
of the narrow transition zone in large-scale ice-sheet models that do not resolve the transition
zone; see, for instance, Pollard and DeConto [2009, 2012a] and Section 6.5.1. For this reason,
Equations (2.107) and (2.108) are also referred to as Schoof’s and Tsai’s grounding-line flux
parameterisations, respectively.

2.5.1.2 Stability of marine ice sheets

The results above suggest that the dynamics of the grounded portion of marine ice sheets in one
dimension can be described as a nonlinear diffusion problem with a floatation condition and a
flux condition at the grounded line. As such, marine ice sheets are driven towards steady-state
(equilibrium) profiles under a time-independent accumulation rate as. Schoof [2007a] showed
that marine ice sheets only have a discrete set of steady states and the stability of the steady
states depends on the slope of the bedrock at the grounding line. More specifically, Schoof
[2012] showed that steady states are linearly unstable if an advance of the grounding line away
from its steady state leads to a net mass gain or, mathematically,

as(xg)− q′(xg) > 0, (2.109)

where q′ denotes the derivative of the ice flux at the grounding line. Consequently, steady-state
grounding lines are linearly unstable on upward sloping beds for which q′(xg) < 0 or beds that
have an insufficient downward slope so that 0 < q′(xg)� as(xg).

A typical illustration for the stability of marine ice sheets is provided by the so-called
overdeepened ice-sheet bed [Schoof, 2007a], where the bed has a central part at a higher el-
evation followed by a deep trough that leads to a shallower bed at the continental shelf edge.
Such a configuration leads to the existence of one, two or three equilibrium positions depend-
ing on the values of the model parameters as illustrated in Figures 2.9 and 2.10 for different
values of the rheological coefficient A. Values of the parameters in Figures 2.9 and 2.10 are
listed in Table 2.1 and the value of tanφ in Equation (2.108) is chosen such that the parame-
terisations of the ice flux at the grounding line in Equations (2.107) and (2.108) give the same
equilibrium position for A = 2.48 s−1 Pa−3. In addition, Figure 2.11 illustrates that marine ice
sheets can also undergo bifurcations and hysteresis under variations in parameters. Figures 2.9,
2.10, and 2.11 also provide a comparison between Schoof’s grounding-line flux parameterisa-
tion in Equation (2.107) and Tsai’s grounding-line flux parameterisation in Equation (2.108).
Tsai’s grounding-line flux parameterisation (q(xg) ∝ h5(xg)) exhibits a greater sensitivity
to the ice thickness at the grounding line than Schoof’s grounding-line flux parameterisation
(q(xg) ∝ h4.75(xg)). As a result, Tsai’s grounding-line flux parameterisation leads to an in-
creased sensitivity of equilibrium positions to parametric forcing, with downward sloping beds
being more stable and upward sloping beds being more unstable [Tsai et al., 2015; Pattyn et al.,
2017].
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Figure 2.9: Plots of the surface accumulation asxg and the ice flux q(xg) at the grounding line
as a function of xg. Equilibrium positions of the grounding line are given by the intersection of
asxg with q(xg). Values of the parameter A (s−1 Pa−3) illustrate the existence of one, two or
three equilibrium positions. Results are for Schoof’s grounding-line flux parameterisation.

500 750 1000 1250 1500
0

0.25

0.5

0.75

1

xg (km)

a s
x g

,q
(x

g
)(

km
2

a−
1
)

A =2.48e-25
A =2.15e-25
A =1.37e-25

Figure 2.10: Same as Figure 2.9 for Tsai’s grounding-line flux parameterisation.

Parameter Value Unit
ρ 900 kg m−3

ρw 1000 kg m−3

g 9.8 m s−2

n 3
p 1/3
cb 7.624× 106 Pa m−1/3 s1/3

as 0.3 m yr−1

Table 2.1: List of the parameter values used.
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Figure 2.11: Bifurcation diagrams for Weertman’s friction law and Coulomb friction law. Solid
lines represent stable equilibrium positions of the grounding line and the dashed line represents
unstable equilibrium positions of the grounding line.

2.5.1.3 Buttressing

The ice-sheet model in Equations (2.99)–(2.101) allows to decouple the grounded ice sheet from
the ice shelf. Consequently, this model does not account for the impact of ice shelves on the
stability of marine ice sheets. However, the lateral confinement of ice shelves in embayments
leads to lateral shear stresses that impede the seaward flow of the upstream ice. Bathymetric
features on the sea floor, such as ice-shelf pinning points, also provide back stress that impedes
the seaward flow of the upstream ice [Favier et al., 2011; Berger et al., 2016; Favier et al.,
2016]. The effect of bathymetric features and confined embayments on the ice flow is known
as “buttressing” and can lead to a stabilisation of the ice sheet or a slowdown of grounding-line
retreat rates. For this reason, reduction or loss of ice-shelf buttressing due to the thinning or
collapse of ice shelves leads to reduced back stress, thus promoting grounding-line instability
or an acceleration in grounding-line retreat.

2.5.1.4 Local sea level and glacial isostatic adjustment

The onset and persistence of MISI also depend on the local sea level and glacial isostatic ad-
justment. Post-glacial rebound leads to a local uplift of the bedrock due to ice-sheet thinning,
thus decreasing ice thickness at the grounding line and promoting marine ice-sheet stability.
In addition, post-glacial rebound leads to a local drop in sea level near the grounding line as
the sea water migrates away from the ice sheet because of reduced gravitational attraction, thus
decreasing water depth at the grounding line and promoting marine ice-sheet stability. Both
mechanisms thus provide a negative feedback that can mitigate the MISI mechanism. We re-
fer the reader to, for instance, Adhikari et al. [2014] and Gomez et al. [2010, 2013, 2015], for
further discussions about the impact of local sea level and glacial isostatic adjustment on the
stability of marine ice sheets.
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2.5.2 Marine ice-cliff instability

The marine ice-cliff instability mechanism (MICI) has been recently proposed to explain high
eustatic sea levels (5 to more than 20 metres higher than today) during the Pliocene epoch (2.5
to 5.2 million years ago) [Pollard et al., 2015]. Previous ice-sheet simulations accounting only
for MISI were not able to reproduce high eustatic sea levels over the past million years [Pollard
and DeConto, 2009]. In particular, these simulations were not able to initiate the major retreat
of marine basins in East Antarctica required to reproduce these high eustatic sea levels. On the
contrary, Pollard et al. [2015] showed that MICI had the potential to accelerate the collapse of
the West Antarctic ice sheet within a few decades and to trigger a major retreat in major marine
basins in East Antarctica within a few thousand years. In a recent study, DeConto and Pollard
[2016] carried out simulations of the Antarctic ice sheet over the next centuries based on a com-
putational ice-sheet model that accounts for MICI. They showed that MICI had the potential to
trigger substantial ice loss in Antarctica over the next centuries, thus leading to sea-level rise
projections much higher than projections that do not account for MICI.

Figure 2.12 depicts schematically the marine ice-cliff instability mechanism. The MICI
mechanism hypothesises that ice cliffs higher than approximately 90 m above sea level become
unstable because shear stresses at the ice front due to the unbalanced overburden of ice above
exceed the yield strength of ice. This causes ice cliffs higher than approximately 90 m above
sea level to disintegrate completely or to stabilise in some shape where the ice cliff does not
exceed the critical thickness. Contrary to MISI, MICI can occur on downward sloping beds but
requires an a priori collapse of ice shelves. Such a collapse of ice shelves can be initiated by
sub-shelf melting or hydrofracturing due to surface melt draining into crevasses.

2.6 Chapter summary

In this chapter, we presented a brief overview of the physics of ice sheets. We described the
evolution of ice sheets as a free-boundary problem for the gravity-driven creep flow of an
incompressible, nonlinearly viscous, and heat conducting fluid. Full-order ice-sheet models
take the form of a coupled system of conservation-of-mass, conservation-of-momentum, and
conservation-of-energy equations supplemented with boundary conditions that take into account
the interactions of the ice sheet with its surrounding physical environment, for instance, friction
at the ice-bedrock interface, snow accumulation at the ice-air interface, sub-shelf melting at the
ice-ocean interface, and calving at the ice front. As a consequence of the shallowness of ice
sheets, reduced-order models of the physics of ice sheets can be derived as approximations of
full-order ice-sheet models as the aspect ratio of the ice sheet tends to zero. This leads to the
shallow-ice approximation (SIA) and the shallow-shelf approximation (SSA) which represent
ice-sheet flow in slow and fast mechanical scaling regimes, respectively. For this reason, the
SIA reduced-order provides an approximation for the ice flow in interior parts of ice sheets and
the SSA reduced-order provides provides an approximation for the ice flow in (fast-flowing) ice
streams and ice shelves. Finally, we reviewed two instability mechanisms, namely the marine
ice-sheet instability (MISI) and marine ice-cliff instability instability (MICI) mechanisms, that
could destabilise or accelerate the retreat of the grounding line in marine ice sheets.
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Figure 2.12: Schematic illustration of the marine ice-cliff instability mechanism driven by hy-
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3
The Antarctic ice sheet: Present, future,
and challenges

This chapter provides an overview about the current state of the Antarctic ice sheet, its future,
and the challenges in predicting the contribution of the Antarctic ice sheet to future sea-level
rise. After introducing the main geographical characteristics of the Antarctic ice sheet, we
discuss its surface mass balance and the mechanisms that drive the ice dynamics in the Antarctic
ice sheet. Next, we present an overview of the mass balance of the Antarctic ice sheet over
the recent decades. Then, we describe mechanisms that will drive the future response of the
Antarctic ice sheet under climate warming. Finally, we discuss challenges associated with the
assessment of the future response of the Antarctic ice sheet based on computational ice-sheet
models.

3.1 The Antarctic ice-sheet in a nutshell

The Antarctic ice sheet (AIS) covers 8.3 % of the global land surface [Vaughan et al., 2013].
It is usually divided geographically into the West Antarctic ice sheet (WAIS), the East Antarc-
tic ice sheet (EAIS), and to a lesser extent the Antarctic Peninsula (AP); see Figure 3.1. West
Antarctica is separated from East Antarctica by the Transantarctic Moutains. The topography
of the Antarctic ice sheet is characterised by a substantial fraction of the ice sheet that rests on
a bedrock hundreds of metres (or more) below sea level, with places where the bedrock slopes
down towards the interior of the ice sheet. West Antarctica has its bedrock mostly below sea
level while certain major glaciers in East Antarctica, such as glaciers in the Wilkes and Aurora
catchment basins, are also grounded below sea level.

The surface mass balance (SMB) of the Antarctic ice sheet is dominated by snow precip-
itation, which contributes 91 % of the sum of the absolute fluxes involved in the surface mass
balance [Van Wessem et al., 2014, 2018; Lenaerts et al., 2016]. Snow precipitation varies widely
over Antarctica with accumulation rates of a few metres per year in the Antarctic Peninsula, a
few tenths of metres per year in West Antarctica, and a few centimetres per year in the interior
of the East Antarctic ice sheet. Surface melt is mostly confined to coastal margins of the ice
sheet and ice shelves, where it can lead to ice-shelf hydrofracturing. The highest surface melt
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rates are found especially in the Antarctic Peninsula. The highest sublimation rates are mostly
found in coastal East Antarctica due to strong winds and dry air. The contribution of meltwater
runoff to the surface mass balance is negligible even though runoff can be significant locally, for
instance, in ice shelves.

Ice dynamics in the Antarctic ice sheet is controlled by the motion of fast-flowing ice
streams, which drain about 90 % of the total AIS ice flux [Bennett, 2003] (Figure 3.2). Due
to the bedrock topography in Antarctica, most ice streams extend into the ocean as floating ice
shelves and subsequently lose ice through sub-shelf melting and calving. Estimates of net mass
loss due to iceberg calving is comparable in magnitude to net mass loss due to sub-shelf melting
[Depoorter et al., 2013; Rignot et al., 2013; Liu et al., 2015]. Calving is responsible for most of
the mass loss of the two largest ice shelves, the Filchner–Ronne and Ross ice shelves, while sub-
shelf melting is responsible for most of the mass loss of marine glaciers in the Bellingshausen
Sea and Amundsen Sea sectors. The highest basal melt rates are also found in the Belling-
shausen Sea and Amundsen Sea sectors, especially underneath the Pine Island and Thwaites
Glaciers while the lowest basal melt rates are found underneath the Filchner–Ronne and Ross
ice shelves, on which refreezing can also occur.
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Figure 3.1: Present-day Antarctic bedrock topography [Morlighem et al., 2019] with character-
istic geographical regions. WAIS stands for West Antarctic ice sheet, EAIS for East Antarctic
ice sheet, AP for Antarctic Peninsula, IS for ice shelf, TG for Thwaites Glacier and PIG for Pine
Island Glacier. The grounding line is shown in black and the ice front is shown in blue.
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Figure 3.2: Surface ice speed assembled from satellite data acquired between 2007 and 2009
[Rignot et al., 2011].

3.2 Mass balance of the Antarctic ice sheet

We provide a short section about the mass balance of the Antarctic ice sheet over the recent
decades as an overview of the recent response of the Antarctic ice sheet. We refer the reader to,
for instance, Zwally et al. [2015], Martín-Español et al. [2016], Bamber et al. [2018], Gardner
et al. [2018], Pattyn et al. [2018], Shepherd et al. [2018], IPCC [2019], Rignot et al. [2019], and
Hanna et al. [2020] for additional information and further discussions about the mass balance
of the Antarctic ice sheet.

The mass balance of the Antarctic ice sheet is determined by the difference between the sur-
face mass balance and the ice discharge through the grounding line. Because the global surface
mass balance of the Antarctic ice sheet is positive (snowfall exceeds surface melt and sublima-
tion), ice discharge through the grounding line and subsequent sub-shelf melting and calving are
responsible for the net mass loss of the Antarctic ice sheet. Though sub-shelf melting and calv-
ing do not enter directly in the mass balance of the Antarctic ice sheet, both processes modulate
the buttressing induced by ice shelves through ice-shelf thinning and break-up. Estimates of
the mass balance of the Antarctic ice sheet over the period 1992–2017 indicate continued mass
losses from the Antarctic ice sheet over this period, with accelerated mass loss in recent years;
see Tables 3.1 and 3.2. Recent work agrees on significant and steadily growing mass losses from
the West Antarctic ice sheet and the Antarctic Peninsula over the period 1992–2017, with mass
losses from the West Antarctic ice sheet several times larger than mass losses from the East
Antarctic ice sheet and the Antarctic Peninsula over the period 2011–2017 [Bamber et al., 2018;
Shepherd et al., 2018; Larour et al., 2019]. Estimates of the mass balance of the East Antarc-
tic ice sheet are still subject to high uncertainties. Shepherd et al. [2018] found that the East
Antarctic ice sheet was close to balance over the last 25 years, with mass gain over the period
1992–2012 and mass loss over the period 2012–2017. On the other hand, Rignot et al. [2019]
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found a significant mass loss of 57± 2 Gt yr−1 in East Antarctica over the period 1992–2017,
while Zwally et al. [2015] found a significant mass gain of 136 Gt yr−1 in East Antarctica over
the period 1992–2008 due to dynamic ice thickening caused by increased snow accumulation
since the early Holocene.

The acceleration in the mass loss of the Antarctic ice sheet is primarily caused by increased
ice discharge across the grounding lines of marine glaciers in the Bellingshausen and Amundsen
Sea sectors, including the Pine Island and Thwaites Glaciers, while observations found no long-
term trend in snowfall accumulation [Shepherd et al., 2018]. This increased ice discharge has
been attributed to a loss of ice-shelf buttressing caused by increased ice-shelf melt rates due to
increased sub-shelf ocean circulation driven by atmospheric and ocean changes.

1992–1996 1997–2001 2002–2006 2007–2011 2012–2016
EAIS 28± 76 −50± 76 52± 37 80± 17 −19± 20

WAIS + AP −55± 30 −53± 30 −77± 17 −197± 11 −172± 27
AIS −27± 82 −103± 82 −25± 41 −117± 20 −191± 34

Table 3.1: Estimates from Bamber et al. [2018] of pentad mass-balance rates (Gt yr−1) for
the East Antarctic ice sheet, the West Antarctic ice sheet with the Antarctic Peninsula, and the
Antarctic ice sheet over various periods. Errors are 1σ.

1992–1997 1997–2002 2002–2007 2007–2012 2012–2017
EAIS 11± 58 8± 56 12± 43 23± 38 −28± 30
WAIS −53± 29 −41± 28 −65± 27 −148± 27 −159± 26

AP −7± 13 −6± 13 −20± 15 −35± 17 −33± 16
AIS −49± 67 −38± 64 −73± 53 −160± 50 −218± 43

Table 3.2: Estimates from Shepherd et al. [2018] of pentad mass-balance rates (Gt yr−1) for the
East Antarctic ice sheet, the West Antarctic ice sheet, the Antarctic Peninsula, and the Antarctic
ice sheet over various periods. Errors are 1σ.

3.3 The future of the Antarctic ice sheet under climate change

This section reviews key processes that will drive the response of the Antarctic ice sheet under
climate change.

3.3.1 Risk of MISI

One of the key concerns about the behaviour of the Antarctic ice sheet is the vulnerability of
marine sectors to dramatic and rapid loss of ice due to the onset of an irreversible marine ice
sheet instability. The West Antarctic ice sheet, and in particular the Amundsen Sea sector, is
particularly at risk for such an instability mechanism given its bedrock topography which is
mostly below sea level and slopes downwards towards the interior of the ice sheet. Pine Island
Glacier underwent a sustained retreat, which has been attributed to MISI [Favier et al., 2014;
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Mouginot et al., 2014], up to 2010 before stabilising since 2010 after reaching an “ice plain”
[Park et al., 2013]. Both observations [Rignot et al., 2014; Christianson et al., 2016] and numer-
ical models [Joughin et al., 2014; Seroussi et al., 2017; Yu et al., 2018] suggest that Thwaites
Glacier is undergoing a marine ice-sheet instability that could lead to a significant contribution
to sea-level rise in the next decades and centuries, thus rendering the estimation of the rate of
retreat of Thwaites Glacier and the importance of this retreat a top priority for Antarctic re-
search [Scambos et al., 2017]. Unlike Pine Island Glacier, Thwaites Glacier is not confined to
a deep trough with rough basal topography. Observations have shown that its grounding line
retreats along clear retrograde pathways [Rignot et al., 2014], with little opportunity for stabili-
sation from ice-shelf buttressing [Parizek et al., 2013]. Marine basins in East Antarctica are also
at risk for MISI even though marine basins in East Antarctica seem more stable than marine
basins in West Antarctica due in particular to present-day grounding lines lying on shallower
and narrower sills, greater ice-shelf buttressing in narrower embayments, and frozen or stiffer
beds.

Marine glaciers in West Antarctica, for instance Thwaites Glacier, subject to MISI have the
potential to destabilise adjacent basins and ultimately trigger a dramatic collapse of the West
Antarctic ice sheet. This raises concerns about the existence of a tipping point for the West
Antarctic ice sheet [Lenton et al., 2008] and the Antarctic ice sheet more generally. The risk
of a tipping point suggests the existence of a critical threshold beyond which the Antarctic ice
sheet can undergo rapid, abrupt, and irreversible changes. Pattyn et al. [2018] have suggested
that a key threshold for the stability of ice shelves, and thus the stability of the ice sheet, lies
between 1.5 and 2 ◦C mean annual air temperature above present while large systems, such as
the Ross and Filcher–Ronne drainage basins, might be activated by an increase of mean annual
air temperature between 2 and 2.7 ◦C; see also IPCC [2018] for further discussion about the need
to limit climate warming to well below 2 ◦C to avoid tipping points. It should be mentioned,
however, that great challenges remain in representing and detecting tipping points in complex
models [Bathiany et al., 2016].

3.3.2 Risk of MICI

Hydrofracturing and large ice-cliff failure (MICI) were initially proposed by Pollard et al. [2015]
as additional physical processes required to trigger a significant retreat of marine basins in East
Antarctica in order to reproduce high eustatic sea levels (5 to more than 20 m above present
eustatic sea level) during the Pliocene epoch. DeConto and Pollard [2016] account for both
mechanisms in future projections of the AIS contribution to sea-level rise. Hydrofracturing and
large ice-cliff failure have the potential to raise sea level faster than MISI and trigger a retreat
of marine basins in West Antarctica and, more importantly, East Antarctica under lower atmo-
spheric and oceanic forcings than MISI. Including hydrofracturing and large ice-cliff failure in
ice-sheet models thus leads to high-end probabilistic projections [Le Bars et al., 2017; Kopp
et al., 2017; Stammer et al., 2019], with differences that can reach several metres when com-
pared with ice-sheet models that do not include these mechanisms.

The validity of MICI is still debated in the scientific community, with only limited obser-
vational evidence for MICI in the past [Wise et al., 2017]. Recently, Ma et al. [2017] have
provided new insight into bounds on the ice-cliff height of calving glaciers in Greenland and
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Parizek et al. [2019] have proposed the so-called retrogressive slumping mechanism that could
lead to ice-cliff failure for calving glaciers in Greenland; yet calving glaciers in Greenland may
not be representative of marine basins in Antarctica. In addition, Edwards et al. [2019] have
recently shown that MICI was not required to reproduce high eustatic sea levels in the past.
Thus, MICI is characterised by deep uncertainty and little is known on how mechanisms such
as glacial isostatic adjustment or refreezing of meltwater in firn may prevent or mitigate MICI.

3.3.3 Ice-air interactions

Atmospheric warming is expected to lead to an increase in surface mass balance driven by in-
creased snowfall, which is partially counteracted by increased surface melt and runoff [Ligten-
berg et al., 2013; Frieler et al., 2015; Lenaerts et al., 2016], thus leading to mass gain and miti-
gation of the AIS net mass loss. Increased precipitation is expected mostly in East Antarctica,
while increased surface melt and runoff will take place preferentially in the Antarctic Peninsula,
West Antarctica, and ice shelves. The increase in surface mass balance, and in both snowfall and
surface melt more specifically, is strongly positively correlated with an increase in AIS mean
air surface temperature [Ligtenberg et al., 2013; Trusel et al., 2015; Lenaerts et al., 2016], with
the latter being impacted by natural and anthropogenic greenhouse gas emissions. Using only
CMIP5 models that best agree with CloudSat-observed Antarctic data, Palerme et al. [2017]
assessed on average a 7.4 %/◦C precipitation increase with surface temperature warming. Sur-
face melt is expected to double by 2050, independently of the atmospheric forcing scenario, and
thereafter to exhibit significant divergence depending on the atmospheric forcing scenario, with
surface melt intensities by 2100 under high atmospheric forcing scenarios that may lead to a
disintegration of ice shelves [Trusel et al., 2015].

Lenaerts et al. [2016] identified three mechanisms responsible for the future surface mass
balance of the Antarctic ice sheet: (1) the increase in evaporation of ocean water intensified by
strong sea-ice decline, (2) the increase in the moisture-carrying capacity of the atmosphere, and
(3) changes in the characteristics and frequency of Antarctic clouds. Bell et al. [2018] identified
three primary modes by which surface melt could impact the mass balance of the Antarctic ice
sheet: (1) increased surface runoff leading to ice-sheet thinning, (2) meltwater injection to the
bed leading to increased basal sliding and increased melting at calving fronts, and (3) meltwater-
induced ice-shelf fracture through hydrofracturing and ice-shelf bending leading to ice-shelf
weakening and potential collapse. The activation of each of these modes and their location
will control the future contribution of the Antarctic ice sheet to sea-level rise. Nonetheless,
refreezing of meltwater in ice shelves [Kuipers Munneke et al., 2014; Hubbard et al., 2016] is
expected to delay or prevent meltwater runoff [Ligtenberg et al., 2013], while surface drainage
networks on ice shelves might prevent meltwater from destabilising the ice shelves [Bell et al.,
2017].

3.3.4 Ice-ocean interactions

Changes in ice shelves alter their buttressing capability to restrain the ice discharge across
grounding lines. In particular, sub-shelf melting is responsible for ice-shelf thinning, thus in-
creasing the risk of mechanical weakening and fracturing and loss of contact with pinning points.
This loss of buttressing may eventually destabilise marine basins due to MISI. The magnitude of
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sub-shelf melt rates is determined by the strength of the heat flux entering ice-shelf cavities and
the freezing point of seawater, which depends on ocean salinity and water pressure. Large ice
shelves, such as the Ross and Filchner–Ronne ice shelves, experience low sub-shelf melt rates
due to the intrusion of cold and dense shelf water into ice-shelf cavities. By contrast, ice-shelves
in the Bellingshausen and Amundsen Sea sectors and near Totten glacier experience high sub-
shelf melt rates driven by the intrusion of relatively warm Circumpolar Deep Water (CDW) into
ice-shelf cavities [Schmidtko et al., 2014]. Differences in melting underneath ice shelves around
the Antarctic ice sheet are typical of different modes of sub-shelf melting discussed in, for in-
stance, Jacobs et al. [1992], Dinniman et al. [2016], and Silvano et al. [2016].

Climate warming is expected to intensify sub-shelf melting as a result of ocean warming
in ice-shelf cavities [Timmermann and Hellmer, 2013; Naughten et al., 2018]. Naughten et al.
[2018] identified two main mechanisms leading to ocean warming in ice-shelf cavities: (1)
atmospheric warming that leads to a decline in sea-ice cover, which results in a warming of
surface water that can subduct beneath ice shelves and (2) increased presence of CDW into ice-
shelf cavities. Furthermore, climate variability and wind conditions can also impact sub-shelf
melt rates; see, for instance, Dinniman et al. [2012], Dutrieux et al. [2014], and Greene et al.
[2017]. Based on the CMIP5 scenarios, Naughten et al. [2018] projected an increase between
41 % and 129 % of the average total sub-shelf mass loss from all Antarctic ice shelves for the
period 2091–2099 when compared to the period 1996–2005. The Amundsen Sea sector is ex-
pected to experience the largest increase in sub-shelf melting, followed by the Bellingshausen
Sea sector, while the Ross ice shelf is expected to experience the lowest increase in sub-shelf
melting. Increased melt rates in the Amundsen and Bellingshausen Sea sectors will be driven
by a strengthening of the CDW in ice-shelf cavities while increased melt rates in Ross Sea will
result from atmospheric warming.

Sub-shelf melting will also modify ocean conditions via the input of freshwater in the ocean.
Input of freshwater in the Southern Ocean is expected to result in surface freshening and sub-
sequently to increase the formation of sea ice [Bronselaer et al., 2018; Purich et al., 2018]. In
addition, recent studies suggest that the input of freshwater in the ocean will trap warm water
below sea surface, thus resulting in ocean warming and increased melt rates near the ground-
ing line [Bronselaer et al., 2018; Silvano et al., 2018; Golledge et al., 2019]. This mechanism
may result in a positive feedback that could increase the mass loss from the Antarctic ice sheet
[Golledge et al., 2019].

3.3.5 Bedrock topography and glacial isostatic adjustment

The risk of MISI in marine basins will be controlled by ice-shelf buttressing and bedrock to-
pography. Topographic features, such as pinning points [Favier et al., 2011, 2016; Berger et al.,
2016] and ice rises and rumples [Favier and Pattyn, 2015; Matsuoka et al., 2015], have the po-
tential to stabilise marine basins or at least to slow grounding-line retreat rates. Topographic
features, such as cavity shape, bedrock slope, bumps, and hollows, also influence the access of
ocean heat to the grounding line and sub-shelf melt rates [Milillo et al., 2019].

The isostatic uplift of the bedrock following the ice-sheet retreat is expected to have a stabil-
ising effect on the grounding line due to a flattening of the reverse bedrock slope and a reduction
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of the local sea depth; see, for instance, Whitehouse et al. [2019] for a recent review paper about
solid Earth change and the evolution of the Antarctic ice sheet. This negative feedback is ex-
pected to mitigate the positive feedback of the marine ice-sheet instability on the migration of
the grounding line [Adhikari et al., 2014; Gomez et al., 2015; Konrad et al., 2015; Pollard et al.,
2017] and could even lead to a re-advance of the grounding line in some areas of the Antarctic
ice sheet [Kingslake et al., 2018] even though the impact of isostatic uplift may become signifi-
cant only on multicentennial and longer time horizons. GPS measurements have shown that the
Amundsen Sea sector undergoes a rapid isostatic uplift due to the low viscosity of the underly-
ing mantle and short bedrock relaxation times that could range from tens to hundreds of years
[Barletta et al., 2018]. Short-wavelength (kilometre-scale resolution) uplift in active areas of
Antarctica such as Thwaites Glacier could lead to a significant slowdown in Antarctic mass loss
over the next centuries [Larour et al., 2019]. Numerical simulations by Adhikari et al. [2014]
further suggest that the Antarctic bedrock may rise from a few metres to a few tens of metres in
the next centuries.

In addition, the MICI mechanism is also controlled by bedrock topography and local sea
depth [Pollard et al., 2015], with the instability occurring preferentially in marine basins with
sufficiently deep bedrocks while shallow topography provides stabilising conditions. For this
reason, the isostatic uplift of the bedrock is also expected to mitigate or prevent the marine
ice-cliff instability [Gasson et al., 2015].

3.4 Computational ice-sheet models: limitations for sea-level rise
projections

Computational ice-sheet models form the basis for quantitative projections of the response of the
Antarctic ice sheet to climate change. Much progress has been made in recent years regarding
the comprehension of physical processes involved in the dynamics of the Antarctic ice sheet and
their implementation in computational ice-sheet models; see, for instance, Pattyn et al. [2017]
and Nowicki and Seroussi [2018] for recent review papers. Yet, there remain large limitations
that restrict the accuracy and robustness of these projections. Hereafter, we briefly review some
of these limitations, namely the initialisation of the ice-sheet model, limitations in coupling the
computational ice-sheet model with other components of the Earth system, and uncertainties in
computational ice-sheet models. We refer the reader to, for instance, Vizcaino [2014], Goelzer
et al. [2017], Pattyn et al. [2017], and Nowicki and Seroussi [2018] for further discussions about
limitations, challenges, and progress in ice-sheet modelling.

3.4.1 Ice-sheet model initialisation

Forward simulations with computational ice-sheet models require an initialisation procedure
that precedes their use in predicting climate-change effects. The initial state of an ice sheet at
present is typically defined by the ice temperature, the velocity field, the ice-sheet geometry,
and the bedrock elevation. Boundary conditions at the ice-bedrock interface and the rheological
properties of the ice must also be prescribed as part of the initialisation of the ice-sheet model.
Computational ice-sheet models essentially rely on two kinds of initialisation methods, namely
the so-called “spin-up” methods and data assimilation methods.
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Spin-up methods, originally applied for paleoclimate simulations, aims at defining an initial
state in which the state variables, such as the ice temperature, the ice thickness, the velocity
field, and the bedrock elevation, are mutually consistent, for instance, the ice temperature is in
equilibrium with the stress regime and the bedrock elevation is in equilibrium with the ice-sheet
loading. In spin-up approaches, the computational ice-sheet model is run over paleoclimate
time periods (typically tens to hundreds of thousands of years) and is forced with a paleoclimate
forcing that reproduces the evolution of the climate over this paleoclimate time period; see, for
instance, Aschwanden et al. [2013], Bindschadler et al. [2013], and Saito et al. [2016]. Spin-up
methods yield an ice-sheet configuration at present close to steady state but they generally lead
to a simulated ice-sheet configuration far from the present-day ice-sheet configuration and they
do not allow to reproduce current trends of mass loss in ice sheets.

Data assimilation methods aims at inferring unknown boundary conditions at the ice-bedrock
interface, more specifically the unknown basal friction coefficient, or rheological properties of
the ice, typically a flow enhancement factor introduced to account for anisotropy of ice flow.
Data assimilation methods usually rely on inverse methods that seek to infer unknown fields
through minimisation of the misfit between predicted ice-sheet state variables, usually the ve-
locity field, with observations; see, for instance, Morlighem et al. [2010, 2013], Petra et al.
[2012], Perego et al. [2014], and Isaac et al. [2015]. Data assimilation methods usually provide
a better match between simulated state variables and observations than spin-up methods even
though simulated state variables may not be mutually consistent and may not reproduce the past
history of the ice sheet.

It should be noted that combinations of spin-up and data assimilation methods exist and that
these combined methods can help to alleviate the drawbacks of spin-up and data assimilation
methods. An example of a combined method is the fixed-point iteration scheme by Pollard and
DeConto [2012b], in which at each iteration the computational method is run over a long period
of time until a steady-state configuration is reached and the basal friction coefficient is adjusted
so that the thus obtained steady-state configuration matches the present-day ice-sheet configu-
ration.

Despite much progress in recent years [Goelzer et al., 2017; Pattyn et al., 2017], model ini-
tialisation still remains a major limitation for robust predictions of the AIS response to climate
change based on computational ice-sheet models. The ISMIP6 intercomparison project has re-
cently provided insight into the impact of model initialisation in computational ice-sheet models
and has shown large spreads in projections from different computational ice-sheet models ini-
tialised with different methods [Goelzer et al., 2018; Seroussi et al., 2019].

3.4.2 Coupling with other components of the Earth system

Computational ice-sheet models should ideally be coupled with computational models of other
components of the Earth system, such as the atmosphere, the ocean, and the bedrock, in order
to appropriately represent the interactions and feedbacks between the Antarctic ice sheet and
these components. So far, there have been limited attempts to couple computational ice-sheet
models with computational models of other components of the Earth system due in particular to
the high computational cost of most climate, ocean, and Earth models and differences in spatial
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and temporal resolutions between the different components of the Earth system, thus generally
requiring asynchronous coupling and appropriate downscaling techniques. We refer the reader
to, for instance, Pollard et al. [2017], Le clec’h et al. [2019], Favier et al. [2019], and Van Kam-
penhout et al. [2019] for recent papers concerned with the coupling of computational ice-sheet
models with other components of the Earth system.

Owing to challenges in coupling computational ice-sheet models with computational mod-
els of other components of the Earth system, interactions between the Antarctic ice sheet and its
environment are often prescribed in a parameterised way. While allowing for a direct represen-
tation of the interactions between the ice sheet and its environnement, these parameterisations
may suffer from limitations in the representation of physical processes and involve a set of free
parameters that need to be identified prior to running the computational ice-sheet model.

3.4.3 Uncertainties in computational ice-sheet models

In the field of uncertainty quantification, uncertainties in computational models are often clas-
sified as either input uncertainties or model uncertainties [Smith, 2014]. Physics-based compu-
tational models result from a mathematical-physical modelling process of a real-word system.
Such computational models usually involve the specification of input parameters, external forc-
ings, initial conditions, or boundary conditions, all which can be uncertain. The uncertainties on
these quantities then define the input uncertainties. On the other side, modelling errors induced
by the modelling process define the model uncertainties, also called structural uncertainties.
Computational ice-sheet models, which result from a mathematical-physical modelling process
of an ice-sheet system, are also affected by modelling and input uncertainties which limit their
ability to provide reliable and robust projections. In the following, we briefly discuss modelling
and input uncertainties in computational ice-sheet models.

3.4.3.1 Model uncertainties

Model uncertainties in computational ice-sheet models encompass discrepancies in physics be-
tween computational ice-sheet models and the real-world ice-sheet system due to approximate or
imprecise mathematical representation and numerical implementation of the underlying physics
of ice sheets, and, to a lesser extent, numerical errors due to numerical approximations and
discretisation errors. For instance, computational ice-sheet models can implement the Stokes
equations or a reduced-order approximation of the ice-sheet flow or they can be discretised us-
ing a finite-difference or a finite-element discretisation scheme. Computational ice-sheet models
also come with parameterisations that provide a simplified or heuristic representation of com-
plex physical processes that are not resolved by the computational model. For the Antarctic ice
sheet, a major source of uncertainty also comes from the numerical representation of the migra-
tion of grounding line.

Model uncertainties are generally difficult to quantify. The impact of model uncertainties on
the projections is usually assessed by comparing projections from different models on bench-
mark experiments; see, for instance, Pattyn et al. [2012, 2013], Bindschadler et al. [2013],
Nowicki et al. [2016], and Seroussi et al. [2019]. These so-called intercomparison (or multi-
model comparison) projects give some insight into the impact of model uncertainties although
challenges remain in combining the different results [Knutti et al., 2010].
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3.4.3.2 Input uncertainties

Parametric uncertainties

Parametric uncertainties in computational ice-sheet models are associated with unknown or
poorly constrained parameters in the model. Uncertain parameters often come as unknown
or poorly constrained free parameters in parameterisations. Uncertain parameters can also re-
flect uncertainty or variability in ice-sheet characteristics or physical properties and they can be
either constant or spatially-varying over the ice sheet.

Given their nature, uncertain parameters are more amenable to quantitative assessments of
the impact of uncertainties than model uncertainties. Such assessments are commonly per-
formed by using large ensemble analysis, that is, the model is run for different values of the
parameters and the uncertainty in the projections is estimated from the spread in the model runs;
see, for instance, Tarasov and Peltier [2004], Briggs et al. [2013], DeConto and Pollard [2016],
and Pollard et al. [2016]. An alternative but related approach, which will be taken throughout
this dissertation, is to assess the impact of parametric uncertainties using methods from the field
of uncertainty quantification and the theory of probability.

Uncertainties in initial and boundary conditions

Computational ice-sheet models must be prescribed with appropriate initial and boundary con-
ditions (for instance, the AIS present-day geometry and ice thickness, the present-day bedrock
topography, the present-day surface accumulation, or the geothermal flux) . The prescription of
initial and boundary conditions heavily rely on (observational) datasets. Also, the prescription
of boundary conditions often requires to infer for unknown fields, typically the basal friction
coefficient in computational ice-sheet models. Inference of unknown fields is typically pursued
using data assimilation (inverse) methods that also rely on (observational) datasets. In this case,
the data assimilation method can also induce uncertainties in the reconstructed field.

Despite increasingly available datasets from satellite and airborne missions, uncertainties re-
main in datasets due in particular to poorly covered areas, limitations in instrumental resolution,
data postprocessing, indirect measurements, . . . . Even when datasets are available with a high
level of accuracy and precision at high resolution, uncertainties may arise due to upscaling of
available data over computational domains that have a coarser resolution than the datasets. Er-
rors in datasets can have a significant impact on numerical results, in particular, uncertainties in
bedrock topography can affect the projections of the stability of marine basins with topographic
features that can buttress the flow of ice [Sun et al., 2014; Gasson et al., 2015]. Assessing the
impact of uncertain datasets is generally difficult but insight can be gained by comparing projec-
tions with different datasets or by assessing the impact of stochastic perturbations on datasets.

Uncertainties in climate forcing

Uncertainties in climate forcing from the atmosphere and the ocean are major sources of uncer-
tainty for accurate and robust projections of future sea-level rise. As discussed in the previous
sections, atmospheric and ocean forcings can induce large variations and strong nonlinearities
in the response of the Antarctic ice sheet due to their potential to trigger feedback mechanisms,
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instabilities, and tipping points; see, for instance, Bakker et al. [2017] and Pattyn et al. [2018].
Uncertainties in climate forcing stem from the natural variability in natural processes, including
solar and volcanic activity, natural variability in the climate system, such as changes in wind and
ocean circulation, and uncertainty in future emissions of greenhouse gases and aerosols driven
by anthropogenic activities; see, for instance, Myhre et al. [2013]. Inherent variability in the
climate system represents a source of “irreducible” uncertainty [Hu and Deser, 2013; Marotzke,
2018]. Future emissions of greenhouse gases and aerosols caused by anthropogenic activities
are uncertain because they depend on uncertain factors such as demographic patterns, socio-
economic development, technological development, energy and land use, and climate change
mitigation measures. For all these reasons, climate forcing projections are characterised by a
wide range of plausible outcomes. In order to assess the consequences of human-induced cli-
mate forcing and its uncertainties, scientists have developed so-called climate change scenarios
that represent plausible future changes in climate forcing and can serve as baseline representa-
tions of climate forcing across the scientific communities. The scenarios provide future baseline
trends for emissions of greenhouse gases and air pollutants that are consistent with various sce-
narios for economic and environmental developments. Examples of climate change scenarios
are the SRES (Special Report on Emissions Scenarios) scenarios [Nakićenović et al., 2000] and
the RCP (Representative Concentration Pathways) scenarios [Van Vuuren et al., 2011]. Such
climate change scenarios can then be used to force climate models to provide atmospheric and
oceanic forcings that can be coupled to computational ice-sheet models. Forcing the compu-
tational ice-sheet model with (different) atmospheric and oceanic forcings consistent with the
climate change scenarios then provides insight into the impact of uncertainties in climate forcing
on the response of the ice sheet.

3.5 Conclusion

In this chapter, we provided an overview of the current state of the Antarctic ice sheet, its future
in a warming world, and the limitations and uncertainties in the use of computational ice-sheet
models to predict the response of the Antarctic ice sheet to climate change. So far, the Antarctic
ice sheet has been only a limited contributor to sea-level rise, with, for instance, the Greenland
ice sheet currently losing twice as much ice as the Antarctic ice sheet. Yet, the contribution of
the Antarctic ice sheet to sea-level rise is expected to exceed other contributions to sea-level
rise and become the dominant contributor to sea-level rise in the next centuries. However, pre-
dicting the AIS contribution to sea-level rise is challenged by the wide range and importance
of processes that can affect the AIS response to climate change and the limitations and uncer-
tainties in computational ice-sheet models. In its Special Report on the Ocean and Cryosphere
in a Changing Climate [IPCC, 2019], the IPCC has described this situation as a situation of
deep uncertainty. Following IPCC [2019] (adapted from Lempert et al. [2003] and Marchau
et al. [2019]), a situation of deep uncertainty exists when experts or stakeholders do not know or
cannot agree on: (1) appropriate conceptual models that describe relationships among key driv-
ing forces in a system; (2) the probability distributions used to represent uncertainty about key
variables and parameters; and/or, (3) how to weigh and value desirable alternative outcomes.
A situation of deep uncertainty thus involves many plausible futures, many alternative physics-
based models, a wide range of outcomes (or quantities) of interest, and a wide range of weights
that experts or stakeholders can prescribe to the outcomes of interest. For this reason, projec-
tions of the AIS response to climate change should incorporate in some way uncertainties in the
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system, including uncertainties in computational models, physics, and key variables and param-
eters, and quantify the uncertainty in the desirable outcomes in order to increase confidence in
the projections.
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4
Uncertainty quantification methods for
computational models

This chapter is an introduction to theory and methods for the analysis of computational mod-
els subject to uncertain input parameters within the field of uncertainty quantification. Within
the probability theory, we discuss theory and methods for the characterisation of uncertainties
in computational models, the propagation of uncertainties through the computational model
to characterise the uncertainty in the quantity of interest, and the assessment of the impact of
sources of uncertainty in inducing uncertainty in the quantity of interest. The focus is on non-
intrusive methods that do not require any modification of the source code of the computational
model, including methods based on Monte Carlo sampling, surrogate models (polynomial chaos
expansion and Gaussian-process regression), and probabilistic learning.

4.1 Introduction

In applications in computational physics and engineering, the prediction of the behaviour and
the evolution of physical and engineering systems relies on (physics-based) computational mod-
els. Examples include global climate models in climatology, ice-sheet models in glaciology, and
finite-element models for real-world engineering problems (mechanics and aerospace). These
computational models, also referred to as simulators, which result from a mathematical-physical
modelling process of real-world physical and engineering systems, usually exhibit uncertain fea-
tures. These uncertain features are associated with model uncertainties induced by modelling
errors and parametric uncertainties due to uncertain input parameters, which we focus on in this
chapter. For this reason, robust prediction of the behaviour and the evolution of physical and
engineering systems based on computational models needs to consider and quantify the impact
of uncertain input parameters and modelling errors on the response of the computational model.

In this context, the field of uncertainty quantification (UQ) has emerged as a general frame-
work to handle uncertainties associated with predictions based on computational models. The
field of uncertainty quantification develops theory and methods to describe quantitatively the
origin, propagation, and interplay of sources of uncertainty in the analysis and projection of
the behaviour of complex systems in physics and engineering; see, for instance, Smith [2014],
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Sullivan [2015], Ghanem et al. [2017], and Soize [2017] for recent textbooks and Arnst and
Ponthot [2014] for a recent review paper. Most of this theory and these methods are based on
probability theory, in the context of which uncertain parameters and projections are represented
as random quantities characterised by their probability distribution; we refer the reader to Ap-
pendix A for an introduction to the theory of probability. Within the probability theory, the field
of uncertainty quantification, as depicted schematically in Figure 4.1, develops theory and meth-
ods to characterise sources of uncertainty by distribution functions inferred from observational
data and expert assessment (characterisation of uncertainty), to deduce the impact of sources
of uncertainty on the projections (propagation of uncertainty), and to ascertain the impact of
each source of uncertainty on the projection uncertainty and rank them in order of significance
(stochastic sensitivity analysis).

In this chapter, we represent a computational model as a mapping of a set of input parameters
of the computational model into a quantity of interest. For this reason, we consider the following
(nonlinear) mapping

y = f(x), (4.1)

where x = (x1, . . . ,xn) is a vector of input parameters of the computational model and y is the
quantity of interest. In the context of a computational model, the quantity of interest may repre-
sent a real-valued scalar, vector, or field. In the context of ice-sheet modelling, the reader may
think of the computational model f as an abstract representation of the computational ice-sheet
model, the input parameters as physical parameters such as the relaxation time of the bedrock,
the exponent in Weertman’s sliding law, or the atmospheric temperature, and the quantity of
interest as the change in volume above floatation for the whole Antarctic ice sheet (scalar quan-
tity of interest), the change in volume above floatation for both the West and East Antarctic ice
sheets (vector-valued quantity of interest), or the change in ice thickness (field-valued quantity
of interest). In the following, we will focus (mostly) on scalar quantities of interest and we will
discuss vector-valued and field-valued quantities of interest when appropriate.

Based on theory and methods from uncertainty quantification and the theory of probability,
this chapter provides an overview of theory and methods to characterise the uncertainty in the
input parameters (Section 4.2), to propage the uncertainty in the input parameters through the
computational model (Section 4.3), and to carry out a stochastic sensitivity analysis to ascertain
the impact of each source of uncertainty on the quantity of interest (Section 4.4). We refer
the reader to Arnst and Ponthot [2014], Ghanem et al. [2017], and Soize [2017] for the main
references on which this chapter is based.

4.2 Characterisation of uncertainties

The first step in a UQ analysis is the identification and characterisation of the sources of un-
certainty in the computational model. Here, we represent the sources of uncertainty as a set
of uncertain input parameters x = (x1, . . . ,xn) of the computational model and we adopt
an approach based on the theory of probability to model these uncertain input parameters. A
probabilistic approach to modelling uncertainties begins by defining a probability space, which
provides the mathematical foundation on which the probability theory and its concepts, such
that the probability of an event or the concept of a random variable, can be defined rigorously
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Figure 4.1: Schematic illustration of a UQ analysis of a computational model with uncertain
input parameters.

within the framework of measure theory [Billingsley, 2012]. Within the framework of proba-
bility theory, we represent the set of uncertain input parameters as an Rn-valued random vector
X = (X1, . . . ,Xn) defined on a complete probability space (Θ,B,P). The probabilistic char-
acterisation of the sources of uncertainty involves the characterisation of the probability distri-
bution PX of the random vector X or equivalently its probability density function ρX if X is
a continuous random vector. Such a characterisation of the sources of uncertainty usually relies
on expert assessment, observational data, physical constraints, and statistical methods. In the
following, we assume that such a probabilistic characterisation with a probability distribution
PX is available and we briefly mention two popular approaches to characterise the probability
distribution PX .
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A first approach is to assign a “labelled” probability distribution from a list of probability
distributions. These “labelled” probability distributions are common probability distributions
that depend on a small number of parameters, which can be inferred from expert assessment or
statistical methods, such as maximum likelihood estimation [Fisher, 1912]. Examples of uni-
variate “labelled” probability distributions are the uniform, exponential, Gaussian, Gamma, and
Beta probability distributions. The choice of a specific “labelled” probability distribution is usu-
ally based on expert assessment and must be consistent with physical constraints. For instance, a
uniform probability distribution can be used to represent random variables whose support is the
only available information, a Gaussian probability distribution to represent observations with
measurement errors, and a Gamma distribution to represent positive random variables. For ran-
dom vectors, a common assumption is to consider the components of the random vector to be
mutually independent random variables and to characterise the marginal probability distribution
of each component separately. Then, the probability distribution PX writes as

PX = PX1 × . . .× PXn , (4.2)

where PXi , 1 ≤ i ≤ n, denotes the marginal probability distribution of the random variable Xi.
When the components of X cannot be assumed independent, the random vector X can still
be represented as a random vector of independent components by using an isoprobabilistic
transformation such as the Rosenblatt [Rosenblatt, 1952] and Nataf [Nataf, 1962; Lebrun and
Dutfoy, 2009], transformations, or the statistical dependence between random variables can be
accounted for by using the copula formalism [Nelsen, 2006; Torre et al., 2019].

A second approach is to adopt a Bayesian inference framework to infer the probability distri-
bution of the uncertain parameters; see, for instance, Tarantola [2005] and Bernardo and Smith
[2000]. In a Bayesian inference framework, a prior probability distribution, which encodes prior
information about the uncertain input parameters such as physical constraints, is updated by ac-
counting for newly available data according to Bayes’ theorem to obtain a posterior probability
distribution, which encodes all available information.

4.3 Propagation of uncertainties

Given uncertainty in the input parameters, the quantity of interest of the computational model
becomes uncertain. In a probabilistic setting, the quantity of interest is represented as a ran-
dom variable Y defined on the probability space (Θ,B,P). The random variable Y represents
the transformation of the random vector X through the computational model f , which writes
formally as

Y = f(X). (4.3)

Thus, the probability distribution of Y is the image of the probability distribution ofX under f .
It should be noted that when the quantity of interest is a vector or a field, it can be similarly
represented as a random vector or a random field.

Given a probabilistic characterisation of the uncertain input parameters in terms of the prob-
ability distribution PX , propagating the uncertainty through the computational model aims at
determining a probabilistic characterisation of the uncertain quantity of interest in terms of its
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probability distribution PY , from which can be deduced various statistical descriptors of Y , for
instance, its mean and its variance (it they exist) are given by

E[Y ] =
∫
R
y PY (dy) ≡ mY , (4.4)

V[Y ] =
∫
R

(y −mY )2 PY (dy) ≡ σ2
Y . (4.5)

Formally, the probability distribution PY can be deduced as the image of the probability distri-
bution PX ofX under f , that is,

PY (B) = PX({x ∈ Rn : f(x) ∈ B}) (4.6)

for all meaningful subsets B of R; see Figure 4.2 for an illustration. Using the change-of-
variables theorem [Dudley, 2002] in the context of probability theory, the statistical descriptors
of Y can be computed equivalently as

mY =
∫
Rn
f(x)PX(dx), (4.7)

σ2
Y =

∫
Rn

(f(x)−mY )2 PX(dx). (4.8)

When f is a strictly monotone and differentiable function of a single variable, there exists a
closed-form expression between ρY and ρX involving the Jacobian of the transformation. How-
ever, except for a few specific cases such as the example above, there exists no such closed-form
expression for PY as a function of PX and f . Similarly, there exist in general no closed-form
expressions for the statistical descriptors of Y as a function of the statistical descriptors of X .
For instance, the mY of Y is in general not equal to f(mX), with mX the mean of X (the
equality is satisfied only when f is an affine function), and the computation of mY requires the
knowledge of PX . For this reason, the propagation of uncertainties is often implemented using
computational and mathematical methods developed in the field of uncertainty quantification.
Methods in uncertainty quantification are often classified as either “nonintrusive” or “intrusive”.
Nonintrusive methods only require the evaluation of the computational model without any mod-
ification of the source code of the computational model; hence, the computational model may
be seen as a black-box. Unlike nonintrusive methods, intrusive methods, see, for instance, Le
Maître and Knio [2010], require a modification of the source code of the computational model,
which can be hardly affordable for complex computational models such as climate or ice-sheet
models. Thus, in the following, we do not discuss intrusive methods and only consider nonin-
trusive methods for uncertainty quantification. We will focus mainly on methods to estimate the
probability distribution of Y and some of its statistical descriptors but it should be mentioned
that the methods introduced in the following can also be applied to, for instance, sensitivity
analysis, optimisation under uncertainty, and estimation of extreme value statistics.

4.3.1 Monte Carlo sampling method

Monte Carlo sampling methods encompass a broad class of computational methods based on
random sampling. A typical implementation of the Monte Carlo sampling method begins by
generating from the probability distribution PX an ensemble of independent and identically dis-
tributed (i.i.d) samples

{
x(k), 1 ≤ k ≤ ν

}
of the uncertain input parameters. Then, an ensemble
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ρY
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x

f (x)

ρX

xB−1

Figure 4.2: Schematic illustration of the propagation of uncertainties. The uncertain parameter x
is mapped to the quantity of interest y through the computational model f . The probability
that y lies within the interval B, represented as the blue dashed area under ρY , is equivalent
to the probability of X being in B−1, represented as the blue dashed area under ρX , with
B−1 = {x ∈ R : f(x) ∈ B}. In this illustration, f is a strictly increasing and differentiable
function of a single variable. Thus, ρY admits a closed-form expression as a function of ρX and
the Jacobian of the transformation.

of solutions to the computational model is generated in the form of the corresponding ensemble{
y(k) = f(x(k)), 1 ≤ k ≤ ν

}
of i.i.d samples of the quantity of interest. From these samples,

various statistical descriptors of the probability distribution PY can be estimated with statistical
methods. For instance, the mean and the variance of Y (if they exist) are estimated as the sample
(empirical) mean and variance, that is,

mY ≈ mν
Y = 1

ν

ν∑
k=1

y(k), (4.9)

σ2
Y ≈ (σνY )2 = 1

ν

ν∑
k=1

(
y(k) −mν

Y

)2
, (4.10)

where the superscript ν is used to indicate that the quantity of interest is estimated from a finite
number of samples. The probability density function ρY (if it exists) can be estimated using
kernel density estimation [Scott, 2015]. A kernel density estimate of ρY writes as

ρY (y) ≈ ρν,h
Y (y) = 1

νh

ν∑
k=1

K

(
y − y(k)

h

)
, (4.11)

where K is a non-negative function called the kernel, h is a smoothing parameter called the
bandwidth, and the superscripts ν and h are used to indicate that the kernel density estimate
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depends on a finite number of samples and the choice of the bandwidth. See Figure 4.3 for an
illustration.

y

ρ
ν

,h Y

Figure 4.3: Illustration of the estimation of the probability density function ρY using kernel
density estimation. Ticks represent the samples. Orange curves represent Gaussian kernels
centred at each sample and the blue curve is the reconstructed probability density function.

From a theoretical point of view, the convergence of Monte Carlo estimators can be analysed
using the law of large numbers and the central limit theorem; see, for instance, Dudley [2002]
and Robert and Casella [2013]. The law of large numbers ensures that for a PY -integrable ran-
dom variable Y , the Monte Carlo estimator of the mean converges towards the exact value mY

while the central limit theorem ensures that for a PY -square-integrable random variable Y , the
standard deviation of the Monte Carlo estimator decreases as the square root of the number of
samples for sufficiently large ν, irrespectively of the stochastic dimension n of the random vec-
torX .

From an application-oriented point of view, two main issues may limit the applicability of
the Monte Carlo method:

1. The Monte Carlo sampling method assumes the ability to generate random samples from
the probability distribution of the uncertain input parameters. Although pseudorandom
number generators have been implemented to sample from common probability distribu-
tions, more sophisticated algorithms are necessary to sample from more general probabil-
ity distributions. These algorithms include rejection sampling, importance sampling, and
Markov chain Monte Carlo sampling; see, for instance, Robert and Casella [2013].

2. The Monte Carlo method requires to solve the computational model for each i.i.d sam-
ple from PX . For this reason, the total computational cost of the Monte Carlo method
scales with the number of samples ν. As the accuracy of the Monte Carlo estimate de-
creases with the square root of ν, attaining sufficient accuracy may become intractable
for computational models with a high computational cost. For this reason, much research
has been dedicated in the field of uncertainty quantification to develop methods that seek
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to alleviate the computational cost of the Monte Carlo sampling method. These meth-
ods include advanced Monte Carlo sampling methods (Section 4.3.1.1), surrogate models
(Section 4.3.2), and learning algorithms (Section 4.3.3).

4.3.1.1 Advanced sampling methods

Variants of the Monte Carlo sampling method based on improved sampling strategies have been
proposed to achieve a lower variance of the Monte Carlo estimator. These improved sampling
strategies include stratified sampling [McKay et al., 1979; Shields and Sundar, 2015], Latin hy-
percube sampling [McKay et al., 1979; Stein, 1987], partial stratified sampling [Shields et al.,
2015; Shields and Zhang, 2016], and quasi-Monte Carlo sampling [Niederreiter, 1992; Caflisch,
1998]; see Figure 4.4 for an illustration. Stratified sampling is based on a partition of the sample
space into disjoint subsets (strata) and samples are drawn randomly within each stratum. Latin
hypercube sampling is based on dividing the range of each vector component Xi, 1 ≤ i ≤ n,
into ν disjoint intervals (strata) of equal probability and samples of each vector component are
drawn within each interval. The samples of the random vector X are assembled by randomly
grouping (without replacement) the generated samples for each vector component. Thus, there
are (ν!)n−1 possible grouping combinations of the component samples for a Latin hypercube
design of ν samples in n dimensions. Quasi-Monte Carlo sampling methods are a class of
sampling methods based on deterministic sequences of points that seek to maximise the unifor-
mity of the samples as quantified in terms of discrepancy. In this context, sequences with low
discrepancy achieve a high uniformity of the samples. Examples of common low-discrepancy
sequences of points are the Halton and Sobol sequences.

Monte Carlo Stratified Sampling Latin Hypercube Sampling Sobol Sequence

Figure 4.4: Illustration of (pseudo-)random samples over the unit square with ν = 4 (top row)
and ν = 625 (bottom row) samples, using Monte Carlo sampling, stratified sampling, Latin
hypercube sampling, and quasi-Monte Carlo sampling (Sobol sequence). Generally, stratified
sampling, Latin hypercube sampling, and quasi-Monte Carlo sampling methods achieve a better
space filling than the Monte Carlo sampling method.
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Similarly to Monte Carlo sampling, the accuracy of the Monte Carlo estimate based on either
stratified sampling or Latin hypercube sampling decreases with the square root of ν; yet, both
sampling methods can achieve a reduced variance of the estimator when compared to Monte
Carlo sampling. McKay et al. [1979] showed that stratified sampling achieves a reduced vari-
ance of the estimator for a balanced sampling scheme, that is, for each stratum the percentage
of samples in the stratum is equal to the probability of belonging to the stratum. Stein [1987]
showed that Latin hypercube sampling achieves a reduced variance of the estimator for ν suffi-
ciently large as compared to n. In particular, the reduction in variance is more important when
the function f is well approximated by an additive function, that is, a function that is the sum
of terms that are each a function of only one of the uncertain input parameters. For certain low-
discrepancy sequences, the accuracy of the Monte Carlo estimate based on quasi-Monte Carlo
sampling decreases as (log ν)n/ν [Niederreiter, 1992; Morokoff and Caflisch, 1995], which is
an asymptotically better convergence rate than the Monte Carlo sampling method with respect
to the number of samples although it increases with the stochastic dimension n. Similarly to
the Monte Carlo sampling method, the convergence rates of Monte Carlo estimates based on
advanced sampling methods may be prohibitive for computational models with a high compu-
tational cost.

4.3.2 Surrogate models

Conceptually, a surrogate model is an approximation of the original computational model. For-
mally, a surrogate model can be defined as the mapping

x 7→ f̃(x), (4.12)

from Rn into R, such that, in some sense, f̃ is close to f . In the context of uncertainty quantifica-
tion, surrogate models, also known as surface response models, metamodels, or emulators, often
serve as fast-to-evaluate models that mimic the mapping between the uncertain input parameters
and the quantity of interest, as provided by the computational model, in order to gain a computa-
tional speedup. For this reason, surrogate models are usually determined from a limited number
of evaluations of the computational model at a selected set of points in the parameter space, the
so-called experimental design or training set

{
x

(k)
λ , 1 ≤ k ≤ λ

}
, with λ small as compared to ν.

Once a surrogate model is available, it can be used as a computationally efficient substitute
for the computational model to estimate statistical descriptors of the quantity of interest using,
for instance, Monte Carlo sampling; see Figure 4.5 for an illustration. Considering an ensemble
of i.i.d. samples

{
x(k), 1 ≤ k ≤ ν

}
of the uncertain parameters and the corresponding ensemble

of solutions to the surrogate model, that is,
{
ỹ(k) = f̃(x(k)), 1 ≤ k ≤ ν

}
, then the mean and

the variance of Y are estimated as the sample mean and variance of the surrogate model, that is,

mY ≈ mν
Ỹ

= 1
ν

ν∑
k=1

ỹ(k), (4.13)

σ2
Y ≈ (σ2

Ỹ
)ν = 1

ν

ν∑
k=1

(
ỹ(k) −mν

Ỹ

)2
, (4.14)

where Ỹ denotes the random variable f̃(X) with mean m
Ỹ

and variance σ2
Ỹ

.
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Various surrogate models have been proposed over the years, including surrogate models
based on polynomial chaos expansions [Ghanem and Spanos, 2003; Soize and Ghanem, 2004;
Le Maître and Knio, 2010], Gaussian-process regression (kriging) [Santner et al., 2003; Ras-
mussen and Williams, 2006; Dubourg, 2011], support vector machine [Vapnik, 2000; Smola
and Schölkopf, 2004; Bourinet, 2018], and artifical neural networks [Haykin, 2009]. It should
be noted that any type of surrogate models relies on an underlying set of assumptions regarding
the form of the approximation. These assumptions are expected to be consistent with the proper-
ties of the computational model (for instance, continuity and smoothness) to yield an appropriate
approximation. In the following, we discuss two classes of surrogate models commonly used in
uncertainty quantification, namely surrogate models based on polynomial chaos expansions and
Gaussian-process regression.

4.3.2.1 Polynomial chaos expansions

Polynomial chaos expansion of a second-order random variable

LetX be an Rn-valued random vector that admits a probability density function ρX and possess
finite moments of all orders (E[‖X‖q] < ∞ for all q in N). Let the random variable Y be a
deterministic (nonlinear) transformation f of the random vectorX , with Y being of the second
order. Then, the polynomial chaos expansion of Y = f(X) writes as

∞∑
|α|=0

yαΨα(X). (4.15)

Here,α = (α1, . . . ,αn) is a multi-index of Nn with |α| = α1+. . .+αn and {Ψα(X),α ∈ Nn}
is a basis of polynomials of order |α| from Rn into R, the so-called multivariate polynomial
chaos, and the scalars yα are the polynomial chaos coordinates. It is desirable that the series
in Equation (4.15) convergences in some sense, typically in a mean-square sense, towards Y as
the order of the expansion increases. The convergence of the series typically depends on the
probability distribution of X as well as the function f ; see, for instance, Ernst et al. [2012] for
a more detailed discussion about conditions under which the series converges. As examples of
sufficient conditions, we mention that the convergence property holds if the probability distri-
bution of X has a compact support or the random vector is exponentially integrable, that is,
there exists a > 0 such that

∫
Rn exp(a‖x‖)PX(dx) <∞, where ‖ · ‖ denotes any norm on Rn

[Ernst et al., 2012]. For instance, the first condition holds if PX is a uniform distribution and
the second condition holds if PX is a Gaussian distribution.

In general, the basis {Ψα(X),α ∈ Nn} is an orthonormal basis in L2(Θ,Rn) with respect
to the probability distribution PX , that is,

E [ΨαΨβ] =
∫
Rn

Ψα(x)Ψβ(x)ρX(x)dx = δαβ, ∀α,β ∈ Nn, (4.16)

where δαβ = 1 forα = β and 0 otherwise. Thanks to the orthonormality of the basis functions,
the polynomial chaos coordinates write as

yα = E[ΨαY ] =
∫
Rn

Ψα(x)f(x)ρX(x)dx, ∀α ∈ Nn. (4.17)
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When the random vectorX has independent components, its probability density function writes
as the product of the marginal probability density functions and the orthornormal basis functions
{Ψα(X),α ∈ Nn} are built as

Ψα(X) = ψ(1)
α1 (X1)× . . .× ψ(n)

αn (Xn), (4.18)

such that, for all i = 1, . . . ,n,
{
ψ

(i)
m (xi),m ∈ N

}
is a family of univariate orthonormal polyno-

mials, that is, ∫
R
ψ(i)
m (xi)ψ(i)

m′(xi)ρXi(xi)dxi = δmm′ , ∀m,m′ ∈ N. (4.19)

The family of univariate orthonormal polynomials is typically chosen of increasing order, with
the index m corresponding to the order of the polynomial and the constant polynomial being
equal to 1. Univariate orthonormal polynomials can be determined from the Askey scheme for
“labelled” probability distributions [Xiu and Karniadakis, 2002; Xiu et al., 2002], for instance,
the Legendre polynomials for uniform probability distributions and the Hermite polynomials
for Gaussian probability distributions (see Figure 4.6), or from the Stieltjes and Gram-Schmidt
orthonormalisation procedures for arbitrary probability distributions [Gautschi, 1982; Witteveen
and Bijl, 2006; Wan and Karniadakis, 2006; Arnst et al., 2012].
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Figure 4.6: Univariate (non-normalised) Legendre and Hermite polynomials of order k =
0, . . . , 5. Legendre polynomials are orthogonal for the uniform probability distribution and
Hermite polynomials are orthogonal for the Gaussian probability distribution.

In applications, the series in Equation (4.15) is usually limited to a subset of multi-indicesA
in Nn by using a truncation scheme. The standard truncation scheme, which we will consider in
this dissertation, retains all polynomials whose degree is less than or equal to p, that is, the multi-
index α takes values in the set Ap = {α ∈ Nn : |α| ≤ p}. Hence, the truncated polynomial
chaos expansion of order p of the random variable Y writes as

p∑
|α|=0

yαΨα(X) ≡ Y p. (4.20)
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When the series in Equation (4.15) converges, then Y p converges to Y in a mean-square sense as
the order p tends to∞. In this case, the convergence of the series is usually fast when the map-
ping f is sufficiently smooth. The number of polynomial chaos coordinates in Equation (4.20)
is given by

card(Ap) = (n+ p)!
n!p! ≡ Kp, (4.21)

thus the number of polynomial chaos coordinates grows rapidly with the number n of uncertain
input parameters and the total polynomial order p. For this reason, other truncation schemes
have been developed, such as the maximum interaction and the hyperbolic truncation schemes;
see Figure 4.7 for an illustration and Blatman [2009] for a reference.
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(a) Standard truncation scheme.
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(c) Hyperbolic truncation scheme.

Figure 4.7: Comparison of different truncation schemes in the two-dimensional parameter
space. The blue dots represents the multi-indices retained in the truncation scheme. (a) Stan-
dard truncation scheme: the multi-index α takes values in the set Ap = {α ∈ Nn : |α| ≤ p}.
(b) Maximum iteration truncation scheme: the multi-index α takes values in the set Ap,r =
{α ∈ Ap : ∑n

i=1 1(αi > 0) ≤ r}. (c) Hyperbolic truncation scheme: the multi-index α takes
values in the set Ap,q =

{
α ∈ Ap : (∑n

i=1 α
q
i )

1/q ≤ p
}

.

Surrogate model based on polynomial chaos expansion

A surrogate model based on a polynomial chaos expansion of order p of the computational
model writes as the mapping

x 7→ fp(x) =
p∑

|α|=0
yαΨα(x), (4.22)

where the Ψα(x) are an orthornormal basis with respect to PX and the scalars yα are the poly-
nomial chaos coordinates. The main task in building such a surrogate model lies in the eval-
uation of these polynomial chaos coordinates from an experimental design. Here, we discuss
two approaches, namely spectral projection and (weighted) least-squares regression. See also
Figure 4.8 for an illustration.
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In a spectral projection approach, also called nonintrusive spectral projection (NISP) ap-
proach, the polynomials chaos coordinates are determined as the projection of the response
of computational model on each basis function; see Equation (4.17). The integral in Equa-
tion (4.17) can be evaluated numerically by using numerical integration algorithms, for instance,
quadrature rules. A quadrature rule consists of a set

{
(x(k)

λ ,w(k)
λ ), 1 ≤ k ≤ λ

}
of nodes x(k)

λ

and weights w(k)
λ that allows to approximate an integral as a weighted sum of integrand evalua-

tions; thus, the polynomial chaos coordinates are estimated as

yα =
∫
Rn

Ψα(x)f(x)ρX(x)dx ≈
λ∑
k=1

w
(k)
λ Ψα(x(k)

λ )f(x(k)
λ ). (4.23)

When the random vector X has n independent components, the quadrature nodes and weights
are based on the tensor product of the quadrature rules for each individual component. Exam-
ples of quadrature rules for one-dimensional integration are the Gauss quadrature rules for “la-
belled” probability distributions, for instance the Gauss–Legendre and Gauss–Hermite quadra-
ture rules for the uniform and Gaussian probability distributions, respectively; see, for instance,
Abramowitz and Stegun [1970] and Golub and Meurand [2010] for a list of quadrature rules and
tables of quadrature nodes and weights. The number of quadrature nodes usually depends on
the degree of the polynomial Ψα and the smoothness of the mapping f , with Gauss quadrature
rules in one dimension that can integrate exactly polynomials of degree less than or equal to
2λ − 1 with λ quadrature nodes. For this reason, the polynomials orthonormal up to degree p
with respect to the probability density function of X are also orthonormal with respect to the
corresponding Gauss quadrature rule with λ = p+ 1 nodes.

In a (weighted) least-squares regression approach, the polynomial chaos coordinates are
determined as the solution of a minimisation problem for the weighted squared error between
the computational model and the surrogate model evaluated at the experimental design, that is,

λ∑
k=1

w
(k)
λ

[
f(x(k)

λ )− fp(x(k)
λ )

]2
=

λ∑
k=1

w
(k)
λ

f(x(k)
λ )−

p∑
|α|=0

yαΨα(x(k)
λ )

2

, (4.24)

with
{
x

(k)
λ , 1 ≤ k ≤ λ

}
the experimental design and

{
w

(k)
λ , 1 ≤ k ≤ λ

}
the associated ensem-

ble of (positive) weights. The solution to the minimisation problem writes in a matrix form as

ŷ = arg min
d∈RKp

1
2(y − [Ψ]d)T [W ](y − [Ψ]d), (4.25)

where ŷ is the Kp-dimensional vector whose entries are the least-squares estimates of the poly-
nomial chaos coordinates, y is the λ-dimensional vector with entries yk = f(x(k)

λ ), [Ψ] is the
(λ×Kp)-dimensional matrix whose columns are the polynomials indexed by the multi-indices
in Ap evaluated at the experimental design, and [W ] is the λ-dimensional diagonal positive-
definite weight matrix that collects the weights w(k)

λ along its diagonal. The solution ŷ in Equa-
tion (4.25) can be computed from the normal equations

([Ψ]T [W ][Ψ])ŷ = [Ψ]T [W ]y, (4.26)
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or more explicitly
p∑
|β|=0

ŷβ

(
λ∑
k=1

w
(k)
λ Ψα(x(k)

λ )Ψβ(x(k)
λ )

)
=

λ∑
k=1

w
(k)
λ ykΨα(x(k)

λ ), ∀α ∈ Ap. (4.27)

Contrary to the spectral projection approach, the least-squares approach allows more freedom
in the selection of the experimental design. However, the accuracy, the efficiency, as measured
in terms of the number of evaluations of the computational model, and the numerical stabil-
ity of the least-squares problem depend on the experimental design. For this reason, different
sampling methods have been investigated in the context of the design-of-experiments field, in-
cluding space-filling designs and optimal designs of experiments; see, for instance, Fajraoui
et al. [2017] and Hadigol and Doostan [2018] for references. As a rule of thumb, the number of
samples in the experimental design is usually chosen to be approximately two to three times the
number of polynomial chaos coordinates.

It should be noted that solving the normal equations in Equation (4.26) is identical to ap-
proximating the polynomial chaos coordinates using a quadrature rule (Equation (4.23)) when
the experimental design and the weights are chosen as the quadrature nodes and weights and the
polynomials up to a total degree of p are also orthonormal with respect to the quadrature rule;
see, for instance, Le Maître and Knio [2010] and Arnst and Ponthot [2014]. Indeed, for weights
and nodes satisfying

λ∑
k=1

w
(k)
λ Ψα(x(k)

λ )Ψβ(x(k)
λ ) = δαβ, ∀α,β ∈ Ap, (4.28)

Equation (4.27) reduces to

ŷα =
λ∑
k=1

w
(k)
λ ykΨα(x(k)

λ ), ∀α ∈ Ap, (4.29)

which is identical to the approximation using a quadrature rule in Equation (4.23). In general,
the polynomial exactness of the quadrature rule plays a role in the differences between the two
approaches. Iskandarani et al. [2016] discussed differences between the spectral projection and
least-squares approaches in the presence of noise data due to, for instance, algorithmic errors. In
this context, the least-square approach has been shown to accommodate noise more efficiently
than the spectral projection approach.

Once a surrogate model based on a polynomial chaos expansion is available, it can serve
as a substitute for the computational model to estimate the probability distribution of Y and its
statistical descriptors. Thanks to the orthonormality of the polynomials, some of the statistical
descriptors of Y can be estimated directly from the polynomial chaos coordinates. For instance,
the mean and the variance of the random variable Y p are given by

mY p = y0, (4.30)

σ2
Y p =

p∑
|α|=1

y2
α, (4.31)

and mY and σ2
Y are estimated as mY p and σ2

Y p , respectively.
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Figure 4.8: Flowchart of the propagation of uncertainties using a surrogate model based on a
polynomial chaos expansion (using either spectral projection or least-squares regression).
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Computational cost

The computational cost of constructing a surrogate model based on a polynomial chaos ex-
pansion depends on the number of evaluations of the computational model. Using a standard
truncation scheme for the polynomial chaos expansion yields a number of polynomial chaos
coordinates that grows rapidly with both p and n. Consequently, the number of training points
required in the experimental design to estimate these polynomial chaos coordinates with suffi-
cient accuracy grows rapidly with both p and n. For instance, the computation of the polyno-
mial chaos coordinates using a quadrature rule exhibits an exponential increase in the number
of quadrature points with the stochastic dimension. For this reason, surrogate models based on
polynomial chaos expansion suffer from the so-called “curse of dimensionality”; the number of
evaluations of the computational model increases exponentially with the stochastic dimension
n. Methods have been developed to mitigate the curse of dimensionality, including maximum
interaction and hyperbolic truncation schemes, (adaptive) sparse polynomial chaos expansions
[Blatman and Sudret, 2010, 2011], or (adaptive) sparse-grid quadrature rules [Smolyak, 1963;
Gerstner and Griebel, 1998, 2003]. Despite these improved methods, surrogate models based
on polynomial chaos expansions remains only a viable option for UQ analysis with a low (O(1–
10)) or moderate (O(10–102)) stochastic dimension.

4.3.2.2 Gaussian-process regression model

Conditional expectation and variance of a Gaussian process

Let {Y (x),x ∈ Rn} be a Gaussian process GP(µ(x),C(x,x′)) with mean function µ(x) and
covariance function C(x,x′) (Section A.4.1). Here, we use the same notation x to denote both
the index of the Gaussian process and the uncertain input parameters and we use the same no-
tation y to denote both the value taken by the Gaussian process and the uncertain quantity of
interest. Let {x1, . . . ,xλ} be a set of locations in Rn where the Gaussian process is observed
and let {y1, . . . , yλ} be the observed values of the Gaussian process at the aforementioned lo-
cations. Then, for any location x∗ in Rn, the conditional probability distribution of the random
variable Y (x∗) is a Gaussian probability distribution with mean µ̂(x∗) and variance σ̂2(x∗)
given by

µ̂(x∗) = µ(x∗) + ΣT (x∗)[Σ]−1(y − µ), (4.32)

σ̂2(x∗) = σ2(x∗)−ΣT (x∗)[Σ]−1Σ(x∗), (4.33)

with µ(x∗) and σ2(x∗) the mean and the variance of the Gaussian process at locationx∗, respec-
tively, y the λ-dimensional vector with entries yi, µ(x∗) the λ-dimensional mean vector with
entries µi = µ(xi), [Σ] the (λ×λ)-dimensional covariance matrix with entries Σij = C(xi,xj),
and Σ(x∗) the λ-dimensional covariance vector with entries Σi(x∗) = C(x∗,xi). More gen-
erally, the conditional field is the Gaussian process GP(µ̂(x), Ĉ(x,x′)) with mean µ̂(x) and
covariance function Ĉ(x,x′) given by

Ĉ(x,x′) = C(x,x′)−ΣT (x)[Σ]−1Σ(x′). (4.34)

As an illustration, Figure 4.9 shows realisations of a Gaussian process and of the corresponding
conditional Gaussian process for a set of observation locations.
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Figure 4.9: (a) Illustration of a Gaussian process with mean zero and Matérn 3/2 covariance
function. The curves show realisations of the Gaussian process. (b) Illustration of the associated
conditional Gaussian process given the observations at the red dots. The green curve is the
conditional mean and the black curves are the conditional mean ± two times the conditional
standard deviation. Other curves are realisations of the conditional Gaussian process.

Surrogate model based on Gaussian-process regression

The principle behind the construction of a Gaussian-process (or kriging) surrogate model is to
consider the mapping x 7→ f(x) as a realisation of a Gaussian process GP(µ(x),C(x,x′))
with mean µ(x) and covariance function C(x,x′). Usually, the mean and the covariance func-
tion are written as

µ(x) = g(x)Tβ, (4.35)

C(x,x′) = σ2R(x,x′;θ), (4.36)

where g(x) = (g1(x), . . . , gp(x)) is a vector of p basis functions, β a vector of p coeffi-
cients, σ2 the constant variance of the Gaussian process, and R(x,x′;θ) the correlation func-
tion of the Gaussian process. We assume the correlation function to be stationary that is
R(x,x′;θ) = R(x+h,x′+h;θ) for all h in Rn. We also assume that the correlation function
depends on a vector θ = (θ1, . . . , θn) of hyperparameters, referred to as the correlation lengths,
which control the strength of the correlation in each direction of the parameter space.

In this context, the experimental design
{
x

(k)
λ , 1 ≤ k ≤ λ

}
is interpreted as the set of lo-

cations where the Gaussian process GP(µ(x),C(x,x′)) is observed and the corresponding so-
lutions to the computation model

{
y(k) = f(x(k)

λ ), 1 ≤ k ≤ λ
}

are interpreted as the observed
values of the Gaussian process at these locations. Then, a Gaussian-process surrogate model is
defined as the conditional mean of the Gaussian process GP(µ(x),C(x,x′)) given the obser-
vations

{
y(k) = f(x(k)

λ ), 1 ≤ k ≤ λ
}

, that is, the mapping

x 7→ fGP(x) = E
[
Y (x)

∣∣∣{Y (x(k)
λ ) = f(x(k)

λ ), 1 ≤ k ≤ λ
}]
≡ µ̂(x), (4.37)
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with
µ̂(x) = g(x)Tβ + ΣT (x)[Σ]−1(y − µ), (4.38)

where we use the same notations as before. It can be shown that the conditional mean of the
Gaussian process is actually the best linear unbiased predictor of f [Santner et al., 2003]. An
estimation of the approximation error is provided by the conditional variance of the Gaussian
process GP(µ(x),C(x,x′)) given the observations

{
y(k) = f(x(k)

λ ), 1 ≤ k ≤ λ
}

, that is,

V
[
Y (x)

∣∣∣{Y (x(k)
λ ) = f(x(k)

λ ), 1 ≤ k ≤ λ
}]
≡ σ̂2(x), (4.39)

with
σ̂2(x) = σ2 −ΣT (x)[Σ]−1Σ(x). (4.40)

More generally, the conditional Gaussian process GP(µ̂(x), Ĉ(x,x′)) with mean µ̂(x) and
covariance function

Ĉ(x,x′) = σ2 −ΣT (x)[Σ]−1Σ(x′) (4.41)

defines a stochastic surrogate model, denoted by F fGP(x), also referred to as the full-Gaussian-
process surrogate model [De Lozzo and Marrel, 2016; Marrel, 2017]. Here, we use a capital
letter to denote the full-Gaussian-process surrogate model to highlight that this surrogate model
is stochastic.

Usually, β, σ2, and θ have to be estimated. The vector of hyperparameters θ is usually
determined by solving an optimisation problem; see, for instance, Santner et al. [2003] and
Dubourg [2011]. For θ fixed, the vector β and the variance σ2 can be estimated as the following
generalised least-square estimates:

β̂ = ([G]T [R]−1[G])−1[G]T [R]−1y, (4.42)

σ̂2 = 1
λ

(y − [G]β)T [R]−1(y − [G]β), (4.43)

with [R] the (λ × λ)-dimensional covariance matrix with entries Rij = R(xi,xj ;θ) and [G]
the (λ× p)-dimensional matrix with entries Gij = gj(xi). Thus, the conditional mean and the
conditional variance of the Gaussian process write as

µ̂(x) = g(x)T β̂ + rT (x)[R]−1(y − [G]β̂), (4.44)

σ̂2(x) = σ̂2(1− rT (x)[R]−1r(x) + uT (x)([G]T [R]−1[G])−1u(x)), (4.45)

where the vector u(x) is given by

u(x) = [G]T [R]−1r(x)− g(x), (4.46)

and r(x) is the λ-dimensional correlation vector with entries ri(x) = R(x,xi;θ).

The basis functions in g(x) are usually taken to be low-order polynomials, that is, the mean
function is often assumed to be a constant, linear, or quadratic function. In one dimension, the
stationary correlation function depends on the distance h between x and x′ and is in general se-
lected in a standard family of correlation functions including the linear, exponential, Gaussian,
and Matérn correlation functions (Figure 4.10). In higher dimensions, correlation functions can
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be built from one-dimensional correlation functions; see, for instance, Rasmussen and Williams
[2006] and Dubourg [2011]. The choice of the covariance function depends on the properties of
the computational model; for instance, Gaussian processes with a Gaussian correlation function
have infinitely differentiable realisations while Gaussian processes with an exponential correla-
tion function have only continuous realisations. Finally, we refer the reader to Figure 4.11 for
an illustration of the propagation of uncertainties using a Gaussian-process surrogate model.
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Figure 4.10: (a) Examples of correlation functions and (b) a realisation of the Gaussian process
for each example of correlation function. The correlation length is θ = 1.

4.3.2.3 Error estimation

Once a surrogate model of the computational model is built, its predictive accuracy can be
assessed by evaluating the relative mean-square error between both models:

E[(Y − Ỹ )2]
E[Y 2] = E[(f(X)− f̃(X))2]

E[f2(X)] . (4.47)

When a new ensemble
{

(x(k), y(k) = f(x(k))), 1 ≤ k ≤ ν
}

of samples can be generated
from the computational model, this error can estimated as

1
ν

∑ν
k=1

(
f(x(k))− f̃(x(k))

)2

1
ν

∑ν
k=1 f

2(x(k))
. (4.48)

This new ensemble of samples is sometimes referred to as the test set in opposition with the
training set that is used to train the surrogate model. When such a test set cannot be generated
due to the computational cost of the computational model, the predictive accuracy of the surro-
gate model can be assessed using K-fold cross-validation on the training set. The idea is to split
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the experimental design into K equally sized disjoint subsets. One of these subsets is used as
a test set and the other K − 1 subsets are used to train the surrogate model. The procedure is
repeated K times, each time with a different subset of the training set as test set and the predic-
tive accuracy of the surrogate model is estimated as the mean predictive error on all test sets. A
special case is obtained for K = λ, thus leading to the so-called leave-one-out cross-validation
error. Considering the experimental design

{
x

(k)
λ , 1 ≤ k ≤ λ

}
and denoting by f̃λ\i the surro-

gate model built on the set of samples
{
x

(1)
λ , . . . ,x(i−1)

λ ,x(i+1)
λ , . . . ,x(λ)

λ

}
, the leave-one-out

cross-validation error writes as ∑λ
k=1

(
f(x(k)

λ )− f̃λ\i(x(k)
λ )

)2

∑λ
k=1 f

2(x(k)
λ )

. (4.49)

For surrogate models based on a polynomial chaos expansion, this error can be computed from
a single polynomial chaos expansion of the full experimental design; see, for instance, Blatman
[2009].

4.3.3 Probabilistic learning on manifolds

When the computational model is computationally expensive, only a limited number of evalua-
tions of this computational model may be carried out at a reasonable computational cost. Such
a limited number of evaluations may not be sufficient to obtain sufficient accuracy in estimating
the probability distribution or statistical descriptors of the quantity of interest and more gener-
ally may be challenging in other applications such as sensitivity analysis, optimisation under
uncertainty, extreme value analysis,. . . As a means of improving the accuracy in such so-called
small-data settings, we briefly address in this section the use of the probabilistic learning on
manifolds (PLoM) method that has been recently introduced by Soize and Ghanem [2016].

We assume that i.i.d. samples x(1), . . . ,x(νir) of the uncertain input parameters have been
generated and the corresponding samples y(1) = f(x(1)), . . . , y(νir) = f(x(νir)) of the quantity
of interest have been obtained by evaluating the computational model. The ensemble{

w(k) = (x(k), y(k)), 1 ≤ k ≤ νir
}

(4.50)

defines the so-called initial dataset that collects the available information about the uncertain
input parameters and the corresponding values of the quantity of interest. Here, the subscript
“ir” stands for initial realisations and νir is the length of the initial dataset and is assumed to
be a small number because only a limited number of evaluations of the computational model
is computationally affordable. In a probabilistic setting, the initial dataset is interpreted as an
ensemble of i.i.d. samples of the Rn+1-valued random vector W = (X,Y ). Here, we assume
that the initial dataset represents the only available information about the random vectorW . As
a means of improving the accuracy of the Monte Carlo method in small-data settings, we are
interested in generating additional realisations ofW to obtain the so-called learned dataset{

w(k) = (x(k), y(k)), 1 ≤ k ≤ νar
}

, (4.51)

where the subscript “ar” stands for additional realisations and νar is the length of the learned
dataset and is assumed to be much larger than νir. It should be noted that the learned dataset is
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generated without resort to the computational model and the additional realisations are gener-
ated to be statistically consistent with the initial dataset so that these additional realisations can
be considered as being sampled from the same probability distribution asW .

As an effective way to build a learned dataset, we discuss in the following the PLoM method.
The PLoM method has been recently introduced in Soize and Ghanem [2016] with complemen-
tary developments in Soize and Ghanem [2017, 2020], Ghanem and Soize [2018], and Soize
et al. [2019]. Hereafter, we briefly review key aspects of this method and we refer the interested
reader to the aforementionned references for further details about the theoretical framework and
applications. The central idea underlying manifold learning and the PLoM method is that a
dataset in a Euclidean space is often concentrated near a lower-dimensional subset, also called
a manifold, of this Euclidean space; see Figure 4.12 for an illustration. Thus, through the iden-
tification of this underlying manifold, one can obtain a reduced-dimensional representation of
the initial dataset that captures its geometric structure. In the PLoM method, the identification
of this underlying manifold is performed by means of the diffusion-map method, a nonlinear
dimension-reduction method that seeks to learn the structure of the manifold by computing the
so-called diffusion maps from a diffusion operator [Coifman et al., 2005; Coifman and Lafon,
2006]. In the first step of the PLoM method, the initial dataset is normalised by means of a
principal component analysis. Then, a probabilistic representation of the random vector W
is built from the normalised initial dataset by using multi-dimensional Gaussian kernel-density
estimation in combination with a reduced-order representation of the normalised initial dataset
using the eigenvectors involved in the construction of the nonlinear diffusion map in order to
preserve the concentration of the samples near the manifold. Finally, this probabilistic represen-
tation is used to generate additional realisations of the random vector W with a Markov chain
Monte Carlo algorithm based on a reduced-order Itô stochastic differential equation [Soize,
2008, 2015]. As an illustration, Figure 4.13 shows the additional realisations generated with the
PLoM method for the initial datasets in Figure 4.12. We can observe that the PLoM method
has preserved the concentration of the additional realisations near the manifold near which the
initial realisations are concentrated.

4.4 Global sensitivity analysis

Sensitivity analysis can be broadly viewed as the study of how different sources of uncertainty in
the computational model contribute to the uncertainty in the quantity of interest. Thus, sensitiv-
ity analysis can serve to ascertain the impact of each source of uncertainty on the uncertainty in
the quantity of interest and rank them in order of significance, to identify non-influential sources
of uncertainty in order to fix them to nominal values, to identify regimes in the parameter space
that impact significantly the model response, and to identify sources of uncertainty that could
be calibrated in order to reduce the uncertainty in the quantity of interest.

Methods for sensitivity analysis are usually classified as either local or global. In the con-
text of local sensitivity analysis, the impact of small perturbations in the input parameters on
the quantity of interest is investigated. Local sensitivity analysis is typically performed by eval-
uating the derivatives of the quantity of interest with respect to the input parameters at specific
points in the parameter space or by using adjoint-based methods for a large number of input
parameters. In contrast to local sensitivity analysis, global sensitivity analysis, which we focus
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Figure 4.12: Examples of noisy data concentrated near a manifold [Soize and Ghanem, 2016].
(a) Data in R2 concentrated near two circles and (b) data in R3 concentrated near a helix.
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Figure 4.13: Examples of additional realisations using the PLoM algorithm for the initial
datasets in Figure 4.12. (a) Additional realisations concentrated near two circles and (b) ad-
ditional realisations concentrated near a helix. Parameters of the PLoM algorithm are taken
from Soize and Ghanem [2016].

on in the following, aims at assessing how the whole uncertainty in the quantity of interest can
be apportioned to each source or each combination of sources of uncertainty when considering
the whole range of variation of the sources of uncertainty.

Several methods have been proposed in the literature for global sensitivity analysis; see, for
instance, Saltelli et al. [2008] and Ghanem et al. [2017] for textbooks and Iooss and Lemaître
[2015] for a review paper. In the following, we focus on methods based on importance mea-
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sures, also referred to as quantitative sensitivity indices, including essentially variance-based
sensitivity indices, but also Pearson correlation coefficients and sensitivity indices based on the
Hilbert-Schmidt independence criterion.

4.4.1 Pearson correlation coefficients

The Pearson correlation coefficient is a measure of the linear correlation between two random
variables. The Pearson correlation coefficient between the random variable Xi, 1 ≤ i ≤ n, and
the random variable Y is defined by

ρ(Xi,Y ) = Cov(Xi,Y )√
V[Xi]V[Y ]

= E[Xi − E[Xi]]E[Y − E[Y ]]√
V[Xi]V[Y ]

. (4.52)

The Pearson correlation coefficient equals 1 or −1 if there exists a perfect positive or nega-
tive linear relationship between Xi and Y and is equal to 0 for independent random variables.
Thus, the Pearson correlation coefficient is usually inappropriate when dealing with nonlinear
and non-monotonic relationships and interactions between the input parameters.

Given an ensemble of i.i.d. samples
{
x(k), 1 ≤ k ≤ ν

}
of the uncertain input parameters

and the corresponding ensemble
{
y(k) = f(x(k)), 1 ≤ k ≤ ν

}
of solutions to the computational

model, Monte Carlo estimates of the Pearson correlation coefficients are obtained as

ρν(Xi,Y ) =
∑ν
k=1(x(k)

i −mν
Xi

)(y(k) −mν
Y )√∑ν

k=1(x(k)
i −mν

Xi
)2∑ν

k=1(y(k) −mν
Y )2

, 1 ≤ i ≤ n, (4.53)

with

mν
Xi = 1

ν

ν∑
k=1

x
(k)
i , (4.54)

mν
Y = 1

ν

ν∑
k=1

y(k). (4.55)

When the computational model has a high computational cost that prohibits the use of the Monte
Carlo sampling method, a surrogate model, or a learning algorithm can be used instead of the
computational model.

4.4.2 Variance-based sensitivity indices

Variance-based sensitivity indices, also called Sobol indices, provide for each uncertain param-
eter or group of uncertain parameters a sensitivity index that quantifies the relative contribution
of the uncertainty in this uncertain parameter or group of uncertain parameters to the variance of
the quantity of interest. Variance-based sensitivity indices are often defined based on a decom-
position of the mapping f between the uncertain input parameters and the quantity of interest
into component functions. In this section, we follow this approach to define the Sobol indices
and we discuss methods to estimate these sensitivity indices. We refer the reader to, for instance,
Owen [2013], Sobol [2001], Saltelli [2002], and Oakley and O’Hagan [2004] for complemen-
tary details about Sobol indices and to a recent co-authored manuscript by Arnst et al. [2019]
about the computation of Sobol indices using the PLoM algorithm.
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4.4.2.1 HDMR decomposition

Let us assume that the random vector X has independent components and the random variable
Y = f(X) is of the second order. The high-dimensional model representation (HDMR) of f
writes as

f(x) = f∅ +
n∑
i=1

f{i}(xi) +
n∑
i=1

n∑
i<j

f{i,j}(xi,xj) + . . .+ f{1,...,n}(x1, . . . ,xn)

=
∑

u∈P({1,...,n})
fu(xu),

(4.56)

with ∫
R
fu(xu)PXi(dxi) = 0, ∀i ∈ u, ∀u ∈ P({1, . . . ,n}). (4.57)

Here, P({1, . . . ,n}) denotes the collection of all subsets of {1, . . . ,n} and u = (i1, . . . , i|u|)
denotes a set in P({1, . . . ,n}) of cardinality |u|. The notation xu = (xi1 , . . . ,xi|u|) denotes
the subvector of the input parameters whose components are indexed by the indices in u; by
convention x∅ = 1 for u = ∅ and we use the shorthand i to denote the singleton u = {i}. In
the following, we also denote by ∼u the complement of u in {1, . . . ,n}. For two subvectors
u and v, we denote by u ⊆ v that u is a subset of v and by u ( v that u is a proper subset of v.

The conditions in Equation (4.57) define orthogonality constraints on the summands of
Equation (4.56) that ensure the existence and uniqueness of the HDMR. It follows from Equa-
tion (4.57) that all non-constant summands in Equation (4.56) have zero mean. Another conse-
quence of Equation (4.57) is that

E[Y ] =
∫
Rn
f(x)PX(dx) = f∅, (4.58)

E[fu(Xu)fv(Xv)] =
∫
Rn
fu(xu)fv(xv)PX(dx) = 0, ∀u 6= v ∈ P({1, . . . ,n}), (4.59)

that is, f∅ is the mean value of Y and the summands in Equation (4.56) are orthogonal in pairs
with respect to the probability distribution PX . Thus, the HDMR provides a decomposition
of a function of a random vector as a sum of uncorrelated terms, also called factors, where
the sum is made up of a constant function, univariate functions {fi(xi), 1 ≤ i ≤ n}, bivariate
functions, . . . , and an n-variate function f{1,...,n}(x1, . . . ,xn). The univariate factor fi(xi) is the
so-called main effect associated with the uncertain parameter xi and the factors for subvectors u
of cardinality larger than one are the so-called interaction effects. The total interaction effect is
given by

fI(x) = f(x)− f∅ −
n∑
i=1

fi(xi) =
∑

u∈P({1,...,n}),|u|>1
fu(xu). (4.60)

The factor fu in Equation (4.56) can be determined either from the solution of a regression
problem or from the conditional expectation of Y given the random vectorXu; see, for instance,
Oakley and O’Hagan [2004] and Owen [2013]. The second approach leads to the following
recursive manner to compute the factors in Equation (4.56):

f∅ = E[f(X)] =
∫
Rn
f(x)PX(dx), (4.61)
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fi(xi) = E[f(X)|Xi = xi]− f∅ =
∫
Rn−1

f(x)PX∼i(dx∼i)− f∅, (4.62)

fu(xu) = E[f(X)|Xu = xu]−
∑
v(u

fv(xv)

=
∫
Rn−|u|

f(x)PX∼u(dx∼u)−
∑
v(u

fv(xv).
(4.63)

It should be mentioned that under certain assumptions, the HDMR can be extended to de-
pendent uncertain input parameters, from which can be deduced generalised variance-based
sensitivity indices; see, for instance, Chastaing [2013] and Chastaing et al. [2012, 2015]. Yet,
these generalised variance-based sensitivity indices may lack interpretability and for the sake of
simplicity, we do not discuss them in this manuscript.

4.4.2.2 Sobol indices

Thanks to the orthogonality of the summands in Equation (4.56), the variance of Y can be
decomposed as

V[Y ] = V[f(X)]

=
n∑
i=1

V[fi(Xi)] +
n∑
i=1

n∑
i<j

V[f{i,j}(Xi,Xj)] + . . .+ V[f{1,...,n}(X1, . . . ,Xn)]

=
∑

u∈P({1,...,n})
V[fu(Xu)].

(4.64)

This decomposition leads to the definition of the Sobol indices.

Definition 4.1 (Sobol index). The Sobol index Su of order |u| measuring the contribution of
the variableXu in the model Y = f(X) is given by

Su = V[fu(Xu)]
V[Y ] =

V[E(Y |Xu)] +∑
v(u(−1)|u|−|v|V[E(Y |Xv)]
V[Y ] . (4.65)

In particular, the Sobol index of order 1 measuring the contribution of the variable Xi writes as

Si = V[fi(Xi)]
V[Y ] = V[E(Y |Xi)]

V[Y ] . (4.66)

Thus, the Sobol index Su represents the relative portion of the variance of Y that is ex-
plained by the factor fu(Xu) in the HDMR. In particular, the Sobol index Si, also called the
first-order sensitivity index or main effect index for the random variable Xi, represents the rel-
ative portion of the variance of Y that is explained by the random variable Xi independently
of the other random variables. Hence, the random variable Xi has a significant impact on the
variability of the quantity of interest, as measured by its variance, when Si is close to 1, whereas
it has a negligible impact when Si is to close to 0. In addition, the model is “free” of interactions
if
∑n
i=1 Si is close to 1.
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The Sobol index Su measures the contribution of the random subvector Xu to the variance
of Y while neglecting the interactions with other subvectors. Another way to describe the impact
of the random variables indexed by the indices in u is to consider the closed Sobol index.

Definition 4.2 (Closed Sobol index). The closed Sobol index Su of order |u| measuring the
contribution of the variablesXi1 , . . . ,Xi|u| in the model Y = f(X) is given by

Sclo
u =

∑
v⊆u

Sv. (4.67)

Thus, the closed Sobol index Su can be interpreted as the portion of the variance of the
uncertain quantity of interest that is explained as stemming from the uncertain input parame-
ters indexed by the indices i1, . . . , i|u|. Please note that the closed Sobol indices of order 1 are
equivalent to the first-order Sobol indices.

In practice, the computation of Sobol indices is often limited to the first-order sensitivity
indices, which we focus on in the following. Please note that the estimation methods presented
hereafter can be readily extended to the estimation of any closed Sobol index Su.

4.4.2.3 Estimation of Sobol indices using Monte Carlo sampling

The Sobol index in Equation (4.66) can be rewritten as

Si = Cov(f(Xi,X∼i), f(Xi,X ′∼i))
V[f(Xi,X∼i)]

, (4.68)

where X∼i = (X1, . . . ,Xi−1,Xi+1, . . . ,Xn) and X ′∼i denotes an independent copy of X∼i;
see, for instance, Janon et al. [2014] for a proof of Equation (4.68). Then, Monte Carlo estimates
of Equation (4.68) yield Monte Carlo estimates of the Sobol index Si.

A typical implementation of the Monte Carlo sampling method for Sobol indices goes as
follows. Let {

(x(k)
i ,x(k)

∼i , y(k)), 1 ≤ k ≤ ν
}

, in which y(k) = f(x(k)
i ,x(k)

∼i ), (4.69){
(x(k)
i ,x′(k)

∼i , y′(k)), 1 ≤ k ≤ ν
}

, in which y′(k) = f(x(k)
i ,x′(k)

∼i ) (4.70)

be two ensembles of sample values of the uncertain input parameters that share the same i.i.d. sam-
ples for Xi but have different i.i.d. samples for the other random variables along with the corre-
sponding sample values of the quantity of interest evaluated by using the computational model.
A Monte Carlo estimate Sνi of Si, described in reference [Homma and Saltelli, 1996], is then
obtained as

Sν,Hom
i =

1
ν

∑ν
k=1 y

(k)y′(k) −
(

1
ν

∑ν
k=1 y

(k)
) (

1
ν

∑ν
k=1 y

′(k)
)

1
ν

∑ν
k=1(y(k))2 −

(
1
ν

∑ν
k=1 y

(k)
)2 , (4.71)

or by noting that E[f(Xi,X∼i)] = E[f(Xi,X ′∼i)], we obtain the following Monte Carlo esti-
mate due initially to Sobol [1993]:

Sν,Sob
i =

1
ν

∑ν
k=1 y

(k)y′(k) −
(

1
ν

∑ν
k=1 y

(k)
)2

1
ν

∑ν
k=1(y(k))2 −

(
1
ν

∑ν
k=1 y

(k)
)2 . (4.72)
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Another Monte Carlo estimate of Si described by Janon et al. [2014] writes as

Sν,Jan
i =

1
ν

∑ν
k=1 y

(k)y′(k) −
(

1
ν

∑ν
k=1

[
y(k)+y′(k)

2

])2

1
ν

∑ν
k=1

[
(y(k))2+(y′(k))2

2

]
−
(

1
ν

∑ν
k=1

[
y(k)+y′(k)

2

])2 . (4.73)

Thus evaluating the first-order sensitivity indices for the n components of X using Equa-
tions (4.71), Equation (4.72), or Equation (4.73) requires a total of ν × (n + 1) evaluations of
the computational model. In addition, the accuracy of these estimates improves as the square
root of the number ν of samples, with the estimate in Equation (4.73) that performs better than
the estimates in Equations (4.71) and (4.72); see, for instance, Janon et al. [2014]. For these
reasons, the evaluations of Sobol indices with Monte Carlo sampling can become prohibitive
for computational models with a high computational cost or a high stochastic dimension n.
As for the propagation of uncertainties, much research has thus been dedicated in the field of
uncertainty quantification to develop methods that seek to alleviate the computational cost of
estimating Sobol indices with Monte Carlo sampling. These methods include methods based on
surrogate models (Section 4.4.2.5) or learning algorithms (Section 4.4.2.6).

4.4.2.4 Estimation of Sobol indices using nonparametric kernel methods

The principle of nonparametric kernel methods for the estimation of Sobol indices is to ap-
proximate the main effects in Equation (4.62) using nonparametric kernel regression; see, for
instance, Luo et al. [2014]. These method rely on the following equivalent formulation of the
main effect fi(xi):

fi(xi) = E[Y |Xi = xi] =
∫
R
yρY |Xi(y|xi)dy =

∫
R yρ(Y ,Xi)(y,xi)dy∫
R ρ(Y ,Xi)(y,xi)dy

, (4.74)

where, if they exist, ρY |Xi is the conditional probability density function of Y given Xi and
ρ(Y ,Xi) is the joint probability density function of the random vector (Y ,Xi). The joint proba-
bility density function ρ(Y ,Xi) can then be estimated using kernel density estimation as

ρ(Y ,Xi) ≈ ρν(Y ,Xi) = 1
ν

ν∑
k=1

KY (y − y(k))KXi(x− x
(k)
i ). (4.75)

Here, KY is a univariate kernel for the uncertain quantity of interest, KXi is a univariate kernel
for the uncertain input parameter xi, and{

(x(k)
i ,x(k)

∼i , y(k)), 1 ≤ k ≤ ν
}

, in which y(k) = f(x(k)
i ,x(k)

∼i ), (4.76)

is an ensemble of i.i.d. sample values of the uncertain input parameters along with the corre-
sponding values of the quantity of interest evaluated by using the computational model. Please
note that both kernels depend on a bandwidth parameter that has to be appropriately chosen.
Provided that KY satisfies the moment conditions∫

R
KY (y − y(k))dy = 1,

∫
R
yKY (y − y(k))dy = y(k), (4.77)
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the numerator and denominator in Equation (4.74) can be estimated as∫
R
yρ(Y ,Xi)(y,xi)dy ≈

∫
R
yρν(Y ,Xi)(y,xi)dy

= 1
ν

ν∑
k=1

∫
R
yKY (y − y(k))dy︸ ︷︷ ︸

=y(k)

KXi(x− x
(k)
i )

= 1
ν

ν∑
k=1

y(k)KXi(x− x
(k)
i ),

(4.78)

∫
R
ρ(Y ,Xi)(y,xi)dy ≈

∫
R
ρν(Y ,Xi)(y,xi)dy

= 1
ν

ν∑
k=1

∫
R
KY (y − y(k))dy︸ ︷︷ ︸

=1

KXi(x− x
(k)
i )

= 1
ν

ν∑
k=1

KXi(x− x
(k)
i ),

(4.79)

thus leading to the following kernel-based estimate of fi(xi):

fKDE
i (xi) =

1
ν

∑ν
k=1 y

(k)KXi(x− x
(k)
i )

1
ν

∑ν
k=1 KXi(x− x

(k)
i )

. (4.80)

The Sobol index Si is then approximated as

SKDE
i = V[fKDE

i (Xi)]
V[Y ] , (4.81)

where V[fKDE
i (Xi)] and V[Y ] can be estimated using a numerical integration scheme such as

trapezoidal quadrature rules, Gaussian quadrature rules, or Monte Carlo integration; see Luo
et al. [2014] for a discussion.

Evaluating the first-order sensitivity indices for the n components of X using nonparamet-
ric kernel methods requires a total of ν evaluations of the computational model as the same
ensemble of samples of the uncertain input parameters can be used to evaluate each sensitivity
index. Yet, similarly to Monte Carlo sampling methods, nonparametric kernel methods may
require a large number of samples to obtain sufficient accuracy of the Sobol estimates. Thus,
the evaluation of Sobol indices with nonparametric kernel methods can also be prohibitive for
computational models with a high computational cost.

4.4.2.5 Estimation of Sobol indices using surrogate models

Surrogate model based on a polynomial chaos expansion

Let us consider a truncated polynomial chaos expansion of order p of the second-order random
variable Y = f(X), that is,

Y ≈ Y p =
p∑

|α|=0
yαΨα(X), (4.82)
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where X has independent components, the Ψα are orthonormal polynomials with respect to
PX , |α| is the polynomial order, and the scalars yα are the polynomial chaos coordinates.

The truncated polynomial chaos expansion of a random variable lends itself to a practical
estimation of Sobol sensitivity indices; see, for instance, Sudret [2008] and Crestaux et al.
[2009]. By defining Api as the set of multi-indices in Ap with non-zero cardinality whose only
non-zero component is αi, that is,

Api = {α ∈ Ap : αi > 0,αj = 0 ∀j 6= i} , (4.83)

the polynomial ∑
α∈Api

yαΨα(X) (4.84)

is in fact the main effect associated with the uncertain input parameter xi for the random vari-
able Y p. In addition, the variance of Y can be approximated as

V[Y ] ≈ V[Y p] =
p∑

|α|=1
y2
α. (4.85)

Thus, the first-order sensitivity index Si can be approximated as

SPCE
i = V[E(Y p|Xi)]

V[Y p] =
∑
α∈Api y

2
α∑p

|α|=1 y
2
α

. (4.86)

Surrogate model based on Gaussian-process regression

Let the mapping x 7→ f(x) be a realisation of a Gaussian process GP(µ(x),C(x,x′)) indexed
by Rn and defined on ΘGP with mean µ(x) and covariance function C(x,x′) = σ2R(x,x′).
In this context, two approaches can be considered for the evaluation of Sobol indices; see, for
instance, Marrel et al. [2009].

In the first approach, Sobol indices are estimated by substituting the conditional mean for
the computational model, that is, we consider the following Gaussian-process surrogate model

x 7→ fGP(x) = µ̂(x), (4.87)

where the conditional mean µ̂(x) is given by Equation (4.38). Thus, the first-order sensitivity
index Si can be approximated as

SGP
i = V[E(fGP(X)|Xi)]

V[fGP(X)] . (4.88)

Equation (4.88) can be estimated using Monte Carlo sampling and the formulas in Equation (4.71),
Equation (4.72), or Equation (4.73).

In the second approach, Sobol indices are estimated by substituting the conditional Gaussian
process for the computational model, that is, we consider the full-Gaussian-process surrogate
model (see Section 4.3.2.2)

x 7→ F fGP(x) = GP(µ̂(x), Ĉ(x,x′)), (4.89)
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where the conditional mean µ̂(x) is given by Equation (4.38) and the conditional covariance
function by Equation (4.41). Thus, the Sobol indices obtained when substituting the computa-
tional model with the full-Gaussian-process surrogate model write as

SfGP
i = V[E(F fGP(X)|Xi)]

V[F fGP(X)] , 1 ≤ i ≤ n. (4.90)

Here, the mathematical expectation and the variance are taken with respect to the random vec-
tor X . Thus, SfGP

i is a random variable defined on the sample space ΘfGP. In this context,
the expectation EΘfGP [SfGP

i ] of SfGP
i can serve as an approximation of Si and its variance

VΘfGP [SfGP
i ] as an indicator of the uncertainty in approximating Si with EΘfGP [SfGP

i ] due to
the representation of the computational model with the full-Gaussian-process surrogate model.
Here, the notations EΘfGP and VΘfGP are used to indicate that the mathematical expectation and
the variance are taken in the sample space ΘfGP.

Le Gratiet et al. [2014] proposed a Monte Carlo sampling method to estimate EΘfGP [SfGP
i ]

and VΘfGP [SfGP
i ]. Let f fGP(x; θ), θ in ΘGP, denote a realisation of F fGP(x). Let{

(x(k)
i ,x(k)

∼i ), 1 ≤ k ≤ ν
}

, (4.91){
(x′(k)
i ,x′(k)

∼i ), 1 ≤ k ≤ ν
}

, (4.92)

be two ensembles of samples of the uncertain input parameters that share the same i.i.d. samples
for Xi but have different i.i.d. samples for the other random variables and{

y(k) = f fGP(x(k)
i ,x(k)

∼i ; θ), 1 ≤ k ≤ ν
}

, (4.93){
y′(k) = f fGP(x(k)

i ,x′(k)
∼i ; θ), 1 ≤ k ≤ ν

}
(4.94)

be the two corresponding ensembles of solutions to the surrogate model f fGP(x; θ). Using
Equation (4.73), SfGP

i (θ) can be estimated as

SfGP
i (θ) ≈

1
ν

∑ν
k=1 y

(k)y′(k) −
(

1
ν

∑ν
k=1

[
y(k)+y′(k)

2

])2

1
ν

∑ν
k=1

[
(y(k))2+(y′(k))2

2

]
−
(

1
ν

∑ν
k=1

[
y(k)+y′(k)

2

])2 . (4.95)

Then, for an ensemble
{
θ(k), 1 ≤ k ≤ κ

}
of i.i.d. samples in ΘGP, the Sobol index Si is esti-

mated as

EΘGP [SfGP
i ] ≈ 1

κ

κ∑
k=1

SfGP
i (θ(k)) ≡ mκ

SfGP
i

, (4.96)

and its variance is estimated as

VΘGP [SfGP
i ] ≈ 1

κ

κ∑
k=1

(SfGP
i (θ(k))−mκ

SfGP
i

)2. (4.97)

In practice, realisations of the Gaussian process can be generated by using a Cholesky decom-
position or by using a conditional simulation algorithm when n is large; see, for instance, Emery
[2007], Chilès and Delfiner [2012], and Emery et al. [2014].
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4.4.2.6 Estimation of Sobol indices using probabilistic learning on manifolds

The PLoM algorithm discussed in Section 4.3.3 can provide an alternative to Monte Carlo meth-
ods for the computation of Sobol indices in small-data settings. This topic has been recently
explored by Arnst et al. [2019], a reference to which we refer for futher details. In Arnst et al.
[2019], additional realisations of the random vector (X,Y ) generated with the PLoM algorithm
are used to estimate the Sobol indices with a nonparametric kernel method (Section 4.4.2.4).
Arnst et al. [2019] have demonstrated the interest of the PLoM method for global sensitiv-
ity analysis when the initial dataset encapsulates sufficient information to allow the learning
method to build a consistent probabilistic representation of the data; see Section 7.3 where the
numerical illustration in Arnst et al. [2019] is reported.

4.4.3 Generalised sentivity indices

Sobol indices measure the impact of each uncertain input parameter on Y through their contri-
bution to the variance of Y . For this reason, they provide only limited insight into the impact of
each uncertain input parameter on the probability distribution of Y . In addition, Sobol indices
do not generalise readily to multivariate quantities of interest. Recent work has thus been dedi-
cated to introducing new sensitivity indices that go beyond the Sobol indices; see, for instance,
Owen [2014], Da Veiga [2015], and Rahman [2016]. In this subsection, we review briefly some
of these generalised sensitivity indices.

From a broad perspective, Da Veiga [2015] proposed to use the concept of dissimilarity
measure between the probability distribution PY and the conditional probability distribution
PY |Xi to quantify the impact of Xi on Y . Formally, Da Veiga [2015] defined the following
family of sensitivity indices:

E(d(PY ,PY |Xi)), (4.98)

where d(·, ·) denotes a dissimilarity measure between two probability distributions and the ex-
pectation is with respect to Xi. The idea behind the family of sensitivity indices in Equa-
tion (4.98) is that if PY and PY |Xi are similar in some sense, then Xi has little impact on Y ,
while if PY and PY |Xi are dissimilar in some sense, then Xi has a significant impact on Y .
Da Veiga [2015] discussed different dissimilarity measures based on the Csiszár-f -divergences,
including the Kullback-Leibler divergence. It should be mentioned that the unnormalised Sobol
index is a special case of Equation (4.98) for the dissimilarity measure

d(PY ,PY |Xi) = (E[Y ]− E[Y |Xi])2, (4.99)

that is, the dissimilarity between PY and PY |Xi is measured as the square of the difference be-
tween their mean values.

Alternatively, Da Veiga [2015] proposed to build sensitivity indices using the concept of de-
pendence measure between Xi and Y , where a dependence measure compares in some way the
joint probability distribution of Xi and Y and the product of their marginal probability distribu-
tions. The idea is that if Xi and Y are weakly dependent, then Xi has little impact on Y while
if Xi and Y are strongly dependent in some sense, then Xi has a significant impact on Y . An
example of such a dependence measure is based on the Hilbert–Schmidt independence criterion
(HSIC) [Gretton et al., 2005]. This criterion builds upon kernel-based methods in reproducing
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kernel Hilbert spaces (RKHSs) [Aronszajn, 1950; Rasmussen and Williams, 2006] and cross-
covariance operators for detecting dependence between random variables. More formally, let
us consider a first RKHS F of functions from X = R into R with kernel kX and inner product
〈·, ·〉F and a second RKHS G of functions from Y = R to R with kernel kY and inner product
〈·, ·〉G . By definition, the cross-covariance operator CXiY associated with the joint probability
distribution of Xi and Y is the linear operator from G into F defined for every f in F and g in
G by

〈f ,CXiY g〉F = Cov(f(Xi), g(Y )), (4.100)

that is, the cross-covariance operator provides a generalisation of the covariance function be-
tween Xi and Y by allowing to represent nonlinear correlations between Xi and Y through the
use of nonlinear kernels. Then, the HSIC between Xi and Y is defined as the square Hilbert-
Schmidt norm of the cross-covariance operator, that is,

HSIC(Xi,Y ) = ‖CXiY ‖2HS =
∑
k,l∈N

Cov(fk(Xi), gl(Y )), (4.101)

where the fk and the gl are orthonormal basis functions of F and G, respectively. Gretton et al.
[2005] showed that HSIC(Xi,Y ) can be written equivalently as

HSIC(Xi,Y ) = E(Xi,X′i,Y ,Y ′)[kX (Xi,X ′i)kY(Y ,Y ′)]
+ E(Xi,X′i)[kX (Xi,X ′i)]E(Y ,Y ′)[kY(Y ,Y ′)]
− 2E(Xi,Y )

[
EX′i [kX (Xi,X ′i)]EY ′ [kY(Y ,Y ′)]

]
.

(4.102)

where X ′i and Y ′ are independent copies of Xi and Y , respectively. The HSIC between Xi and
Y is zero if Xi and Y are independent. Finally, Da Veiga [2015] introduced the following HSIC
sensitivity index

SHSIC
i = HSIC(Xi,Y )√

HSIC(Xi,Xi)HSIC(Y ,Y )
. (4.103)

Assuming
{

(x(k)
i ,x(k)

∼i ), 1 ≤ k ≤ ν
}

to be an ensemble of i.i.d samples of the uncertain input

parameters and
{
y(k) = f(x(k)

i ,x(k)
∼i ), 1 ≤ k ≤ ν

}
to be the corresponding ensemble of sam-

ples of the quantity of interest evaluated by using the computational model, Gretton et al. [2005]
proposed the following consistent estimate of HSIC(Xi,Y ):

HSICν(Xi,Y ) = 1
ν2 Tr([KX ][H][KY ][H]), (4.104)

with [KX ] and [KY ] the (ν × ν)-dimensional matrices with entries KXkl = kX (x(k)
i ,x(l)

i )
and KYkl = kY(y(k), y(l)) and [H] is the ν-dimensional diagonal matrix with entries Hkl =
δkl − 1/ν. The evaluation of the estimate (4.104) can be sped-up with a surrogate model.

4.5 Numerical examples

4.5.1 Propagation of uncertainties: Branin function

To illustrate UQ methods for the propagation of uncertainties, we consider the Branin function
(Figure 4.14), which is used as a benchmark function for surrogate modelling [Forrester et al.,
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2008; Picheny et al., 2013]:

y = f(x) =
(
x2 −

5.1
(2π)2x

2
1 + 5

π
x1 − 6

)2
+ 10

(
1− 1

8π

)
cosx1 + 10. (4.105)

The uncertain input variables x1 and x2 are modelled as two independent uniform random vari-
ables X1 ∼ U [−5, 10] and X2 ∼ U [0, 15] and the uncertain quantity of interest y is modelled
as the random variable Y = f(X).
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Figure 4.14: Representation of the Branin function.

4.5.1.1 Monte Carlo sampling

We used the Monte Carlo sampling method as described in Section 4.3.1 to estimate the mean
and the standard deviation of the uncertain quantity of interest. We used for ν values up
to 10 000. Figures 4.15 and 4.16 show the convergence of the Monte Carlo estimates for the
mean and the standard deviation, respectively. We carried out the computation ten times to
provide an overview of the dispersion of the estimates. The dispersion in the Monte Carlo
estimates for ν = 10 000 for the ten experiments indicates that the results are not (sufficiently)
converged even with 10 000 samples. Using the central limit theorem for the Monte Carlo
estimator [Dudley, 2002; Robert and Casella, 2013], we determined a 95%-confidence interval
of 54.2886± 1.0642 for the Monte Carlo estimates of the mean and of 51.2414± 0.9444 for
the Monte Carlo estimates of the standard deviation obtained with ν = 10 000 samples.

4.5.1.2 Surrogate models

To reduce the number of evaluations of the computational model in estimating statistical descrip-
tors of Y , we built surrogate models of the computational model as discussed in Section 4.3.2.
Here, we considered four different kinds of surrogate models:
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Figure 4.15: Convergence analysis: convergence of Monte Carlo estimates of the mean of the
uncertain quantity of interest as a function of the number of samples ν.
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Figure 4.16: Convergence analysis: convergence of Monte Carlo estimates of the standard de-
viation of the uncertain quantity of interest as a function of the number of samples ν.

1. For the first kind of surrogate models, we considered surrogate models based on polyno-
mial chaos expansions for which we determined the polynomial chaos coordinates using
nonintrusive spectral projection (NISP). We used multivariate polynomials set up as the
products of scaled Gauss–Legendre polynomials. We built the experimental designs from
the nodes of fully tensorised scaled Gauss–Legendre quadrature integration rules, with the
size of the experimental equal to (p+ 1)2 for a polynomial chaos expansion of order p.

2. For the second kind of surrogate models, we considered surrogate models based on poly-
nomial chaos expansions for which we determined the polynomial chaos coordinates us-
ing least-squares regression. We used multivariate polynomials set up as the products
of scaled Gauss–Legendre polynomials. We generated the experimental designs using a
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Latin hypercube sampling scheme, with the size of the experimental equal to (p + 1)2

for a polynomial chaos expansion of order p. As we constructed the training points by
using a Latin hypercube sampling design, we used least-squares regression with a diag-
onal weight matrix [W ] with equal weights Wii = 1/λ (1 ≤ i ≤ λ). We refer to this
regression method as ordinary least squares (OLS) in the following.

3. For the third kind of surrogate models, we considered surrogate models based on Gaussian-
process regression with constant mean and Gaussian covariance function. We generated
the experimental designs using a Latin hypercube sampling scheme.

4. For the fourth kind of surrogate models, we considered surrogate models based on Gaussian-
process regression with constant mean and Matérn-5/2 covariance function. We generated
the experimental designs using a Latin hypercube sampling scheme.
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Figure 4.17: Relative mean-square error between the Branin function and its approximation
with a surrogate model as a function of the number of samples λ in the experimental design.

Figure 4.17 shows the relative mean-square error (see Equation (4.47)) between the Branin
function and the four surrogate models as a function of the size of the experimental design.
We can observe that the relative mean-square error decreases reasonably for all surrogate mod-
els, with surrogate models based on a polynomial chaos expansion that achieve in general a
lower relative mean-square error than surrogate models based on Gaussian-process regression,
especially for larger experimental designs. Surrogate models based on a polynomial chaos ex-
pansion using NISP achieve a lower relative mean-square error than surrogate models based on
a polynomial chaos expansion using OLS. Indeed, in the absence of noise in the data, spectral
projection leads to the optimal surrogate model based on a polynomial chaos expansion of order
p in terms of the mean-square error. In addition, surrogate models based on Gaussian-process re-
gression with Gaussian covariance function achieve a lower relative mean-square error than sur-
rogate models based on Gaussian-process regression with Matérn-5/2 covariance function. This
results from the Branin function being infinitely differentiable and sample paths of Gaussian
process with Gaussian covariance function being infinitely differentiable. We also represented
in Figure 4.20 surrogate models based on polynomial chaos expansions of different orders and
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in Figure 4.21 surrogate models based on Gaussian-process regression for various sizes of the
experimental design.
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Figure 4.18: Convergence analysis: convergence of surrogate-based estimates of the mean of the
uncertain quantity of interest as a function of the size λ of the experimental design. The dashed
lines represent the 95%-confidence interval for the Monte Carlo estimates based on ν = 10 000
samples.
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Figure 4.19: Idem as in Figure 4.15 but for the standard deviation of the uncertain quantity of
interest.

We used the surrogate models to estimate the mean and the variance of the uncertain quantity
of interest either directly from the polynomial chaos coordinates (Equations (4.30) and (4.31))
or using Monte Carlo sampling for surrogate models based on Gaussian-process regression with
ν = 106. Figures 4.18 and 4.19 show the convergence of the surrogate-based estimates for
the mean and the standard deviation, respectively, as a function of the number of samples λ in
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the experimental design. We can observe that reasonable convergence is already achieved after
a few tens of samples (λ > 60) in the experimental design, thus suggesting that the use of a
surrogate model can effectively reduce the number of evaluations of the computational model
to estimate the statistical descriptors. Figure 4.22 compares the kernel density estimate of the
probability density function of Y obtained by using Monte Carlo sampling (ν = 106) with the
kernel density estimates obtained with the surrogate models. The probability density function of
the uncertain quantity of interest is bimodal and thus can be difficult to estimate. We can observe
that surrogate models provide a poor estimation of the probability density function for small
experimental designs but the estimation improves for larger experimental designs (λ ≥ 25).

4.5.2 Sensitivity analysis: Ishigami function

To illustrate UQ methods for sensitivity analysis, we consider the so-called Ishigami function,
which is used as a benchmark function for sensitivity analysis [Saltelli et al., 2008; Sudret, 2008;
Crestaux et al., 2009]:

y = f(x) = sin x1 + a sin2 x2 + b x4
3 sin x1, (4.106)

with a = 7 and b = 0.1. The uncertain input variables x1, x2, and x3 are modelled as three
independent uniform random variables X1 ∼ U [−π,π], X2 ∼ U [−π,π], and X3 ∼ U [−π,π]
and the uncertain quantity of interest y is modelled as the random variable Y = f(X). In the
following, we will focus mainly on the first-order Sobol indices as sensitivity indices.

First-order Sobol indices of the Ishigami function can be evaluated analytically. Indeed, the
HDMR of the Ishigami function writes as

f(x) = f∅ + fX1(x1) + fX2(x2) + fX3(x3) + fI(x), (4.107)

with

f∅ = 1
8π3

∫ π

−π

∫ π

−π

∫ π

−π
f(x)dx1dx2dx3 = a

2 , (4.108)

fX1(x1) = 1
4π2

∫ π

−π

∫ π

−π
f(x)dx2dx3 − f∅ = (1 + π4

5 b) sin x1, (4.109)

fX2(x2) = 1
4π2

∫ π

−π

∫ π

−π
f(x)dx1dx3 − f∅ = −a2 cos(2x2), (4.110)

fX3(x3) = 1
4π2

∫ π

−π

∫ π

−π
f(x)dx1dx2 − f∅ = 0, (4.111)

fI(x) = f(x)− f∅ − fX1(x1)− fX2(x2)− fX3(x3)

= −π
4

5 b sin x1 + b x4
3 sin x1.

(4.112)

The variance of the factors are given by

V[fX1(X1)] = 1
2π

∫ π

−π
f2
X1(x1)dx1 = 1

2 + bπ4

5 + b2π8

50 , (4.113)

V[fX2(X2)] = 1
2π

∫ π

−π
f2
X2(x2)dx2 = a2

8 , (4.114)
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Figure 4.20: Illustrations of surrogate models of the Branin function based on polynomial chaos
expansions. Polynomial chaos coordinates are evaluated using either nonintrusive spectral pro-
jection (NISP) or ordinary least-squares regression (OLS). The rows correspond to different
polynomial orders p and the number of points in the experimental design is λ = (p+ 1)2.
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Figure 4.21: Illustrations of surrogate models of the Branin function based on Gaussian-process
regression. The Gaussian process has a constant mean and either a Gaussian covariance function
or a Matérn-5/2 covariance function. The rows correspond to the size λ of the experimental
design.
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Figure 4.22: Surrogate-based kernel density estimates of the probability density function of the
uncertain quantity of interest for different numbers of samples λ in the experimental design.

V[fX3(X3)] = 1
2π

∫ π

−π
f2
X3(x3)dx3 = 0, (4.115)

V[fI(X)] = 1
8π3

∫ π

−π

∫ π

−π

∫ π

−π
f2

I (x)dx1dx2dx3 = 8b2π8

225 . (4.116)

Then, the Sobol indices are given by

S1 = V[fX1(X1)]
V[Y ] ≈ 0.3129,S2 = V[fX2(X2)]

V[Y ] ≈ 0.4424,S3 = V[fX3(X3)]
V[Y ] = 0. (4.117)

Thus, the random variableX2 has the most significant individual impact in inducing uncertainty
in the random variable Y , accounting for 44 % of the variance of Y , the random variable X1 has
the second most significant individual impact in inducing uncertainty in the random variable
Y , accounting for 31 % of the variance of Y , and the random variable X3 has no individual
impact in inducing uncertainty in the random variable Y . The random variable X3 only induces
uncertainty in the random variable Y through its interaction with the random variable X1, with
the interaction between both random variables accounting for 24 % of the variance of Y .
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4.5.2.1 Estimation of Sobol indices using Monte Carlo sampling

We used the Monte Carlo sampling method as described in Section 4.4.2.3 to estimate the Sobol
indices using Equation (4.73). We use for ν values up to 10 000. Figure 4.23 shows the conver-
gence of the Monte Carlo estimates for the three first-order sensitivity indices. We can observe
that the estimates have reasonably converged for ν of about 6000 for the first and second un-
certain parameters and for ν of about 8000 for the third uncertain parameter. We can observe
that Monte Carlo estimates using Equation (4.73) can lead to negative values of the Sobol in-
dices, thus making more challenging the estimation of small sensitivity indices with sufficient
accuracy.
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Figure 4.23: Convergence analysis: Estimates of the Sobol indices for the three uncertain in-
put variables of the Ishigami function by using Monte Carlo estimation (Equation (4.73)) as a
function of the number of samples ν.

4.5.2.2 Estimation of Sobol indices using surrogate models

We consider the estimation of Sobol indices using surrogate models (see Section 4.4.2.5). We
considered the same kinds of surrogate models as in Section 4.5.1.2 to build the surrogate mod-
els. We used the surrogate models to estimate the Sobol indices of the Ishigami function either
directly from the polynomial chaos coordinates (Equation (4.86)) or using Monte Carlo sam-
pling for surrogate models based on Gaussian-process regression. For surrogate models based
on Gaussian-process regression, we estimated the Sobol indices using the conditional mean
of the Gaussian process (Equation (4.88)) with ν = 105 Monte Carlo samples and the full-
Gaussian-process surrogate model (Equation (4.90)) with ν = 104 Monte Carlo samples and
κ = 100 realisations of the conditional Gaussian process. Figure 4.24 shows the convergence
of the surrogate-based estimates of the Sobol indices as a function of the number of samples λ
in the experimental design. For the full-Gaussian-process approach, we represented the mean
of the Monte Carlo estimates of SfGP

i and the error bars represent the 95%-confidence interval.
We can observe that after a value for λ of about 300, reasonable convergence of the estimates is
achieved for all surrogate models.
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Figure 4.24: Convergence analysis: Surrogate-based estimates of the Sobol indices for the three
uncertain input variables of the Ishigami function. For the full-Gaussian-process approach, we
represented the mean of the Monte Carlo estimate of SfGP

i and the error bars represent the 95%-
confidence intervals. Please note that for large experimental designs, these error bars are too
small to be visible on the figure.
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4.6 Summary

In this chapter, we reported theory and existing methods for the analysis of computational mod-
els subject to uncertain input parameters within the field of uncertainty quantification. We dis-
cussed methods for the propagation of uncertainties and global sensitivity analysis, including
Monte Carlo methods, surrogate models, and, to a lesser extent, probabilistic learning on man-
ifolds. Most of these methods have been applied successfully to uncertainty quantification in
science and engineering and are of interest to be applied for uncertainty quantification in glaciol-
ogy; see Chapters 7 and 8.





5
A multifidelity quantile-based approach
for confidence sets of random excursion
sets

In this chapter, we address uncertainty quantification of physics-based computational models
when the quantity of interest concerns geometrical characteristics of their spatial response.
Within the probabilistic context of the random set theory, we develop the concept of confidence
sets that either contain or are contained within an excursion set of the spatial response with a
specified probability level. We seek such confidence sets in a parametric family of nested candi-
date sets defined as a parametric family of sublevel or superlevel sets of a membership function.
We show that the problem of identifying a confidence set with a given probability level in such
a parametric family is equivalent to a problem of estimating a quantile of a random variable
obtained as a global extremum of the membership function over the complement of the excursion
set. To construct such confidence sets, we propose a computationally efficient bifidelity method
that exploits a spectral representation of this random variable to reduce the required number of
evaluations of the computational model. We show the interest of this concept of confidence sets
and the efficiency gain of the proposed bifidelity method in a test case concerned with excursion
sets of a Gaussian function with an uncertain input parameter. Theory and methods presented
in Sections 5.4–5.7 are part of the manuscript [Bulthuis et al., 2019b], currently under review.

5.1 Context

In the previous chapter, we provided a review of theory and methods to quantify the uncertainty
in the quantity of interest of a (physics-based) computational model with uncertain input pa-
rameters. We assumed this quantity of interest to represent a scalar-valued, vector-valued, or
field-valued characteristic of the spatial response of the computational model. The subject of
this chapter is in uncertainty quantification of (physics-based) computational models when the
quantity of interest concerns geometrical characteristics of their spatial response. This issue may
typically arise in applications in which interest is directed towards determining within a spatial
domain a subregion where the spatial response of a computational model exceeds a specified
threshold. This task may serve to determine, for instance, a critical level of safety or help distin-
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guish between different characteristics of the spatial response. Examples include applications in
chemical contamination, geophysics (volcanic hazards [Bayarri et al., 2009]), and climatology
(heat-wave detection [French et al., 2019]). In the context of ice-sheet modelling, the reader
may think of the problem of assessing the retreat of the grounded portion of the Antarctic ice
sheet in response to climate forcing as a motivating example for this chapter. Hence, under-
standing and quantifying the impact of the input uncertainties on geometrical characteristics of
the spatial response of a computational model is an interesting problem relevant for ice-sheet
modelling and more generally for uncertainty quantification.

Here, we seek to quantify uncertainty in excursion sets of spatial responses of computa-
tional models using the concept of confidence sets that either contain an excursion set of the
spatial response or are contained within an excursion set of the spatial response with a specified
confidence level. Such confidence sets were first introduced in French and Sain [2013], French
[2014], Bolin and Lindgren [2015], and French and Hoeting [2015], in a context of Bayesian in-
ference under a stationary Gaussian spatial process prior and further extended to non-stationary
and non-Gaussian spatial processes in Sommerfeld et al. [2018]. From a theoretical point of
view, excursion sets of random fields can be studied by using the random set theory [Azzimonti,
2016; Azzimonti et al., 2016; Molchanov, 2017] or the geometry theory of random fields [Adler
and Taylor, 2007; Adler, 2008]. In French [2014], Bolin and Lindgren [2015], French and
Hoeting [2015], and Azzimonti [2016], confidence sets are computed by seeking the optimal
confidence set in a parametric family of nested candidate sets by solving either an optimisation
problem or an equivalent problem of quantile estimation. These references have addressed the
numerical solution of these optimisation and quantile estimation problems in specific contexts in
which the random field is obtained by Bayesian inference under a Gaussian spatial process prior,
including kriging methods. In such contexts, the random field can be evaluated everywhere in
the spatial domain by using the Gaussian-process or kriging interpolants, and numerous samples
of the random field can be simulated at low computational cost.

In this chapter, we address the computation of confidence sets of excursion sets of random
fields obtained as solution quantities of stochastic computational models with a high computa-
tional cost. In this context, the definition and computation of excursion sets and confidence sets
must be based on the spatial discretisation of the computational model obtained, for instance,
with a finite-difference or a finite-element discretisation scheme. Based on the random set the-
ory, we propose a spatial discretisation of excursion sets and confidence sets that relies on a
partitioning of the domain into subsets and testing the exceedance constraints in representative
points in these subsets. Such a spatial discretisation is shown to have an impact on the stochastic
dimension of the problem and the accuracy one may achieve in computing confidence sets.

The computation of confidence sets for computational models with a high computational
cost requires computationally efficient methods for the discretisation of the stochastic dimen-
sion. Monte Carlo methods may lead to a slow decrease of the estimation error as a function
of the number of samples, which may be intractable for computational models with a high
computational cost or high confidence levels. The use of surrogate models, such as stochastic
expansions, may reduce the computational cost but may lead to an additional approximation
error. Here, we propose a bifidelity method in which a surrogate model is used further away
from the quantile to be estimated and the computational model is used closer to the quantile to
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be estimated.

In this chapter, the proposed methodology is applied in an illustration in which we build
confidence sets for superlevel sets of a Gaussian function with an uncertain input parameter.
We illustrate how the proposed bifidelity method may help reduce the computational cost of
computing confidence sets. We refer the reader to Chapter 7 for an illustration relevant to the
retreat of the grounded portion of the Antarctic ice sheet and we show in Chapters 7 and 8 how
confidence sets may help assess with quantified uncertainty the vulnerability of the Antarctic
ice sheet to climate change.

This chapter is organised as follows. In Section 5.2, we provide a literature review of various
methods to quantify uncertainty in excursion and contour sets in a context of Bayesian inference.
In Sections 5.4 and 5.5, we review the concepts of excursion sets, contour sets, and confidence
sets of a random field based on the random set theory [Molchanov, 2017], and we discuss the
identification of an optimal confidence set in a parametric family of nested candidate sets. Then,
Section 5.6 addresses the spatial discretisation, Section 5.7 is concerned with the discretisation
of the stochastic dimension, and Section 5.8 provides the illustration.

5.2 Literature review

This section provides a non-exhaustive review of methods to quantify the uncertainty in excur-
sion and contour sets in the context of Bayesian inference. In the undermentioned references,
interest is in quantifying the uncertainty in the estimation of contour sets (or level sets) and ex-
cursion sets (or superlevel sets) of an unknown real-valued function considered as a realisation
of a random field that is observed at a set of locations in the domain. In this context, confidence
sets quantify the uncertainty in the estimated contour and excursion sets. Please note that in the
undermentioned references, confidence sets are also referred to as confidence bands, confidence
regions, or conservative estimates. In this section, we use the same terminology as in the quoted
references but in the next sections, we will adopt the terminology of confidence sets to make
connections with the set theory.

Lindgren and Rychlik [1995] addressed the problem of quantifying the uncertainty in level
sets in the context of Bayesian inference under a Gaussian process prior. They proposed a
method to quantify the uncertainty in the estimation of the level set of a realisation of a Gaus-
sian random field observed at a set of regularly or irregularly spaced observation points. From
a technical perspective, the level set for the level u is interpreted as the union of all crossings
of the level u when one follows straight lines in the spatial domain. This interpretation of the
level set also allows to take into account both continuous and discontinuous crossings of the
level u. Lindgren and Rychlik [1995] proposed to construct for each point on the estimated
level set a symmetric confidence interval perpendicular to the estimated level set that intersects
the true level set with calculable probability. The union of these symmetric confidence intervals
for all points along the estimated level set then defines a confidence band that represents the
uncertainty in assessing level sets.

Polfeldt [1999] proposed an alternative approach to assess the accuracy of a contour map by
calculating the probability that the true response at a location lies between the values of the two
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closest estimated contour sets. Under a Gaussian process prior, this probability can be evaluated
readily. The higher the probability, the higher the confidence that the true response lies between
the values of the two closest estimated contour sets.

Wameling and Saborowski [2001] extended the approach in Lindgren and Rychlik [1995]
to construct asymmetric confidence bands for non-Gaussian random fields using a conditional
simulation algorithm. Wameling [2003a] applied this approach to quantify the accuracy of geo-
statistical predictions of yearly precipitation in Lower Saxony. Wameling [2003b] further de-
rived an approximate relation between spatial horizontal uncertainty in geostatistical prediction,
as described with confidence bands, and spatial vertical uncertainty in geostatistical prediction,
as estimated with the kriging variance, for transects having a small horizontal uncertainty.

In the context of risk assessment and catastrophic events, Bayarri et al. [2009] approximated
the contour set separating catastrophic events from benign events in the parameter space as the
median of a Gaussian posterior distribution. The uncertainty in the approximation is reflected
with confidence bands constructed from the quantiles of the posterior distribution.

Confidence bands for excursion sets and contour sets as proposed in references [Lindgren
and Rychlik, 1995; Bayarri et al., 2009; Wameling and Saborowski, 2001] are all constructed
locally without providing any control over the simultaneous coverage probability of these con-
fidence bands. A first approach to control the simultaneous coverage probability of confidence
bands was proposed in Bolin [2012] and Bolin and Lindgren [2015]. Bolin and Lindgren [2015]
proposed to construct confidence regions that are contained within the true excursion set with
a certain level of probability. An approximation of the largest confidence region is obtained by
seeking in a parametric family of nested candidate sets the largest set satisfying the desired level
of inclusion. The inclusion probability is evaluated using an importance sampling method in
the context of latent Gaussian random fields. Azzimonti [2016] revisited the approach by Bolin
and Lindgren [2015] with the random set theory and evaluated the inclusion probability with an
asymmetric nested Monte Carlo method.

French and Hoeting [2015] proposed a complementary approach to Bolin and Lindgren
[2015] that relies on multiple-hypothesis testing. For each location x in a spatial domain D,
French and Hoeting [2015] considered a pointwise test statistic T (x) for the hypothesis test
y(x) ≥ u, where y is the true response of the model. The decision rule of this hypothesis test
is 1(T (x) > ρ), with ρ a threshold that controls the Type I error rate and 1(T (x) > ρ) = 1 for
T (x) > ρ and 0 otherwise. French and Hoeting [2015] then built a confidence region for the
true excursion set by controlling the Type I error rate of all hypothesis tests simultaneously, that
is, the family-wise error rate. French and Hoeting [2015] showed that this problem is equivalent
to the estimation of a quantile of a random variable. A similar approach was used in French and
Sain [2013] and French [2014] to construct confidence regions for level sets.

5.3 Notations

We denote a deterministic set by a Latin or a Greek upper case letter such as D or Ω, a random
set by a calligraphic upper case letter such as E , and a family of subsets of a topological space or
a σ-algebra by a Fraktur upper case letter such as F. Throughout this chapter, we denote by D
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a compact subset of the d-dimensional Euclidean space Rd. We use the symbol ⊂ to denote the
strict and non-strict inclusion relations. For a subset E ⊂ D, we denote by Ec, cl(E), int(E),
ext(E), ∂E, and |E| the complement in D, the closure, the interior, the exterior, the boundary,
and the Lebesgue measure of E, respectively. Finally, we denote by F the family of all closed
subsets of D and by L the family of all open subsets of D.

5.4 Random excursion and contour sets

Let {Y (x),x ∈ D} be a random field defined on a complete probability space (Θ,B,P), in-
dexed by D, with values in R, and with continuous sample paths almost surely. Please note
that we do not consider vector-valued random fields; yet, we mention that vector-valued random
fields can be handled through operations of vector reduction, for instance, norm computation.

5.4.1 Excursion and contour sets

The positive and negative excursion sets of {Y (x),x ∈ D} for the threshold u in R (Figure 5.1)
are defined by

E+
u = {x ∈ D : Y (x) ≥ u} , (5.1)

E−u = {x ∈ D : Y (x) ≤ u} . (5.2)

Similarly, the contour set of {Y (x),x ∈ D} for the threshold u is defined by

E0
u = {x ∈ D : Y (x) = u} . (5.3)

Because {Y (x),x ∈ D} has continuous sample paths almost surely, E+
u , E−u , and E0

u are closed
subsets of D almost surely.

u

E+
u (θ(1))

u

E+
u (θ(2))

Figure 5.1: Two realisations of a random field with the corresponding positive excursion set.

The random set theory, see, for instance, Molchanov [2017], provides a rigorous framework
for the definition and description of such excursion and contour sets as set-valued random vari-
ables, which requires to be more specific about measurability. Within the random set theory, E+

u ,
E−u , and E0

u are defined as measurable mappings from (Θ,B,P) into (F,S(F)), with S(F) the
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σ-algebra generated by the sets {K ∈ F : K ∩ F 6= ∅} for F running through the family F of
closed subsets ofD (Figure 5.2). The random set theory provides several descriptors for random
closed sets, such as the capacity, the containment, and the inclusion functionals, the coverage
function, and the Vorob’ev quantiles, which are described next.

(Θ,B,P)
(F,S(F))

X −1(T)

TX

×

×

θ

X (θ)

Figure 5.2: A random closed set X is a set-valued measurable mapping from (Θ,B,P) into
(F,S(F)). This means that, for each T in S(F), X−1(T) = {θ ∈ Θ : X (θ) ∈ T} is in B.

5.4.2 Capacity functional

The capacity functional of E+
u is defined by

TE+
u

: F→ [0, 1];F 7→ TE+
u

(F ) = P(E+
u ∩ F 6= ∅). (5.4)

The capacity functional is in general not a probability measure because it is subadditive and
not additive, that is,

TE+
u

(F1 ∪ F2) ≤ TE+
u

(F1) + TE+
u

(F2), F1,F2 ∈ F, F1 ∩ F2 = ∅. (5.5)

The capacity functional of a random closed set is a probability measure if and only if the random
closed set is a random singleton. The capacity functional uniquely determines the probability
distribution of a random closed set.

Please note that the capacity functional can be defined similarly for E−u and E0
u.

5.4.3 Containment and inclusion functionals

The random set theory also defines further functionals associated with the random closed set E+
u ,

namely the containment and inclusion functionals. The containment functional of E+
u is defined

by
CE+

u
: F→ [0, 1];F 7→ CE+

u
(F ) = P(E+

u ⊂ F ), (5.6)
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and the inclusion functional of E+
u is defined by

IE+
u

: F→ [0, 1];F 7→ IE+
u

(F ) = P(F ⊂ E+
u ). (5.7)

Containment and inclusion functionals can be defined similarly for E−u . Although, the contain-
ment functional may be defined similarly for E0

u, the definition of the inclusion functional is less
meaningful for E0

u because E0
u is generally of lower dimension than D and its inclusion func-

tional vanishes for all F in F of the same dimension as D. Please note that, as for the capacity
functional, neither the containment functional nor the inclusion functional is a probability mea-
sure, except for the case of random singletons. The containment functional, and the inclusion
functional for random closed sets that coincide with the closure of their interior almost surely,
uniquely determines the probability distribution of a random closed set.

In the following, we will focus (mostly) on the containment and inclusion functionals rather
than the capacity functional because they provide a natural choice to define confidence sets.

5.4.4 Coverage function

By limiting F = {x} to be a singleton, the capacity functional

TE+
u

(F ) = IE+
u

(x) = P(x ∈ E+
u ) = P(Y (x) ≥ u) ≡ pE+

u
(x) (5.8)

reduces to the so-called (one-point) coverage function of E+
u , which provides the pointwise

(marginal) probability of exceeding the threshold u. The set of points x in the domain D such
that pE+

u
(x) = 1 is called the set of fixed points of E+

u . Thus, the set of fixed points is the set of
locations that belong to E+

u almost surely, that is, the set of locations that exceed the threshold u
almost surely. Please note that the coverage function can be defined similarly for E−u , which
provides the pointwise (marginal) probability of being lower than the threshold u.

5.4.5 Vorob’ev quantiles

As a generalisation of quantiles of scalar-valued random variables, the random set theory defines
the so-called Vorob’ev ρ-quantile

QV
ρ =

{
x ∈ D : pE+

u
(x) ≥ ρ

}
(5.9)

as the superlevel set of the coverage function for the level ρ. Thus, the Vorob’ev ρ-quantile
is the set of locations where the pointwise (marginal) probability of exceeding the threshold
u is at least ρ. The Vorob’ev quantiles are of particular interest because they are used in the
random set theory to define a notion of expectation for random closed sets [Azzimonti et al.,
2016; Azzimonti, 2016; Molchanov, 2017]; the so-called Vorob’ev expectation is the Vorob’ev
quantile whose Lebesgue measure is equal or closest to the expected Lebesgue measure of
the random closed set. The Vorob’ev quantiles are also minimisers of an expected distance
in Lebesgue measure among sets with the same Lebesgue measure [Azzimonti, 2016]. Please
note that the Vorob’ev quantiles can be defined similarly for E−u , with the Vorob’ev ρ-quantile
of E−u being the set of locations where the pointwise (marginal) probability of being lower than
the threshold u is at least ρ.
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5.5 Confidence sets for random excursion and contour sets

In a context of Bayesian inference under a Gaussian process prior, French and Sain [2013],
French [2014], Bolin and Lindgren [2015], French and Hoeting [2015], and Azzimonti [2016]
defined alternative descriptors of excursion and contour sets, namely, confidence sets, which
we focus on in this chapter. In French and Sain [2013], French [2014], Bolin and Lindgren
[2015], and French and Hoeting [2015], these confidence sets were defined without reference
to the aforementionned descriptors of the random set theory. Azzimonti [2016] first revisited
confidence sets based on the random set theory. Here, we follow this approach and introduce
these confidence sets equivalently with the help of the containment and inclusion functionals of
the random set theory.

A closed subset Cout
u+,α of D is an outer confidence set for E+

u with a probability of at
least α if

CE+
u

(Cout
u+,α) ≥ α, (5.10)

and an open subsetC in
u+,α ofD is an inner confidence set for E+

u with a probability of at least α if

IE+
u

(
cl(C in

u+,α
)) ≥ α. (5.11)

Thus, an outer confidence setCout
u+,α is such that with a (joint) probability of at least α, it contains

all locations where u is exceeded simultaneously. And, an inner confidence set C in
u+,α is such

that with a (joint) probability of at least α, all locations in C in
u+,α exceed u simultaneously. An

outer confidence set Cout
u−,α and an inner confidence set C in

u−,α can be defined similarly for E−u .
A closed subset Cu0,α of D is a confidence set for E0

u with a probability of at least α if

CE0
u
(Cu0,α) ≥ α. (5.12)

Thus, a confidence set Cu0,α for E0
u is such that with a (joint) probability of at least α, it contains

all locations where u is attained simultaneously. Figure 5.3 provides a schematic illustration of
an outer confidence set Cout

u+,α and an inner confidence set C in
u+,α for the random closed set E+

u .
Proposition 5.1 by French and Hoeting [2015] shows that if Cout

u+,α and Cout
u−,α are outer

confidence sets for E+
u and E−u , respectively, with a probability of at least α, then their exteriors

in D are inner confidence sets for E−u and E+
u , respectively, with a probability of at least α.

Proposition 5.1. Let Cout
u+,α and Cout

u−,α be outer confidence sets for E+
u and E−u , respectively,

with a probability of at least α. Then ext(Cout
u−,α

)
and ext(Cout

u+,α
)

are inner confidence sets for
E−u and E+

u , respectively, with a probability of at least α.

Proof. As Cout
u+,α is an outer confidence set for E+

u , we have

α ≤ P
(
E+
u ⊂ Cout

u+,α

)
= P

((
Cout
u+,α

)c ⊂ (E+
u

)c)
≤ P

((
Cout
u+,α

)c ⊂ E−u )
≤ P

(
ext(Cout

u+,α
) ⊂ E−u ).

(5.13)
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E+
u ⊂ Cout

u+,α, C in
u+,α ⊂ E+

u E+
u 6⊂ Cout

u+,α, C in
u+,α ⊂ E+

u E+
u ⊂ Cout

u+,α, C in
u+,α 6⊂ E+

u

Figure 5.3: Schematic illustration of an outer confidence set Cout
u+,α and an inner confidence

set C in
u+,α for the random closed set E+

u .

The third line is obtained by noticing that
(E+
u

)c = {x ∈ D : Y (x) < u} is a subset of E−u =
{x ∈ D : Y (x) ≤ u}. Similarly, one can show that P

(
ext(Cout

u−,α
) ⊂ E+

u

)
≥ α.

When E0
u ⊂ ∂E+

u , confidence sets for contour sets can be determined from confidence sets
of related excursion sets. For instance, the set

Cout
u+,β ∩ (C in

u+,β)c, β ≥ 1
2(α+ 1), (5.14)

and the set
(N in

u+,α ∪N in
u−,α)c, (5.15)

with N in
u+,α and N in

u−,α in L that satisfy P
(

cl(N in
u+,α

) ⊂ E+
u , cl(N in

u−,α
) ⊂ E−u ) ≥ α, are both

confidence sets for E0
u with a probability of at least α.

Proof. We first prove Equation (5.14). We start from the following inequalities:

β ≤ P
(

cl(C in
u+,β

) ⊂ E+
u

)
(5.16a)

= P
(
∂E+

u ⊂
(
C in
u+,β

)c) (5.16b)

= P
(
E0
u ⊂

(
C in
u+,β

)c) (5.16c)

= P
(
E0
u ⊂ Cout

u+,β, E0
u ⊂

(
C in
u+,β

)c)+ P
(
E0
u 6⊂ Cout

u+,β, E0
u ⊂

(
C in
u+,β

)c). (5.16d)

In going from Equation (5.16a) to Equation (5.16b), we use the fact that C in
u+,β is an open set.

In going from Equation (5.16b) to Equation (5.16c), we use the assumption that E0
u ⊂ ∂E+

u .
Finally, Equation (5.16d) is obtained by decomposing Equation (5.16c) into the sum of the
probabilities of two disjoint events. Similarly, we have the following inequalities:

β ≤ P
(
E+
u ⊂ Cout

u+,β

)
(5.17a)
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= P
(
E0
u ⊂ Cout

u+,β

)
(5.17b)

= P
(
E0
u ⊂ Cout

u+,β, E0
u ⊂

(
C in
u+,β

)c)+ P
(
E0
u ⊂ Cout

u+,β, E0
u 6⊂

(
C in
u+,β

)c), (5.17c)

In going from Equation (5.17a) to Equation (5.17b), we use the fact that E0
u ⊂ E+

u . Equa-
tion (5.17c) is obtained by decomposing Equation (5.17b) into the sum of the probabilities of
two disjoint events. By adding inequalities (5.16) and (5.17), we obtain

2P
(
E0
u ⊂ Cout

u+,β, E0
u ⊂

(
C in
u+,β

)c)+ P
(
E0
u 6⊂ Cout

u+,β, E0
u ⊂

(
C in
u+,β

)c)
+ P

(
E0
u ⊂ Cout

u+,β, E0
u 6⊂

(
C in
u+,β

)c) ≥ 2β. (5.18)

Moreover, we have the following inequality

P
(
E0
u ⊂ Cout

u+,β, E0
u ⊂

(
C in
u+,β

)c)+ P
(
E0
u 6⊂ Cout

u+,β, E0
u ⊂

(
C in
u+,β

)c)
+ P

(
E0
u ⊂ Cout

u+,β, E0
u 6⊂

(
C in
u+,β

)c)
= P

(
E0
u ⊂ Cout

u+,β

)
+ P

(
E0
u 6⊂ Cout

u+,β, E0
u ⊂

(
C in
u+,β

)c)
≤ P

(
E0
u ⊂ Cout

u+,β

)
+ P

(
E0
u 6⊂ Cout

u+,β

)
= 1.

(5.19)

By substracting Equation (5.19) from Equation (5.18), we get

P
(
E0
u ⊂ Cout

u+,β, E0
u ⊂

(
C in
u+,β

)c) ≥ 2β − 1. (5.20)

Thus, Cout
u+,β∩(C in

u+,β)c is a confidence set for E0
u with a probability of at least α if β ≥ 1

2(1+α).

We now prove Equation (5.15). We have the following equalities

P
(

cl(N in
u+,α) ⊂ E+

u , cl(N in
u−,α

) ⊂ E−u ) = P
(
∂E+

u ⊂ (N in
u+,α)c, ∂E−u ⊂ (N in

u−,α)c
)

(5.21a)

= P
(
E0
u ⊂ (N in

u+,α)c, E0
u ⊂ (N in

u−,α)c
)

(5.21b)

= P
(
E0
u ⊂ (N in

u+,α ∪N in
u−,α)c

)
. (5.21c)

In Equation (5.21a), we use the fact that N in
u+,α and N in

u−,α are both open sets. In going from
Equation (5.21a) to Equation (5.21b), we use the assumption that E0

u ⊂ ∂E+
u and thus E0

u ⊂
∂E−u . Equation (5.21c) results from De Morgan’s laws. Thus, (N in

u+,α∪N in
u−,α)c is a confidence

set for E0
u with a probability of at least α if P

(
cl(N in

u+,α) ⊂ E+
u ,
(
N in
u−,α

) ⊂ E−u ) ≥ α.

For the sake of brevity and without loss of generality, we will focus the discussion to follow
(mostly) on the construction of an inner confidence set for the positive excursion set.
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5.5.1 Optimisation within a parametric family

The confidence sets defined above are in general not unique. To determine such confidence sets
uniquely, additional restrictions must be imposed. In French [2014], Bolin and Lindgren [2015],
French and Hoeting [2015], and Azzimonti [2016], uniqueness is obtained by first defining a
parametric family of candidate sets and then seeking in this family the largest or the smallest set
satisfying the joint probability of exceedance constraint. In French [2014], Bolin and Lindgren
[2015], French and Hoeting [2015], and Azzimonti [2016], the family of candidate sets is taken
as a parametric family of sets Tρ indexed by a real number ρ in (0, 1) such that

Tρ = {x ∈ int(D) : T (x) > ρ} , (5.22)

where T is a function fromD into [0, 1], also referred to as the membership function by analogy
with fuzzy theory. The membership function is assumed to be continuous in int(D) so as
to ensure that the sets Tρ belong to L. Clearly, such a parametric family is nested, that is,
Tρ ⊆ Tσ for σ ≤ ρ. Seeking in this parametric family the largest set satisfying the required
joint probability of exceedance constraint amounts to the optimisation problem

ρ∗ = inf
ρ∈(0,1)

ρ subject to IE+
u

(cl(Tρ)) ≥ α, (5.23)

with the optimal threshold ρ∗ leading to the identification of Tρ∗ as the largest inner confidence
set with a probability of a least α in the parametric family. For outer confidence sets, one may
seek similarly the smallest set in a parametric family of nested candidate sets.

5.5.1.1 Choice of the membership function

The definition in Equation (5.22) uses a generic membership function T . For the purpose of
constructing confidence sets for the positive excursion set, Azzimonti [2016], Bolin and Lind-
gren [2015], and French and Hoeting [2015] suggested and used the following membership
functions:

T1(x) = P(Y (x) ≥ u), (5.24)

T2(x) = 1
2

(
1 + erf

(
E[Y (x)]− u√

2V[Y (x)]

))
, (5.25)

T3(x) = 1
2

1 + E[Y (x)]− u√
E
[
(Y (x)− u)2 ]

 , (5.26)

where E denotes the mathematical expectation, V the variance, and erf the error function.
French and Hoeting [2015] argued that the functions in Equations (5.24)–(5.26) are suitable
choices for the membership function because they quantify the difference between the value
taken by the random field at a location and the threshold level u and they account for the asso-
ciated measure of uncertainty for this difference. The membership function T1 is the coverage
function defined in Equation (5.8) so that the corresponding sets in the parametric family are
open Vorob’ev quantiles. The membership functions T2 and T3, whose use requires the random
field to be of the second order, are transformations of the pointwise difference between the ex-
pectation of the random field and the threshold u rescaled respectively by the standard deviation
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of the random field and the square root of the expected squared deviation of the random field
about the threshold u. If the pointwise (marginal) probability distribution of the random field is
Gaussian, then T1 and T2 are equal. In addition, when u is zero, as considered in Section 7.2,
T2 and T3 may be expressed only as a function of the pointwise coefficient of variation δY (x)
of the random field:

T2(x) = 1
2

(
1 + erf

( 1√
2δY (x)

))
, (5.27)

T3(x) = 1
2

(
1 + sgn(δY (x))√

δ2
Y (x) + 1

)
, (5.28)

where sgn is the sign function, equal to 1 if δY (x) ≥ 0 and −1 otherwise. See Figure 5.4 for a
comparison between T2 and T3 as a function of the pointwise coefficient of variation.
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δY

T
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T3

Figure 5.4: Representation of the membership functions T2 and T3 as a function of the pointwise
(marginal) coefficient of variation δY . The maximum difference in absolute value between both
functions is about 0.03.

5.5.1.2 Interpretation

The membership functions in Equations (5.24)–(5.26) are based on pointwise statistical de-
scriptors of the random field. As such, they quantify in some way the pointwise probability of
exceeding u at all locations in D but do not quantify the joint probability of exceeding u simul-
taneously at all locations in Tρ. For instance, the probability of exceeding u simultaneously at
all locations in the Vorob’ev ρ-quantile is at most ρ, with a probability of ρ that is achieved when
the description of the random field reduces to the description of a single random variable. To
achieve the desired confidence level, the threshold ρ∗ is determined following the optimisation
problem (5.23).

The membership function can also be interpreted in the context of the fuzzy set theory [Good-
man and Nguyen, 2002; Nguyen and Walker, 2006]. In the fuzzy set theory, any continuous
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membership function T can be written as T (x) = µ(x ∈ E+
u ), where µ is a fuzzy measure de-

fined on (Θ,B). The fuzzy measure µ may be interpreted as a subjective degree of belief about
the inclusion of a point x in D in the confidence set. The higher the value of T at a point, the
higher the probability of being a member of the confidence set whatever the confidence level.
Taking the probability measure P as a fuzzy measure gives the coverage function of the random
set E+

u .

5.5.1.3 Equivalent problem of quantile estimation

Following the approach by French [2014] and French and Hoeting [2015], the solution of the
optimisation problem (5.23) can be recast equivalently as a problem of quantile estimation.
Indeed:

IE+
u

(cl(Tρ
)
) = P(cl(Tρ

) ⊂ E+
u ) (5.29a)

= P(Tρ ⊂ E+
u ) (5.29b)

= P
((E+

u

)c ⊂ T c
ρ

)
(5.29c)

= P
(
T (x) ≤ ρ,x ∈ (E+

u

)c) (5.29d)

= P
(

sup
x∈(E+

u )c
T (x) ≤ ρ

)
. (5.29e)

In going from Equation (5.29c) to Equation (5.29d), care should be taken about the behaviour of
T on ∂D, because there is no guarantee that T (x) ≤ ρ for all x in ∂D (this is a consequence of
Tρ being defined on int(D) rather than D). Thus, the behaviour of T on ∂D must be excluded
in Equation (5.29). This can be achieved, for instance, by assuming either that T achieves its
supremum in ext(E+

u

)
or that T vanishes on ∂D. With these considerations, the optimisation

problem in (5.23) is equivalent to

ρ∗ = inf
ρ∈(0,1)

ρ subject to P
(

sup
x∈(E+

u )c
T (x) ≤ ρ

)
≥ α, (5.30)

that is, the problem of quantile estimation

ρ∗ = inf {ρ ∈ (0, 1) : Fχ(ρ) ≥ α} ≡ qχ(α), (5.31)

where Fχ and qχ are respectively the distribution function and the generalised quantile function
of the random variable

χ = sup
x∈(E+

u )c
T (x). (5.32)

Please note that the randomness of χ stems from the random closed set E+
u , hence the set over

which the supremum of T is evaluated. Here, qχ is a generalised quantile function because,
in general, Fχ is not necessarily strictly monotone, for instance, when χ is a discrete random
variable (see also Section 5.6). If χ is a continuous random variable, thenFχ is strictly monotone
and the quantile function is the inverse function of Fχ, that is, qχ(α) = F−1

χ (α).
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5.5.1.4 Equivalent problem of reliability-based design optimisation

Besides the formalisms (5.23) and (5.31) for the estimation of confidence sets in a parametric
family of nested candidate sets, we mention, as a side note, the existence of a third formalism.
Indeed, the optimisation problem (5.23) can be recast as

IE+
u

(cl(Tρ
)
) = P(cl(Tρ

) ⊂ E+
u )

= P(Y (x) ≥ u,x ∈ cl(Tρ
)
)

= P
(

inf
x∈cl(Tρ

)Y (x) ≥ u
)
.

(5.33)

Thus, the optimisation problem in (5.23) is equivalent to

ρ∗ = inf
ρ∈(0,1)

ρ subject to P
(

inf
x∈cl(Tρ

)Y (x) ≥ u
)
≥ α, (5.34)

where the probability in the optimisation problem in (5.34) is known as the excursion probability
of the random field over cl(Tρ

)
; see, for instance, Adler and Taylor [2007] and Adler [2008].

The optimisation problem in (5.34) can be written as

ρ∗ = inf
ρ∈(0,1)

ρ subject to P
(
ζρ ≥ u

) ≥ α, (5.35)

with the random variable ζρ given by

ζρ = inf
x∈cl(Tρ

)Y (x). (5.36)

We mention that the optimisation problem in (5.35) can be solved by using methods from
reliability-based design optimisation; see, for instance, Valdebenito and Schuëller [2010], Dubourg
et al. [2011], and Moustapha et al. [2016]. Please note that, although all three problems (5.23), (5.30),
and (5.34) are equivalent, we will focus (mostly) on the quantile estimation problem in (5.30)
to compute confidence sets in a parametric family of nested candidate sets in a computationally
efficient way.

5.6 Spatial discretisation

To be able to compute confidence sets in practice, a discretisation is required. In this section,
we describe a discretisation of the spatial dimension and discuss its impact on the stochastic
dimension. Specifically, we describe a spatial discretisation that relies on partitioning the spa-
tial domain into subsets and testing the exceedance constraints in representative points in these
subsets. The discrete closed sets thus obtained are random closed sets that the theory of ran-
dom sets [Molchanov, 2017] refers to as simple random closed sets by the virtue of them taking
only a finite number of values. Please note that alternative spatial discretisations could also be
considered, such as spatial discretisations based on computational geometry or computational
shape optimisation, but we do not consider such alternative spatial discretisations here. We will
continue to focus the discussion (mostly) on the positive excursion set and related confidence
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sets, but please note that the extensions to other confidence sets for negative excursion and con-
tour sets can be obtained analogously.

Let Dh =
{
Dh
i

}
1≤i≤Nh

be a partition of D into Nh pairwise disjoint nonempty closed sub-

sets of D, with h a positive number that describes the characteristic size of the subsets. If the
random field is a solution quantity of a stochastic computational model that is discretised in
space by means of a finite-difference scheme, this partition may be taken as a tessellation based
on the grid points; if the stochastic computational model is discretised in space by means of a
finite-element scheme, this partition may be taken as the mesh.

Let each subset Dh
i be associated with a representative point xhi in Dh

i where we test the
exceedance constraint and evaluate the membership function. If the random field is a solution
quantity of a stochastic computational model that is discretised in space by means of a finite-
difference scheme, these representative points may be taken as the grid points; if the stochastic
computational model is discretised in space by means of a finite-element scheme, these repre-
sentative points may be taken as characteristic points of the elements of the mesh, for instance,
the centroids of the elements.

With reference to the partitioning, we approximate E+
u with E+h

u (see Figure 5.5 for an illus-
tration) described by the binary random vector Eh = (Eh1 , . . . ,EhNh) with values in {0, 1}Nh
such that

E+h
u =

⋃
Ehi =1

Dh
i =

⋃
i∈I+h

u

Dh
i , (5.37)

where I+h
u =

{
i : Ehi = 1

}
is the random active index set, with

Ehi = 1(Y (xhi ) ≥ u), i = 1, . . . ,Nh; (5.38)

here, 1(Y (xhi ) ≥ u) is equal to 1 if Y (xhi ) ≥ u and 0 otherwise.

With reference to the partitioning, we seek inner confidence sets of the form of sets described
by a binary vector ch = (ch1 , . . . , chNh) in {0, 1}Nh such that

C in,h
u+,α = int

( ⋃
chi =1

Dh
i

)
= int

( ⋃
i∈Iin,h

u+,α

Dh
i

)
, (5.39)

where I in,h
u+,α =

{
i : chi = 1

}
is the active index set. As in the continuous case, we seek such an

inner confidence set in a parametric family described by a binary vector Th
ρ = (T hρ,1, . . . ,T hρ,Nh)=

(1(T h1 > ρ), . . . , 1(T hNh > ρ)) in {0, 1}Nh such that

T hρ = int
( ⋃
Thρ,i=1

Dh
i

)
= int

( ⋃
i∈Ihρ

Dh
i

)
, (5.40)

where Ihρ =
{
i : T hi > ρ

}
is the parametric index set and Th = (T h1 , . . . ,T hNh) is the member-

ship vector, with T hi = T (xhi ), i = 1, . . . ,Nh.
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E+
u E+h

u

Dhi

xhi

Figure 5.5: Approximation of the random set E+
u as a simple random set E+h

u based on a struc-
tured partitioning of D. The representative points are chosen as the centroids of the elements.

Seeking the largest set in this parametric family satisfying the joint probability of exceedance
constraint associated with the representative points leads to

ρ∗h = inf
ρ∈(0,1)

ρ subject to P
(

max
i∈(I+h

u )c
T hi ≤ ρ

)
≥ α, (5.41)

thus leading to the equivalent problem of quantile estimation

ρ∗h = inf
{
ρ ∈ (0, 1) : Fχh(ρ) ≥ α

}
≡ qχh(α), (5.42)

where Fχh and qχh are respectively the distribution function and the generalised quantile func-
tion of the random variable

χh = max
i∈(I+h

u )c
T hi . (5.43)

Due to the approximation of the random closed set as a simple random set, χh is a discrete ran-
dom variable with distinct discrete values χh1 < χh2 < . . . < χhLh (Lh ≤ Nh). In general, Lh is
smaller than Nh because there may be locations xhi in D where T does not attain its maximum
for any realisation of

(
E+h
u

)c
.

The distribution function Fχh may be written in terms of the probability masses pl =
P(χh = χhl ), 1 ≤ l ≤ Lh, as

Fχh(ρ) = P(χh ≤ ρ) =
∑
χh
l
≤ρ

P(χh = χhl ) =
∑

χh
l
≤χh

pl. (5.44)

Then, the problem of quantile estimation reads as

ρ∗h = minχhl subject to
∑

k=1,...,l
pl ≥ α. (5.45)

Thus, the impact of the discretisation of the spatial dimension on the stochastic dimension
is that both Fχh and qχh are piecewise-constant functions with discontinuities whose number
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and magnitude depend on the spatial resolution of the computational model. Consequently, the
accuracy one may achieve in estimating confidence sets for a spatial discretisation of the domain
is influenced by the spatial resolution of the computational model. Specifically, the solution ρ∗

of Equation (5.31) is always larger than or equal to the solution ρ∗h of Equation (5.42), with the
difference between both solutions depending on the magnitude of the discontinuities around ρ∗.

Proof. We consider the following implications:

max
i∈(I+h

u )c
T hi ≤ sup

x∈(E+
u )c

T (x) =⇒ χh ≤ χ =⇒ Fχh(ρ) ≥ Fχ(ρ), ∀ρ ∈ (0, 1). (5.46)

Hence,
inf
{
ρ ∈ (0, 1) : Fχh(ρ) ≥ α

}
≤ inf {ρ ∈ (0, 1) : Fχ(ρ) ≥ α} , (5.47)

that is, ρ∗h ≤ ρ∗.

Please note that a similar spatial discretisation had already been used in reference [French
and Hoeting, 2015], which provided a consistency result:

Proposition 5.2. Suppose that

(a) ∃ε > 0 such that

P
[

inf
{
‖x− x′‖ : x ∈ ∂Tρ∗ ,x′ ∈ ∂E+

u

}
≥ ε

∣∣∣ cl(Tρ∗) ⊂ E+
u

]
= 1, (5.48)

where ‖ · ‖ is the Euclidean norm and ∂ the boundary of the set;

(b) the partitions satisfy the following conditions:

1) ∀Nh,Nh′ ∈ N0 with Nh′ > Nh, Dh′ is a refinement of Dh in the particular sense
that each subset of Dh′ is a subset of some subset of Dh;

2) ∀η > 0, ∃Mη ∈ N0 : Dh
i ⊂ Bη(xhi ) for i = 1, . . . ,Mη, where Bη(x) is a ball of

radius η centered at x.

Then, ∀Nh ≥Mε/2, IE+
u

(
cl(T h

ρ∗h
)) ≥ α.

Condition (a) states that there is at least a small "buffer" between the boundary of E+
u and

Tρ∗ . Condition (b.1) means that finer partitions are built by dividing the subsets of the coarser
partitions. Condition (b.2) means that all subsets in the partition become arbitrarily small for
large enough Nh. Proposition 5.2 ensures that for Nh sufficiently large, an inner confidence
set T h

ρ∗h for the simple random set E+h
u in Equation (5.37) for a confidence level α is an inner

confidence set for the random closed set E+
u for the same confidence level.

Proof. We note that for all Nh ∈ N0, we have T h
ρ∗h = T hρ∗ . We will show that ∃M ∈ N0 such

that for all Nh ≤M the inclusion relation cl(Tρ∗) ⊂ E+
u implies cl(T h

ρ∗h) ⊂ E+
u . Hence, for all

Nh ≥M , IE+
u

(
cl(Tρ∗)

) ≥ α implies IE+
u

(
cl(T h

ρ∗h)
) ≥ α.
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We assume that cl(Tρ∗) ⊂ E+
u for a give θ ∈ Θ. By condition (b.2), there exists Mε/2 ∈ N0

such that, Dh
i ⊂ Bε/2(xhi ) for i = 1, . . . ,Mε/2 and ε given by condition (a).

We have xhi in Tρ∗ for all i in Ihρ . By condition (a) , the distance between x on ∂E+
u and xk

must be more than ε for all i in Ihρ . Since Dh
i ⊆ Bε/2(xhi ) for i = 1, . . . ,Mε/2, the distance

between x on ∂T hρ∗ and x on ∂E+
u must be more than ε/2. Therefore, cl(T h

ρ∗h) ⊂ E+
u . By the

condition (b.1), it is also true for all Nh ≥Mε/2.

5.7 Discretisation of the stochastic dimension

The identification of a confidence set in a parametric family of candidate sets leads to a two-step
problem. The first step involves the determination of the membership function, and the second
step involves the determination of the appropriate threshold by solving an optimisation problem
that may be recast equivalently as a quantile estimation problem. The first step requires the ap-
proximation of pointwise (marginal) statistical descriptors of the random field, and the second
step requires the approximation of joint probabilities of exceedance at all considered locations
simultaneously. Because the second step requires the approximation of joint probabilities, it can
be expected to be more computationally challenging, and especially so when evaluating whether
inclusion relationships hold with high probability levels, which raises the issue of rare events.
Hence, while we will provide some details regarding the estimation of pointwise statistical de-
scriptors, we will focus (most of) the discussion to follow on the quantile estimation problem.

By writing the distribution function Fχ (Equation (5.31)) of the random variable χ (Equa-
tion (5.32)) as

Fχ(ρ) = P(χ ≤ ρ) =
∫

Θρ
dP(θ) =

∫
Θ

1Θρ(θ)dP(θ), (5.49)

it can be seen that the solution of the quantile estimation problem is related to the fundamental
problem of reliability engineering of evaluating the probability of an event Θρ = {θ ∈ Θ :
χ(θ)− ρ ≤ 0} defined by a limit state function, also called performance function, here, χ− ρ.
In reliability engineering, methods have been developed for the efficient approximation of such
probabilities, such as methods using surrogate models, subset simulation, and other methods.
Hence, we will draw from reliability engineering methods that can reduce the number of sam-
ples of the stochastic computational model that must be solved.

In the following, we assume {Y (x),x ∈ D} to be a solution quantity of a stochastic com-
putational model that depends on a finite number of uncertain input parameters ξ1, . . . , ξn, mod-
elled as an Rn-valued random vector ξ = (ξ1, . . . , ξn) defined on (Θ,B,P). We use the symbol
χ as a generic notation for both the continuous random variable χ and its stochastic discreti-
sation χh following Section 5.6, and we discuss the impact of the spatial discretisation when
appropriate.

5.7.1 Membership function

The membership functions defined in Equations (5.24)–(5.26) involve pointwise (marginal) sta-
tistical descriptors of {Y (x),x ∈ D}. For each x in D, an approximation of T (x) may be ob-
tained by using standard nonintrusive methods for uncertainty quantification. In Section 7.2.3,
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we compute the required approximations to the pointwise (marginal) statistical descriptors of
the random field by applying a kernel density estimation method to an ensemble of independent
and identically distributed (i.i.d.) samples of the random field, from which we deduce a Monte
Carlo approximation of T by using a Monte Carlo sampling of the kernel density estimates.
Please note that although the choice of a different membership function or errors entailed by its
numerical approximation may change the parametric family of candidate sets, a set satisfying
the joint probability of exceedance constraint may still be sought within this parametric family.

5.7.2 Quantile estimation: Monte Carlo method

5.7.2.1 Use of distribution function

An implementation of the Monte Carlo method begins by generating an ensemble of i.i.d. sam-
ples

{
ξ(θ(k)), 1 ≤ k ≤ ν

}
of the uncertain input parameters. Then, an ensemble of solutions

to the computational model is generated in the form of the ensemble of the corresponding
i.i.d. samples of the random field, from which is deduced the ensemble of the corresponding
i.i.d. samples

{
E+
u (θ(k)), 1 ≤ k ≤ ν

}
of the excursion set and the ensemble of the correspond-

ing i.i.d. samples
{
χ(θ(k)), 1 ≤ k ≤ ν

}
of χ. Then, the sample (empirical) distribution function

evaluated at ρ in (0, 1) writes as

F νχ (ρ) = 1
ν

ν∑
k=1

1
(
χ(θ(k)) ≤ ρ), (5.50)

where the superscript ν is used to indicate that the quantity is estimated from a finite number of
samples. The corresponding sample quantile qνχ(α) is then given by

qνχ(α) = inf
{
ρ ∈ (0, 1) : F νχ (ρ) ≥ α

}
. (5.51)

Equivalently, this Monte Carlo estimate may be obtained by ordering the i.i.d. samples as
χ1:ν ≤ χ2:ν ≤ . . . ≤ χν:ν , where χk:ν denotes the k-th order statistic of the samples [Arnold
et al., 1992], that is, χ1:ν denotes the smallest sample, χ2:ν the second smallest sample, . . . , and
χν:ν the largest sample. Then qνχ(α) is given by χk:ν , where (k − 1)/ν < α ≤ k/ν.

If χ is a continuous random variable with a probability density function, qνχ(α) is associated
with a consistent estimator of qχ(α) that satisfies a central limit theorem [Arnold et al., 1992]
(see Section 5.A.1). However, if χ is a discrete random variable, then the Monte Carlo estimator
is not guaranteed to satisfy a central limit theorem or to be a consistent estimator. The lack of
consistency mainly results from the discontinuities of the distribution function, if any, which
may cause the problem of quantile estimation to be ill-conditioned because small perturbations
in α or F νχ may cause large perturbations in qνχ(α). Feldman and Tucker [1966] showed that, for

an arbitrary distribution function, a sequence of Monte Carlo estimates
{
qνχ(α)

}
may oscillate

between inf {ρ ∈ (0, 1) : Fχ(ρ) ≥ α} and sup {ρ ∈ (0, 1) : Fχ(ρ) ≤ α}. We refer the inter-
ested reader to Section 5.A.1 for complementary information regarding Monte Carlo estimation
based on the distribution function.
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5.7.2.2 Use of mid-distribution function

If χ is a discrete random variable, an alternative method is to rely on a regularisation of the
problem of quantile estimation based on the mid-distribution function [Parzen, 2004; Ma et al.,
2011]. Let χ1 < . . . < χL denote the discrete values that χ may take; then the mid-distribution
function Fmid

χ is the following continuous, piecewise linear modification of the distribution
function

Fmid
χ (ρ) =


0 if ρ < χ1

Fmid
χ (χl+1)− Fmid

χ (χl)
χl+1 − χl

(ρ− χl) + Fmid
χ (χl) if χl ≤ ρ ≤ χl+1

1 if ρ > χL

, (5.52)

where Fmid
χ (χl) = Fχ(χl) − 1

2pχ(χl) for 1 ≤ l ≤ L, with pχ(ρ) = P(χ = ρ) the probability
mass function; see Figure 5.6(a) for an illustration. The corresponding mid-quantile function is
then a continuous, piecewise linear modification of the quantile function given by

qmid
χ (α) = inf

{
ρ ∈ (0, 1) : Fmid

χ (ρ) ≥ α
}

; (5.53)

see Figure 5.6(b) for an illustration.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ρ

Fχ

F mid
χ

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

α

qχ

qmid
χ

(a) (b)

Figure 5.6: (a) An illustration of the distribution function (solid horizontal lines) and mid-
distribution function (dashed line). The circles are the jumps in the distribution function and the
triangles are the values of the mid-distribution function at the supporting points. (b) An illus-
tration of the corresponding quantile function (solid horizontal lines) and mid-quantile function
(dashed line). The circles are the jumps in the quantile function and the triangles are the values
of the mid-quantiles.

The Monte Carlo estimate qmid,ν
χ (α) of qmid

χ (α) is given by

qmid,ν
χ (α) = inf

{
ρ ∈ (0, 1) : Fmid,ν

χ (ρ) ≥ α
}

, (5.54)
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where the sample mid-distribution function is given by

Fmid,ν
χ (ρ) =


0 if ρ < χ1

Fmid,ν
χ (χl+1)− Fmid,ν

χ (χl)
χl+1 − χl

(ρ− χl) + Fmid,ν
χ (χl) if χl ≤ ρ ≤ χl+1

1 if ρ > χL

,

(5.55)
with

Fmid,ν
χ (χl) = 1

ν

ν∑
k=1

1
(
χ(θ(k)) ≤ χl

)− 1
2ν

ν∑
k=1

1
(
χ(θ(k)) = χl

)
, 1 ≤ l ≤ L. (5.56)

Ma et al. [2011] have shown that qmid,ν
χ (α) is associated with a consistent estimator of

qmid
χ (α) that satisfies a generalised central limit theorem. However, qmid,ν

χ (α) is not guaranteed
to be associated with a consistent estimator of qχ(α) because qmid

χ (α) may be different from
qχ(α). Yet, the difference between qχ(α) and qmid

χ (α) may be expected to tend to zero as the
set of discrete values taken by χ becomes denser and denser as L tends to infinity. We refer
the interested reader to Section 5.A.1 for complementary information regarding Monte Carlo
estimation based on the distribution function.

5.7.2.3 Computational cost

The Monte Carlo estimator based on the distribution function for continuous χ entails an ap-
proximation error that decreases with the square root of the number of samples ν and increases
with the ratio of the square root of α(1 − α) and the value taken by the probability density
function of χ at the quantile to be estimated [Arnold et al., 1992; Ma et al., 2011]; for the Monte
Carlo estimator based on the mid-distribution function for discrete χ, there exists an analogous
result that involves a generalised notion of probability density function [Ma et al., 2011]. Thus,
attaining sufficient accuracy may become intractable for computational models with a high com-
putational cost and for quantiles associated with low and high levels of probability (rare events).

5.7.3 Quantile estimation: spectral method

We propose two methods that seek to alleviate the computational cost via the construction of a
surrogate model.

5.7.3.1 Spectral representation of the random field

The first method involves building a polynomial chaos expansion of {Y (x),x ∈ D} and then
using this polynomial chaos expansion as a substitute for evaluations of the computational model
when solving the quantile estimation problem. A truncated polynomial chaos expansion of order
p of the random field, assumed to be of the second order, writes as

Y p(x) =
p∑

|α|=0
ypα(x)ψα(ξ). (5.57)

Here, α = (α1, . . . ,αn) is a multi-index with |α| = α1 + . . . + αn and {ψα,α ∈ Nn} is a
suitable basis of orthogonal polynomials from Rn into R. The functions ypα from D into R
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are the polynomial chaos coordinates. In practice, these polynomial chaos coordinates may be
determined by using nonintrusive methods from solutions of the computational model for an
experimental design of the uncertain input parameters denoted by

{
ξ(θ(k)

λ ), 1 ≤ k ≤ λ}.

The random set E+
u is then approximated with the corresponding excursion set determined

with the polynomial chaos expansion, that is,

E+,p
u = {x ∈ D : Y p(x) ≥ 0} , (5.58)

and χ is approximated with

sup
x∈(E+,p

u )c
T (x). (5.59)

This first method amounts to approximating a confidence set for the excursion set of the
random field {Y (x),x ∈ D} with the corresponding confidence set for the excursion set of
{Y p(x),x ∈ D}. The confidence set can then be evaluated by using either formalism (5.23),
with E+

u approximated with E+,p
u , or formalism (5.31), with Fχ approximated with a Monte

Carlo estimate as
1
ν

ν∑
k=1

1
(

sup
x∈(E+,p

u (θ(k)))c
T (x) ≤ ρ

)
. (5.60)

5.7.3.2 Spectral representation of the random variable χ

The second method, enabled by the reformulation of the optimisation problem in Equation (5.23)
as the quantile estimation problem in Equation (5.31), involves building a polynomial chaos ex-
pansion directly of χ. A truncated polynomial chaos expansion of order p of χ, assumed to be
of the second order, writes as

χp =
p∑

|α|=0
χpα ψα(ξ), (5.61)

where the scalars χpα are the polynomial chaos coordinates. In practice, these polynomial
chaos coordinates may be determined by using nonintrusive methods from solutions of the
computational model for an experimental design of the uncertain input parameters denoted by{
ξ(θ(k)

λ ), 1 ≤ k ≤ λ
}

. The confidence set can then be evaluated using formalism (5.31),
with Fχ approximated with a Monte Carlo estimate as

1
ν

ν∑
k=1

1
(
χp(θ(k)) ≤ ρ). (5.62)

Whereas the accuracy of the spectral representation depended in the previous section on how
well {Y (x),x ∈ D} lends itself to being approximated with a truncated polynomial chaos ex-
pansion, the accuracy of the spectral representation depends here on how well χ lends itself to
being approximated with a truncated polynomial chaos expansion. The choice of the member-
ship function plays a role in this issue, which we will study numerically later in the illustrations
in Sections 5.8 and 7.2.
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5.7.3.3 Surrogate-based quantile estimation

The use of a truncated polynomial chaos expansion as in Equation (5.57) or in Equation (5.61)
as an approximation to {Y (x),x ∈ D} or χ in the quantile estimation may lead to an approxi-
mation error, which obeys the following result in Enss et al. [2016] and Krzyżak [2016]:

Theorem 5.1. Let χ and χ̃ be random variables with values in R and α a scalar in (0, 1). Let
δ > 0 be such that

|χ̃− χ| ≤ δ

2 + 1
2 |qχ(α)− χ|, (5.63)

almost surely. Then, the error in approximating qχ(α) with qχ̃(α) satisfies

|qχ̃(α)− qχ(α)| ≤ δ. (5.64)

Here, we use the notation χ̃ to denote a generic surrogate model that could be obtained based
on Equation (5.57) or Equation (5.61), and we will continue to use this notation throughout the
remainder of this section. Please note that a similar result may be obtained for quantile esti-
mation using the mid-distribution function. Theorem 5.1 provides for the error between qχ̃(α)
and qχ(α) an error bound δ that depends on the local approximation error |χ̃ − χ| between χ
and its surrogate model and on the distance |qχ(α) − χ| between the quantile to be estimated
and χ. Hence, one may seek to reduce the value of δ by lowering the local approximation error
where χ is close to qχ(α), while the surrogate model does not need to be a good approximation
to χ further away from the quantile to be estimated.

Proof. The proof, which is given in Section 5.B, follows the proof of Lemma 1 in Enss et al.
[2016].

5.7.3.4 Computational cost

The computational cost of constructing a truncated polynomial chaos expansion as in Equa-
tion (5.57) or Equation (5.61) depends on the order p; the higher the order p must be to attain
sufficient accuracy, the higher the number of training points must be in the experimental design.
This computational cost also scales with the number of uncertain input parameters (the stochas-
tic dimension n); the higher the stochastic dimension n, the higher the number of required
training points may be expected to be in the experimental design.

5.7.4 Quantile estimation: bifidelity method

Based on the relationship in Equation (5.49) between the fundamental problem of reliability
engineering and the quantile estimation problem, we will build on a hybrid method introduced
in Li and Xiu [2010] in reliability engineering to develop a new bifidelity method for the efficient
solution of the quantile estimation problem.

5.7.4.1 Method

Conceptually, this method relies on a bifidelity model that combines a surrogate model, such as
one of those discussed in Section 5.7.3, with the computational model. The surrogate model is
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used further away from the quantile to be estimated, and the computational model is used closer
to the quantile to be estimated:

χ̃γ = χ̃ 1 (|χ̃− qχ(α)| > γ) + χ 1 (|χ̃− qχ(α)| ≤ γ) , (5.65)

where χ̃ is the surrogate model of χ and γ > 0 is a threshold parameter that controls the size of
the region in the parameter space where χ is used. From Equation (5.65), we see that the local
approximation error |χ̃γ − χ| vanishes where |χ̃− qχ(α)| ≤ γ. Therefore, the error bound δ in
the inequality (5.63) may be expected to decrease with an increase in γ.

By adapting Theorem 4.1 stated in Li and Xiu [2010] for the computation of failure proba-
bilities, the following result is obtained as an error estimate for the quantile estimation problem:

Theorem 5.2. Let χ and χ̃ be random variables with values in R, and let χ̃γ be defined as in
Equation (5.65) with γ that satisfies

P (|χ̃− χ| > γ) ≤ ε (5.66)

for some ε ≥ 0. Then, the quantile function qχ̃γ satisfies

qχ̃γ (α− ε) ≤ qχ(α) ≤ qχ̃γ (α+ ε). (5.67)

Proof. We consider the following inequality

P
(
χ̃γ ≤ qχ(α)

)
≥ P

(
χ ≤ qχ(α)

)
− P

(
χ̃γ > qχ(α),χ ≤ qχ(α)

)
. (5.68)

The last event is possible only if |χ̃γ − qχ(α)| > γ. Then, we have

P
(
χ̃γ > qχ(α),χ ≤ qχ(α)

)
= P

(
χ̃− qχ(α) > γ,χ ≤ qχ(α)

)
≤ P

(
χ̃− χ > γ

)
≤ ε.

(5.69)

Therefore, inequality (5.68) becomes

Fχ̃γ (qχ(α)) ≥ Fχ(qχ(α))− ε = α− ε, (5.70)

that is, the infimum of χ̃γ for which Fχ̃γ is equal to or exceeds α− ε is at most qχ(α). Hence,

qχ̃γ (α− ε) = inf
{
ρ ∈ (0, 1) : Fχ̃γ (ρ) ≥ α− ε

}
≤ qχ(α). (5.71)

Similarly, we can show that

Fχ̃γ (qχ(α)) ≤ Fχ(qχ(α)) + ε = α+ ε, (5.72)

that is, the infimum of χ̃γ for which Fχ̃γ is equal to or exceeds α+ ε is at least qχ(α). Hence,

qχ̃γ (α+ ε) = inf
{
ρ ∈ (0, 1) : Fχ̃γ (ρ) ≥ α+ ε

}
≥ qχ(α). (5.73)
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The value of the threshold γ required to achieve a level of accuracy ε depends on the approx-
imation error between χ and its surrogate model χ̃. Proposition 5.3 by Li and Xiu [2010] gives
a lower bound on the threshold parameter γ when the Lq-error between χ and χ̃ is bounded:

Proposition 5.3. Let χ and χ̃ be random variables with values in R and q a scalar with q ≥ 1
such that

‖χ− χ̃‖Lq =
(
E(|χ− χ̃|q))1/q <∞. (5.74)

Then for all ε > 0, there exists γ∗ > 0 such that for all γ ≥ γ∗:
P (|χ̃− χ| > γ) ≤ ε; (5.75)

more precisely,

γ∗ = 1
ε1/q
‖χ− χ̃‖Lq . (5.76)

Proof. The proof follows the proof of Theorem 4.1 in Li and Xiu [2010]. We have

‖χ− χ̃‖qLq =
∫

Θ
|χ(θ)− χ̃(θ)|qdP(θ)

=
∫

Θ
1(|χ(θ)− χ̃(θ)| > γ)|χ(θ)− χ̃(θ)|qdP(θ)

+
∫

Θ
1(|χ(θ)− χ̃(θ)| ≤ γ)|χ(θ)− χ̃(θ)|qdP(θ)

≥ γq
∫

Θ
1(|χ(θ)− χ̃(θ)| > γ)dP(θ)

= γqP (|χ̃− χ| > γ) .

(5.77)

Thus, we have

P (|χ̃− χ| > γ) ≤ 1
γq
‖χ− χ̃‖qLq . (5.78)

Thus, for any given ε > 0 and γ > γ∗, with γ∗ defined in Equation (5.76), we have

P (|χ̃− χ| > γ) ≤ ε. (5.79)

5.7.4.2 Implementation

The construction of the bifidelity model (5.65) requires knowing the quantile qχ(α) and the
threshold parameter γ, which depends on the Lq-error between χ and χ̃. The quantile qχ(α)
and the approximation error are in general not known a priori. Following Li and Xiu [2010],
one can use a constructive iterative algorithm that does not require the a priori choice of γ
(Algorithm 1). To initialize this algorithm, a number ν of i.i.d. samples of the uncertain input
parameters is simulated, a surrogate model χ̃ is built, and a small positive parameter η is chosen
for setting a stopping criterion. At each iteration j, the sample set S is divided into a set S̃(j) of
samples for which χ̃ is evaluated and a set S \ S̃(j) for which χ is evaluated. In the initialisation
step, S̃(0) = S and an initial estimate of the quantile is determined by using only χ̃. At each
iteration j, the set S \ S̃(j) is determined by enriching the set S \ S̃(j−1) with the ∆ν samples in
S̃(j−1) that are closest to the current quantile estimate and a new quantile estimate is evaluated
by using the updated bifidelity model

χ̃γ(θ(k)) = χ̃(θ(k)) 1
(
ξ(θ(k)) ∈ S̃(j))+χ(θ(k)) 1

(
ξ(θ(k)) ∈ (S\S̃(j))

)
, 1 ≤ k ≤ ν. (5.80)
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Algorithm 1 Iterative algorithm for the bifidelity method
Initialisation:

1. Build a surrogate model χ̃ of χ.
2. Draw ν i.i.d. samples to obtain S =

{
ξ(θ(k)), 1 ≤ k ≤ ν

}
.

3. Set k = 0, S̃(0) = S, ∆ν � ν (step size), and η ≥ 0 (small number).
4. Evaluate

{
χ̃(θ(k)), 1 ≤ k ≤ ν

}
.

5. Set q(0)(α) as the α-quantile of
{
χ̃(θ(k)), 1 ≤ k ≤ ν

}
.

Iteration: at the j-th iteration (j ≥ 1), do:
1. Sort

{
|χ̃(θ(k))− q(j−1)(α)|, θ(k) ∈ S̃(j−1)

}
in ascending order.

Let ∆S̃(j) collect the ∆ν smallest elements and S̃(j) = S̃(j−1) \∆S̃(j).
2. Evaluate χ(θ(k)) and replace χ̃(θ(k)) with χ(θ(k)), ∀θ(k) ∈ ∆S̃(j).
3. Set q(j)(α) as the α-quantile of

{
χ̃(θ(k)), 1 ≤ k ≤ ν

}
.

4. If |q(j)(α)− q(j−1)(α)| ≤ η or S̃(j) = ∅, exit; otherwise increment j by 1.
Return q(j)(α) as an estimate of qχ(α).

5.7.4.3 Computational cost

In addition to the computational cost of constructing a truncated polynomial chaos expansion
as in Equation (5.57) or Equation (5.61), the accuracy and efficiency of Algorithm 1 depend
on the stopping criterion and the step size ∆ν. In principle, the algorithm will converge to
the Monte Carlo estimate once all the samples are evaluated with the computational model. In
practice, it is desirable to stop the algorithm before this point to reduce the number of evaluations
of the computational model. Nevertheless, while a stopping criterion implies the numerical
convergence of the quantile estimate, it may not guarantee the convergence towards the quantile
to be estimated. Thus, the accuracy of the surrogate model may be expected to have a direct
impact on the efficiency of the algorithm. A small step size may be expected to be more optimal
in terms of the total number of evaluations of the computational model but to converge in more
iterations, while a higher step size may be expected to be less optimal in terms of the total
number of evaluations of the computational model but to converge in less iterations. At each
iteration, the ∆ν new evaluations of the computational model may be performed in parallel
depending on the available computational resources.

5.8 Numerical example

5.8.1 Problem set-up

We provide in this section a numerical example using a test function to illustrate aspects of the
proposed methodology and we postpone to Chapter 7 an illustration relevant to the retreat of
the grounded portion of the Antarctic ice sheet. In addition, we do not seek to provide physical
interpretations of excursion sets and confidence sets and we postpone to Chapters 7 and 8 these
interpretations.
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Let D = [−2, 2]× [−2, 2] be a compact subset of R2. We consider the Gaussian function

y(x) = y0 exp
(
−
[
k1(x1 cos θ + x2 sin θ)2 + k2(x1 sin θ − x2 cos θ)2

])
, x ∈ D, (5.81)

to be the solution quantity. Here, y0, k1, k2 and θ are input parameters. The solution quan-
tity given by Equation (5.81) may be interpreted as the solution at a given time to a diffusion
equation, with y that may be interpreted as a concentration level, θ that may be associated with
a preferential direction of diffusion, and k1 and k2 that may be associated with the diffusion
coefficients in the direction parallel to θ and orthogonal to θ, respectively.

Here, we are interested in the subset of D where the spatial response y exceeds half of its
value at the origin, that is, we consider the superlevel set{

x ∈ D : y(x) ≥ y0
2

}
. (5.82)

Figure 5.7 illustrates the Gaussian function in Equation (5.81) for the parameters y0 = 100,
k1 = 1, k2 = 0.5, θ = π/4. Levels sets of a Gaussian function are ellipses and thus its
superlevel sets are contained inside ellipses. Hence, θ defines the direction of the ellipses and
the paramaters k1 and k2 are associated with the lengths of the semi-axes of the ellipses.

−2
0

2

−2

0

2
0

50

100

x1
x2

y(
x)

(a) 3D representation.

25

25

25

25

50

50

50

75

75

−2 −1 0 1 2
−2

−1

0

1

2

x1

x 2

(b) Contour plot.

Figure 5.7: Representation of the Gaussian function in Equation (5.81) (y0 = 100, k1 = 1,
k2 = 0.5, θ = π/4).

5.8.2 Sources of uncertainties

We consider the parameter k1 to be uncertain and we consider the parameters k2, θ, and y0 to be
fixed with values of 0.5, π/4, and 100, respectively. We represent the uncertain parameter k1 as
a uniform random variable ξ with values in [0.5, 5]. Hence, we consider the length of the minor
axis of the level sets of the Gaussian function in Equation (5.81) to be uncertain. Figure 5.8
shows representations of the Gaussian function for the minimum and maximum values of the
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Figure 5.8: Examples of realisations of the Gaussian function in Equation (5.81) and its level
sets for the minimum and maximum values of the uncertain input parameter.

input parameter.

Upon representing the uncertain input parameter k1 with the aforementioned random vari-
able, the solution quantity becomes the random field {Y (x),x ∈ D}. We are interested in its
positive excursion set

E+
u = {x ∈ D : Y (x) ≥ u} , (5.83)

for the level u = y0/2 = 50. In the following, we will seek an inner confidence set C in
u+,α

for E+
u for different confidence levels α. Following the approach in Section 5.6, we consider a

partitioning of the domain and define the excursion sets and confidence sets with reference to
this partitioning. Here, we evaluate the Gaussian function on a square grid with 1 001 grid points
in each direction and the partitioning is taken as a square tesselation based on the grid points and
the representative points are the grid points. This spatial discretisation leads to a partitioning
into 1 002 001 subsets. Owing to the partitioning of the domain, χ is a discrete variable, denoted
here explicitly by χh.

5.8.3 Membership function

We estimated the membership functions defined in Equations (5.24)–(5.26) for the random
Gaussian function using Monte Carlo sampling. We first generated an ensemble of 5 000 i.i.d.
samples of the uncertain input parameter, from which we deduced the corresponding realisa-
tions of the random Gaussian function. Then, we estimated the statistical descriptors of the
random field from these realisations using Monte Carlo estimation. Finally, we evaluated the
membership functions defined in Equations (5.24)–(5.26) using the statistical descriptors thus
obtained. Figure 5.9 illustrates these membership functions.
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Figure 5.9: Illustrations of membership functions for the Gaussian function: (a) T1, (b) T2,
(c) T3, and (d) representation of the membership function along the direction θ = π/4 with r
the distance to the centre.

5.8.4 Random variable χh

Figure 5.10 shows, as a function of the values taken by the uncertain input parameter, the cor-
responding value taken by χh for the membership functions defined in Equations (5.24)–(5.26).
For small values of ξ, the superlevel sets of y are ellipses whose minor axis is of similar length
as the major axis, and the supremum of T in

(E+
u

)c is small. On the other hand, for large values
of ξ, the superlevel sets of y are ellipses whose minor axis is much smaller than the major axis,
and the supremum of T in

(E+
u

)c is large. We can observe that the mapping from the values
taken by the uncertain input parameters to the value by the random variable χh is almost linear
for the membership function T1 and exhibits a similar behaviour for T2 and T3.
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Figure 5.10: Value taken by the random variable as a function of the values taken by the uncer-
tain input parameter for the membership functions defined in Equations (5.24)–(5.26).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ρ

F
m

id
,ν

χ
h

(ρ
)

T1

T2

T3

Figure 5.11: Sample mid-distribution functions (ν = 5 000).

5.8.5 Quantile estimation

5.8.5.1 Monte Carlo method

We determined the value of the optimal threshold ρ∗ with an ensemble of 5 000 i.i.d. samples.
Figure 5.11 shows the sample mid-distribution function for the three membership functions,
from which we estimated the corresponding mid-quantiles for the confidence levels 0.5, 0.9, and
0.99. In Figure 5.12, we conducted a numerical convergence analysis to examine the conver-
gence of the Monte Carlo estimates of the mid-quantiles with respect to the number of samples.
Figure 5.12 suggests that using 5 000 samples is sufficient to ensure a reasonable convergence
of the Monte Carlo estimates, with reasonable convergence achieves after a value for ν of about
2 000.
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Figure 5.12: Convergence analysis of the Monte Carlo estimates as a function of the number of
samples ν for T2.

5.8.5.2 Bifidelity method

We implemented the bifidelity method by reusing the ensemble of 5000 i.i.d samples that we
had used in the Monte Carlo method in Section 5.8.5.1 so as to allow the solution given by the
bifidelity method to be compared with the Monte Carlo solution. We built polynomial chaos
expansions for several choices of the order p using scaled Legendre polynomials whereby we
determined the polynomial chaos coordinates from an experimental design made up of the nodes
of a fully tensorised scaled Gauss–Legendre quadrature integration rule with (p + 1) nodes. In
Algorithm 1, we used a step size of ∆ν = 50 and we set η = 0.

In this numerical illustration, we found that Algorithm 1 stops when the mid-quantile esti-
mate based on the bifidelity method is equal to the Monte Carlo estimate. For this reason, we
measure the efficiency of the bifidelity method as the number of iterations before exiting Algo-
rithm 1, with the maximum number of iterations equal to 100. Figure 5.13 gives the efficiency
of the bifidelity method for a surrogate model based on a polynomial chaos expansion either of
the random field or of χh as a function of the order p. The number of iterations is high for low
orders but drops significantly for higher orders, with only one or two iterations necessary to exit
Algorithm 1 for higher orders. Hence, the mid-quantile can be estimated with only a reduced
number of samples compared to the Monte Carlo sampling method. In addition, the bifidelity
method based on a polynomial chaos expansion of χ generally achieves a higher efficiency than
the bifidelity method based on a polynomial chaos expansion of χh for a given order p. Re-
garding differences between the membership functions defined in Equations (5.24)–(5.26), the
bifidelity method based on a polynomial chaos expansion of χh achieves a higher efficiency for
the membership function T1 than T2 and T3, which results from χh being almost linear for T1.

5.8.5.3 Discussion: efficiency of the bifidelity approach

In this illustration, the bifidelity method based on a polynomial chaos expansion of the random
field achieves in general a higher efficiency than the bifidelity method based on a polynomial
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Figure 5.13: Efficiency of the hybrid sampling method: number of iterations before exiting Al-
gorithm 1 as a function of the polynomial order p. Surrogate models are based on a polynomial
chaos expansion either of the random field (first column) or of χh (second column). Results are
for T1 (top row), T2 (middle row), and T3 (bottom row).
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chaos expansion of χh. To understand these observations, we looked at how well the random
variable χh lends itself to being approximated with surrogate models based on a polynomial
chaos expansion of either the random field or the random variable χh. Figure 5.14 shows,
as a function of the polynomial order p, the relative mean-square error between the random
variable χh and a surrogate model χ̃ based on a polynomial chaos expansion of either the random
field (Figure 5.14(a)) or the random variable χh (Figure 5.14(b)). While the approximation
error decreases as a function the polynomial order p for both kinds of surrogate model, the
convergence is in general faster for a surrogate model based on a polynomial chaos expansion of
the random field than one of the random variable χh. Thus, the random variable χh lends itself
better to being approximated with surrogate models based on a polynomial chaos expansion
of the random field than one of the random variable χh, which leads to the observed higher
efficiency for the bifidelity method based on a polynomial chaos expansion of the random field.
It should be noted that for the membership function T1, the relative mean-square error between
the random variable χh and a surrogate model χ̃ based on a polynomial chaos expansion of χh

exhibits initially a very fast convergence rate because χh is almost linear (see Figure (5.10)).
For the Gaussian function in Equation (5.81) with an uncertain input parameter, the random
field {Y (x),x ∈ D} is sufficiently smooth to lend itself well to being approximated with a
polynomial chaos expansion of low order.
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Figure 5.14: Relative mean-square error between the random variable χh and a surrogate model
χ̃ based on a polynomial chaos expansion either (a) of the random field or (b) of χh.

5.8.6 Confidence sets

Figure 5.15 represents confidence sets for various confidence levels. We built this figure by
superimposing these confidence sets for increasing confidence levels.
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Figure 5.15: Superimposition of confidence sets for various confidence levels. Membership
function: (a) T1, (b) T2, and (c) T3.

5.8.7 Spatial discretisation

Figure 5.16 provides insight into the impact of the spatial discretisation on the accuracy one may
achieve in computing confidence sets. Figure 5.16 shows the convergence of the mid-quantile
estimates obtained using Monte Carlo sampling as a function of the number of grid points Nh.
We can observe that reasonably converged estimates of the mid-quantiles are obtained after a
value for Nh of about 123 201 (351 grid points in each dimension of the domain). Figure 5.16
also shows that qmid

χh
(α) essentially increases as a function of the number of grid points.
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Figure 5.16: Convergence analysis of the mid-quantile estimates obtained using Monte Carlo
sampling (ν = 5 000) as a function of the number of grid points Nh. Results are for T2.
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5.9 Conclusion

We investigated confidence sets of random excursion sets in the context of stochastic computa-
tional models with a high computational cost. We proposed to recast the problem of estimating
an optimal confidence set in a parametric family of candidate sets as an equivalent quantile
estimation problem of a random variable. We proposed to solve the quantile estimation prob-
lem using a surrogate model either of the random field or of the random variable χ, and we
introduced a bifidelity method that aims at reducing the approximation error by using the com-
putational model close to the quantile to be estimated. We illustrated this method on a simple
model problem and we showed that only a small number of evaluations of the computational
model was necessary to achieve an accurate estimate of the quantile.

The bifidelity method relies on the construction of a surrogate model based on a polynomial
chaos expansion, which is especially well suited for low or moderate stochastic dimension. With
a methodology-oriented point of view, future work could investigate the stochastic discretisation
of the quantile estimation problem for computational models with a high stochastic dimension
by using, for instance, other methods from reliability engineering such as subset simulation
or adaptive methods. With an application-oriented point of view, future work could apply the
proposed method to provide probabilistic projections and insight into the evolution of complex
physics-based models. For an example of such an application, we refer the reader to Chapter 8,
in which we used the proposed method to provide new probabilistic projections and insight
into the evolution of Antarctic ice sheet based on realistic forcings and suitable probabilistic
characterisations of uncertain input parameters.

5.A Asymptotic properties in Monte Carlo estimation of quantiles

In this appendix, we provide the interested reader with theoretical results regarding asymptotic
properties in Monte Carlo estimation of quantiles.

5.A.1 Monte Carlo quantile estimation based on the distribution function

When the random variable χ is a continuous random variable with a probability density function,
Theorem 5.3 [Arnold et al., 1992] shows that the Monte Carlo estimate qνχ(α) is associated with
a consistent estimator of qχ(α) that satisfies a central limit theorem.

Theorem 5.3. Let
{
χ(1), . . . ,χ(ν)} be a sequence of independent and identically distributed

random variables with distribution function Fχ and let χk:ν denotes the corresponding k-th order
statistics. For 0 < α < 1, let Fχ be absolutely continuous with probability density function fχ
which is positive at F−1

χ (α) and is continuous at that point. For k = [να] + 1, where [να]
represents the integer part of να, as ν →∞,

√
νfχ(F−1

χ (α))
(
χk:ν − F−1

χ (α)
)√

α(1− α)
d→ N (0, 1). (5.84)

When χ is a discrete random variable, then the Monte Carlo estimate qνχ(α) is not guaran-
teed to be associated with a consistent estimator of qχ(α) or to satisfy a central limit theorem.
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Theorem 5.4 by Feldman and Tucker [1966] indicates that the Monte Carlo estimate qνχ(α) sat-
isfies the so-called oscillatory effect with respect to the interval [qinf

χ (α), qsup
χ (α)] where qinf

χ

and qsup
χ are respectively the lower and upper α-quantiles of χ, that is,

qinf
χ (α) = inf {ρ ∈ R : Fχ(ρ) ≥ α} , (5.85)

qsup
χ (α) = sup {ρ ∈ R : Fχ(ρ) ≤ α} . (5.86)

It should be noted that the lower quantile qinf
χ (α) is actually equivalent to our definition of qχ(α)

and that qinf
χ (α) is equivalent to qsup

χ (α) when χ is a continuous random variable. As explained
in Elfverson et al. [2014], the problem of estimating qχ(α) is actually ill-conditioned since small
perturbations in α or in the distribution function Fχ cause large variations in qχ(α). This results
in qνχ(α) converging to either qinf

χ (α) or qsup
χ (α) or to cycle between them.

Theorem 5.4. Let
{
χ(1), . . . ,χ(ν)} be a sequence of independent and identically distributed

random variables with distribution function Fχ and let χk:ν denotes the corresponding k-th
order statistics. For 0 < α < 1, the sequence

{
χ(1), . . . ,χ(ν)} obeys the oscillatory effect with

respect to the interval [a, b], i.e., P[χk:ν ≤ a, i.o] = P[χk:ν ≥ a, i.o] = 1 (i.o. means “infinitely
often”).

5.A.2 Monte Carlo quantile estimator based on the mid-distribution function

Theorem 5.5 [Ma et al., 2011] shows that the Monte Carlo estimate qmid,ν
χ (α) is associated

with a consistent estimator of qmid
χ (α) that satisfies a generalised central limit theorem. In

Theorem 5.5, Ma et al. [2011] distinguish four different cases depending on the value of α.
In cases 1 (α < p1/2) and 2 (α > Fmid

χ (χL)), the Monte Carlo estimates based on the mid-
distribution function are associated with an estimator that converges in probability towards the
minimum and maximum values of the random variable, respectively. Case 3 corresponds to a
value of α being strictly between two distinct discrete values of the mid-distribution function. In
case 3, the Monte Carlo estimates based on the mid-distribution function are associated with an
estimator that satisfies a central limit theorem in accordance with Theorem 5.3. The term (1 −
(λ−1)2)pl+1

4 +(1−λ2)pl+2
4 can be viewed as an efficiency gain due to the fact that the estimates

are more concentrated in the discrete case that in the continuous case. This term vanishes in the
continuous case because the probability mass function is zero. Case 4 corresponds to a value of
α being equal to one of the distinct discrete values of the mid-distribution function. In case 4, the
Monte Carlo estimates based on the mid-distribution function are associated with an estimator
that converges in distribution towards a joined half-Gaussian (or two-piece normal) distribution.
In a similar way to case 3, the term pl+1

4 can viewed as an efficiency gain.

Theorem 5.5. Let
{
χ(1), . . . ,χ(ν)} be a sequence of independent and identically distributed

random variables with distribution function Fχ and mid-distribution function Fmid
χ . Let the

support of the distribution function be χ1 < . . . < χL and denote the corresponding probability
masses by p1 = pχ(χ1), . . . , pL = pχ(χL). Further define p0 = 0, pL+1 = 0, χ0 = χ1, and
χL+1 = χL. For 0 < α < 1, let χmid,ν(α) be the random variable defined by

χmid,ν(α) = inf
{
ρ ∈ (0, 1) : Fmid,ν(ρ) ≥ α

}
, (5.87)
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where Fmid,ν(ρ) is given by

Fmid,ν(ρ) =


0 if ρ < χ1

Fmid,ν(χk+1)− Fmid,ν(χk)
χk+1 − χk

(ρ− χk) + Fmid,ν(χk) if χk ≤ ρ ≤ χk+1

1 if ρ > χL

,

(5.88)
with

Fmid,ν(χk) = 1
ν

ν∑
k=1

1(χ(l) ≤ χk)−
1

2ν

ν∑
l=1

1(χ(l) = χk), 1 ≤ k ≤ L. (5.89)

Then, as ν →∞

1. χmid,ν(α) p→ χ1 if α < Fmid
χ (χ1) = p1/2.

2. χmid,ν(α) p→ χL if α > Fmid
χ (χL).

3.

√
νfχ(qmid

χ (α))
(
χmid,ν(α)− qmid

χ (α)
) d→

N
[
0,α(1− α)− (1− (λ− 1)2)pl+1

4 − (1− λ2)pl+2
4

]
. (5.90)

if α = λFmid
χ (χl+1) + (1− λ)Fmid

χ (χl+2) for 0 < λ < 1 and l = 0, . . . ,L− 2.

4. √
νfχ(χmid,ν(α),χl+1)

(
χmid,ν(α)− χl+1

) d→ N (0,α(1− α)− pl+1
4 ). (5.91)

if α = Fmid
χ (χl+1) for l = 0, . . . ,L − 1. Here, fχ(χ̂,χ) denotes the right derivative of

Fmid
χ at χ if χ̂ > χ and the left derivative of Fmid

χ at χ if χ̂ < χ.

5.B Proof of Theorem 5.1

The quantiles qχ(α) and qχ̃(α) are given by

qχ(α) = inf {ρ ∈ (0, 1) : Fχ(ρ) ≥ α} , (5.92)

qχ̃(α) = inf
{
ρ ∈ (0, 1) : Fχ̃(ρ) ≥ α

}
. (5.93)

We first assume that the following inequalities hold

Fχ̃(qχ(α) + δ) = P(χ̃ ≤ qχ(α) + δ) ≥ α, (5.94)

Fχ̃(qχ(α)− δ − ε) = P(χ̃ ≤ qχ(α)− δ − ε) < α, ∀0 < ε < δ. (5.95)

From (5.94), we can deduce

qχ̃(α) = inf
{
ρ ∈ (0, 1) : Fχ̃(ρ) ≥ α

}
≤ qχ(α) + δ. (5.96)
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Moreover, as cumulative distribution functions are monotone functions, we have

Fχ̃(ρ1) = P(χ̃ ≤ ρ1) ≤ Fχ̃(ρ2) = P(χ̃ ≤ ρ2),∀ρ1 ≤ ρ2. (5.97)

From (5.95), we have {ρ ∈ (0, 1) : P(χ̃ ≤ ρ) ≥ α} ⊂ [qχ(α)− δ,∞[. Then

qχ̃(α) = inf
{
ρ ∈ (0, 1) : Fχ̃(ρ) ≥ α

}
≥ qχ(α)− δ. (5.98)

From (5.96) and (5.98), we have

|qχ̃(α)− qχ(α)| ≤ δλ. (5.99)

To prove (5.94), we have to show that

χ̃ ≤ qχ(α)⇒ χ̃ ≤ qχ(α) + δ almost surely. (5.100)

Indeed, if (5.B) holds, then

Fχ̃(qχ(α) + δ) = P(χ̃ ≤ qχ(α) + δ) ≥ P(χ̃ ≤ qχ(α)) ≥ α. (5.101)

Assuming that (5.63) and χ̃ ≤ qχ(α) hold, we have almost surely

χ̃ ≤ χ+ |χ̃− χ̃| (|χ̃− χ| ≥ χ̃− χ)

≤ χ+ δ

2 + 1
2 |qχ(α)− χ| (given (5.63))

= χ+ δ

2 + 1
2qχ(α)− 1

2χ (qχ(α) ≥ χ)

= 1
2χ+ δ

2 + 1
2qχ(α)

≤ qχ(α) + δ

2 (qχ(α) ≥ χ)

≤ qχ(α) + δ.

(5.102)

To prove (5.95), we have to show that

χ̃ ≤ qχ(α)− δ − ε⇒ χ ≤ qχ(α)− ε almost surely. (5.103)

Indeed, if (5.103) holds, then

Fχ̃(qχ(α)− δ − ε) = P(χ̃ ≤ qχ(α)− δ − ε) ≤ P(χ̃ ≤ qχ(α)− ε) < α ∀0 < ε < δ. (5.104)

Equation (5.103) is equivalent to

χ > qχ(α)− ε⇒ χ̃ > qχ(α)− δ − ε almost surely ∀0 < ε < δ. (5.105)
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Assuming that (5.63) and χ > qχ(α)− ε hold, we have almost surely

χ̃ ≥ χ− |χ̃− χ| (|χ̃− χ| ≥ χ− χ̃)

≥ χ− δ

2 −
1
2 |qχ(α)− χ| (given (5.63))

= χ− δ

2 −
1
2 |χ− qχ(α)|

= χ− δ

2 −
1
2 |(χ− qχ(α) + ε)− ε|

≥ χ− δ

2 −
1
2 |χ− qχ(α) + ε| − 1

2 |ε| (|a− b| ≤ |a|+ |b|)

= χ− δ

2 −
1
2(χ− qχ(α) + ε)− 1

2ε (χ− qχ(α) + ε > 0)

= 1
2χ−

δ

2 + 1
2(qχ(α)− ε)− 1

2ε

>
1
2(qχ(α)− ε)− δ

2 + 1
2(qχ(α)− ε)− 1

2ε (χ− qχ(α) + ε > 0)

= (qχ(α)− ε)− δ

2 −
1
2ε

= qχ(α)− δ

2 −
3
2ε

> qχ(α)− δ − ε (0 < ε < δ).

(5.106)
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6
Essential ice-sheet models as an efficient
tool for large-scale and long-term
simulations and uncertainty quantification

In this chapter, we discuss the use of so-called essential ice-sheet models for simulations of the
Antarctic ice sheet. Essential ice-sheet models are computational models that rely on reduced-
order models and appropriate parameterisations in order to capture the overall dynamics of ice
sheets at a reduced computational cost. For this reason, such models are amenable to large-
scale and long-term simulations of the Antarctic ice sheet and uncertainty quantification. We
discuss aspects of essential ice-sheet models with a particular focus on the fast Elementary
Thermomechanical Ice Sheet (f.ETISh) model. In particular, we discuss reduced-order models
and parameterisations for the thermodynamics of ice sheets and ice shelves, the interactions
between an ice sheet and the Earth system, and the dynamics of the grounding line.

6.1 High-fidelity vs essential ice-sheet models

Computational (or numerical) ice-sheet models differ by their discretisation of the governing
equations but also by the physical processes included in the ice-sheet models and their numer-
ical representations. This defines a hierarchy of computational ice-sheet models with the end
members corresponding to computational ice-sheet models based on a discretisation of the full-
order model discussed in Section 2.2 and minimal (or conceptual) ice-sheet models with no
spatial extent [Shaffer, 2014; Robel et al., 2019]. In this dissertation, we distinguish within this
hierarchy of ice-sheet models two classes of computational models to simulate the spatial re-
sponse of ice sheets, namely high-fidelity and essential ice-sheet models. We call a high-fidelity
ice-sheet model a computational model that solves a full-order model as in Section 2.2 or high-
order approximations such as the Blatter–Pattyn higher-order model. These models are able to
simulate the ice flow with high accuracy at high spatial resolution (∼100 m) but with a high
computational cost, thus lending themselves well to simulating ice sheets on regional scales
and multidecadal periods. Examples of high-fidelity ice-sheet models are BISICLES [Cornford
et al., 2013], ELMER-ICE [Gagliardini et al., 2013], Albany/FELIX [Tezaur et al., 2015a,b],
MALI [Hoffman et al., 2018], and NCAR-CISM [Lipscomb et al., 2019]. On the other hand,
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we call an essential ice-sheet model a computational model that solves reduced-order models of
the full-order model discussed in Section 2.2 such as the SIA and SSA reduced-order models
while representing essential mechanisms and feedbacks of ice-sheet flow using parameterisa-
tions. These models lend themselves well to simulating large ice sheets at low spatial resolution
(∼10 km) on multicentennial-to-millennial time horizons and are computationally tractable for
large ensemble analysis and integration into (large-scale) Earth system models. Examples of
essential ice-sheet models are PISM [Winkelmann et al., 2011], PSUICE3-D [Pollard and De-
Conto, 2012a], GRISLI [Quiquet et al., 2018], and f.ETISh [Pattyn, 2017].

Coupling computational ice-sheet models with computational models of other components
of the Earth system is generally intractable for simulations on multicentennial-to-millenial time
horizons and uncertainty quantification. Thus, to avoid the need for computational models of
other components of the Earth system, the interactions between the ice sheet and other compo-
nents of the Earth system can be computed by using parameterisations or reduced-order models.

∗ ∗∗

τ b

τ b

Sheet (SIA)
Stream (SIA + SSA)

Shelf (SSA)
Grounding line

Shallow flow models

B1
Bn

Sub-shelf melting (PICO model) + calving

∗
∗ ∗∗

Isostatic bedrock adjustment

Grounding-line migration + MISI

∂T
∂t

+ v · ∇xT = κ∆xT + 4η
ρc
d2e

η = 1
2
A(T )−1/nd

1/n−1
e

Thermomechanical coupling

Figure 6.1: Illustration of the f.ETISh essential ice-sheet model [Pattyn, 2017]. Boxes around
the map of Antarctica represent essential mechanisms and interactions implemented in the
f.ETISh model.

With the aim of demonstrating methods from uncertainty quantification in ice-sheet mod-
elling as well as providing probabilistic projections for the response of the Antarctic ice sheet on
multicentennial-to-millenial time horizons, we will focus in the following on essential ice-sheet
models. In this chapter, we will describe in particular the governing equations implemented in
the f.ETISh ice-sheet model. The fast Elementary Thermomechanical Ice Sheet (f.ETISh) model
[Pattyn, 2017], developed at the Université Libre de Bruxelles, is a hybrid ice-sheet model that
captures the essential characteristics of ice flow and allows large-scale and long-term projections
at a reasonable computational cost; see Figure 6.1 for an illustration. We describe in Section 6.2
the thermomechanical ice-sheet model implemented in the f.ETISh model and we describe in
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Section 6.3 aspects regarding the representation of the interactions between the ice sheet and
other components of the Earth system in the f.ETISh model. We discuss in Section 6.4 the
initialisation of the f.ETISh model, including the inversion of the basal sliding coefficient and
input datasets used to perform simulations in Chapters 7 and 8, and finally we discuss in Sec-
tion 6.5 aspects regarding the numerical implementation of the governing equations, including
the migration of the grounding line. It should be noted that we do not aim at providing a thor-
ough description of the f.ETISh model but we rather aim at providing insight into the numerical
modelling of ice sheets with essential ice-sheet models to the unfamiliar reader. We refer to
Pattyn [2017] for further details about the f.ETISh model, its numerical implementation, and
the values of the model parameters.

6.2 Thermomechanical ice-sheet model

The f.ETISh model is essentially a two-dimensional computational model. The computational
domain is a two-dimensional rectangular domain representing both the ice sheet and surrounding
ocean. Here, the computational domain is represented by the open set ω and its boundary by ∂ω
(Figure 6.2). The computational domain is divided into a grounded portion ωg(t) and a floating
portion ωf(t), so that ω = ωg(t)∪ωf(t), and the grounding line is given by γ(t) = ωg(t)∩ωf(t).
It should be mentioned that in the f.ETISh model the floating portion ωf(t) not only represents
the ice shelves but also an artificial extension of the ice shelves in the open ocean. This artificial
extension is represented numerically as a thin layer of sea ice with a thickness hsi of a few me-
tres. As will be discussed in the following, this approach simplifies the treatment of the calving
front but results in a discontinuity of the ice thickness and viscosity at the calving front.

γ

ωg

ωf

∂ω

Figure 6.2: Representation of the computational domain ω. At any time t, the ice is grounded
in ωg(t) and floating in ωf(t). The transition line γ (blue line) between ωg and ωf is the ground-
ing line. The calving front (red dashed line) is not tracked explicitly in the f.ETISh model but
rather represents a discontinuity line in the floating portion ωf .

The f.ETISh model implements a thermomechanical ice-sheet model derived from the SIA
and SSA reduced-order models (see Sections 2.3.1 and 2.3.2). The f.ETISh model solves
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essentially for the depth-averaged horizontal velocity field v of the ice flow, the evolution of
the ice thickness h, and the evolution of the bedrock elevation b. Unless otherwise stated, we
use the same notations as in Sections 2.3.1 and 2.3.2. In the following, we describe the thermo-
mechanical ice-sheet model implemented in the f.ETISh model with a multi-domain formulation
in the domains ωg(t) and ωf(t). Based on the floatation condition, the grounded and floating
domains can be expressed as

ωg(t) = {x ∈ ω : ρh(x, t) > ρw(zsl − b(x, t))} , for 0 < t < τ , (6.1)

ωf(t) = {x ∈ ω : ρh(x, t) < ρw(zsl − b(x, t))} , for 0 < t < τ , (6.2)

and the grounding line is expressed as

γ(t) = {x ∈ ω : ρh(x, t) = ρw(zsl − b(x, t))} , for 0 < t < τ . (6.3)

6.2.1 Grounded domain

The f.ETISh model determines the depth-averaged horizontal velocity v in the grounded domain
by using a combination of the SIA and SSA reduced-order models. First, the depth-averaged
horizontal velocity v is determined by averaging the SIA equation (2.45) over the ice thick-
ness. Considering a depth-independent rheological coefficient Ā, the depth-averaged horizontal
velocity v then writes as

v = vb −
2Ā
n+ 2(ρg)nhn+1‖∇xs‖n−1∇xs, in ωg(t) for 0 < t < τ . (6.4)

In the f.ETISh model, the depth-independent rheological coefficient Ā is given by A(T ), where
the temperature T is the depth-averaged temperature field. Second, the basal sliding velocity vb
in Equation (6.4) is determined from the horizontal conservation-of-momentum equations (2.67a)
and (2.67b) in the SSA reduced-order model, that is,

2 ∂

∂x

(
2η̄h∂vx

∂x
+ η̄h

∂vy
∂y

)
+ ∂

∂y

(
η̄h
∂vx
∂y

+ η̄h
∂vy
∂x

)
− cb‖v‖p−1vx = ρgh

∂s

∂x
, (6.5a)

2 ∂
∂y

(
2η̄h∂vy

∂y
+ η̄h

∂vx
∂x

)
+ ∂

∂x

(
η̄h
∂vx
∂y

+ η̄h
∂vy
∂x

)
− cb‖v‖p−1vy = ρgh

∂s

∂y
. (6.5b)

Thus, the f.ETISh model represents the velocity field in the grounded ice sheet as a lin-
ear combination of the depth-averaged horizontal velocity field according to the shallow-ice
approximation and the horizontal velocity field according to the shallow-shelf approximation.
This kind of model is an example of a so-called hybrid SIA/SSA reduced-order model in which
the velocity field writes as a weighted linear combination of the velocity fields according to the
SIA and SSA reduced-order models, with more weight given to the SSA reduced-order model
for large values of the norm of the SSA velocity field; see, for instance, Bueler and Brown
[2009] and Winkelmann et al. [2011]. Hybrid SIA/SSA reduced-order models provide the most
straightforward way to include both vertical shearing and membrane stresses in the ice-sheet
dynamics. In the f.ETISh model, the velocity field is simply expressed as the sum of the SIA
and SSA velocity fields, without any need to choose for a weighting function, as proposed in
Winkelmann et al. [2011].
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The evolution of the ice thickness is determined from the following conservation-of-height
equation:

∂h

∂t
+ divx(hv) = as(Ts), in ωg(t) for 0 < t < τ , (6.6)

where the mass balance ab at the ice-bedrock is neglected. In the f.ETISh model, the mass
balance as at the ice-air interface is expressed as a function of the surface air temperature Ts
(also referred to as the atmospheric temperature in Chapters 7 and 8). Given the expression
of the velocity field v as a linear combination of the velocity fields according to the SIA and
SSA reduced-order models, Equation (6.6) can be interpreted as a nonlinear diffusion-advection
equation that is expected to be dominated by diffusion in the interior of the ice sheet and by
advection in (fast-flowing) ice streams.

In the f.ETISh model, the thermal model for the temperature field in the grounded ice sheet
is derived from Equation (2.54) in the SIA reduced-order model. For 0 < t < τ and x ∈ ωg(t),
the temperature field is determined as the solution to

∂T

∂t
+ (vd + vs) · ∇xT + vz

∂T

∂z
= κ

∂2T

∂z2 −
ρg

ρc
(s− z)∇xs ·

∂vd
∂z

, for 0 < z < s, (6.7)

T = Ts, for z = s, (6.8)

−k∂T
∂z

= qgeo − ρgh∇xs · vs, for z = b, (6.9)

where the thermal diffusivity κ = k/(ρc) and the heat capacity c of the ice are fixed at a
constant value and the surface mass balance at the ice-bedrock interface is neglected. Here, vd
is the horizontal component of the velocity field due to vertical shearing solely (deformational
velocity), vs the basal sliding velocity, and vz the vertical velocity. All three velocities are
determined following the SIA reduced-order model; see Equation (2.45) for vd, Equation (2.49)
for vs, and Equation (2.47) for vz . Introducing the scaled vertical coordinate ζ = (s− z)/h, vd
and vs can be expressed as

vd = − 2
n+ 1Ā(ρg)nhn+1(1− ζn+1)‖∇xs‖n−1∇xs, (6.10)

vs = − 1
cmb

(ρgh)m‖∇xs‖m−1∇xs, (6.11)

while the vertical velocity is approximated as [Hindmarsh, 1999; Pattyn, 2010]

vz = −as

[
ζn+2 − 1 + (n+ 2)(1− ζ)

n+ 1

]
+ (vd + vs) · ∇xb+ (1− ζ)∇xh. (6.12)

6.2.2 Floating domain

The f.ETISh model determines the depth-averaged horizontal velocity field v in the floating
domain from the SSA reduction-order model (see Equations (2.72) and (2.73)), that is, at any
time t in ]0, τ [, the depth-averaged horizontal velocity v is determined as the solution to

2 ∂

∂x

(
2η̄h∂vx

∂x
+ η̄h

∂vy
∂y

)
+ ∂

∂y

(
η̄h
∂vx
∂y

+ η̄h
∂vy
∂x

)
= ρgh

∂s

∂x
, in ωf(t), (6.13a)

2 ∂
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(
2η̄h∂vy

∂y
+ η̄h

∂vx
∂x

)
+ ∂

∂x

(
η̄h
∂vx
∂y

+ η̄h
∂vy
∂x

)
= ρgh

∂s

∂y
, in ωf(t), (6.13b)
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with the stress boundary conditions (see Equations (2.80a) and (2.80b))

2η̄h
[(

2∂vx
∂x

+ ∂vy
∂y

)
nx + 1

2

(
∂vx
∂y

+ ∂vy
∂x

)
ny

]
= 1

2ρgh
2
(

1− ρ

ρw

)
nx, on ∂ω, (6.14a)

2η̄h
[(

2∂vy
∂y

+ ∂vx
∂x

)
ny + 1

2

(
∂vx
∂y

+ ∂vy
∂x

)
nx

]
= 1

2ρgh
2
(

1− ρ

ρw

)
ny, on ∂ω. (6.14b)

It should be noted that the f.ETISh model implements the stress boundary conditions in Equa-
tions (6.14a) and (6.14b) at the edges of the computational domain rather than at the calving
front. This approach enables a more readily implementation of these boundary conditions but
is expected to generate a less-accurate back stress on the ice sheet as compared to approaches
that implement these boundary conditions at the calving front; see, for instance, Winkelmann
et al. [2011] for a discussion. Also, this approach raises mathematical and computational issues
about the discontinuity of the ice thickness and viscosity in ωf(t).

The evolution of the ice thickness is determined from the following conservation-of-height
equation:

∂h

∂t
+ divx(hv) = as(Ts)− aw(Tw)− cf , in ωf(t) for 0 < t < τ . (6.15)

The mass balance at the ice-air interface and the mass balance at the ice-ocean interface are only
applied to ice shelves, that is, where the ice thickness exceeds the thickness hsi of sea ice. In
the f.ETISh model, the mass balance as at the ice-air interface and the mass balance aw at the
ice-ocean interface are expressed as functions of the surface air temperature Ts and the ocean
temperature Tw, respectively. Given the definition of the floating domain ωf(t) that includes
both the ice shelves and their artificial extension in the open ocean, the calving rate cf is intro-
duced as a sink term in the conservation-of-height equation and is applied only at the calving
front or in the vicinity of the calving front. It should be mentioned that the f.ETISh model does
not track the position of the calving front explicitly but rather determines its position based on
the ice thickness in the floating domain.

In the f.ETISh model, the temperature field T in the ice shelf is expressed as an analytical
approximate solution to Equation (2.71) with boundary condition T = Ts at the ice-air interface
and boundary condition T = Tw at the ice-ocean interface. The analytical temperature profile is
determined assuming the ice shelf to be at steady state, the absence of horizontal advection and
viscous dissipation of heat, constant thermal properties c and k, and the vertical velocity to be
equal to the surface mass balance as; see, for instance, Holland and Jenkins [1999] and Pattyn
[2010]. Under these assumptions, an analytical expression of the vertical temperature profile is
obtained as

T (ζ) = (Ts − Tw)eβζ + Tw − Tseβ

1− eβ , in ωf(t) for 0 < t < τ , (6.16)

where β = ash/κ, ζ = (s − z)/h is the scaled vertical coordinate, and the temperature Tw at
the ice-ocean interface is expressed as Tw = Toc−0.12×10−3ρ/ρwh, with Toc the temperature
of the ocean at depth of the continental shelf [Maris et al., 2014].
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Figure 6.3: Present-day annual precipitation rates from Van Wessem et al. [2014], based on the
regional atmospheric climate model RACMO2.
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Figure 6.4: Present-day mean annual surface air temperature from Van Wessem et al. [2014],
based on the regional atmospheric climate model RACMO2.
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6.3 Interactions with the Earth system

6.3.1 Ice-air interface

The f.ETISh model determines the surface mass balance as and the surface air temperature Ts
by considering changes in the present-day observed precipitation rates (Figure 6.3) and sur-
face air temperature (Figure 6.4). Changes in surface mass balance and surface air temperature
are applied in a parameterised way. The parameterisation for changes in surface mass bal-
ance accounts for the increase in precipitation with temperature increase [Huybrechts et al.,
1998; Pollard and DeConto, 2012a], surface melt via a positive degree-day model [Janssens
and Huybrechts, 2000], and surface meltwater percolation and refreezing [Huybrechts and de
Wolde, 1999]. The parameterisation for changes in surface air temperature accounts for eleva-
tion changes (ice-elevation feedback) and a change in background atmospheric temperature ∆T
[Huybrechts et al., 1998; Pollard and DeConto, 2012a].

6.3.2 Ice-bedrock interface

The f.ETISh model implements the ELRA GIA model (Section 2.4) to determine the evolution
of the bedrock in response to glacial isostatic adjustment. Given the initial elevation b0 of the
lithosphere, assumed to be at equilibrium with present-day ice and water loadings, the ELRA
GIA model writes as

∂b

∂t
= − 1

τa
(b− b0 + weq), in ω for 0 < t < τ , (6.17)

b = b0, in ω at t = 0, (6.18)

where the equilibrium vertical displacement of the lithosphere weq is solution to

Db∆2
xw

eq + ρagw
eq = pload, in ω, (6.19)

with appropriate boundary conditions describing the behaviour of the solution at infinity. Here,
the notation pload denotes the change in ice and water loadings from the initial configuration and
can be expressed as

pload = ρg(h− h0) + ρwg(hw − hw,0), (6.20)

where hw denotes the ocean column thickness and h0 and hw,0 are the ice thickness and the
ocean column thickness at the initial time, respectively. The f.ETISh implements the ELRA
GIA model with a spatially-varying flexural rigidity Db [Chen et al., 2018] (Figure 6.5) un-
der the assumption that Equation (6.19) holds for a spatially-varying flexural rigidity as a first
approximation.
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Figure 6.5: Flexural rigidity Db of the lithosphere in Antarctica reconstructed from ice thick-
ness, bedrock topography, and terrestrial gravity data [Chen et al., 2018].
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Figure 6.6: Temperature of the ocean water in front of the ice-shelf cavities at depth of the
continental shelf [Schmidtko et al., 2014]. The ice sheet, the ice shelves, and the surrounding
Southern Ocean are split into drainage basins as defined in Zwally et al. [2012].
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6.3.3 Ice-ocean interface

In the f.ETISh model, the ocean temperature Toc on the continental shelf is computed using the
following parameterisation:

Toc = Toc,0 + Fmelt∆T , (6.21)

where Fmelt is the so-called ocean melt factor that represents the ratio between oceanic and
atmospheric temperature changes [Maris et al., 2014; Golledge et al., 2015] and Toc,0 the
present-day ocean temperature on the continental shelf determined from observations or numerical
simulations [Schmidtko et al., 2014] (Figure 6.6).

B1
Bn

B0 Soc

Toc

Figure 6.7: Schematic representation of a box model of the ocean circulation in an ice-shelf
cavity (based on Reese et al. [2018a]). The ice-shelf cavity is split into n boxes B1, . . . ,Bn and
box B0 represents the ocean extended from the ice-shelf cavity to the continental shelf. The
box model solves for the transport of heat and salt between the ocean boxes. The overturning
flux is driven by density changes through sub-shelf melting. Freshwater influx from melting at
the ice-shelf base makes the water buoyant, causing it to rise along the upward slope of the ice
shelf. Temperature differences between the ocean temperature in a box and the freezing point
at the ice-ocean interface causes the ice shelf to melt (or refreeze). The highest melt rates are
generally found near the grounding line and the lowest melt rates or refreezing are generally
found near the calving front.

Reliable estimates of the mass balance aw at the ice-ocean interface with three-dimensional
ocean circulation computational models remain too computationally expensive for simulations
of the Antarctic ice sheet on multicentennial-to-millennial time horizons. As an alternative, the
mass balance aw at the ice-ocean interface can be determined from simple parameterisations
based on the ice-shelf depth [Beckmann and Goosse, 2003; Holland et al., 2008; Pollard and
DeConto, 2012a; de Boer et al., 2015; Cornford et al., 2016] or from more sophisticated ocean-
model couplers that link the ocean temperature at the continental shelf to the mass-balance aw
at the ice-ocean interface by using box models of the circulation in ice-shelf cavities [Olbers
and Hellmer, 2010; Lazeroms et al., 2018; Reese et al., 2018a; Pelle et al., 2019]. In the f.ETISh
model, the mass balance aw is determined with an ocean-model coupler based on the Postdam
Ice-shelf Cavity mOdel (PICO) ocean-model coupler [Reese et al., 2018a]. The PICO ocean-
model coupler captures the basic overturning circulation within ice-shelf cavities driven by the
“ice pump” mechanism [Lewis and Perkin, 1986]. The intrusion of warm ocean water in the
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ice-shelf cavity melts the ice shelf near the grounding line and reduces the water salinity. Since
the ocean temperatures are generally close to the local freezing point, changes in sea-water
density are primarily controlled by salinity. For this reason, freshwater influx into the ocean
makes sea water buoyant. Buoyant water then rises along the upward slope of the ice shelf
and progressively cools down. The strength of this overturning circulation depends on the heat
content of water masses on the continental shelf: the warmer these masses, the stronger the
overturning circulation and the resulting melting. Figure 6.7 illustrates the mechanism of the
overturning circulation within ice-shelf cavities based on a box-model representation.

6.3.4 Calving

A common approach to modelling calving in ice-sheet models is to rely on parameterisations
based on continuum damage mechanics. In this framework, the calving rate cf is usually ob-
tained from the large-scale ice flow based on the horizontal strain-rate tensor D, which mea-
sures the overall expansion of the ice flow. Levermann et al. [2012] suggested that the first-order
large-scale kinematic contribution to calving is proportional to the product of the eigenvalues
of D, for both eigenvalues being positive; see also Martin et al. [2011] and Winkelmann et al.
[2011]. Both eigenvalues coincide approximatively with the strain rates in directions along and
transversal to the ice flow and positive eigenvalues denote expansion in these directions, which
tend to promote ice-shelf weakening and thereby calving. Pollard and DeConto [2012a] pro-
posed a similar representation of the calving rate cf , in which the overall expansion of the ice
flow is measured as a function of the divergence of the ice flow rather than the eigenvalues of
the tensor D. The f.ETISh model implements the approach in Pollard and DeConto [2012a] to
compute the calving rate; see also Pattyn [2017] and Section 8.2.2.4 for further discussions.

6.4 Model initialisation

6.4.1 Initial conditions

The initial state of the ice sheet is defined by present-day ice-sheet geometry, bedrock topogra-
phy, velocity field, and temperature field. Present-day ice-sheet geometry and bedrock topogra-
phy are given by datasets such as Bedmap2 [Fretwell et al., 2013] or Bedmachine [Morlighem
et al., 2019]; see Figures 3.1 and 6.8. The velocity field is given by datasets such as Rignot et al.
[2011]; see Figure 3.2. The initial ice-sheet temperature field is estimated as either the steady-
state temperature field at the initial time or the temperature field at the end of the inversion
procedure for the basal sliding coefficient (see Section 6.4.3).

6.4.2 Input data

Input data include the geothermal heat flux qgeo, present-day surface mass balance as,0 and
mean annual surface air temperature Ts,0, present-day ocean temperature Toc,0 at the continental
shelf, ocean salinity Soc at the continental shelf, and the flexural rigidity Db of the lithosphere.
Datasets include Shapiro and Ritzwoller [2004], Purucker [2013], An et al. [2015] (Figure 6.9),
and Martos et al. [2017] for the geothermal heat flux; Van Wessem et al. [2014, 2018], Agosta
et al. [2019], and Souverijns et al. [2019] for present-day surface mass balance and mean annual
surface air temperature; Schmidtko et al. [2014] for present-day ocean temperature and salinity;
and Chen et al. [2018] for the flexural rigidity of the lithosphere.
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Figure 6.8: Present-day ice thickness [Fretwell et al., 2013].
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Figure 6.9: Geothermal heat flux from An et al. [2015], based on the 3D shear velocity model
AN1-S.
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Figure 6.10: Optimised basal sliding coefficient Ab using the fixed-point iteration scheme by
Pollard and DeConto [2012b]. The friction law is Weertman’s friction law with m = 2 and the
ice-flow dynamics is solved using only the SIA reduced-order model.
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Figure 6.11: Difference between predicted and observed surface elevations.
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6.4.3 Inversion of the basal sliding coefficient

The basal sliding coefficient Ab = c−mb is obtained by solving an inverse problem that seeks to
match the observed present-day ice-sheet surface while assuming that the ice sheet is in steady
state. The f.ETISh model implements this inverse problem based on the fixed-point iteration
scheme by Pollard and DeConto [2012b]. At each iteration of the algorithm, the ice-sheet model
is run forward in time (with fixed grounding line) until a new steady state is reached. Then, the
predicted basal sliding coefficient A(i)

b at iteration i is adjusted as

A
(i+1)
b = A

(i)
b × 10fmisfit(s(i)−sobs), (6.22)

where sobs is the observed surface elevation of the ice sheet and fmisfit is a “misfit” function
chosen such that the iteration corrects the predicted basal sliding coefficient in order to match
the simulated steady-state surface elevation s(i) with observations. Intuitively, Equation (6.22)
increases sliding where the predicted surface elevation is higher than the observed surface ele-
vation so as to increase the velocity field locally and make the surface elevation at steady state
lower, and conversely, decreases sliding where the predicted surface elevation is lower than the
observed surface elevation so as to decrease the velocity field locally and make the surface ele-
vation at steady state higher. The algorithm stops when there are no more significant differences
between the predicted surface elevations at two successive iterations. Figure 6.10 shows the
value of the optimised basal sliding coefficient after a forward integration of 100 000 years. The
misfit function is taken as (s(i) − sobs)/hinv, with hinv = 2000 m a scaling constant, and the
basal sliding coefficient is updated every ∆tinv = 1000 years. At the end of the algorithm, the
misfit between the predicted and observed surface elevations is small in the interior of the ice
sheet where small values of the basal sliding coefficient are found and the misfit is generally the
highest around the coastline where the highest values of the basal sliding coefficient are found
(Figure 6.11). We refer the reader to Pollard and DeConto [2012b] and Pattyn [2017] for further
discussions about the efficiency of this fixed-point iteration scheme for the inversion of the basal
sliding coefficient and to Bernales et al. [2017] for possible improvements.

6.5 Numerical implementation

In the f.ETISh model, the discretisation of space is based on a finite-difference discretisation
scheme on two-dimensional rectangular finite-difference grids and the discretisation of time
is implicit. The heat equation, the conservation-of-momentum equations, the conservation-of-
height equation, and the GIA model are solved independently at each time step (weak coupling),
as depicted in Figure 6.13. The f.ETISh model introduces a (binary) mask array to distinguish
between the grounded domain and the floating domain. This mask is used to specify that an
operation must be performed only at the grid points that are either grounded or floating (masked
array assignment), for instance, basal friction is applied only at the grid points that are grounded.
The mask array is updated at each time step based on the floatation criterion. The conservation-
of-momentum equations of the SSA reduced-order model are discretised on two different stag-
gered Arakawa C grids [Arakawa and Lamb, 1977] (Figure 6.12) and a fixed-point iteration
method is used to solve the nonlinearity in the equations. The solution to Equation (6.19) in the
GIA model is expressed as an integral superposition by means of the Green’s function of Equa-
tion (6.19), which can be written in terms of the Kelvin function of zeroth order; see discussion
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in Section 2.4. The heat equation (6.7) is discretised vertically using irregularly spaced layers,
with a minimum layer thickness at the bottom, because the highest variability in the vertical
temperature occurs close to the bed. The deformational velocity vd, its vertical gradient, and the
vertical velocity vz in the heat equation in the grounded domain are approximated using shape
functions [Hindmarsh, 1999; Pattyn, 2017]. Finally, we discuss in the next section the numerical
treatment of the migration of the grounding line in the f.ETISh model.
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Figure 6.12: Staggered finite-difference grids used in the f.ETISh model. The basic grid is the
grid for the ice thickness (shown with orange squares). The velocity field is discretised on two
different staggered Arakawa C grids (shown with blue circles for vx and green circles for vy).

6.5.1 Implementation of grounding-line flux parameterisation

Reduced-order ice-sheet models (based on the SSA and hybrid SSA/SIA reduced-order models)
that implement the transmission conditions (2.101) are generally unable to capture the migration
of the grounding line properly unless they resolve the transition zone around the grounding line
at sufficiently fine resolution [Docquier et al., 2011; Pattyn et al., 2012]. Such resolutions are
generally not feasible for large-scale and long-term simulations of the Antarctic ice sheet. As an
alternative, Pollard and DeConto [2009] proposed to account for the migration of the grounding
line at coarse resolution by applying the grounding-line flux condition in Equation (2.107) as
an internal boundary condition following a heuristic rule. For a one-dimensional computational
domain, this heuristic rule goes as follows (see Figure 6.14) : if the ice flux qg at the grounding
line derived from Equation (2.107) is greater than the modelled ice flux qi at the last grounded
point xi on the finite-difference grid, then qg is imposed at xi; otherwise qg is imposed at the first
floating point xi+1. The subgrid position xg of the grounding line is determined by interpolating
linearly the quantity h+ ρw/ρ(zsl− b) between xi and xi+1 and setting it to zero. Then, the ice
thickness hg at the grounding line is also determined by interpolating linearly the ice thickness
between xi and xi+1. Benchmark experiments [Docquier et al., 2011; Pattyn et al., 2012, 2013]
showed that the implementation of this heuristic rule allowed to reproduce the migration of the
grounding line and its steady-state behaviour [Schoof, 2007b] at coarse resolution for the SSA
and hybrid SSA/SIA reduced-order models.
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Initial state: v0, h0, b0, T0
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Figure 6.13: Algorithm flowchart of the f.ETISh model.
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Figure 6.14: Illustration of the fixed-grid heuristic rule (adapted from Pollard and DeConto
[2009]). The SSA reduced-order model is solved on the whole computational domain at the
grid points. The velocity field is then corrected following a heuristic rule: if the ice flux qg at
the grounding line derived from Equation (2.107) is greater than the modelled ice flux qi at the
last grounded point xi on the grid, then qg is imposed at xi; otherwise qg is imposed at the first
floating point xi+1.

The f.ETISh model implements an extension of the heuristic rule by Pollard and DeConto
[2009] to two-dimensional computational domains [Pollard and DeConto, 2009, 2012b], even
though the implications of such an extension are not fully understood. For two-dimensional
computational domains, the ice flux q is decomposed into a component qx in the x-direction
and a component qy in the y-direction. The heuristic rule by Pollard and DeConto [2009] is ap-
plied equally in the x- and y-directions on the two Arakawa C grids for vx and vy, respectively.

Finally, the implementation in the f.ETISh model of the grounding-line flux parametrisation
in Equation (2.107) involves a so-called buttressing factor [Pollard and DeConto, 2012a; Pat-
tyn, 2017] that accounts for back stress at the grounding line due to pinning points and lateral
shearing. For a flowline ice-sheet model, this buttressing factor is determined by evaluating
the longitudinal stress just downstream of the grounding line. For two-dimensional computa-
tional domains, the buttressing factor for the x- and y-directions is determined by evaluating the
longitudinal stress along the x- and y-directions, respectively.

6.6 Chapter summary

In this chapter, we discussed the use of essential ice-sheet models for large-scale and long-term
simulations of the Antarctic ice sheet. Essential ice-sheet models reduce the complex physics
of ice-sheet dynamics to essential (or characteristics) mechanisms through the use of reduced-
order models and appropriate parameterisations. For this reason, essential ice-sheet models
are particularly attractive for large-scale and long-term simulations of the Antarctic sheet and
uncertainty quantification; see Chapters 7 and 8.





7
Illustration and performance evaluation
of uncertainty quantification methods on
ice-sheet model problems

Throughout this thesis, we seek on the one hand to apply existing uncertainty quantification
methods to problems in glaciology and on the other hand, motivated by problems in glaciology,
to develop new methods for uncertainty quantification. With this perspective, this chapter aims
at illustrating and evaluating the performance of both the existing and the newly developed un-
certainty quantification methods discussed in Chapters 4 and 5 on model problems in glaciology
using the f.ETISh model. In Section 7.1, with the aim of providing probabilistic projections of
the AIS contribution to sea-level rise, we illustrate and evaluate the performance of existing
methods for the propagation of uncertainties discussed in Section 4.3. In Section 7.2, with the
aim of providing probabilistic projections of the retreat of the grounded portion of the Antarctic
ice sheet, we illustrate and evaluate the performance of the multifidelity method for the esti-
mation of confidence regions for random excursion sets proposed in Chapter 5. In Section 7.3,
with the aim of assessing the most significant sources of uncertainty in inducing uncertainty
in the projections of the AIS contribution to sea-level rise, we illustrate and evaluate the per-
formance of existing and newly developed methods for global sensitivity analysis discussed in
Section 4.4.2. Results in Section 7.2 and Section 7.3 are based respectively on illustrations in
the manuscript [Bulthuis et al., 2019b] and the co-authored manuscript [Arnst et al., 2019],
both currently under review.

7.1 Probabilistic projections of future sea-level rise

7.1.1 Model problem

In order to illustrate the UQ framework with the purpose of predicting the AIS contribution to
sea-level rise, we set up a model problem using the f.ETISh model. In this model problem, we
simulate the response of the AIS over the next 700 years, starting from its present-day config-
uration, under a simplified forcing scenario in which the atmospheric and ocean temperatures
increase linearly in the first 300 years and then remain constant in the next 400 years. The use of
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such a simplified forcing scenario is justified by the fact that we do not seek here to provide new
probabilistic projections and insight into the evolution of the AIS but seek only to demonstrate
our proposed methodology. An increase in atmospheric temperature has an impact on the sur-
face mass balance through an increase in precipitation and surface melting, as represented by the
dependence of the surface mass balance as at the ice-air interface on the surface air temperature,
or simply the atmospheric temperature) Ts in Equations (6.6) and (6.15). In our model problem,
as we set it up using the f.ETISh model, an increase in ocean temperature has an impact on the
mass balance underneath the ice shelves through an increase in the strength of the overturning
ocean circulation in ice shelf cavities, as represented by the dependence of the surface masse
balance aw at the ice-ocean interface on the ocean temperature Tw in Equation (6.15). We let the
forcing scenario be defined as a function of two input parameters. The first input parameter is
the change in atmospheric temperature ∆Ts after 300 years, for which we will consider values
in the range between 1 and 10 K. To allow the reader to appreciate this range of values, the lower
and upper bounds are respectively in the range of values for the projected atmospheric tempera-
ture increase after 300 years for the strongly mitigated RCP 2.6 scenario and the warm RCP 8.5
scenario [Collins et al., 2013]. The second input parameter is the ratio between the change in
ocean temperature and the change in atmospheric temperature, that is, the ocean melt factor in
Equation (6.21), for which we will consider values in the range between 0.1 and 0.9; the lower
and upper bound account respectively for a slowdown or an amplification of the overturning
ocean circulation in ice shelf cavities. Please note that our choice of a wide range of values
for the atmospheric and oceanic forcings was also motivated by a desire to trigger significant
variability in the retreat of the grounded portion of the AIS and thus obtain a challenging model
problem for the proposed methodology. Except for the forcing scenario, the setup of our model
problem is similar to the setup of the nominal simulation in Bulthuis et al. [2019a] (reported in
Chapter 8), and we also refer the reader to Bulthuis et al. [2019b] where this setup is used as an
illustration for the construction of confidence sets for the retreat of the grounded portion of the
Antarctic ice sheet (see also Section 7.2 where this illustration is reported).

We use a square grid with a length of 5 600 km in each direction with a spatial resolution of
16 km and we use a time step of 0.05 year. The computing time of a single simulation on two
threads of a SkyLake 2.3 GHz CPU of the Lemaitre 3 cluster (CÉCI clusters, F.R.S-FNRS &
Walloon Region, Belgium) is approximately 8 hours.

7.1.2 Quantity of interest

As the predicted quantity of interest, we consider the contribution of the Antarctic ice sheet to
global mean sea level over the next 700 years. Let the quantity

VAF(t) =
∫
Dg(t)

h(x, t) + ρw
ρ

min
(
0, zsl − b(x, t)

)
dx (7.1)

be the so-called volume above floatation [Bindschadler et al., 2013; Nowicki et al., 2013]. The
volume above floatation represents the potential total volume of ice that might contribute to
global sea-level change. Equation (7.1) considers that mass loss from floating ice shelves does
not contribute to global sea-level change owing to Archimedes’ principle. When the ice is
grounded above sea level (b(x) ≥ zsl), all the ice column has the potential to contribute to
global sea-level change. On the contrary, when the ice is grounded below sea level (b(x) < zsl),
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only the ice thickness in excess of the maximum floating ice thickness has the potential to con-
tribute to global sea-level change. In Equation (7.1), the ice thickness in excess of the maximum
floating ice thickness is determined from Archimedes’ principle, assuming the ice sheet to be in
vertical hydrostatic equilibrium.

The AIS contribution to global mean sea level at any time 0 < t < τ is computed by con-
verting the change in volume above floatation into global sea-level equivalent (SLE) as follows:

ρ

ρwAoc
(VAF(t)−VAF(0)) ≡ ∆GMSL(t), (7.2)

where Aoc is the ocean area (Aoc ≈ 3.62.108 km2) and ∆GMSL is the change in global mean
sea level (GMSL) stemming from the evolution of the Antarctic ice sheet.

7.1.3 Sources of uncertainty

In our model problem, we consider the two aforementioned input parameters to be uncertain.
We represent the change in atmospheric temperature after 300 years with a uniform random
variable W1 with values in [1, 10] K. And we represent the ratio between the ocean and atmo-
spheric temperature changes with a uniform random variable W2 with values in [0.1, 0.9]. We
let W1 and W2 be statistically independent and for the sake of convenience, unless explicitly
noted, we rescale the random variables such that W1 and W2 are uniformly distributed in the
interval [0, 1]. Similarly to our use of a simplified forcing scenario, our use of such a simplified
representation of input uncertainty is justified by the fact that we do not seek to provide new
probabilistic projections and insight into the contribution of the Antarctic ice sheet to sea-level
rise but we seek only to demonstrate the UQ methodology.

Figure 7.1 shows the mapping from the uncertain input parameters to ∆GMSL, also re-
ferred to as the parameters-to-projection relationship in this manuscript. Large values of the
uncertain input parameters leads essentially to an increased contribution of the Antarctic ice
sheet to sea level as a result of increased ocean temperature and subsequent enhanced sub-
shelf melting, which is only partially compensated by increased snowfall. Both uncertain input
parameters display strong interaction effects on ∆GMSL because the increase in ocean temper-
ature in Equation (6.21) depends on the product of w1 and w2. Figure 7.1 also suggests that the
mapping from the uncertain input parameters to ∆GMSL is polluted by the presence of small
noise in the output of the computational ice-sheet model. We attribute this computational noise
in particular to discretisation errors, algorithmic errors, and iterative procedures in the model.
In general, the signal-to-noise ratio only represents of a few percents; see the discussion in
Section 7.1.5.

7.1.4 Propagation of uncertainties: Monte Carlo method

We use the Monte Carlo sampling method as described in Section 4.3.1 to estimate the mean
and the standard deviation of the uncertain quantity of interest. We use for ν values up to 5 000.
Figure 7.2 shows the convergence of the Monte Carlo estimates for the mean and the standard
deviation. We can observe that reasonably converged estimates are obtained after a value for ν
of about 3 000 for the mean and of about 4 000 for the standard deviation although more than
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Figure 7.1: Representation of the mapping from the uncertain input parameters to ∆GMSL.

5 000 samples would be necessary to further increase the accuracy of the estimates. The results
obtained with ν = 5 000 are mν = 2.0980 m and σν = 1.5693 m.
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Figure 7.2: Convergence analysis: convergence of Monte Carlo estimate of the mean (asterisk)
and standard deviation (diamond) for ∆GMSL (m) after 700 years as a function of ν. The
aggregate computing time for the 5 000 evaluations of the computation model was 40 000 hours.

7.1.5 Propagation of uncertainties: Surrogate models

As for the numerical example in Section 4.5.1.2, we consider four different kinds of surro-
gate model in order to reduce the number of evaluations of the computational model to esti-
mate the statistical descriptors of ∆GMSL. We consider surrogate models based on polynomial
chaos expansions whose polynomial chaos coordinates are computed using either spectral pro-
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jection with fully tensorised scaled Gauss–Legendre quadrature integration rules or ordinary
least-squares regression (Section 4.3.2.1), and surrogate models based on Gaussian-process re-
gression with either Gaussian covariance or Matérn 5/2 covariance function (Section 4.3.2.2).

The existence of noisy data precludes a traditional convergence analysis of the approxima-
tion error as carried out in Section 4.5.1.2. In particular, surrogate models based on high-order
polynomial chaos expansions may tend to overfit the data. In addition, the accuracy of the sur-
rogate model may be very sensitive to the experimental design. Figures 7.3 and 7.4 show a
convergence analysis of the surrogate-based estimates of the mean and the standard deviation
of ∆GMSL as a function of the number of samples λ in the experimental design. We consid-
ered surrogate models based on polynomial chaos expansions of order 3. Except for surrogate
models based on a polynomial chaos expansion using spectral projection, we generated the ex-
perimental design by sampling without replacement λ samples from the ν = 5 000 Monte Carlo
samples and we replicated the experiment 200 times to assess the effect of stochastic variations
in the generation of the experimental design. To account for the estimation error in Monte Carlo
estimation, we also represented a 95%-confidence interval for the Monte Carlo estimate with
ν = 5 000 samples by using a bootstrap sampling method [Efron and Tibshirani, 1993], in which
we resampled with replacement the ν = 5 000 Monte Carlo samples in order to generate new
estimates of the mean and the standard deviation to obtain estimates of the statistical descriptors
of the Monte Carlo estimator. The mean value over the 200 experiments of the surrogate-based
estimates falls within the bootstrap 95%-confidence interval for each size λ of the experimental
design, except for the estimates for the standard deviation based on Gaussian-process regression
with a Gaussian covariance function and small size of the experimental design. Globally, Fig-
ures 7.3 and 7.4 suggest that surrogate models can provide sufficiently accurate estimates of the
mean and the standard deviation of ∆GMSL for sufficiently large experimental designs.

Figure 7.5 represents the mapping from the uncertain input parameters to the quantity of
interest as determined with the surrogate models. We use a Latin hypercube sampling scheme
to generate the same experimental design for the surrogate model based on a polynomial chaos
expansion using ordinary least-squares regression and the surrogate models based on Gaussian-
process regression. These surrogate models provide a sufficiently accurate representation of the
response of the computational model (Figure 7.1(b)), while fitting the noise in the data. By con-
trast the aggregate computing time of 40 000 hours for the evaluation of the 5 000 Monte Carlo
samples, the aggregate computing time is only of 288 hours and 512 hours for an experimental
design of size λ = 36 and λ = 64, respectively.

To measure of the accuracy of a surrogate model in the presence of noisy data, we follow
the approach in Iskandarani et al. [2016] and we consider the relative local error as

e(w(k)) = |f̃(w(k))− f(w(k))|
max(f(w(k)))−min(f(w(k)))

, 1 ≤ k ≤ ν, (7.3)

where w(k) refers to a Monte Carlo sample in the parameter space and f and f̃ denote the
computational model and the surrogate model, respectively. Figure shows the relative local
error between the values of the quantity of interest determined with the computational ice-sheet
model and its approximation with a surrogate model for the 5 000 Monte Carlo samples used in
Section 7.1.4. Results are shown for two sizes of the experimental design (λ = 36 and λ = 64).
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Figure 7.3: Convergence analysis: convergence of surrogate-based estimates of the mean of
∆GMSL as a function of the number of samples λ in the experimental design. The points
represent the mean estimate over the 200 experiments and the error bars are the 95%-confidence
intervals. The dashed lines represent the bootstrap 95%-confidence interval based on Monte
Carlo sampling with ν = 5 000 samples.
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Figure 7.4: Same as Figure (7.3) but for the standard deviation of ∆GMSL.

Red lines indicate the 95%-percentile relative local error in order to judge the magnitudes of
the 5% largest errors. For each surrogate model in Figure 7.6, the 95%-percentile relative local
error is less than 5%, which suggests that the signal-to-noise ratio is of a few percents. The
95%-percentile relative local error is generally lower for the largest experimental design. In
this illustration, Figure 7.6 suggests that surrogate models based on Gaussian-process regres-
sion handle noise more efficiently than surrogate models based on polynomial chaos expansions
although the lowest 95%-percentile relative local error is observed for a surrogate model based
on a polynomial chaos expansion of order 5 with spectral projection.



7.1. Probabilistic projections of future sea-level rise 173

0
1

1

1

2

2

3

3

4

5

0
0

1
1

1

2
2

3
3

4

5

0

1

1

1

2

2

3

3

4

5

0

0

1

1

1

2

2

3

3

4
5

0

1

1

2

2

3

3

4

0 0

1

1

1

2

2

3

3

4
5

0

1

1

2

2

3

3

4

5

0

1

1

1

2

2

3

3

4
5

0

1

2

3

4

5

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

1

0

0.25

0.5

0.75

1

w1 w1

λ = 36 λ = 64
w

2
w

2
w

2
w

2

P
C

E
N

IS
P

P
C

E
O

LS
G

P
G

au
ss

ia
n

G
P

M
at

ér
n

5/
2

Figure 7.5: Comparison of surrogate models of the mapping between the uncertain input pa-
rameters and ∆GMSL. The columns correspond to different sizes of the experimental design.
Polynomial chaos expansions are of order 3 for λ = 36 and of order 5 for λ = 64.
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Figure 7.6: Blue points indicate for each Monte Carlo sample the relative local error between
the values of the quantity of interest determined with the computational ice-sheet model and
its approximation with a surrogate model. The horizontal red lines indicate the 95%-percentile
error e95. Polynomial chaos expansions are of order 3 for λ = 36 and of order 5 for λ = 64.
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Figure 7.7 compares the kernel density estimate of the probability density function of the
change in global mean sea level obtained by using Monte Carlo sampling (ν = 5 000) with the
kernel density estimates obtained with the surrogate models. We observe that the probability
density function of the uncertain quantity of interest is bimodal. This bimodality in the prob-
ability density function is determined by the behaviour of the West Antarctic ice sheet, with
values of the uncertain input parameters that can trigger a limited retreat of the West Antarctic
ice sheet or a complete collapse of the West Antarctic ice sheet (∼3–3.5 m sea-level equivalent)
in addition to a partial retreat of the Wilkes basin (Figure 7.9) in East Antarctica (∼0.5–1 m
sea-level equivalent). High-end estimates (5–6 m sea-level equivalent) are due to a more signifi-
cant retreat of the Wilkes basin that can only be triggered for the highest values of the uncertain
input parameters. For an experimental design of size λ = 36, the surrogate model based on a
polynomial chaos expansion using spectral projection faces difficulties in detecting the largest
mode. For an experimental design of size λ = 64, the kernel density estimates obtained with
the surrogate models are all bimodal and of similar accuracy.
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Figure 7.7: Comparison of surrogate-based kernel density estimates of the probability density
function of the uncertain quantity of interest. Results are for experimental designs of size λ = 36
and λ = 64.

7.1.6 Sea-level rise projections

Propagation of uncertainty can serve to determine time series for the projected contribution of
the Antarctic ice sheet to sea level with uncertainty ranges. In Figure 7.8(a), we estimated the
median AIS contribution to sea-level rise over the period 2000–2700 as well as the 33–66% and
5–95% probability intervals using Monte Carlo estimation with ν = 5 000 samples.

In order to reduce the computational time of Monte Carlo simulation, we also determined the
median AIS contribution to sea-level rise and the probability intervals using surrogate models.
For each instant of analysis, we fitted to the experimental design a surrogate model, which we
then used to evaluate the quantiles of ∆GMSL by running the surrogate model with an ensemble
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of 106 independent and identically distributed samples from the parameter space. The experi-
mental design is of size λ = 36 and was built by using a Latin hypercube sampling scheme.
Figures 7.8(b)–(d) show the resulting probabilistic projections for a surrogate model based on
a polynomial chaos expansion of order 3 using ordinary least-squares regression and two sur-
rogate models based on Gaussian-process regression. Comparison between Figure 7.8(a) and
Figures 7.8(b)–(d) suggest that surrogate models can provide accurate probabilistic projections
at only a small fraction of the computing time of the Monte Carlo sampling method.
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Figure 7.8: Comparison of probabilistic assessment of the AIS contribution to sea level from
2 000 to 2 700 using different UQ methods (Monte Carlo, PCE of order 3 with OLS, GP with
Gaussian covariance function, and GP with Matérn 5/2 covariance function).

7.1.7 Propagation of uncertainty: Discussion

Propagation of uncertainty using surrogate models provides an efficient way to alleviate the
computing time of computational ice-sheet models for Monte Carlo sampling. We pointed out
that the presence of noise in the data stemming from numerical noise and errors precludes a tra-
ditional analysis of the approximation error via a convergence analysis. We refer to Iskandarani
et al. [2016] for a discussion about surrogate modelling in the presence of noisy data. In gen-
eral, polynomial chaos expansions using ordinary least-squares regression and surrogate models
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based on Gaussian-process regression handle numerical noise more efficiently than polynomial
chaos expansions using spectral projections. Moreover, high-order polynomial chaos expan-
sions may suffer from overfitting and may not be adequate in the presence of noise. We also
showed that surrogate-based estimates could be very sensitivity to the size and choice of the
experimental design. Small experimental designs may lead to large stochastic variations in
surrogate-based estimates. Given a sufficiently large experimental design, we showed that all
kinds of surrogate model provide estimates of similar accuracy.

7.2 Probabilistic assessment of grounded-ice retreat

The results in this section are presented in the manuscript Bulthuis et al. [2019b]. We use the
same model problem and the same uncertain parameters as in Section 7.1.1.

7.2.1 Quantity of interest

As the predicted quantity of interest, we consider the grounded portion of the Antarctic ice sheet
at time τ = 700 yr. Let the so-called height above floatation

y(x, t) = h(x, t) + ρw
ρ

(zsl − b(x, t)) (7.4)

be the solution quantity of the computational ice-sheet model. When the bedrock is below sea
level, the height above floatation represents the ice thickness in excess of floatation; thus, the
height above floatation is positive for grounded ice and negative for floating ice. The grounded
portion of the Antarctic ice sheet at time τ = 700 yr writes in terms of the height above floatation
as

Dg =
{
x ∈ D : y(x) = h(x) + ρw

ρ
(zsl − b(x)) ≥ 0

}
for t = τ . (7.5)

Thus, the grounded portion of D is determined as the superlevel set of the height above floata-
tion for the threshold 0. Please not that similarly, we may define the floating portion Dg of the
Antarctica ice sheet as the sublevel set of the height above floatation for the threshold 0 and the
grounding line Γ as the level set of the height above floatation for the threshold 0. Figure 7.9 il-
lustrates these grounded and floating portions for the present-day configuration of the Antarctic
ice sheet.

Figure 7.10 illustrates the evolution of the grounded portion and the grounding line as a
function of time for ∆Ta = 8.5 K and ∆To/∆Ta = 0.84. We observe a limited retreat of the
grounding line in the first 200 years, followed by a retreat of the grounding line in the WAIS,
especially in the Amundsen Sea sector and in Siple Coast, in the next 200 years. After 700 years,
the WAIS has almost completely collapsed as a consequence of a MISI, while vulnerable marine
sectors, such as the Wilkes sector, in East Antarctica are undergoing a significant retreat.

7.2.2 Sources of uncertainty

We adopt the same probabilistic characterisation of the uncertain parameters as in Section 7.1.3.
Figure 7.11 shows the grounded portion for the minimum, mean, and maximum values of the un-
certain input parameters (see also Figure7.12). We observe a very limited retreat of the ground-
ing line for the minimum values, an ongoing retreat of the grounding line in the Amundsen Sea
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Figure 7.9: Present-day configuration of the Antarctic ice sheet with key geographic sectors in
bold type. The ice is grounded on the bedrock in Dg and floating in Df . The separation line Γ
between Dg and Df is the grounding line. WAIS is the West Antarctic ice sheet and EAIS is
the East Antarctic ice sheet.
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Figure 7.10: Illustration of a simulation with ∆Ta = 8.5 K and ∆To/∆Ta = 0.84. Height
above floatation at time (a) t = 200 yr, (b) t = 400 yr, and (c) t = 700 yr. The grounded
domain is the set of locations where the height above floatation is larger than 0. The black line
is the grounding line.

and Ronne sectors and in Siple Coast for the mean values, and an almost complete collapse of
the WAIS and a retreat of the Wilkes sector for the maximum values.

Upon representing the two uncertain input parameters of the computational model with the
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Figure 7.11: Height above floatation for the (a) minimum, (b) mean, and (c) maximum values of
the uncertain input parameters at time τ = 700 yr. The grounded domain is the set of locations
where the height above floatation is larger than 0. The black line is the grounding line.

0

(a) (ξ1 = 1 K, ξ2 = 0.1).

0

(b) (ξ1 = 10 K, ξ2 = 0.9).

Figure 7.12: Three-dimensional representation (on a coarser grid) of the height above floatation
for the (a) minimum and (b) maximum values of the uncertain input parameters at time τ =
700 yr. The grounded domain is the set of locations where the height above floatation is larger
than 0.

aforementioned random variables, the predicted height above floatation becomes the random
field {Y (x),x ∈ D}. We are interested in its positive excursion set

E+
0 = {x ∈ D : Y (x) ≥ 0} . (7.6)
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For several confidence levels α, we will seek an inner confidence set C in
0+,α for E+

0 . This inner
confidence set C in

0+,α may be interpreted as the set in which, with a probability of at least α,
all locations remain covered with grounded ice. It may also be interpreted as the set to within
which, with a probability of at least α, the grounded portion does not retreat with a probability
of at least α.

Following the approach of Section 5.6, we consider a partitioning of the computational
domain and define the excursion sets and confidence sets with reference to this partitioning.
Here, the partitioning is taken as a square tessellation of the finite-difference grid points and the
representative points are the grid points. The spatial discretisation used in the simulations leads
to a partitioning into 123 201 subsets.

7.2.3 Membership function

We first generated an ensemble of 500 i.i.d. samples of the uncertain input parameters, from
which we deduced the corresponding ensemble of samples of the height above floatation using
the computational model. Then, we approximated the pointwise probability density functions
of the random field using the kernel density estimation method. Subsequently, we determined
the statistical descriptors of the random field from the kernel density estimates. Finally, we
evaluated the membership functions defined in (5.24)–(5.26) using the statistical descriptors thus
obtained. Figure 7.13 illustrates these membership functions. We present results for all three
membership functions to allow us to comment on the impact of the choice of the membership
function on the methodology, for instance, the impact of the membership function on χ. In
Figure 7.13, both membership functions T2 and T3 exhibit a similar behavior, which may be
explained by a similar dependence of (5.27) and (5.28) on the coefficient of variation of the
random field. The larger difference between T1 and the two other membership functions may
be explained by the non-Gaussianity and bimodality of the random field in regions vulnerable
to instabilities as will be shown in Section 7.2.5.1.

(a) (b) (c)T1 T2 T3

0 0.2 0.4 0.6 0.8 1

Figure 7.13: Membership function: (a) T1, (b) T2, and (c) T3.
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7.2.4 Quantile estimation: Monte Carlo method

As discussed in Section 5.7, we may expect the quantile estimation problem to be more compu-
tationally challenging than the estimation of the membership function and we require a higher
accuracy of the estimate. Hence, we determined the value of the optimal threshold ρ∗ with a
larger ensemble of 5000 i.i.d. samples. Owing to the partitioning, χ is a discrete random vari-
able, denoted here explicitly by χh, with values in a set with a cardinality of 2 815 for T1, of
2 407 for T2, and of 2 440 for T3. The number of values that χh takes is two orders of magnitude
smaller than the number of representative points because most representative points are either
inside the excursion set or outside the excursion set almost surely and a significant retreat of
the grounding line only happens in vulnerable marine sectors. As a consequence of the num-
ber of values that χh takes being sufficiently large and these values being sufficiently dense,
the difference between the distribution function and the mid-distribution function is small, with
the magnitude of the discontinuities of the distribution function of the order of 10−4 to 10−3.
However, both the spatial and the stochastic discretization limit the accuracy in determining
confidence sets.

Figure 7.14 shows the sample mid-distribution function for the three membership functions,
from which we estimated the corresponding mid-quantiles for the confidence levels 0.5, 0.9, and
0.99. In Figure 7.15, we conducted a numerical convergence analysis to examine the conver-
gence of the Monte Carlo estimates of the mid-quantiles with respect to the number of samples.
Figure 7.15 suggests that using 5 000 samples is sufficient to ensure a reasonable convergence of
the Monte Carlo estimates. Figure 7.15 also suggests that reasonable convergence of the Monte
Carlo estimates is reached for a number of samples larger than 2 500.
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Figure 7.14: Sample mid-distribution functions (ν = 5 000).

Table 7.1 shows the Monte Carlo estimates of the optimal threshold ρ∗ for the confidence
levels 0.5, 0.9, and 0.99. We also determined the area of the resulting confidence sets. Table 7.1
suggests that using T1 leads to larger (more optimal) confidence sets than the two other mem-
bership functions. For each confidence level α, the inner confidence set for T1 is smaller than
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Figure 7.15: Convergence analysis of the Monte Carlo estimates as a function of the number of
samples ν for T1.

the corresponding Vorob’ev α-quantile. The use of T2 and T3 yields confidence sets of similar
size, which is consistent with the similarity that we observed between them.

T1 T2 T3
α qmid,ν

χh
(α) Area qmid,ν

χh
(α) Area qmid,ν

χh
(α) Area

0.5 0.5949 11.03 0.6183 10.92 0.6440 10.92
0.90 0.9243 10.28 0.9734 10.20 0.9442 10.20
0.99 0.9917 10.09 1.0000 9.83 0.9895 9.83

Table 7.1: Monte Carlo estimates of the mid-quantiles and area (millions of km2) of the resulting
confidence sets.

7.2.5 Quantile estimation: bifidelity method

We will now use the bifidelity method of Section 5.7.4, and we will investigate the extent to
which it can reduce the computational cost of evaluating the mid-quantiles for the membership
function T1 as compared with the Monte Carlo method used in Section 7.2.4. We will investigate
the use of the two methods for obtaining the surrogate model required for the bifidelity method,
namely, the method based on the spectral representation of the random field (Section 5.7.3.1)
and the method based on the spectral representation of χh (Section 5.7.3.2). We built polynomial
chaos expansions for several choices of the order p using scaled Legendre polynomials whereby
we determined the polynomial chaos coordinates from an experimental design made up of the
nodes of a fully tensorised scaled Gauss–Legendre quadrature integration rule with (p + 1)2

nodes. We implemented the bifidelity method by reusing the ensemble of 5000 i.i.d samples
that we had used in the Monte Carlo method in Section 7.2.4 so as to allow the solution given
by the bifidelity method to be compared with the Monte Carlo solution. We used a step size of
∆ν = 50 and we set η = 0.
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Figure 7.16 shows a numerical convergence analysis of the mid-quantile estimate as a func-
tion of the number of iterations in Algorithm 1 using a stochastic expansion of order p = 5
either of the random field or of χh. In our illustration, we found that Algorithm 1 stops when
the mid-quantile estimate based on the bifidelity method is equal to the Monte Carlo estimate in
Table 7.1. When j = 0, the estimate corresponds to the mid-quantile estimate based on only the
surrogate model (see Section 5.7.3). We observe that the mid-quantile estimate based on only
the surrogate model already provides an accurate estimate of the Monte Carlo mid-quantile.
When we apply the bifidelity method, the mid-quantile converges quickly towards the Monte
Carlo mid-quantile, thus suggesting that only a small percentage of evaluations of the computa-
tional model is required. We can observe that the bifidelity method converges in fewer iterations
for a surrogate model based on a stochastic expansion of χh (Figure 7.16(a)) than when using
one of the random field (Figure 7.16(b)).
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Figure 7.16: Convergence analysis of the mid-quantile estimate based on the bifidelity method
based on a polynomial chaos expansion either (a) of the random field or (b) of χh as a function
of the number of iterations in Algorithm 1. The absence of data indicates that the mid-quantile
estimate based on the bifidelity method is equal to the Monte Carlo estimate. Results are for
T1, order p = 5, ∆ν = 50, and ν = 5 000. The equivalent total CPU time, determined from
the number of samples of the computational model required to construct the polynomial chaos
expansion and to achieve convergence of Algorithm 1, is provided as a means of comparison
with the Monte Carlo solution (total CPU time of 40 000h).

Figure 7.17 gives the efficiency of the bifidelity method for a surrogate model based on a
polynomial chaos expansion either of the random field (Figure 7.17(a)) or of χh (Figure 7.17(b))
as a function of the order p. We measure the efficiency of the bifidelity method as the number
of iterations before exiting Algorithm 1, with the maximum number of iterations equal to 100.
The number of iterations is high for low orders but drops significantly for higher orders and
the 0.99-quantile. Hence, the mid-quantile can be estimated with only a reduced number of
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samples compared to the Monte Carlo sampling method. In addition, the bifidelity method
based on a polynomial chaos expansion of χ achieves a higher efficiency than the bifidelity
method based on a polynomial chaos expansion of the random field. Please note that an analysis
of the efficiency of the bifidelity method should also take into account the computational cost of
constructing the polynomial chaos expansions.
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Figure 7.17: Efficiency of the hybrid sampling method: number of iterations before exiting Al-
gorithm 1 as a function of the polynomial order p. Surrogate models are based on a polynomial
chaos expansion either (a) of the random field or (b) of χh. Results are for T1.

7.2.5.1 Efficiency of the bifidelity method

We obtained similar convergence and efficiency rates for the other two membership functions.
In general, the bifidelity method based on a polynomial chaos expansion of χh achieved a higher
efficiency than the bifidelity method based on a polynomial chaos expansion of the random field.
Also, the bifidelity method based on a polynomial chaos expansion of χh showed a higher effi-
ciency for T1 than T2 and T3.

To understand the observations mentioned in the previous paragraphs, we looked at how
well the random field and the random variable χh lend themselves to being approximated with
polynomial chaos expansions. Figure 7.17(a) shows, as a function of the values taken by the
uncertain input parameters, the corresponding value taken by the height above floatation at
the location x∗ in Siple Coast (see Figure 7.9). The random variable Y (x∗) has a bimodal
distribution with well-separated modes, which suggests the occurence of a MISI in Siple Coast.
The higher mode corresponds to small values (low forcing) of the uncertain input parameters
and a limited retreat of the grounding line, while the lower mode corresponds to large values
(high forcing) of the uncertain input parameters and an important retreat of the grounding line.
This suggests that the random field lends itself less well to being approximated with low-order
polynomial chaos expansions, especially at locations where a MISI takes place. By contrast,
Figures 7.17(b)–(d) show, as a function of the values taken by the uncertain input parameters,
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the corresponding value taken by χh for T1, T2 and T3, respectively. For small values of the
uncertain input parameters, the retreat of the grounding line is limited and the supremum of
T in

(E+h
0
)c

is small, while, for large values of the uncertain input parameters, the retreat of
the grounding line is important and the supremum of T in

(E+h
0
)c

is large. We can observe
that the mapping from the values taken by the uncertain input parameters to the value taken by
the random variable χh based on T1, T2 or T3 is sufficiently smooth to lend χh to better being
approximated well with low-order polynomial chaos expansions. In addition, a surrogate model
based on a polynomial chaos expansion converges more rapidly towards χh for χh based on T1
than on T2 or T3, as may be expected from the mapping from the values taken by the uncertain
input parameters to the value taken by random variable χh for small values of the uncertain
input parameters
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7.2.6 Confidence sets

In Figure 7.18, we represented the confidence sets for the confidence levels 0.5, 0.9, and 0.99.
We superimposed these confidence sets to represent risk-assessment maps. We interpret the con-
fidence sets with confidence levels 0.5, 0.9, and 0.99 as the sets to within which, with medium,
low, and very low probability, respectively, the grounded domain does not retreat. Thus, Fig-
ure 7.18 suggests that, within the context of the model problem as we set it up, there is a medium
risk that about half of the WAIS may disappear over the next 700 years and a low risk that the
whole WAIS may collapse over the next 700 years. All three membership functions lead to
similar interpretations although the confidence set with confidence level 0.5 for T2 and T3 sug-
gests that the WAIS (especially in the Amundsen Sea and Filchner sectors) is more vulnerable
than the corresponding confidence set for T1. Also, the confidence sets for T3 display the high-
est vulnerability for the WAIS but the least vulnerability in the Wilkes sector. More generally,
such risk-assessment maps may benefit both observational missions and ice-sheet modelling
initiatives by indicating critical regions in Antarctica whose evolution has to be tracked and
understood in more details.
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Figure 7.17: a) Height above floatation at the location x∗ in Siple Coast as a function of the
values taken by the uncertain input parameters. Value taken by the random variable χh as a
function of the values taken by the uncertain input parameters for (b) T1, (c) T2 and (d) T3.
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Figure 7.18: Risk-assessment maps of the AIS retreat. The blue set, the union of the blue and
orange sets, and the union of the blue, orange, and red sets are respectively the confidence set
for the confidence levels 0.99, 0.9, and 0.5. Membership function: (a) T1, (b) T2, and (c) T3.
The black line is the present-day grounding line.
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7.3 Computation of Sobol indices by probabilistic learning on man-
ifolds

The results in this section are presented in the manuscript [Arnst et al., 2019]. In Arnst et al.
[2019], the model problem has been used as a means to assess the efficiency of the probabilistic
learning on manifolds to compute Sobol indices in so-called small-data settings.

7.3.1 Model problem

In order to illustrate UQ methods for the evaluation of Sobol sensitivity indices with the purpose
of identifying the most significant sources of uncertainty in inducing uncertainty in the AIS
contribution to sea-level rise, we set up a second model problem using the f.ETISh model.
The model problem is similar to the model problem in Section 7.1.1 except for the uncertain
parameters (see Section 7.3.2), the spatial resolution (20 km instead of 16 km), the time period
of the simulation (1 000 years instead of 700 years), and the atmospheric temperature, which is
determined under the atmospheric forcing scenario RCP 4.5 defined for the next hundred years
by the IPCC and extended in time as reported in Golledge et al. [2015] (see Figure 8.2). The
computing time of a single model evaluation on two threads of a SkyLake 2.3 GHz CPU of the
Lemaitre 3 cluster is similar to the computing time of a single model evaluation in Section 7.1.1,
that is, approximately 8 hours.

7.3.2 Sources of uncertainty

In this model problem, we considered five input parameters to be uncertain (Table 7.2). We
chose parameters that have different impacts on the response of the Antarctic ice sheet and
whose uncertainty may have a more or less significant impact in inducing uncertainty in the
projections. We briefly discuss the input parameters in the following and we refer the reader to
Section 8.2.2 for additional information about their definition and their physical interpretation.
The first uncertain input parameter, the calving multiplier factor, controls the magnitude of the
calving rate at the edges of ice shelves. The second uncertain input parameter, the ocean melt
factor, controls the magnitude of the change in the ocean temperature on the continental shelf
as a function of the change in the background atmospheric temperature under the atmospheric
forcing scenario. The third uncertain input parameter, the shelf anisotropy factor, controls the
magnitude of the change in ice viscosity as shear-dominated stress behaviour of grounded ice
transitions to extension-dominated stress behaviour of floating ice. The fourth and fifth uncertain
input parameter, the East and West Antarctic bedrock relaxation times, control the characteristic
timescales of the bedrock uplift due to deglaciation in East and West Antarctica. We represented
these uncertain input variables as independent uniform random variables with ranges of values
determined by the minimum and maximum values in Table 7.2. Similarly to Section 8.2.2, we
chose the representation of the input uncertain parameters with an illustrative purpose and we
do seek to provide new insights into the impact of uncertain parameters in inducing uncertain in
sea-level rise projections.

7.3.3 Quantity of interest

As the predicted quantity of interest, we consider the contribution of the Antarctic ice sheet to
global mean sea level after 1 000 years as defined in Section 7.1.2. Under the aforementioned
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Uncertain input parameter Symbol Nominal Min Max Units
Calving multiplier factor w1 1 0 2.0

Ocean melt factor w2 0.3 0.1 0.5
Shelf anisotropy factor w3 0.5 0.2 1

East Antarctic bedrock relaxation time w4 3000 1000 5000 yr
West Antarctic bedrock relaxation time w5 3000 1000 5000 yr

Uncertain input parameter Symbol Nominal Min Max Units
Contribution to global mean sea level ∆GMSL m

Table 7.2: List of uncertain input parameters (with uncertainty ranges) and quantity of interest.

probabilistic description of the uncertain input parameter, we found using Monte Carlo estima-
tion with 3 000 samples for this quantity of interest a mean value of 0.46 m, a standard deviation
of 0.49 m, and thus a variance of 0.24 m2 and a coefficient of variation of 108%.

7.3.4 Global sensitivity analysis: Monte Carlo method

We used the Monte Carlo method as in Equation (4.72) as described in Section 4.4.2.3 to es-
timate the main-effect global sensitivity indices for the first, third, and fifth uncertain input
parameters. We used for ν values up to 3 000, so that the Monte Carlo estimation of these three
main-effect global sensitivity indices required 3 000 × (3 + 1) = 12 000 evaluations of the
computational model. Figure 7.19 shows the convergence of the estimates as a function of ν.
We can observe that the uncertainties introduced in the calving factor and the shelf anisotropy
factor are more significant in inducing uncertainty in the contribution to global mean sea level
than the uncertainty introduced in the West Antarctic relaxation time. We can observe that rea-
sonably converged estimates of the main-effect global sensitivity indices for the first and third
uncertain input parameters are obtained after a value for ν of about 1 000 and that reasonably
converged estimates of the main-effect global sensitivity index for the fifth uncertain input pa-
rameter are obtained after a value for ν of about 2 000. The results obtained with ν = 3 000
are Sν1 = 0.3869, Sν3 = 0.2322, Sν5 = 0.0026. Please note that we did not compute the main-
effect global sensitivity indices for the second and fourth uncertain input parameters because we
preferred to avoid the high computational cost of the additionally required 3 000 × 2 = 6 000
evaluations of the computational model.

7.3.5 Global sensitivity analysis: Spectral method

We used the spectral method as in Equation (4.86) as described in Section 4.4.2.5. Especially
to facilitate a comparison of the performance of the spectral method with the performance of
the probabilistic learning method to be presented next, we used for the size of the experimental
design νir values up to only 224. We used independent samples to form the experimental design
of values of the uncertain input parameters for which the computational model is evaluated. We
used multivariate polynomials set up as products of univariate normalised Legendre polynomials
up to a total degree of 4; a polynomial chaos expansion of dimension n = 5 and a total degree of
p = 4 as described in Section 4.3.2.1 involves (4+5)!/4!/5! = 126 terms (see Equation (4.21)).
We used a regression method to determine the polynomial chaos coefficients. Figure 7.20 shows
the convergence of the estimates as a function of the size of the experimental design λ. We can
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Figure 7.19: Estimates of the main-effect global sensitivity indices for the first (circle), third
(diamond), and fifth (x-mark) uncertain input parameters obtained by using the Monte Carlo
method as a function of ν.

observe that especially for the main-effect global sensitivity index for the first uncertain input
variable, the estimate obtained with the spectral method after νir = 224 evaluations of the
computational model in Figure 7.20 is not yet converged to the reasonably converged value
obtained with the Monte Carlo method after ν = 3 000 evaluations of the computational model
in Figure 7.19. The results obtained with νir = 224 and p = 4 are SPCE

1 = 0.4294, SPCE
2 =

0.2945, SPCE
3 = 0.2192, SPCE

4 = 0.0003, SPCE
5 = 0.0009.

120 140 160 180 200 220
0

0.2

0.4

0.6

0.8

λ

SPCE
1

SPCE
2

SPCE
3

SPCE
4

SPCE
5

Figure 7.20: Estimates of the main-effect global sensitivity indices for the first (circle), sec-
ond (square), third (diamond), fourth (triangle), and fifth (x-mark) uncertain input parameters
obtained by using the spectral method as a function of λ.
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7.3.6 Global sensitivity analysis: PLoM method

We used the PLoM method as briefly discussed in Section 4.3.3 to estimate the main-effect
global sensitivity indices for the uncertain input variables. We refer the reader to Arnst et al.
[2019] for further details about the implementation of the PLoM method and the choice of the
parameters in the algorithm.
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Figure 7.21: Estimates of the main-effect global sensitivity indices for the first (circle), second
(square), third (diamond), fourth (triangle), and fifth (x-mark) uncertain input parameters ob-
tained by using the PLoM method as a function of the number νar of additional realisations of
initial realisations for νir = 224 of initial realisations.

We set the maximum value considered for the length νir of the initial data set to 224. Fig-
ure 7.21 shows the convergence of the estimates as a function of a function of the number νar
of additional realisations of initial realisations for νir = 224 of initial realisations. The PLoM
method was computationally expedient, and we could readily take νar sufficiently large for es-
timates to be converged with respect to νar without accruing a significant contribution to the
total computational cost. Figure 7.22 shows the convergence of the estimates as a function of
the number νir of initial realisations for νar = 89 600 additional realisations. We can observe
that the estimates obtained with the PLoM method are well converged with respect to the length
νir of the initial data set even for small initial data sets with lengths of only νir = 190 or only
νir = 224. We can also observe that the estimates obtained with the PLoM method even for
small initial data sets with lengths of only νir = 190 or only νir = 224 in Figure 7.22 corre-
spond well with the converged values obtained with the Monte Carlo method in Figure 7.19.
Notably, we can observe that for the main-effect global sensitivity index for the first uncertain
input parameter, the estimate obtained with the PLoM method even for the small initial data set
with a length of only νir = 224 in Figure 7.22 corresponds better with the reasonably converged
value obtained with the Monte Carlo method with ν = 3 000 in Figure 7.19 than the estimate
obtained with the spectral method with λ = 224 in Figure 7.20. We carried out a final compu-
tation with the PLoM method with νar = 1 000 000 for νir = 224. The results obtained with



7.3. Computation of Sobol indices by probabilistic learning on manifolds 191

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

νir

SPLoM
1

SPLoM
2

SPLoM
3

SPLoM
4

SPLoM
5

Figure 7.22: Estimates of the main-effect global sensitivity indices for the first (circle), sec-
ond (square), third (diamond), fourth (triangle), and fifth (x-mark) uncertain input parameters
obtained by using the PLoM method as a function of the number νir of initial realisations for
νar = 89 600 additional realisations.

νir = 224 and νar = 1 000 000 are SPLoM
1 = 0.3963, SPLoM

2 = 0.3353, SPLoM
3 = 0.2361,

SPLoM
4 = 0.0066, and SPLoM

1 = 0.0182

7.3.7 Global sensitivity analysis: Comparison of the numerical methods

Parameter DMC
i [m2] SPCE

i DPCE
i [m2] SPCE

i DPLoM
i [m2] SPLoM

i

w1 0.0956± 0.0100 0.3869 0.1040 0.4294 0.0960 0.3963
w2 0.0714 0.2945 0.0812 0.3353
w3 0.0578± 0.0093 0.2322 0.0531 0.2192 0.0572 0.2361
w4 7.2687E-5 0.0003 0.0016 0.0066
w5 6.6151E-4± 0.0094 0.0026 2.1806E-4 0.0009 0.0044 0.0182

Table 7.3: Unnormalised (denoted Di for the i-th uncertain input parameter) and normalised
global sensitivity indices with the Monte Carlo method with ν = 3 000, the spectral method
with λ = 224 and p = 4, and the PLoM method with νir = 224 for νar = 100 000.

Table 7.3 lists the unnormalised and normalised global sensitivity indices obtained with the
Monte Carlo, spectral, and PLoM methods. In addition, Table 7.3 provides 95%-confidence in-
tervals for the Monte Carlo estimates of the unnormalised global sensitivity indices obtained by
using the central limit theorem for the Monte Carlo estimator. These 95%-confidence intervals
quantify the error that may be present in the Monte Carlo estimates of the unnormalised global
sensitivity indices owing to their estimation from only the finite number of N = 3 000 samples.
We can observe that the estimates of the unnormalised global sensitivity indices obtained with
the spectral and PLoM methods fall within the 95%-confidence intervals for the corresponding
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estimates obtained with the Monte Carlo method. We can also observe that for the first and third
uncertain input variables, the estimates obtained with the PLoM method correspond better with
the estimates obtained with the Monte Carlo method than the estimates obtained with the spec-
tral method. This is not the case for the fifth uncertain input variable, but the global sensitivity
index for the fifth uncertain input variable is very small, and the 95%-confidence interval for its
Monte Carlo estimate indicates that this estimate may be subject to a large relative error due to
its estimation from only N = 3 000 samples.

Since a single evaluation of the computational model on two threads of a SkyLake 2.3 GHz
CPU of the employed cluster takes about 8 hours, the aggregate computing time for the 3 000×
(3 + 1) = 12 000 evaluations of the computational model to obtain the Monte Carlo estimates
was 96 000 hours. By contrast, the aggregate computing time for the 224 evaluations of the
computational model to obtain the spectral and PLoM estimates was only 1 792 hours.

7.4 Chapter summary and conclusion

In this chapter, we illustrated and evaluated the performance of existing and newly developed
uncertainty quantification methods on model problems concerned with uncertainty quantifica-
tion of the response of the Antarctic ice sheet to climate change.

In Section 7.1, we illustrated and evaluated the performance of existing methods for the
propagation of uncertainties. We illustrated these methods on a stochastic problem concerned
with assessing with quantified uncertainty the AIS contribution to sea-level rise. In this illustra-
tion, a usual Monte Carlo method required a data set of several thousands of samples to attain a
reasonable convergence of the estimates of the statistical descriptors of the quantity of interest,
but the use of surrogate models allowed to attain converged estimates based on only a small data
set of only a few tens of samples. We also pointed out the need to handle the presence of noise
in the data appropriately in order to avoid data overfitting.

In Section 7.2, we investigated confidence sets of random excursion sets in the context of
stochastic computational models with a high computational cost. We illustrated this method
on a stochastic problem concerned with assessing with quantified uncertainty the retreat of the
grounded portion of the Antarctic ice sheet and we showed that, using the bifidelity method
proposed in Chapter 5, only a small number of evaluations of the computational model was
necessary to achieve an accurate estimate of the quantile. We discussed the impact of the mem-
bership function on the efficiency of the bifidelity method, and we concluded that, in the context
of our model problem, the bifidelity method based on a polynomial chaos expansion of the ran-
dom variable can be more efficient than the bifidelity method based on a surrogate model of the
random field.

In Section 7.3, we have proposed to use the PLoM method for the computation of global
sensitivity indices in small-data settings in which the computational model can be evaluated
only a small number of times. The probabilistic learning on manifolds serves to learn from the
available samples a probabilistic representation that is used to generate statistically consistent
additional samples, on the basis of which estimates of the global sensitivity indices are then
computed. We provided an illustration concerned with assessing the impact of uncertain in-
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put parameters in inducing uncertainty in sea-level rise projections of a computational ice-sheet
model. In this illustration, a usual Monte Carlo method required a data set of several thousands
of samples to attain a reasonable convergence of the estimates, but the proposed PLoM method
was able to attain converged estimates based on only a small data set of only a few hundred sam-
ples. In this illustration, these results indicated that the small data set encapsulated information
that the PLoM method was able to exploit to accelerate the convergence of the estimates of the
global sensitivity indices with respect to the number of samples.





8
Uncertainty quantification of the
multicentennial response of the Antarctic
ice sheet to climate change

Ice loss from the Antarctic ice sheet (AIS) is expected to become the major contributor to sea
level in the next centuries. Projections of the AIS response to climate change based on numer-
ical ice-sheet models remain challenging due to the complexity of physical processes involved
in ice-sheet dynamics, including instability mechanisms that can destabilise marine basins with
retrograde slopes. Moreover, uncertainties in ice-sheet models limit the ability to provide ac-
curate sea-level rise projections. Here, we apply probabilistic methods to a hybrid ice-sheet
model to investigate the influence of several sources of uncertainty, namely sources of uncer-
tainty in atmospheric forcing, basal sliding, grounding-line flux parameterisation, calving, sub-
shelf melting, ice-shelf rheology, and bedrock relaxation, on the continental response of the
Antarctic ice sheet to climate change over the next millennium. We provide probabilistic projec-
tions of sea-level rise and grounding-line retreat and we carry out stochastic sensitivity analysis
to determine the most influential sources of uncertainty. We find that all investigated sources
of uncertainty, except bedrock relaxation time, contribute to the uncertainty in the projections.
We show that the sensitivity of the projections to uncertainties increases and the contribution
of the uncertainty in sub-shelf melting to the uncertainty in the projections becomes more and
more dominant as atmospheric and oceanic temperatures rise, with a contribution to the uncer-
tainty in sea-level rise projections that goes from 5 % to 25 % in RCP 2.6 to more than 90 %
in RCP 8.5. We show that the significance of the AIS contribution to sea level is controlled by
the marine ice-sheet instability (MISI) in marine basins, with the biggest contribution stemming
from the more vulnerable West Antarctic ice sheet. We find that, irrespective of parametric un-
certainty, the strongly mitigated RCP 2.6 scenario prevents the collapse of the West Antarctic
ice sheet, that in both the RCP 4.5 and RCP 6.0 scenarios the occurrence of MISI in marine
basins is more sensitive to parametric uncertainty and that, almost irrespective of parametric
uncertainty, RCP 8.5 triggers the collapse of the West Antarctic ice sheet.

195
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8.1 Introduction

The Antarctic ice sheet (AIS) is the largest reservoir of freshwater on Earth (∼60 m sea-level
equivalent [Fretwell et al., 2013; Vaughan et al., 2013]) and has the potential to become one of
the largest contributors to sea level in the next centuries. Yet, studies such as the IPCC Fifth
Assessment Report (AR5) [Stocker et al., 2013] and Kopp et al. [2014] have identified the mag-
nitude of the AIS response as the largest source of uncertainty in projecting sea-level rise, when
compared with other contributors, such as thermal expansion, glaciers, and the Greenland ice
sheet. Recent observations [Shepherd et al., 2018] have shown an acceleration in the rate of
ice loss from the Antarctic ice sheet, especially in West Antarctica, where an irreversible retreat
may be underway in the Amundsen Sea Embayment as a consequence of a marine ice-sheet
instability (MISI) [Favier et al., 2014; Joughin et al., 2014; Rignot et al., 2014].

Assessing the future response of the Antarctic ice sheet requires numerical ice-sheet models
amenable to large-scale and long-term simulations and quantification of the impact of modelling
hypotheses and parametric uncertainty. So far, there exist only a limited number of projections
[Golledge et al., 2015; Ritz et al., 2015; DeConto and Pollard, 2016; Schlegel et al., 2018] for
the whole Antarctic ice sheet on a (multi-)centennial timescale. These projections show simi-
lar trends for the next centuries, but they differ in the magnitude of the mass loss they predict,
with differences and uncertainty ranges that can reach several metres for eustatic sea level. Us-
ing a numerical ice-sheet model supplemented with a statistical approach for the probability of
MISI onset, Ritz et al. [2015] have projected a contribution to sea level around 0.1 m by 2100,
with a very low probability of exceeding 0.5 m in the A1B scenario. Running their simulations
with and without sub-grid melt interpolation at the grounding line, Golledge et al. [2015] have
projected that sea-level rise could range from 0.01 m to 0.38 m by 2100 and from 0.21 m to
more than 5 m by 2500 considering all RCP scenarios. Including the marine ice-cliff instability
mechanism [Pollard et al., 2015] in a numerical ice-sheet model, DeConto and Pollard [2016]
have projected that sea level could rise much more significantly, with projections exceeding 1 m
by 2100 and 15 m by 2500 in the RCP 8.5 scenario. Synthesising recent results for the expected
response of the Antarctic ice sheet to climate change, Pattyn et al. [2018] have highlighted that
the projected contribution to sea level of the Antarctic ice sheet is limited to well below 1 m
by 2500 in the RCP 2.6 scenario while a key threshold for the stability of the Antarctic ice sheet
is expected to lie between 1.5 and 2 ◦C. mean annual air temperature above present and the
activation of larger ice systems, such as the Ross and Ronne–Filchner drainage basins, could be
triggered by global warming between 2 and 2.7 ◦C. Emulating the numerical ice-sheet model
by DeConto and Pollard [2016] with a Gaussian process emulator, Edwards et al. [2019] have
established new probabilistic projections for the AIS contribution to sea level by 2100, with the
probability of exceeding 0.5 m that reaches 4 % in RCP 2.6 and 71 % in RCP 8.5 when consid-
ering the marine ice-cliff instability mechanism. Coupling an ice-sheet model with a climate
model, Golledge et al. [2019] have shown that freshwater released by the Antarctic ice sheet
can trap warm waters below the sea surface, thus leading to higher projections by 2100, with a
contribution to sea level that could reach 0.05 m in RCP 4.5 and 0.14 m in RCP 8.5.

Despite recent progress in the numerical modelling of ice-sheet dynamics [Pattyn et al.,
2017], differences in modelling hypotheses between ice-sheet models remain a major source of
uncertainty for sea-level rise projections. Intercomparison projects such as the SeaRise project
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[Bindschadler et al., 2013] and the ongoing ISMIP6 project [Nowicki et al., 2016; Goelzer et al.,
2018] aim at quantifying the impact of such so-called structural uncertainty in ice-sheet models
by comparing projections from multiple numerical models. Such multimodel ensembles give
some insight into the impact of the structural uncertainty, although challenges remain in com-
bining the different results [Knutti et al., 2010].

Uncertainties in the ice-sheet initial state, climate forcing, and parameters in numerical ice-
sheet models are another major limitation for accurate projections. To date, the impact of such
parametric uncertainty is assessed most often by using large ensemble analysis; that is, the
model is run for different values of the parameters and the uncertainty in the projections is es-
timated from the spread in the model runs. For example, Golledge et al. [2015] ran their model
with simplified sensitivity experiments to evaluate qualitatively the sensitivity of the Antarctic
ice sheet to temperature, precipitation, and sea-surface temperature individually, while DeConto
and Pollard [2016] assessed the sensitivity of their model to parametric uncertainty by evaluat-
ing the model response at a few samples in the parameter space. By contrast, Ritz et al. [2015]
adopted a probabilistic approach and estimated the uncertainty in sea-level rise projections by
running an ice-sheet model with samples of parameters drawn randomly from probability den-
sity functions for the parameters and subsequently deducing probability density functions for
sea-level rise projections.

The field of uncertainty quantification (UQ) develops theory and methods to describe quan-
titatively the origin, propagation, and interplay of sources of uncertainty in the analysis and
projection of the behaviour of complex systems in science and engineering; see, for instance,
Ghanem et al. [2017] for a recent handbook and Arnst and Ponthot [2014] for a recent review
paper. Most of this theory and these methods are based on probability theory, in the context of
which uncertain parameters and projections are represented as random variables characterised
by their probability density function. Theory and methods are under development to charac-
terise sources of uncertainty by probability density functions inferred from observational data
and expert assessment (characterisation of uncertainty), to deduce the impact of sources of un-
certainty on projections (propagation of uncertainty), and to ascertain the impact of each source
of uncertainty on the projection uncertainty and rank them in order of significance (stochastic
sensitivity analysis). These developments have led to new theories and new methods that are
of interest to be applied to uncertainty quantification of ice-sheet models, beyond the theory
and methods that Golledge et al. [2015], Ritz et al. [2015], DeConto and Pollard [2016], and
Schlegel et al. [2018] have already applied.

In this chapter, we apply probabilistic methods to assess the impact of uncertainties on the
continental AIS response over the next millennium. We use the fast Elementary Thermome-
chanical Ice Sheet (f.ETISh) model [Pattyn, 2017], a hybrid ice-sheet model that captures the
essential characteristics of ice flow and allows large-scale and long-term projections at a rea-
sonable computational cost. To reduce the computational cost of assessing the impact of uncer-
tainties on the change in global mean sea level (GMSL), we draw from UQ methods based on
the construction of an emulator [Le Maître and Knio, 2010; Ghanem et al., 2017], also known
as a surrogate model, that is, a computational model that mimics the response of the original
ice-sheet model at a reduced computational cost. To assess the significance of each individ-
ual source of uncertainty in inducing uncertainty in the change in GMSL, we draw from UQ
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methods for stochastic sensitivity analysis [Saltelli et al., 2008]. To express the uncertainty in
projections of the retreat of grounded ice, we draw from UQ methods for constructing confi-
dence regions for excursion sets [Bolin and Lindgren, 2015; French and Hoeting, 2015], with
a confidence region for grounded ice interpreted as a region of Antarctica that remains covered
everywhere with grounded ice for a given level of probability.

On the one hand, our study adds to previous studies [Golledge et al., 2015; Ritz et al., 2015;
DeConto and Pollard, 2016] that also provided projections for the multicentennial response of
the whole Antarctic ice sheet: whereas these previous studies provided projections by running
the ice-sheet model with samples of parameters from the parameter space, our study differs by
the adoption of additional methods from UQ and the analysis of a broader set of parameters
that includes uncertainty in climate forcing, basal sliding, grounding-line flux parameterisa-
tion, calving, sub-shelf melting, ice-shelf rheology, and bedrock relaxation. On the other hand,
our study also adds to previous studies [Pollard et al., 2016; Schlegel et al., 2018; Edwards
et al., 2019] that also applied methods from UQ for uncertainty propagation in ice-sheet mod-
els: whereas these previous studies analysed AIS paleoclimatic responses with Gaussian process
(kriging) emulators [Pollard et al., 2016] and multi-decadal forecasts with Latin hypercube sam-
pling [Schlegel et al., 2018], our study differs by its focus on the analysis of the multicentennial
response of the whole Antarctic ice sheet with polynomial emulators; and in addition to uncer-
tainty propagation, we complement our uncertainty analysis with stochastic sensitivity analysis
and confidence regions.

This chapter is organised as follows. First, Section. 8.2 describes the f.ETISh model, the
uncertain processes and parameters and the UQ methods, including the use of an emulator,
stochastic sensitivity analysis, and the construction of confidence regions. Subsequently, Sec-
tion 8.3 shows and interprets the results for the multicentennial response of the Antarctic ice
sheet as well as the advantages of the adopted UQ methods. Finally, Section 8.4 provides an
overall discussion of the results.

8.2 Model description and methods

8.2.1 Ice-sheet model and simulations

We perform simulations of the response of the Antarctic ice sheet (Figure 8.1(a)) to environ-
mental and parametric perturbations over the period 2000–3000 CE with the fast Elementary
Thermomechanical Ice Sheet (f.ETISh) model [Pattyn, 2017] version 1.2. The f.ETISh model
is a vertically integrated, thermomechanical, hybrid ice-sheet/ice-shelf model that incorporates
essential characteristics of ice-sheet thermomechanics and ice-stream flow, such as the mass-
balance feedback, bedrock deformation, sub-shelf melting, and calving. The ice flow is rep-
resented as a combination of the shallow-ice (SIA) [Hutter, 1983; Greve and Blatter, 2009a]
and shallow-shelf (SSA) [Morland, 1987; MacAyeal, 1989; Weis et al., 1999] approximations
for grounded ice [Bueler and Brown, 2009], while only the shallow-shelf approximation is ap-
plied for floating ice shelves. Bedrock deformation is represented as a combined time-lagged
asthenospheric relaxation and elastic lithospheric response [Greve and Blatter, 2009b; Pollard
and DeConto, 2012a], in which the lithosphere relaxes towards isostatic equilibrium due to the
viscous properties of the underlying asthenosphere. Calving at the ice front is parameterised
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based on the large-scale stress field, represented by the horizontal divergence of the ice-shelf
velocity field [Pollard and DeConto, 2012a]. Prescribed input data include the present-day ice-
sheet geometry and bedrock topography from the Bedmap2 dataset [Fretwell et al., 2013], the
basal sliding coefficient, and the geothermal heat flux by An et al. [2015].

We perform simulations at a spatial resolution of 20 km while accounting for grounding-
line migration at coarse resolution with a flux condition derived from a boundary layer the-
ory at steady state based on either a Weertman (or power) friction law [Schoof, 2007b] or a
Coulomb friction law [Tsai et al., 2015] at the grounding line. This flux condition at the ground-
ing line is imposed as an internal boundary condition following the implementation by Pollard
and DeConto [2009, 2012a]. This implementation has been shown to reproduce the migration
of the grounding line and its steady-state behaviour [Schoof, 2007a] at coarse resolution for the
SSA and hybrid SSA/SIA models, while these models can only reproduce the migration of the
grounding line and its steady-state behaviour at sufficiently fine resolution in the absence of a
flux condition [Docquier et al., 2011; Pattyn et al., 2012]. Numerical simulations [Pollard and
DeConto, 2012a; DeConto and Pollard, 2016] of the Antarctic ice sheet using a flux condition
have also been able to reproduce MISI in large-scale ice-sheet simulations. In addition, Pat-
tyn [2017] has shown that a flux condition makes the f.ETISh model rather independent of the
resolution for a spatial resolution of the order of 20 km. While the implementation of a flux
condition at the grounding line has been shown to reproduce qualitatively ice-sheet dynamics
as determined with other ice-sheet models, it cannot reproduce quantitatively changes in ice-
sheet mass and the contribution to sea level as determined from models with a higher level
of complexity, such as the Blatter–Pattyn [Blatter, 1995; Pattyn, 2003] and full Stokes [Greve
and Blatter, 2009a] models that include vertical shearing at the grounding line, especially for
short transients (decadal timescales) as these flux conditions have been derived at steady state
[Drouet et al., 2013; Pattyn et al., 2013; Pattyn and Durand, 2013]. A proper representation of
grounding-line migration without the need for a flux condition would require a very fine grid
resolution (possibly less than 200 metres). In addition, the flux condition has been derived for
unbuttressed ice shelves [Schoof, 2007b] and may fail to appropriately represent grounding-line
migration for buttressed ice shelves [Reese et al., 2018b] as found mostly around Antarctica even
when the flux condition is corrected for buttressing with a buttressing factor accounting for back
stress at the grounding line. In particular, Pattyn et al. [2013] have shown that models that imple-
ment the flux condition cannot reproduce compressional stresses that may apply in the presence
of buttressing. Moreover, using a spatial resolution of 20 km does not allow us to capture prop-
erly certain mechanisms that control grounding-line migration such as bedrock irregularities
and ice-shelf pinning points even with sub-grid parameterisations of these mechanisms. There-
fore, we may expect discrepancies between our results and results at higher spatial resolutions
(<5 km), especially for important small ice streams such as Pine Island and Thwaites Glaciers,
which represent only a few grid points with a 20-km resolution. Despite the limitations of the
flux condition and our coarse grid resolution, we have adopted these modelling assumptions
as an efficient way to capture the essential mechanisms of grounding-line migration in large-
scale, long-term and large-ensemble ice-sheet simulations while keeping the computational cost
tractable. The computational cost of a single forward simulation with a time step of 0.05 years
on the CÉCI clusters (F.R.S-FNRS & Walloon Region) on two threads is approximately 8 h. To
investigate the impact of the spatial resolution on the results, we performed additional runs at a
spatial resolution of 16 km (Figure 8.15). We found that the uncertainty in the projections due
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to the spatial resolution is (far) less important than the uncertainty due to the uncertainty in the
parameters.

The main changes in f.ETISh version 1.2 as compared to version 1.0 [Pattyn, 2017] consist
of the computation of sub-shelf melt rates with an ocean-model coupler based on the Potsdam
Ice-shelf Cavity mOdel (PICO) ocean-model coupler [Reese et al., 2018a] rather than simpler
parameterisations of sub-shelf melt rates [Beckmann and Goosse, 2003; Holland et al., 2008;
Pollard and DeConto, 2012a; de Boer et al., 2015; Cornford et al., 2016], the inclusion of a later-
ally varying flexural rigidity for the lithosphere [Chen et al., 2018] to compute glacial isostatic
adjustment more realistically with an elastic lithosphere/relaxed asthenosphere model, an im-
provement of the SSA numerical scheme based on the implementation by Rommelaere and Ritz
[1996], and a description of atmospheric forcing based on a parameterisation of the changes in
atmospheric temperature and precipitation rate [Huybrechts et al., 1998; Pollard and DeConto,
2012a], a parameterisation of surface melt with a positive degree-day model [Janssens and Huy-
brechts, 2000], and the inclusion of meltwater percolation and refreezing [Huybrechts and de
Wolde, 1999].

We drive our simulations with both atmospheric and oceanic forcings. Present-day mean
surface air temperature and precipitation are obtained from Van Wessem et al. [2014], based
on the regional atmospheric climate model RACMO2. Changes in atmospheric temperature
and precipitation rate induced by a forcing temperature change ∆T are applied in a parame-
terised way that accounts for elevation changes [Huybrechts et al., 1998; Pattyn, 2017]. We use
a positive degree-day (PDD) model to calculate surface melt [Janssens and Huybrechts, 2000],
assuming a PDD factor of 3 mm ◦C−1 day−1 and 8 mm ◦C−1 day−1 for snow and ice, respec-
tively. The PDD model also includes meltwater percolation and refreezing [Huybrechts and de
Wolde, 1999].

Basal melting underneath ice shelves is determined from the PICO ocean-model coupler
[Reese et al., 2018a], which evaluates sub-shelf melting from the ocean temperature Toc and
salinity fields on the continental shelf via an ocean box model that captures the basic overturning
circulation within ice-shelf cavities. We employ data by Schmidtko et al. [2014] for present-
day ocean temperature T obs

oc and salinity on the continental shelf. For a change in background
atmospheric temperature ∆T , we assume that the ocean temperature Toc on the continental shelf
changes as

Toc = T obs
oc + Fmelt∆T , (8.1)

where Fmelt is an ocean melt factor that represents the ratio between oceanic and atmospheric
temperature changes [Maris et al., 2014; Golledge et al., 2015]. Equation (8.1) with Fmelt =
0.25 has been shown to reproduce trends in ocean temperatures following an analysis of the Cli-
mate Model Intercomparison Project phase 5 (CMIP5) data set [Taylor et al., 2012] for changes
in atmospheric and ocean temperatures [Golledge et al., 2015]. Figure 8.1(b) shows the initial
sub-shelf melt rate as computed with the PICO model. The PICO model is able to reproduce
the general pattern of sub-shelf melting with higher melt rates near the grounding line and lower
melt rates near the calving front. Sub-shelf melt rates are also higher in the Amundsen Sea
sector and lower underneath the large Ross and Filchner–Ronne ice shelves.
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Figure 8.1: Antarctic bedrock topography and sub-shelf melting. (a) Bedrock topography (m
above sea level) [Fretwell et al., 2013] of the present-day Antarctic ice sheet and geographic
features. WAIS is the West Antarctic ice sheet, EAIS is the East Antarctic ice sheet, and IS is
ice shelf. Grounding line is shown in black and ice front is shown in red. (b) Sub-shelf melt rate
for the present-day Antarctic ice sheet computed with the PICO ocean-model coupler [Reese
et al., 2018a]. Refreezing under ice shelves is not allowed.
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The calibration of the basal sliding coefficient follows the data assimilation method of ice-
sheet geometry by Pollard and DeConto [2012b]. This approach is based on a fixed-point iter-
ation scheme that adjusts the basal sliding coefficient iteratively so as to match the present-day
ice-sheet configuration while assuming that the present-day configuration is in steady state. Af-
ter applying this approach, we further adjust the basal sliding coefficient in ice streams with a
sliding multiplier factor similar to Bindschadler et al. [2013] to reduce the initial drift. We carry
out the calibration step independently for the different sliding and grounding-line flux condi-
tions investigated in this chapter. For the nominal values of the model parameters and without
forcing anomaly, the initial drifts (reference runs) range from 0.1 to 0.2 metre of sea-level rise
by 3000. To make our analysis insensitive to model initialisation, we correct all our results for
this initial bias by subtracting the reference runs from the results. Therefore, after corrections for
present-day dynamical changes, our results reflect the model response to perturbations. These
corrections have in general little impact on medium-term and long-term projections as the ini-
tial drift is small compared to the projections but leads to a more significant bias for short-term
projections.

8.2.2 Sources of uncertainty

We aim at quantifying the response of the Antarctic ice sheet to climate change while account-
ing for uncertainty in atmospheric forcing, basal sliding, grounding-line flux parameterisation,
calving, sub-shelf melting, ice-shelf rheology, and bedrock relaxation. We account for uncer-
tainty in these physical processes by introducing uncertainty in parameters in the f.ETISh model
(see Table 8.1). Here, we choose the uncertainty ranges for the parameters sufficiently large so
as to encompass extreme conditions. The effect of choosing narrower uncertainty ranges for
the parameters is discussed in Section 8.3.6. We assume the parameters to take the same value
everywhere over the whole Antarctic ice sheet. This approach is likely to be conservative as the
parameters may vary at least regionally. We refer to Schlegel et al. [2018] for a discussion about
uncertainty quantification based on a partitioning of the ice-sheet domain. In the remainder
of this section, we list the uncertain parameters and briefly discuss their influence on the AIS
response.

Definition Parameter Nominal Min Max Units
Sliding exponent m 2 1 5

Calving multiplier factor Fcalv 1 0.5 1.5
Ocean melt factor Fmelt 0.3 0.1 0.8

Shelf anisotropy factor Eshelf 0.5 0.2 1
East Antarctic bedrock relaxation time τe 3000 2500 5000 year
West Antarctic bedrock relaxation time τw 3000 1000 3500 year

Table 8.1: List of parameters and parameter ranges used in the uncertainty analysis.

8.2.2.1 Atmospheric forcing

Alongside oceanic forcing, atmospheric forcing is generally considered to be the primary driver
of future changes in the AIS mass balance [Lenaerts et al., 2016; Pattyn et al., 2018]. Sim-
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ulating atmospheric forcing over several centuries with regional climate models is computa-
tionally prohibitive. In addition, the accuracy of the climate models is limited by uncertainties
such as the possible trajectories of anthropogenic greenhouse gas emissions. Therefore, we
adopt here the four schematic extended representative concentration pathway (RCP) scenarios
RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5 introduced by Golledge et al. [2015] for temperature
changes ∆T in the atmosphere (Figure 8.2) as a means of representing different atmospheric
forcings relevant for policymakers.

The scenario plays a significant role in the amplitude and speed of the AIS retreat. Recent
studies [Golledge et al., 2015; DeConto and Pollard, 2016] have shown no substantial retreat
of the grounding-line position in the strongly mitigated RCP 2.6 scenario. The other scenarios
lead to a reduction in the extent of the major ice shelves (Ross, Filchner–Ronne and Amery ice
shelves) within 100–300 years, leading to accelerated grounding-line recession due to reduced
buttressing. DeConto and Pollard [2016] have also highlighted that the hydrofracturing and ice-
cliff failure mechanisms (not included in f.ETISh version 1.2) driven by increased surface melt
and sub-shelf melting could potentially lead to an accelerated collapse of the West Antarctic ice
sheet and a deeper grounding-line retreat in the East Antarctic subglacial marine basins.
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Figure 8.2: Long-term RCP temperature scenarios [Golledge et al., 2015] for Antarctica (60◦–
90◦ S) based on the CMIP5 data [Taylor et al., 2012] and extended to 2300. Temperatures are
held constant after 2300.

8.2.2.2 Basal sliding

Basal sliding controls the motion of fast-flowing ice streams, which drain about 90 % of the
total Antarctic ice flux [Bennett, 2003]. Several studies have shown the importance of basal
sliding for the behaviour of ice streams and stressed the need for the understanding of physi-
cal processes at play at the ice–bedrock interface [Joughin et al., 2009, 2010; Ritz et al., 2015;
Brondex et al., 2017, 2019]. In particular, Ritz et al. [2015] have shown that, under a power-law
rheology for basal sliding, the contribution to future sea level is an increasing function of the
sliding exponent.
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We introduce basal sliding as a Weertman sliding law, that is,

vb = −Ab‖τb‖m−1τb, (8.2)

where τb is the basal shear stress, vb the basal velocity,Ab the basal sliding coefficient, andm a
sliding exponent. The sliding exponent is often related to Glen’s flow law exponent n as m = n
for sliding over hard bedrock [Weertman, 1957]. The value m = 3, related to the usual value
n = 3 for Glen’s flow law exponent, has been applied in a number of studies [Schoof, 2007a;
Pattyn et al., 2012, 2013; Brondex et al., 2017; Gladstone et al., 2017] but the value m = 1 has
also been commonly used in ice-flow models [Larour et al., 2012; Schäfer et al., 2012; Glad-
stone et al., 2014; Yu et al., 2018].

In addition to the usual exponentsm = 1 andm = 3, we consider for the sliding exponent a
nominal value of 2 as an intermediate sliding condition between the two usual exponents used in
ice-flow models. Hereafter, we refer to the exponents m = 1, 2, and 3 as the viscous (or linear),
the weakly non-linear, and the strongly non-linear sliding law, respectively. We consider the
discrete values m = 1, 2, and 3 as representative of the most common values in large-scale ice-
sheet modelling and discuss in Section 8.3.7 the impact of a more plastic sliding law (m = 5)
to represent a quasi-plastic deformation of the till in ice streams [Gillet-Chaulet et al., 2016].

8.2.2.3 Grounding-line flux parameterisation

The f.ETISh model employs a parameterisation of the grounding-line flux based on a boundary
layer theory at steady state by either Schoof [2007b] (SGL) or Tsai et al. [2015] (TGL). For
the TGL parameterisation, Pattyn [2017] has shown an increased AIS contribution to sea level
and a more significant retreat of the grounding line. We consider SGL parameterisation as the
reference parameterisation for most of the simulations and discuss the impact of TGL parame-
terisation in Section 8.3.8.

We applied the TGL parameterisation under the weakly non-linear sliding law. There is
no consensus on the compatibility between the TGL parameterisation and the Weertman sliding
law, as the TGL parameterisation was derived from the Coulomb friction law near the grounding
line [Tsai et al., 2015]. Yet, the Coulomb friction law is applicable in a narrow transition region
in the vicinity of the grounding line not resolved on our coarse mesh, which lends validity to the
combination of the TGL parameterisation and Weertman’s sliding law.

8.2.2.4 Calving

Ice loss due to ice calving at the edges of ice shelves is responsible for almost half of the present-
day ice mass loss of the Antarctic ice sheet [Depoorter et al., 2013; Rignot et al., 2013]. Iceberg
calving can have strong feedback effects as it affects ice-shelf buttressing [Fürst et al., 2016]
and therefore ice flux at the grounding line and the stability of marine ice sheets [Schoof et al.,
2017]. It can also lead to a total disintegration of ice shelves followed by a potential marine
ice-cliff instability [Pollard et al., 2015].



8.2. Model description and methods 205

The nominal calving rate cf (in m yr−1) in the f.ETISh model is evaluated with the following
parameterisation [Pollard and DeConto, 2012a; Pattyn, 2017]

cf = 30 (1− wc) + 3× 105 max (div v, 0) wche
∆x , (8.3)

where v is the vertical mean of the horizontal velocity, he is the sub-grid ice thickness within
a fraction of the ice-edge grid cell that is occupied by ice [Pollard and DeConto, 2012a], ∆x is
the spatial resolution, and wc = min (1,he/200) is a weight factor.

We introduce uncertainty in sub-shelf melting by controlling the magnitude of the calving
rate with a scalar multiplier factor Fcalv. This approach is similar to Briggs et al. [2013] and
Pollard et al. [2016]. Here, we consider for Fcalv a nominal value of 1.0 and an uncertainty
range from 0.5 to 1.5, that is, we consider the calving rate to vary between 50 %–150 % of the
nominal calving rate cf .

8.2.2.5 Oceanic forcing

Sub-shelf melting is mainly controlled by sub-shelf ocean circulation, which can be affected by
atmospheric changes. Ice-shelf thinning caused by increased sub-shelf melting leads to a reduc-
tion in ice-shelf buttressing. West Antarctica, where the bedrock lies mainly below sea level,
is particularly vulnerable, as suggested by observational [Rignot et al., 2014] and modelling
[Favier et al., 2014; Joughin et al., 2014] studies.

High melt rates at the base of ice shelves result from the inflow of relatively warm Circum-
polar Deep Water in ice-shelf cavities [Hellmer et al., 2012; Schmidtko et al., 2014]. Changes
in ocean circulation resulting in stronger sub-ice-shelf circulation are expected to increase basal
melt rates at the base of ice shelves [Jacobs et al., 2011; Hellmer et al., 2017]. Increase in at-
mospheric temperature leading to the presence of warmer deep water on the continental shelf is
expected to strengthen sub-ice-shelf circulation, thus leading to an increase in sub-shelf melting.
Yet, the link between global climate change and changes in sub-shelf melting is not always clear:
it has been suggested that future climate change could lead to an increase in sub-shelf melting
[Hellmer et al., 2012; Timmermann and Hellmer, 2013], a positive meltwater feedback that en-
hances sub-ice-shelf circulation and can trigger a climate tipping point [Hellmer et al., 2017],
and even to a decrease in sub-shelf melting [Dinniman et al., 2012]. Golledge et al. [2019]
have also highlighted the need to couple ice-sheet models to climate models as the increased
discharge of freshwater from the Antarctic ice sheet could trap warm waters of the Southern
Ocean below the sea surface.

Here, we capture the basic overturning circulation in ice-shelf cavities with the PICO box
model. In the PICO model, the strength of the overturning flux is represented by a single param-
eter that depends on the density difference, or equivalently on both the salinity and temperature
differences, between the incoming water masses on the continental shelf and the water masses
near the deep grounding line of the ice shelf. An increase in the ocean temperature on the
continental shelf leads to a stronger overturning flux and higher melt rates at the base of ice
shelves. The ocean temperature on the continental shelf is determined from the present-day
ocean temperature T obs

oc and the change in background atmospheric temperature ∆T via the lin-
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ear relationship in Equation (8.1).

We introduce uncertainty in sub-shelf melting by controlling the strength of the overturning
flux through uncertainty in the ocean temperature on the continental shelf. Hence, we consider
the ocean melt factor Fmelt as an uncertain parameter with a nominal value of 0.3 [Maris et al.,
2014; Golledge et al., 2015] and an uncertainty range from 0.1 to 0.8.

8.2.2.6 Ice-shelf rheology

Ice rheology in large-scale ice-sheet models is usually described as an isotropic material obeying
Glen’s flow law [Greve and Blatter, 2009a]. However, ice is known to be an anisotropic material
whose fabric is dependent on the temperature field, the strain-rate history, and the stress history
[Ma et al., 2010; Calonne et al., 2017]. For a given fabric, the anisotropic response depends on
the stress regime, which explains the ice stiffening when moving from a shear-dominated stress
regime for grounded ice to an extension-dominated stress regime for floating ice.

We introduce an ice-shelf tune parameterEshelf that accounts for anisotropy between grounded
and floating ice. A lower value makes ice shelves more viscous [Briggs et al., 2013; Maris et al.,
2014]. We consider for Eshelf a nominal value of 0.5 and an uncertainty range from 0.2 to 1,
where a value of 0.5 means that the ice in the ice shelves is 2 times more viscous than without
shelf tuning.

8.2.2.7 Bedrock relaxation

Bedrock relaxation due to deglaciation may induce a negative feedback that promotes stability
in marine portions and mitigates the effect of a marine ice-sheet instability [Gomez et al., 2010,
2013; Adhikari et al., 2014]. The amplitude of the glacial isostatic uplift is determined by the
flexural rigidity of the lithosphere and the viscous relaxation time of the asthenosphere. Recent
studies [Van der Wal et al., 2015; Chen et al., 2018] have shown significant differences in the
properties of the lithosphere and the asthenosphere between West and East Antarctica. Van der
Wal et al. [2015] have found a lower viscosity and therefore a lower relaxation time for Earth’s
mantle underneath West Antarctica, making the glacial isostatic uplift in this region more sen-
sitive to changes in ice thickness.

We account for the differences between East and West Antarctica by introducing two char-
acteristic relaxation times τe and τw that we consider to both have a nominal value of 3000
years. We consider that τe has an uncertainty range from 2500 to 5000 years and that τw has an
uncertainty range from 1000 to 3500 years.

8.2.3 Uncertainty quantification methods

8.2.3.1 Characterisation of uncertainty

To quantify the impact of uncertainties on the AIS response, we adopt a probabilistic frame-
work. Here, we assume, in the absence of any prior information other than the aforementioned
nominal values and minimal and maximal values of the uncertainty ranges, that the parameters
Fcalv, Fmelt, Eshelf , τe, and τw are uniform independent random variables with bounds given
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by the minimal and maximal values of their uncertainty ranges. We explore the uncertainty in
the sliding exponentm by considering its nominal and extremal values separately, thus allowing
us to reduce the dimension of the parameter space while being consistent with other studies
[Ritz et al., 2015]. We explore the uncertainty in the atmospheric forcing ∆T by considering
the four RCP scenarios. We limit the probabilistic characterisation to assuming uniform prob-
ability density functions, and we do not address how this probabilistic characterisation could
be refined by using expert assessment, data, and statistical methods such as Bayesian inference.
Yet, we provide results that give some insight into the impact of the choice of this probabilistic
characterisation later in Section 8.3.6. We refer the reader to Petra et al. [2014], Isaac et al.
[2015], Ruckert et al. [2017], Gopalan et al. [2018], and Conrad et al. [2018] for applications
of Bayesian inference in glaciology and to Aschwanden et al. [2016] and Gillet-Chaulet et al.
[2016] for examples of a calibration of the sliding exponent based on a comparison between
simulated and observed surface velocities that can be used to prescribe a probabilistic charac-
terisation of the sliding exponent.

8.2.3.2 Propagation of uncertainty

Given the probabilistic characterisation of the uncertainty in the parameters, the propagation of
uncertainty serves to assess the impact of the uncertainty on the global mean sea-level change.
In particular, its intent is to estimate the probability density functions for the change in GMSL
as well as some of its statistical descriptors such as its mean, variance, and quantiles. Various
methods have been developed in UQ to estimate these statistical descriptors in a nonintrusive
manner treating the ice-sheet model as a black box. Here, we use emulation methods based on
a polynomial chaos (PC) expansion.

An emulator, also known as a surrogate model, is a computational model that mimics the
ice-sheet model at low computational cost. Although emulators can also be obtained by Gaus-
sian process regression [Rasmussen and Williams, 2006], we use polynomial chaos (PC) ex-
pansions [Ghanem and Spanos, 2003; Le Maître and Knio, 2010], which involve approximating
the parameters-to-projection relationship as a polynomial in the parameters. We write this poly-
nomial as a linear combination of polynomial basis functions and use least-squares regression
(Appendix 8.A) to evaluate the coefficients from a limited number of ice-sheet model runs at
an ensemble of training points in the parameter space. The training points must be adequately
chosen in the parameter space [Hadigol and Doostan, 2018] and the convergence of the PC ex-
pansion must be assessed to ensure accuracy. PC expansion may suffer from limitations: PC
expansions require the parameters-to-projection relationship to be sufficiently smooth (no dis-
continuity or highly non-linear behaviour) to allow an efficient approximation as a low-degree
polynomial and PC expansions may be inefficient in high-dimensional problems.

The emulator of the relationship between the parameters and the projection is then used as
a substitute for the ice-sheet model in a Monte Carlo method [Robert and Casella, 2013], in
which samples of the parameters are drawn randomly from their probability density function
and mapped through the emulator into corresponding samples of the projections. Approxima-
tions to the probability density function of the projection and its statistical descriptors are then
obtained from these samples of the projections by using statistical estimation methods: for in-
stance, the mean and quantiles are approximated with the sample mean and quantiles.
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The use of an emulator has the following advantages: (i) it provides an inexpensive approx-
imation of the ice-sheet model that accelerates UQ; (ii) it provides an explicit view of the rela-
tionship between the parameters and the projection, highlighting potential linear or non-linear
dependences and interactions between the parameters; (iii) it allows efficient interpolation of the
projections in the parameter space; (iv) it can be used to carry out stochastic sensitivity analysis
to assess the influence of each parameter on the projections; (v) under certain conditions, the
same emulator can be reused between UQ analyses with different probability density functions
for the parameters; and (vi) it can be used for Bayesian calibration [Ruckert et al., 2017].

We consider an ensemble of 20 distinct model configurations given by each combination
of RCP scenario with a sliding law (m = 1, 2, 3, or 5) and each combination of RCP scenario
with the TGL parameterisation under the weakly non-linear sliding law (m = 2). For each
model configuration, we built a separate PC expansion to investigate the impact of uncertainty
in the five parameters Fcalv, Fmelt, Eshelf , τe, and τw on the uncertainty in ∆GMSL. Here, we
assume the continental response of the Antarctic ice sheet, as measured through ∆GMSL, to
be sufficiently smooth to be represented with a PC expansion. For each model configuration,
we generated an ensemble of 500 training points in the parameter space with a maximin Latin
hypercube sampling design [Stein, 1987] and performed 500 forward simulations at these train-
ing points. In total, we carried out 10 000 forward simulations of the f.ETISh model. For each
model configuration and time instant of analysis, we fitted to the corresponding ensemble of
500 training points and forward simulations a polynomial chaos expansion of degree 3, which
we then used as an emulator to evaluate the statistical descriptors, either directly from the coeffi-
cients of the PC expansion or by running the emulator with an ensemble of 106 independent and
identically distributed samples from the parameter space. We present a convergence study and
cross-validation for the PC expansion in Appendix 8.A. Finally, the confidence regions for each
model configuration are determined directly from the corresponding ensemble of 500 training
points and forward simulations without the need for an emulator.

8.2.3.3 Stochastic sensitivity analysis

Stochastic sensitivity analysis serves to identify which uncertain parameters and their associ-
ated physical phenomenon are most influential in inducing uncertainty in the ice-sheet response.
Here, we adopt the variance-based sensitivity indices [Saltelli et al., 2008], also called Sobol in-
dices, described in more detail in Appendix 8.B. Variance-based sensitivity indices rely on the
decomposition of the variance of the projections as a sum of contributions from each uncertain
parameter taken individually and an interaction term. Then, the Sobol index of a given uncertain
parameter represents the fraction of the variance of the projections explained as stemming from
this sole uncertain parameter. A Sobol index takes values between 0 and 1, whereby a value of 1
indicates that the entire variance of the projections is explained by this sole uncertain parameter
and a value of 0 indicates that the uncertain parameter has no impact on the projection uncer-
tainty.

We compute the Sobol indices directly from the PC coefficients [Crestaux et al., 2009; Le
Gratiet et al., 2017].
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8.2.3.4 Confidence regions for grounded-ice retreat

To gain insight into the impact of the uncertainty in determining which regions of Antarctica are
most at risk of ungrounding, we construct confidence regions for grounded ice for several prob-
ability levels. We define a confidence region for grounded ice for a given probability level as a
region of Antarctica that remains covered everywhere with grounded ice with a probability of at
least the given probability level under the uncertainty introduced in the ice-sheet model (see Ap-
pendix 8.C for the mathematical definition). The differences between these confidence regions
for grounded ice for different probability levels provide insight into the risk of ungrounding
(see Section 8.3.5). Such confidence regions are useful because confidence regions with bound-
aries far from the initial grounding line may indicate an important MISI and large differences
between confidence regions for different probability levels indicate a significant impact of the
uncertainty on the ice-sheet ungrounding. We construct these confidence regions for grounded
ice based on an extension of previous work by Bolin and Lindgren [2015] for Gaussian random
fields to our glaciological context.

8.3 Results

We present nominal and probabilistic projections (relative to 2000 CE) for short-term (2100),
medium-term (2300), and long-term (3000) timescales under different RCP scenarios and slid-
ing laws.

8.3.1 Nominal projections

We first present nominal projections obtained using the nominal values of the parameters given
in Table 8.1. We first present results under nominal conditions in order to assess subsequently
the impact of uncertainties on AIS sea-level rise projections. Under nominal conditions, we find
(Table 8.2) in RCP 2.6 an AIS contribution to sea level of 0.02 m by 2100, 0.07 m by 2300,
and 0.20 m by 3000 and in RCP 8.5 an AIS contribution to sea level of 0.05 m by 2100, 0.59 m
by 2300, and 3.90 m by 3000. In Figure 8.3(a), we represented the nominal projections as a
function of time in all RCP scenarios. We find that the nominal AIS contribution to sea level
is rather small in the first decades and starts to increase more significantly around 2100 with
a rather constant growth rate. In Figures 8.3(b)–(e), we represented the nominal grounded ice
region by 3000 for all RCP scenarios. We find that there is little ungrounding by 3000 in RCP 2.6
and RCP 4.5, while we observe a more significant ungrounding in Siple Coast and the Ronne
basin in RCP 6.0 and a much more significant ungrounding in Siple Coast and the Amundsen
Sea sector in RCP 8.5.

Year RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5
2100 0.02 0.01 0.03 0.05
2300 0.07 0.10 0.22 0.59
3000 0.20 0.39 0.86 3.90

Table 8.2: Nominal projections (in metres) of AIS contribution to sea level on short-term (2100),
medium-term (2300), and long-term (3000) timescales in different RCP scenarios.
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8.3.2 Parameters-to-projections relationship

One of the advantages of a polynomial chaos expansion is that it provides an explicit approx-
imation to the parameters-to-projections relationship, which can be visualised to gain insight
into the relationship between the parameters and the projections.

In Figures 8.4 and 8.5, we used the PC expansions to visualise how the projections depend
on each parameter individually (one-at-a-time) while keeping the other parameters fixed at their
nominal value under the weakly non-linear sliding law in RCP 2.6 and RCP 8.5, respectively.

Figures 8.4(a)–(c) show that in RCP 2.6 ∆GMSL increases with an increase in the calv-
ing factor non-linearly. The slope is steeper for small values of this parameter, thus suggesting
that ∆GMSL is more sensitive to small changes about small values than about higher values.
Figures 8.4(d)–(f) indicate that ∆GMSL increases rather linearly with an increase in the melt
factor. Figures 8.4(g)–(i) indicate a rather quadratic dependence on the shelf anisotropy factor
for short-term and medium-term projections, with small and large values of this factor leading
to more significant ice loss than the nominal value. This quadratic dependence can be explained
by the influence of Eshelf on two competing processes: a higher value of Eshelf softens the ice,
thus leading to faster ice flow in the ice shelves; but a higher value of Eshelf also leads to ice-
shelf thinning, thus reducing ice flux at the grounding line. In addition, we find that ∆GMSL
depends only little on the bedrock relaxation times (Figures 8.4(j)–(o)). In fact, lower bedrock
relaxation times do tend to stabilise the ice sheet and lower sea-level rise but this impact is
weak compared to the influence of the other parameters. This result may be explained by our
orders of magnitude of the bedrock relaxation times being of the order of a few millennia, thus
preventing any significant uplift in the next few centuries. Yet, a recent study by Barletta et al.
[2018] has suggested a bedrock relaxation timescale of the order of decades to a century in the
Amundsen Sea sector, thus making glacial isostatic adjustment significant in the next decades
and centuries in this region. To assess the influence of shorter relaxation times, we performed
additional numerical experiments, albeit not reported in this chapter, with a relaxation time for
the whole West Antarctic ice sheet that varies widely from a few decades to a few millennia. For
this range of values, we found that bedrock relaxation has a more significant influence on the
AIS response, with a contribution to the uncertainty in ∆GMSL that can reach 10 % in RCP 2.6
when τw is allowed to vary widely between 50 years and 3500 years.

We find in RCP 8.5 similar trends. However, whereas Fcalv, Fmelt, and Eshelf influence
∆GMSL equally in RCP 2.6, the melt factor influences ∆GMSL most significantly in RCP 8.5.
Whereas Figures 8.5(d)–(e) show that ∆GMSL increases rather linearly with an increase in the
melt factor, Figure 8.5(f) shows that ∆GMSL rather levels off at a plateau for large values of
Fmelt for long-term projections in RCP 8.5.

Additionally, Figure 8.16 shows the emulators for several pairs of parameters with the other
parameters fixed at their nominal values in RCP 2.6 and RCP 8.5. These figures show essentially
the same trends as those identified in Figures 8.4 and 8.5, in addition to interaction effects
between the parameters. In particular, we find that smaller values of the calving and melt factors
lead to mass gain (Figure 8.16(c)), while larger values of the shelf anisotropy and melt factors
lead to an important mass loss (Figure 8.16(d)).
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8.3.3 Sea-level rise projections

Under parametric uncertainties, we find (Table 8.3, Figure 8.6) in RCP 2.6 a median AIS contri-
bution to sea level that ranges from 0.02 to 0.03 m by 2100, from 0.07 to 0.13 m by 2300, and
from 0.18 to 0.30 m by 3000 for the three sliding laws, as compared with the nominal projec-
tions of 0.02 m by 2100, 0.07 m by 2300, and 0.20 m by 3000; and we find in RCP 8.5 a median
AIS contribution to sea level that ranges from 0.09 to 0.11 m by 2100, from 0.78 to 1.15 m
by 2300, and from 3.18 to 6.12 m by 3000, as compared with the nominal projection of 0.05 m
by 2100, 0.59 m by 2300, and 3.90 m by 3000. The median AIS sea-level rise projections are
higher than the nominal projections, except for certain cases under the viscous sliding law. The
nominal projections are not equal to the median projections because the ice-sheet model exhibits
non-linearities, as illustrated in Figures 8.4 and 8.5, and the probability density functions for the
parameters are not symmetric about their nominal value. As in the nominal projections, we find
that in all RCP scenarios and under all sliding laws, the median AIS contribution to sea level is
rather small in the first decades and starts to increase around 2100. As in the nominal projec-
tions, the median AIS contribution to sea level shows a rather constant growth rate in RCP 2.6,
RCP 4.5, and RCP 6.0; contrary to the nominal projection, the median AIS contribution to sea
level exhibits initially an acceleration before subsequently exhibiting a deceleration in RCP 8.5
under both non-linear sliding laws (Figure 8.6). This behaviour in the median projections in
RCP 8.5 is a consequence of the initial rapid collapse of the West Antarctic ice sheet, which
contributes 3–3.5 m to sea level, followed by a slower retreat in the East Antarctic ice sheet.
By contrast, the nominal projections, which involve a melt factor of 0.3, indicate that the West
Antarctic ice sheet does not completely collapse by the year 3000.

In RCP 2.6, we find (Table 8.3) 5–95 % probability intervals for sea-level rise projections
that range from −0.06 to 0.10 m by 2100, from −0.14 to 0.31 m by 2300, and from −0.36 to
0.91 m by 3000. In RCP 8.5, these probability intervals range from −0.03 to 0.23 m by 2100,
0.17 to 2.01 m by 2300, and 0.82 to 7.68 m by 3000. The nominal projections are inside the
5–95 % probability intervals. We see that the 5–95 % probability intervals indicate an increase
in sea level, though a decrease cannot be ruled out for the viscous sliding law and cooler atmo-
spheric conditions. Figure 8.6 highlights that the 33–66 % probability intervals become wider
under warmer atmospheric conditions and, to a lesser extent, more non-linear sliding conditions.
The uncertainty in the projections due to parametric uncertainty is rather significant, with possi-
ble overlaps between the 5–95 % probability intervals for different RCP scenarios. For instance,
Figure 8.4(i) shows that a contribution to sea level of about 0.7 m can be reached by 3000 in
RCP 2.6 for the extreme value Eshelf = 1, while Figure 8.5(f) shows that this value is reached
in RCP 8.5 for very limited sub-shelf melting (Fmelt of about 0.12). This suggests that projec-
tions with similar contributions to sea level can arise in different RCP scenarios with different
combinations of parameter values. Measuring the relative dispersion in ∆GMSL via the coeffi-
cients of variation, that is, the ratio between the standard deviation and the mean value, we find
a coefficient of variation of 0.74 in RCP 2.6, 0.67 in RCP 4.5, 0.59 in RCP 6.0, and 0.33 in
RCP 8.5 by 3000 under the weakly non-linear sliding law. This demonstrates that the relative
uncertainty in ∆GSLM projections is higher in cooler RCP scenarios. This results from a much
larger increase in the values of ∆GSLM projections compared to the increase in their dispersion
when the RCP scenario gets warmer.
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Year Sliding (m) RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5

2100 1 0.02 (−0.06, 0.10) 0.04 (−0.05, 0.12) 0.05 (−0.04, 0.13) 0.09 (−0.03, 0.20)
2 0.03 (−0.01, 0.09) 0.05 (0.00, 0.11) 0.06 (0.00, 0.14) 0.11 (0.01, 0.22)
3 0.03 (−0.03, 0.09) 0.04 (−0.02, 0.11) 0.06 (−0.01, 0.14) 0.11 (0.00, 0.23)

2300 1 0.07 (−0.14, 0.31) 0.20 (−0.09, 0.48) 0.36 (−0.04, 0.72) 0.78 (0.17, 1.35)
2 0.13 (0.01, 0.30) 0.26 (0.03, 0.54) 0.45 (0.06, 0.88) 1.04 (0.27, 1.81)
3 0.09 (−0.09, 0.29) 0.28 (−0.03, 0.58) 0.50 (0.02, 0.96) 1.15 (0.31, 2.01)

3000 1 0.18 (−0.36, 0.82) 0.77 (−0.14, 1.82) 1.60 (−0.01, 2.71) 3.18 (0.82, 4.25)
2 0.30 (−0.01, 0.82) 0.93 (0.08, 2.24) 2.16 (0.15, 4.06) 5.08 (1.36, 6.00)
3 0.30 (−0.25, 0.91) 1.15 (0.08, 2.56) 2.50 (0.34, 5.17) 6.12 (1.65, 7.68)

Table 8.3: Probabilistic projections (in metres) of the AIS contribution to sea level on short-term
(2100), medium-term (2300), and long-term (3000) timescales in different RCP scenarios and
under different sliding conditions with Schoof’s grounding-line parameterisation. ∆GMSL pro-
jections are the median projections with their 5–95 % probability intervals between parentheses.

Figure 8.7 shows the probability density functions for the change in GMSL at different
timescales. The results display essentially unimodal probability density functions with wider
tails for warmer scenarios and longer timescales. In RCP 2.6, the probability density func-
tions resemble Gaussian probability density functions. In RCP 8.5 and at the short and medium
timescales, the probability density functions are rather flat, which can be explained by the de-
pendence of ∆GMSL on Fmelt being rather linear (Figures 8.5(d) and (e)). In RCP 8.5 and at
the long timescale, the probability density functions exhibit a more localised mode at higher
values of ∆GMSL, which can be explained by the collapse of the West Antarctic ice sheet and
thus the presence of the plateau for higher values of the melt factor (Figure 8.5(f)).

Figure 8.8 gives the probability of exceeding the threshold values of 0.5 m, 1.0 m, and 1.5 m
as a function of time. We find that the probability of exceeding 0.5 m by 2100 is negligible
(probability of less than 1 %) in all RCP scenarios and under all sliding conditions. In RCP 2.6,
the AIS contribution to sea level in the next centuries is strongly limited, with a probability of
exceeding 0.5 m by 3000 reaching at most 30 %. In RCP 4.5 and RCP 6.0, we found nomi-
nal sea-level rise projections well below 1.5 m, while in RCP 8.5 this threshold is exceeded.
In the presence of uncertainties, we find that the probability of exceeding 1.5 m of sea-level
rise by 3000 can reach about 35 % in RCP 4.5, about 70 % in RCP 6.0, and about 95 % in
RCP 8.5. The last result can be seen from Figure 8.5, which indicates that ∆GMSL is below
1.5 m only in a small region of the parameter space associated with small values of the melt
factor. Furthermore, the shape of the exceedance curves in Figure 8.8 provides some insight
into the uncertainty in the time when a certain threshold value is exceeded. The time when
∆GMSL exceeds 0.5 m with a probability of 33 % under the weakly non-linear sliding law is
2415 in RCP 4.5, 2270 in RCP 6.0, and 2185 in RCP 8.5, while this value is exceeded with a
probability of 66 % at 2790 in RCP 4.5, 2430 in RCP 6.0, and 2245 in RCP 8.5. We find that
nominal projections overestimate the time when ∆GMSL exceeds 0.5 m, with the exceedance
time being beyond 3000 in RCP 4.5, around 2620 in RCP 6.0, and around 2280 in RCP 8.5.
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Figure 8.6: AIS contribution to sea level. (a) Viscous sliding law, (b) weakly nonlinear slid-
ing law, and (c) strongly nonlinear sliding law. Solid lines are the median projections and the
shaded areas are the 33–66 % probability intervals that represent the parametric uncertainty in
the model.
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Figure 8.7: Probability density functions for the AIS contribution to sea level at (a) 2100, (b)
2300, and (c) 3000 under the viscous sliding law (solid lines), the weakly non-linear sliding law
(dashed lines), and the strongly non-linear sliding law (dotted lines).
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Figure 8.8: Probability of exceeding some characteristic threshold sea-level rise values as a
function of time, evaluated from the complementary cumulative distribution functions of the
probability density functions for ∆GMSL. Probability of exceedance under (a) the viscous slid-
ing law, (b) the weakly non-linear sliding law, and (c) the strongly non-linear sliding law. Solid
lines correspond to a threshold value of 0.5 m, dashed lines to a threshold value of 1 m, and
dotted lines to a threshold value of 1.5 m.
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Figure 8.9: Sobol sensitivity indices for the AIS contribution to sea level in different RCP
scenarios and for different values of the sliding exponent m in Weertman’s sliding law. Sobol
indices at (a) 2100, (b) 2300, and (c) 3000. The gap between the height of a bar and the unit
value represents the interaction index.
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8.3.4 Stochastic sensitivity analysis

Figure 8.9 provides the Sobol sensitivity indices for the change in GMSL on short-term, medium-
term and long-term timescales in different RCP scenarios and under different sliding laws. We
find that in RCP 2.6, the largest contribution to the uncertainty in ∆GMSL stems from the un-
certainty in the ice-shelf rheology (Sobol indices ranging from 40 % to 60 %) followed by the
uncertainty in the calving rate (Sobol indices ranging from 20 % to 40 %) and sub-shelf melting
(Sobol indices ranging from 5 % to 25 %). Indeed, in RCP 2.6, sub-shelf melting plays only a
limited role because ocean conditions remain essentially unchanged. Therefore, in RCP 2.6, the
dispersion in ∆GMSL is mainly controlled by the ice-shelf rheology, which controls ice flow
and buttressing in ice shelves, as well as calving, which reduces the extent of ice shelves and
their buttressing.

By contrast, in warmer RCP scenarios and for longer timescales, the dominant source of
uncertainty becomes the uncertainty in sub-shelf melting, which accounts in RCP 8.5 for more
than 90 % of the uncertainty in sea-level rise projections. As shown in Figure 8.5, in RCP 8.5 at
3000 ∆GMSL varies by several metres over the range of values of Fmelt, while ∆GMSL varies
only by a few tens of centimetres over the range of values of the other parameters. Hence, the
dominant influence of the uncertainty in the melting factor is also a consequence of the rather
wide uncertainty range that we chose for this parameter.

Finally, we find that, in all RCP scenarios and under all sliding laws, the uncertainty in the
bedrock relaxation times for West and East Antarctica has a limited impact (Sobol index smaller
than 1 %), which is a direct consequence of the very limited dependence of the projections on
the bedrock relaxation times. Moreover, the interactions between the parameters have a negligi-
ble impact as the sums of the individual Sobol indices account almost entirely for the variances
of the projections.

8.3.5 Projections of grounded-ice retreat

Figure 8.10 provides insight into the regions of Antarctica that are most at risk of unground-
ing in different RCP scenarios and at different timescales under the weakly non-linear sliding
law. Figure 8.10 was obtained as follows. First, we determined the 100 % confidence region for
grounded ice, that is, the region of Antarctica where ice is certain to remain grounded, and we
coloured it in grey. Thus, there is no risk that the grounding line will retreat to within the grey
region. Then, we determined the 95 % confidence region for grounded ice, that is, the region of
Antarctica that remains covered everywhere with grounded ice with a probability of more than
95 %, and we coloured the portion of the 95 % confidence region that extends beyond the 100 %
confidence region in dark blue. Thus, there is a low risk of (less than) 5 % that the grounding
line will retreat to within the dark blue region. We continued this procedure for decreasing val-
ues of the confidence level and using different colours as indicated in the legend in Figure 8.10.

We find that ice remains grounded in regions above sea level. By contrast, in all RCP sce-
narios, the risk of ungrounding is highest in marine sectors of West Antarctica with fast-flowing
ice streams, especially in Siple Coast, in the Ronne basin, notably Ellsworth Land, and in the
Amundsen Sea sector. In warm RCP scenarios and at longer timescales, we also observe a risk
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of grounding-line retreat in the Wilkes marine basin in East Antarctica, where the grounding
line could retreat between 100 km (with a risk of 95 %) and 500 km (with a risk of 5 %) from its
present-day position. The risk of retreat in Wilkes basin may partially explain the acceleration
in sea-level rise that we observed in Figure 8.6 in RCP 8.5. The risk of grounding-line retreat in
the Antarctic Peninsula is very limited due to the bedrock topography being above sea level, the
marine glaciers being small, and a high increase in precipitation in this region.

In RCP 2.6, we observe that the grounding line is quite stable over the next millennium,
with the 100 % confidence region for grounded ice being almost unchanged from the present-
day grounded ice region (the 100 % confidence region for grounded ice by 3000 only differs
from the present-day grounded ice region by a few tens of kilometres). In RCP 4.5, ice remains
grounded in most of the West Antarctic ice sheet over the next centuries, but our results also
suggest a risk of retreat of the grounding line in some sectors of West Antarctica on longer
timescales. In RCP 6.0, we find that the West Antarctic ice sheet belongs by 3000 to the 66 %
confidence region for grounded ice, while in RCP 8.5, it belongs by 3000 only to the 5 % confi-
dence region. This suggests a risk of 33 % that a major collapse of the West Antarctic ice sheet
might occur in RCP 6.0 by 3000 and a risk of 95 % that a major collapse of the West Antarctic
ice sheet might occur in RCP 8.5 by 3000.

As compared with the nominal projections of a limited retreat of the grounding line in West
Antarctica in RCP 6.0 by 3000, we find that the impact of the parametric uncertainty is that a
complete collapse of the West Antarctic ice sheet may occur with a risk of 33 % in RCP 6.0
by 3000. Moreover, Figure 8.3(e) suggests that a complete disintegration of the West Antarctic
ice sheet is underway by 3000 in RCP 8.5, while in Figure 8.10(l) the West Antarctic ice sheet
has already collapsed by 3000.

Additionally, we compared the projections under the weakly non-linear sliding law with
projections under the other sliding laws, that is, the viscous sliding law (Figure 8.21) and the
strongly non-linear sliding law (Figure 8.22). We find a lower risk of retreat of the grounding
line under the viscous sliding law with a slower disintegration of the West Antarctic ice sheet
compared to the other sliding laws, especially in the drainage basins of Thwaites and Pine Island
Glaciers, which belong to the 50 % confidence region for grounded ice by 3000 in RCP 8.5,
while they belong to the 5 % confidence region by 3000 in RCP 8.5 for the other sliding laws.
The strongly non-linear sliding law seems to favour a faster and deeper retreat of the grounding
line, especially in the marine sectors of East Antarctica and the drainage basins of Thwaites and
Pine Island Glaciers. However, Figure 8.10(i) and Figure 8.22(i) suggest that ungrounding may
be less significant in Siple Coast under the strongly non-linear sliding law than the weakly non-
linear sliding law. Actually, MISI may occur when driving stresses overcome resistive stresses
[Waibel et al., 2018]. Driving stresses are primarily determined by the surface slopes, while
resistive stresses depend on the basal sliding coefficient and the ice velocity through the sliding
exponent. Driving stresses at the grounding line are higher in the Amundsen Sea sector than in
Siple Coast due to steeper surface slopes, leading to a greater sensitivity of the grounding line
in the former region to non-linearity and a more plastic response.
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Figure 8.10: Confidence regions for grounded ice under the weakly non-linear sliding law.
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Figure 8.11: Robustness of probabilistic projections with respect to the scaling factor α. Median
projections and their 33–66 % and 5–95 % probability intervals by 3000 under the weakly non-
linear sliding law in (a) RCP 2.6, (b) RCP 4.5, (c) RCP 6.0, and (d) RCP 8.5. Probability
density functions for α = 0.2 (dotted lines), α = 0.6 (dashed lines), and α = 1 (solid lines) in
(e) RCP 2.6, (f) RCP 4.5, (g) RCP 6.0, and (h) RCP 8.5.
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8.3.6 Influence of the parameter probability density function

So far, we have represented the uncertain parameters Fcalv, Fmelt, Eshelf , τe, and τw by a uni-
form distribution on a fixed support. For instance, the uncertain parameter Fcalv is represented
by a uniform distribution with support [Fcalv,min,Fcalv,max], where Fcalv,min and Fcalv,max are
the minimum and maximum values in Table 8.1. We now address the influence of the probabilis-
tic characterisation of the parametric uncertainty on our probabilistic projections by controlling
the size of these supports. Hence, we represent the uncertain parameters Fcalv, Fmelt, Eshelf , τe,
and τw by a family of uniform probability density functions indexed by a unique scaling factor
α ∈ [0, 1] that controls the supports of the uniform probability density functions. For instance,
the uncertain parameter Fcalv is represented for a given value of α by a uniform distribution with
support [Fcalv,nom + α(Fcalv,min − Fcalv,nom),Fcalv,nom + α(Fcalv,max − Fcalv,nom)], where
Fcalv,nom, Fcalv,min, and Fcalv,max are the nominal, minimum, and maximum values in Table
8.1. For the other parameters, the supports are defined similarly. The value α = 0 represents
the ice-sheet model without parametric uncertainty, that is, the ice-sheet model for the nominal
values of the parameters, and the value α = 1 represents the full uncertainty ranges considered
so far. We propagated the uncertainty from the parameters to the sea-level rise projections for
different values of the scaling factor, reusing the emulator that we had built for α = 1 over the
whole parameter space. Hence, the projections to follow for α = 0 based on this emulator are
not exactly equal to the nominal projections determined directly from the ice-sheet model.

For the long-term projections, Figures 8.11(a)–(d) show the median and the 33–66 % and
5–95 % probability intervals as a function of the scaling factor in the different RCP scenarios
under the weakly non-linear sliding law and Figures 8.11(e)–(h) show the probability density
functions for the values α = 0.2, 0.6, and 1.0. We find that the median projections increase with
an increase in the scaling factor and range in RCP 2.6 from 0.16 m to 0.30 m, in RCP 4.5 from
0.37 m to 0.93 m, in RCP 6.0 from 1.11 m to 2.16 m and in RCP 8.5 from 3.80 m to 5.08 m.
In addition, the width of the probability intervals increases with increasing uncertainty in the
parameters. While the width of the 33–66 % probability interval increases rather linearly with
the scaling factor and is rather symmetric about the median, the width of the 5–95 % probabil-
ity interval increases more non-linearly with an increase in the scaling factor, as illustrated in
Figure 8.11(a) in RCP 2.6 and Figure 8.11(d) in RCP 8.5. The probability density functions at-
tribute higher weight to larger values of ∆GMSL under increased parametric uncertainty, with
increased weight given to larger values of in particular Eshelf in RCP 2.6 (Figure 8.4(i)) and
Fmelt in RCP 8.5 (Figure 8.5(f)). Figures 8.11(a)–(d) show that the sensitivity of the amount of
uncertainty in the projections (probability intervals) to the amount of uncertainty in the param-
eters (scaling factor) is higher for warmer scenarios, with an upper bound between RCP 6.0 and
RCP 8.5 as a consequence of the collapse of the West Antarctic ice sheet.

8.3.7 Projections under a more plastic sliding law

We ran the same ensemble of simulations under a more plastic sliding law (m = 5). Table 8.4
and Figure 8.12 give for the AIS contribution to sea level the median and the 33–66 % and 5–
95 % probability intervals. As compared with less plastic sliding laws (m = 1, 2, 3), we find an
increase in sea-level rise projections on short-term and medium-term timescales, thus suggesting
a more significant and faster response to perturbations under more plastic sliding conditions. On
a long-term timescale, the ice-sheet mass loss can be less important under m = 5 than m = 3,
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as observed in the median projections by 3000 in RCP 4.5 and RCP 8.5.

We find that overall the AIS contribution to sea level is an increasing function of the sliding
exponent, with the differences between successive exponents getting smaller as m increases, as
already pointed out by Gillet-Chaulet et al. [2016]; for instance, we observe a greater difference
in the projections between m = 1 and m = 2 than between m = 3 and m = 5. On longer
timescales, tipping points and nonlinearities associated with MISI may trigger a slightly differ-
ent response of the ice sheet depending on the initial conditions, which could explain the smaller
ice loss in our results under m = 5 than m = 3.
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Figure 8.12: Same as Figure 8.6 but under Weertman’s sliding law with exponent m = 5.

Year RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5

2100 0.03 (−0.02, 0.08) 0.05 (−0.01, 0.12) 0.07 (−0.01, 0.15) 0.13 (0.01, 0.25)
2300 0.14 (−0.02, 0.32) 0.34 (0.04, 0.61) 0.56 (0.10, 0.99) 1.24 (0.40, 2.19)
3000 0.37 (−0.07, 0.92) 1.07 (0.17, 2.56) 2.70 (0.41, 5.16) 5.74 (1.92, 7.03)

Table 8.4: Same as Table 8.3 but with sliding exponent m = 5. ∆GMSL projections are the
median projections with their 5–95 % probability intervals between parentheses.

8.3.8 TGL parameterisation

We ran the same ensemble of simulations under the weakly nonlinear sliding law using, this
time, the TGL parameterisation instead of the SGL parameterisation. Under the TGL param-
eterisation, Table 8.5 and Figure 8.13(a) give for the AIS contribution to sea level the median
and the 33–66 % and 5–95 % probability intervals. We find an overall increase in sea-level rise
projections compared to our results under the SGL parameterisation. This result was expected
as the TGL parameterisation has been shown to increase grounding-line sensitivity to environ-
mental changes [Tsai et al., 2015; Pattyn, 2017]. The probability of exceeding 0.5 m by 2100 is
still negligible (probability of less than 1 %) in all RCP scenarios. However, the probability of
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exceeding 0.5 m and 1 mby 3000 in RCP 2.6 can reach more than 40 % and 10 %, respectively.
For other scenarios, the retreat of the Antarctic ice sheet is much more pronounced and faster
than under the SGL parameterisation and the probability to exceed 1.5 m of sea-level rise by
3000 can reach more than 50 % in RCP 4.5, 80 % in RCP 6.0, and 99 % in RCP 8.5.

Figures 8.13(b)–(d) show the confidence regions for grounded ice under the TGL parame-
terisation in RCP 8.5. As also pointed out by Pattyn [2017], the TGL parameterisation leads to
a faster and more significant grounding-line retreat in the marine sectors and an additional mass
loss from East Antarctica, especially in the Aurora basin.

Year RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5

2100 0.06 (0.00, 0.14) 0.10 (0.02, 0.19) 0.12 (0.02, 0.23) 0.21 (0.05, 0.37)
2300 0.20 (0.02, 0.47) 0.47 (0.10, 0.89) 0.83 (0.18, 1.43) 1.85 (0.59, 3.12)
3000 0.46 (0.00, 1.30) 1.73 (0.22, 2.91) 3.47 (0.76, 5.37) 7.43 (3.85, 10.79)

Table 8.5: Same as Table 8.3 but with the TGL parameterisation. ∆GMSL projections are the
median projections with their 5–95 % probability intervals between parentheses.

8.4 Discussion

8.4.1 Comparison of the sea-level rise projections with previous work

Regarding the short-term AIS contribution to sea level, we projected in the RCP 2.6 scenario a
median of 0.02–0.03 m under the SGL parameterisation and 5–95 % probability intervals from
−0.06 m to 0.10 m. These projections are similar to other estimates based on other mecha-
nisms. Golledge et al. [2015] reported an AIS contribution to sea level between −0.01 m and
0.10 m with the lower and higher bounds corresponding to the absence and presence of sub-grid
interpolation of basal melting at the grounding line. DeConto and Pollard [2016] reported an
AIS contribution to sea level between −0.11 m and 0.15 m based on a model calibration with a
range of Pliocene sea-level targets between 5 and 15 m higher than today. In the same scenario,
we found an increased AIS response under the TGL parameterisation with a median AIS con-
tribution to sea level of 0.06 m and a 5–95 % probability interval between 0.00 m and 0.14 m
by 2100. These higher projections are similar to the higher projections (0–0.22 m) reported by
DeConto and Pollard [2016] for a higher range of Pliocene sea-level targets between 10 and
20 m. In all RCP scenarios, under all sliding laws, and under both grounding-line parameterisa-
tions, our results suggested that the AIS contribution to sea level does not exceed 0.5 m by 2100
with a probability of at least 99 %. These results are in agreement with Ritz et al. [2015], who
determined an AIS contribution to sea level that lies between 0.05 m and 0.30 m, and Golledge
et al. [2015], who found an AIS contribution to sea level that reaches at most 0.38 m in RCP 8.5
with sub-grid interpolation of basal melting at the grounding line. Yet, projections by DeConto
and Pollard [2016] and Schlegel et al. [2018], who applied the more sensitive Budd-type fric-
tion law [Brondex et al., 2017], can exceed 0.5 m and even 1 m, but these higher projections are
under extreme and maybe unrealistic warming conditions.

Regarding the long-term AIS contribution to sea level, our projections under the SGL pa-
rameterisation are similar to other estimates by Golledge et al. [2015]. In particular, both studies
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Figure 8.13: (a) Same as Figure 8.6 but under the TGL parameterisation and the weakly nonlin-
ear sliding law. (b, c, d) Confidence regions for grounded ice under the TGL parameterisation
and the weakly nonlinear sliding law for the RCP 8.5 scenario. Confidence regions are shown
at (b) 2100, (c) 2300, and (d) 3000.

suggest that the AIS contribution to sea level by 3000 in RCP 2.6 is limited to less than 1 m with
a probability estimated to be at least 95 % in our study, while an AIS contribution to sea level
above 1.5 m by 3000 may arise in all other RCP scenarios. Yet, our long-term projections are
generally below projections by DeConto and Pollard [2016] with hydrofracturing and ice-cliff
failure mechanisms especially under warmer RCP scenarios, but the discrepancies between the
projections of both models are reduced under the TGL parameterisation. In RCP 2.6, our projec-
tions by 2500 under the TGL parameterisation range from 0.04 m to 0.73 m, which is similar to
projections by DeConto and Pollard [2016], which range respectively from −0.23 m to 0.61 m
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and 0.02 m to 0.48 m for the lower and higher ranges of Pliocene of sea-level targets.

8.4.2 Comparison of the impact of parametric uncertainty with previous work

Similarly to Golledge et al. [2015, 2017], our study emphasised the pivotal role played by the
emission scenario and sub-shelf melting as critical drivers of the future changes in the AIS mass
balance on medium-term and long-term timescales through ice-shelf thinning and subsequent
reduced buttressing. As in Ritz et al. [2015], we found that the AIS contribution to sea level
is an increasing function of the sliding exponent, thus meaning that more plastic sliding condi-
tions speed up the ice flow and consequently ice loss. Following Pattyn [2017], we highlighted
the greater sensitivity of the grounding-line migration under the TGL parameterisation, thus
stressing the key role played by physical processes in the vicinity of the grounding line.

8.4.3 Comparison of projections of grounded-ice retreat with previous work

Consistent with our results, Golledge et al. [2015], with a 10-km resolution model, projected
that grounding-line retreat is most significant in the Siple Coast region. However, Ritz et al.
[2015], based on the probability of MISI onset, as well as Cornford et al. [2015], with a sub-
kilometre resolution around the grounding line, projected that grounding-line retreat is most
significant in the Amundsen Sea sector. Schlegel et al. [2018] found that grounding-line retreat
is most significant in the Amundsen Sea sector under generalised ocean warming experiments
for the Antarctic ice sheet, but, after calibrating sub-shelf melt rates with bounds that vary re-
gion by region and are assigned values deduced from the literature and model sensitivity studies,
they found that the western Ronne basin has the greater sensitivity. These discrepancies between
our findings and those of Cornford et al. [2015], Ritz et al. [2015], and Schlegel et al. [2018]
may be explained by our ocean model which may overestimate sub-shelf melting underneath
the Ross ice shelf and underestimate ocean circulation in the Amundsen Sea and by our initial-
isation method which may underestimate the basal sliding coefficients for Thwaites and Pine
Island Glaciers. Moreover, the lower sensitivity of the Amundsen Sea sector may arise in our
simulations from shortcomings in the buttressing parameterisation, our low resolution not cap-
turing properly the bedrock topography, the small pinning points and the flow dynamics in the
narrower sectors of the ice sheet, and our representation of calving, which may increase the
instability threshold; see, for instance, Arthern and Williams [2017] and Waibel et al. [2018] for
more thorough discussions about the instability threshold in the Amundsen Sea sector.

8.4.4 Projections of ice loss and grounding-line retreat under parametric uncer-
tainty

The significance of the contribution of the Antarctic ice sheet to sea level under climate change
is primarily controlled by the sensitivity, the response time, and the vulnerability of its marine
drainage basins, with the West Antarctic ice sheet more sensitive and vulnerable than the East
Antarctic ice sheet. The instability of marine drainage basins and their ability to trigger ac-
celerated ice loss and significant grounding-line retreat is determined by bedrock topography
and ice-shelf buttressing which depends on the importance of ice-shelf thinning. Our nominal
projections showed that the AIS contribution to sea level by 3000 is rather limited (less than 1
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metre) in RCP 2.6, RCP 4.5, and RCP 6.0, while an accelerated ice loss that leads to a con-
tribution of several metres is triggered in RCP 8.5 (Figure 8.3(a)). In addition, the nominal
retreat of the grounding line by 3000 is rather limited in RCP 2.6, RCP 4.5, and RCP 6.0 (Fig-
ures 8.3(b)–(d)), while a significant retreat of the grounding line is triggered in the Siple Coast,
Ronne–Filchner and Amundsen Sea sectors in RCP 8.5 (Figure 8.3(e)).

Our probabilistic results provide insight into the impact of parametric uncertainty on these
projections. In RCP 2.6, the projections hold irrespective of parametric uncertainty: the AIS
contribution to sea level by 3000 has a 95 % quantile of up to 0.91 m (Table 8.3) and there is a
limited risk that the grounding line will retreat beyond our nominal projections (Figure 8.3(b)
and Figure 8.10(c)). In RCP 4.5 and RCP 6.0, the projections are more sensitive to parametric
uncertainty than in RCP 2.6: the AIS contribution to sea level by 3000 has a 95 % quantile of up
to 2.56 m in RCP 4.5 and up to 5.17 m in RCP 6.0 (Table 8.3) and both scenarios entail a risk
of triggering a more significant retreat of the grounding line beyond our nominal projections
(Figures 8.3(c)–(d)). This risk is present especially in the Amundsen Sea sector and it is less
significant in RCP 4.5 than in RCP 6.0, in which a complete disintegration of the West Antarctic
ice sheet may be triggered (Figures 8.10(f) and (i)). Finally, in RCP 8.5, our probabilistic results
suggest an accelerated ice loss and a significant retreat of the grounding line in West Antarctica,
as in our nominal projections: the AIS contribution to sea level by 3000 has an uncertainty range
with a 5 % quantile above 0.82 m and a 95 % quantile of up to 7.68 m (Table 8.3) and there is a
high risk of triggering a complete disintegration of the West Antarctic ice sheet (Figure 8.10(l)).

In conclusion, the projections hold irrespective of parametric uncertainty in the strongly mit-
igated RCP 2.6 scenario: accommodating parametric uncertainty in the ice-sheet model leads to
projections in agreement with the nominal projections of limited ice loss and limited grounding-
line retreat in RCP 2.6. However, the projections are more sensitive to parametric uncertainty
for intermediate scenarios such as RCP 4.5 and RCP 6.0: accommodating parametric uncer-
tainty in the ice-sheet model leads to projections in disagreement with the nominal projections
and indicates instead some risk of triggering accelerated ice loss and significant grounding-line
retreat for intermediate scenarios such as RCP 4.5 and RCP 6.0. Finally, the warm RCP 8.5
scenario triggers the collapse of the West Antarctic ice sheet, almost irrespective of parametric
uncertainty.

8.4.5 Structural uncertainty and limitations

A first limitation of our study is associated with the modelling hypotheses inherent to our ice-
sheet model. The f.ETISh model is an ice-sheet model that focuses on essential marine ice-sheet
mechanisms, similarly to the ice-sheet model by Pollard and DeConto [2012a]. Certain physical
processes, especially small-scale processes, may be represented imperfectly, especially with the
20-km resolution adopted for our simulations. This may reduce the ability to simulate important
ice streams such as Pine Island and Thwaites Glaciers (only represented by a few grid points),
whose stability is controlled by local bedrock features [Waibel et al., 2018]. Hence, grounding-
line migration and thresholds for instabilities may not be captured properly even with a parame-
terisation of the grounding-line flux, especially in low-forcing scenarios and short-term projec-
tions. As discussed in Section 8.2.1, the flux condition at the grounding line is also questionable
for buttressed ice shelves [Pattyn et al., 2013; Reese et al., 2018a] found around Antarctica and



230 Chapter 8. UQ of the multicentennial response of the Antarctic ice sheet

short transients [Drouet et al., 2013; Pattyn et al., 2013; Pattyn and Durand, 2013]. Yet, we think
that using a 20-km resolution and a flux condition at the grounding-line remains an acceptable
assumption in large-scale and long-term ice-sheet simulations and large-ensemble simulations.
We expect discrepancies between our results and results at a higher spatial resolution or with
a higher level of complexity to be limited when compared to the uncertainty in the results due
to the uncertainty in the model parameters and forcing. Besides, sub-shelf melting may not be
captured properly despite the use of the PICO ocean-model coupler, especially in the Amund-
sen Sea sector and underneath the Ross ice shelf [Timmermann et al., 2012; Depoorter et al.,
2013; Rignot et al., 2013; Moholdt et al., 2014]. A second limitation comes from the hypotheses
relevant to our characterisation of uncertainties. We adopted rather large uncertainty ranges for
the parameters. As discussed in Section 8.3.6, projections can be strongly affected by extreme
conditions. Moreover, we chose the bounds of the uncertainty ranges quite heuristically. A third
limitation comes from the fairly simple way in which certain sources of uncertainty were intro-
duced. We assumed a direct influence of the atmospheric forcing on sub-shelf melting through
the ocean melt factor. However, as discussed in Section 8.2.2.5, atmospheric forcing affects
the Circumpolar Deep Water circulation in ice-shelf cavities and subsequently modifies sub-
shelf melting [Pritchard et al., 2012]. Still, the fate of the Southern Ocean and the evolution of
sub-shelf melting under global climate change remains unclear [Hellmer et al., 2012; Dinniman
et al., 2012; Timmermann and Hellmer, 2013; Hellmer et al., 2017]. Given the importance of
sub-shelf melting in driving the future response of the Antarctic ice sheet, there is a clear need
to better constrain future sub-shelf melt and incorporate it properly into ice-sheet models. We
also introduced uncertainty in calving with a simple multiplier factor that does not take into
account the stress regime in the ice shelves. A fourth limitation concerns the correction for the
initial drift that adds a bias to the projections. We adopted this correction to make our results
insensitive to model initialisation but our corrected results are likely to underestimate the AIS
response on a short-term timescale, as our approach does not take into account any current tran-
sient changes in the Antarctic ice sheet. Another limitation is related to the construction of our
emulator. To avoid overfitting the training data, we tuned the emulator to reproduce the over-
all trend in the parameters-to-projections relationship but not local variations in the parameter
space that may stem from numerical noise and errors.

8.5 Conclusion

We studied the multicentennial response of the Antarctic ice sheet under uncertainty using meth-
ods from the field of UQ. We investigated uncertainties in atmospheric forcing, basal sliding,
grounding-line parameterisation, sub-shelf melting, calving, ice-shelf rheology, and bedrock
relaxation. We used emulation-based methods to represent the parameters-to-projection rela-
tionship, stochastic sensitivity analysis to assess the significance of each source of uncertainty
in inducing uncertainty in the projections, and confidence regions for excursion sets to assess
the risk of grounding-line retreat. We found that all investigated sources of uncertainty, except
bedrock relaxation time, contribute to the uncertainty in the projections. We showed that the
sensitivity of the projections to uncertainties increases and the contribution of the uncertainty
in sub-shelf melting to the uncertainty in the projections becomes more and more dominant as
atmospheric and oceanic temperatures rise, with a contribution to the uncertainty in sea-level
rise projections that goes from 5 % to 25 % in RCP 2.6 to more than 90 % in RCP 8.5. We
showed that the significance of the AIS contribution to sea level is controlled by MISI in ma-
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rine basins, with the biggest contribution stemming from the more vulnerable West Antarctic
ice sheet. We found that, irrespective of parametric uncertainty, the strongly mitigated RCP 2.6
scenario prevents the collapse of the West Antarctic ice sheet, that in both the RCP 4.5 and
RCP 6.0 scenarios the occurrence of MISI in marine basins is more sensitive to parametric un-
certainty, and that, almost irrespective of parametric uncertainty, RCP 8.5 triggers the collapse
of the West Antarctic ice sheet.

8.A Polynomial chaos expansion

In this Appendix, we concisely provide further details about how we used PC expansions in our
study; we refer the reader to, for instance, Ghanem et al. [2017] and Le Maître and Knio [2010]
for more comprehensive treatments of the theory and various applications of PC expansions.

Let us represent the ice-sheet model as an abstract model y = g(x) where x = (x1, . . . ,xd)
is a vector of d parameters, y the model response and g the response function. In our study,
d = 5, x1 = Fcalv, x2 = Fmelt, x3 = Eshelf , x4 = τe, x5 = τw, and y = ∆GMSL at a given
time. In our study, the parameters are uncertain and have a probability density function that we
denote by p.

A polynomial chaos expansion is an approximation of the response function g with a poly-
nomial gK as

g(x) ≈ gK(x) =
K∑
k=0

ckψk(x), (8.4)

where the ψk are a basis of predefined polynomials of increasing degree and orthonormal with
respect to the probability density function of the parameters, by which we understand that

∫
Rd
ψk(x)ψl(x)p(x) dx =

{
0 if k 6= l

1 if k = l
, (8.5)

and K + 1 is the number of predefined polynomials in the expansion.

In order to fit the PC expansion in Equation (8.4) to the ice-sheet model, we calculate the
coefficients using a (weighted) least-squares approach:

c = arg min
d∈RK+1

N∑
i=1

w(i)
(
y(i) −

K∑
k=0

dkψk(x(i))
)2

, (8.6)

where the ensemble
{
x(i), 1 6 i 6 N

}
is a set of N training points in the parameter space,

the ensemble
{
y(i) = g(x(i)), 1 6 i 6 N

}
is the set of model responses at the training points,

c = (c0, c1, . . . , cK) collects the PC coefficients, and
{
w(i), 1 6 i 6 N

}
is the set of weights.

We normalise the parameters to accommodate the different orders of magnitude of the parame-
ters and reduce the potential ill-conditioning of the least-squares problem. We generate the set
of training points with a maximin Latin hypercube sampling design [Stein, 1987; Fajraoui et al.,
2017; Hadigol and Doostan, 2018], which is a space-filling design that aims at maximising the
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smallest distance between neighbouring points, thus ensuring a proper coverage of the parame-
ter space. We consider a PC expansion of degree 3, which corresponds to K = 56 for d = 5, as
we strive to reproduce the overall trend of the response function without overfitting small local
variations.

We solve Equation (8.6) by solving the normal equations

([G]T [W ][G])c = [G]T [W ]y, (8.7)

where y = (y(1), . . . , y(N)) collects the model responses at the training points, [G] is the mea-
surement matrix whose entries are given by Gik = ψk(x(i)), and [W ] is a diagonal weight
matrix whose diagonal entries are the weights (Wii = w(i)). As we construct the training points
by using a Latin hypercube sampling design, the training points x(i) have equal weights of
Wii = w(i) = 1/N . We do note that there exist other methods to determine the coefficients in
Equation (8.4) including methods involving deterministic quadrature rules [Le Maître and Knio,
2010]. Here, one of our motivations for choosing a least-squares approach is its good ability to
handle numerical noise in low-degree expansions [Iskandarani et al., 2016].

We estimate statistical descriptors of the uncertain model response with Monte Carlo simula-
tion in which the PC expansion is used as a computationally efficient substitute for the ice-sheet
model. For instance, we estimate the probability density function of the response through kernel
density estimation [Scott, 2015], while we approximate the mean µ and the variance σ2 of the
model response as

µ ≈ µK,ν = 1
ν

ν∑
i=1

gK(x(i)), (8.8)

σ2 ≈ (σK,ν)2 = 1
ν

ν∑
i=1

(
gK(x(i))− µK,ν)2, (8.9)

where
{
x(i), 1 6 i 6 ν

}
now denotes an ensemble of ν independent and identically distributed

samples from the probability density function of the parameters. Because the PC expansion is
based on orthonormal polynomials with respect to the probability density function of the uncer-
tain parameters and of increasing degree with ψ0 = 1, we can evaluate some of the statistical
descriptors of the uncertain model response directly from the PC coefficients. For example, the
mean µ and the variance σ2 of the model response can also be approximated as follows

µ ≈ µK = c0, (8.10)

σ2 ≈ (σK)2 =
K∑
k=1

c2
k. (8.11)

The accuracy of the PC expansion has to be assessed with respect to the degree of the PC
expansion and the number of training points. We validate the accuracy of the PC expansion using
cross-validation and convergence tests. We generate a new set of samples in the parameter space
and we compare the exact response of the ice-sheet model with the approximate response of the
PC expansion. Figures 8.14(a)–(c) show results of such a cross-validation for a PC expansion of
degree 3. These figures suggest that the PC expansion represents the overall model response with
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sufficient accuracy. Lower accuracy is achieved near the boundaries of the parameter space. We
also carry out convergence tests, as illustrated in Figure 8.14(d) in RCP 8.5 and at time 3000.
This figure represents the maximum absolute error and the mean-squared error between the
exact response of the ice-sheet model and the approximate response of the PC expansion at the
training points as a function of the number of training points. We see that for the 500 training
points considered in this chapter, reasonable convergence of the PC expansion is achieved.
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Figure 8.14: Validation tests for the PC expansion. (a) Cross-validation for the PC approxima-
tion in Figure 8.16(d) and (b) cross-validation for the PC approximation in Figure 8.16(b). The
surface represents the PC approximation of the response of the ice-sheet model and the blue
dots are the exact response of the ice-sheet model at the test points. (c) Cross-validation for the
PC approximation in Figure 8.5(f) showing the presence of noisy results. (d) Convergence test
in RCP 8.5 at time 3000 based on the number of training points used to build the emulator.
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8.B Sobol sensitivity indices

In this Appendix, we concisely provide further details about how we used stochastic sensitivity
analysis; we refer the reader to, for instance, Ghanem et al. [2017] and Saltelli et al. [2008] for
more comprehensive treatments of the theory and various applications.

We first assume that the uncertain parameters are statistically independent. Sobol indices
are based on the decomposition of the response function g in terms of the main effects asso-
ciated with the parameters individually and an interaction effect associated with all parameters
together:

y = g(x) = g0 +
d∑
i=1

gi(xi) + gI(x), (8.12)

where g0 is constant, each gi the so-called main effect associated with the corresponding param-
eter xi, and gI the so-called interaction effect. The constant, the main effects, and the interaction
effect are given by

g0 =
∫
Rd
g(x)p(x) dx, (8.13)

gi =
∫
Rd−1

g(x)p−i(x−i) dx−i − g0, 1 6 i 6 d, (8.14)

gI = g − g0 −
d∑
i=1

gi, (8.15)

where x−i = (x1, . . . ,xi−1,xi+1, . . . ,xd) denotes the subset of parameters including all the
parameters except xi and p−i denotes the probability density function for this subset of param-
eters. The constant g0 is the mean value of g. Using the calculus of variations, it can be shown
that the main effect gi is such that the function g0 + gi is the least-squares best approximation
of g among all functions that depend only on xi. As a consequence of this least-squares best
approximation property, the functions g0, g1, . . . , gd, and gI are orthonormal with respect to the
probability density function of the uncertain parameters.

As a consequence of the orthonormality of the functions g0, g1, . . . , gd, and gI, the variance
σ2 of the model response can be decomposed as

σ2 =
(

d∑
i=1

Si + SI

)
σ2, (8.16)

with

Si = 1
σ2

∫
R
|gi(xi)|2pi(xi) dxi, 1 6 i 6 d, (8.17)

SI = 1−
d∑
i=1

Si, (8.18)

where pi denotes the probability density function of xi. Here, Si, which takes a value between
0 and 1, is the Sobol index for the i-th parameter and SI is the interaction index. The Sobol
index Si can be interpreted either as the relative contribution of the uncertainty in the sole i-th
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parameter to the variance of the model response or as the reduction in the variance of the model
response that we may expect by learning the exact value of this parameter [Oakley and O’Hagan,
2004]. Sobol indices allow us to rank the uncertain parameters in terms of their contribution to
the variance of the model response, thus indicating which parameters are most influential in
inducing the uncertainty in the model response.

Here, we substituted the ice-sheet model by a PC expansion based on orthonormal polyno-
mials and estimated the Sobol indices directly from the PC coefficients [Crestaux et al., 2009],
that is,

Si ≈ SKi = 1(
σK
)2 ∑

k∈Ai
c2
k, (8.19)

where Ai is the set of indices associated with the non-constant polynomials that only depend on
xi.

8.C Confidence regions for grounded ice

In this Appendix, we concisely provide further details about how we defined and computed
confidence regions for grounded ice. To distinguish between grounded ice and floating ice at a
given time, the f.ETISh model [Pattyn, 2017] evaluates the so-called buoyancy imbalance:

BI(x) = ρwb(x) + ρih(x), (8.20)

where b is the bedrock elevation, h the ice thickness, ρw the water density, and ρi the ice density.
The buoyancy imbalance is negative for floating ice, positive for grounded ice, and null at the
grounding line. Therefore, the grounded ice domain Dg is

Dg = {x : BI(x) > 0} . (8.21)

In the presence of uncertainties in the model, we define an α% confidence region Dg(α) for
the grounded ice domain as a region of Antarctica that has a probability of at least α of being
included in the grounded ice domain, that is,

P {Dg(α) ⊆ Dg} > α. (8.22)

We compute the confidence regions using an adaptation of a thresholding algorithm by Bolin
and Lindgren [2015]. We seek the confidence regions in a parametric family indexed by a
threshold parameter and based on the marginal probability density functions and we determine
the threshold parameter so as to achieve the required level of confidence. While Bolin and Lind-
gren [2015] consider Gaussian random fields, here we work with non-Gaussian random fields,
which requires us to evaluate the marginal probability density functions and the probability of
inclusion with Monte Carlo simulation.
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8.D Supplementary figures

Supplementary figures of Uncertainty quantification of the multi-centennial response of the
Antarctic ice sheet to climate change [Bulthuis et al., 2019a] (https://doi.org/10.5194/
tc-13-1349-2019-supplement).
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Figure 8.15: Comparison of Antarctic ice-sheet contribution to sea level under Weertman’s slid-
ing law with exponent m = 2 as a function of spatial resolution (20 km vs 16 km). (a) Spatial
resolution of 20 km and (b) spatial resolution of 16 km. Solid lines are the median projections
and the shaded areas are the 33–66 % probability intervals that represent the parametric uncer-
tainty in the model.
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Figure 8.16: Representation of the emulators for pairs of parameters with other parameters
fixed at their nominal value. Results are under Weertman’s sliding law with exponent m = 2.
Emulators (a) at 2100 in RCP 2.6 for the pair (Fcalv,Eshelf), (b) at 2300 in RCP 8.5 for the pair
(Fmelt,Eshelf), (c) at 2300 in RCP 2.6 for the pair (Fcalv,Fmelt), and (d) at 3000 in RCP 2.6 for
the pair (Fmelt,Eshelf).



238 Chapter 8. UQ of the multicentennial response of the Antarctic ice sheet

0.5
1

1.5
0.1

0.5
0.8

0

0.08

Fcalv
Fmelt 0.5

1
1.5

0.2

0.6

1

Fcalv
Eshelf 0.1

0.5
0.8

0.2

0.6

1

Fmelt
Eshelf

0.5
1

1.5
0.1

0.5
0.8

0

0.2

0.4

Fcalv
Fmelt 0.5

1
1.5

0.2

0.6

1

Fcalv
Eshelf 0.1

0.5
0.8

0.2

0.6

1

Fmelt
Eshelf

0.5
1

1.5
0.1

0.5
0.8

0

0.8

Fcalv
Fmelt 0.5

1
1.5

0.2

0.6

1

Fcalv
Eshelf 0.1

0.5
0.8

0.2

0.6

1

Fmelt
Eshelf

2100

2300

3000

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8.17: Representation of the emulators for pairs of parameters with other parameters fixed
at their nominal value. Results are for the RCP 2.6 scenario under Weertman’s sliding law with
exponent m = 2. The vertical axis is ∆GMSL (m). Emulators at 2100 (a, b, c), emulators at
2300 (d, e, f), and emulators at 3000 (f, g, i).
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Figure 8.18: Representation of the emulators for pairs of parameters with other parameters fixed
at their nominal value. Results are for the RCP 8.5 scenario under Weertman’s sliding law with
exponent m = 2. The vertical axis is ∆GMSL (m). Emulators at 2100 (a, b, c), emulators at
2300 (d, e, f), and emulators at 3000 (f, g, i).



240 Chapter 8. UQ of the multicentennial response of the Antarctic ice sheet

2000 2200 2400 2600 2800 3000

RCP2.6RCP4.5RCP6.0RCP8.5
0

2

4

6

8

Year

∆
G

M
S

L
(m

)
m = 1(a)

2000 2200 2400 2600 2800 3000

RCP2.6RCP4.5RCP6.0RCP8.5
0

2

4

6

8

Year

∆
G

M
S

L
(m

)

m = 2(b)

2000 2200 2400 2600 2800 3000

RCP2.6RCP4.5RCP6.0RCP8.5
0

2

4

6

8

Year

∆
G

M
S

L
(m

)

m = 3(c)

Figure 8.19: Antarctic ice-sheet contribution to global mean sea level relative to 2000. (a)
Viscous sliding law, (b) weakly non-linear sliding law, and (c) strongly non-linear sliding law.
Solid lines are the median projections and the darker and lighter shaded areas are respectively
the 33–66 % and 5–95 % probability intervals that represent the parametric uncertainty in the
model.
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Figure 8.20: Probability of exceeding threshold values for sea-level rise evaluated as the com-
plementary cumulative distribution functions of the probability density functions for sea-level
rise projections. Probability of exceedance at 2100, (b) at 2300, and (c) at 3000 under the vis-
cous sliding law (solid lines), the weakly non-linear sliding law (dashed lines), and the strongly
non-linear sliding law (dotted lines).
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Figure 8.21: Confidence regions for grounded ice under sliding law with exponent m = 1.
Confidence regions are shown at (a, d, g, j) 2100, (b, e, h, k) 2300, and (c, f, i, l) 3000.
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Figure 8.22: Confidence regions for grounded ice under sliding law with exponent m = 3.
Confidence regions are shown at (a, d, g, j) 2100, (b, e, h, k) 2300, and (c, f, i, l) 3000.
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Figure 8.23: Confidence regions for grounded ice under sliding law with exponent m = 5.
Confidence regions are shown at (a, d, g, j) 2100, (b, e, h, k) 2300, and (c, f, i, l) 3000.
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Figure 8.24: Confidence regions for grounded ice under sliding law with exponent m = 2 and
Tsai’s grounding-line parameterisation. Confidence regions are shown at (a, d, g, j) 2100, (b, e,
h, k) 2300, and (c, f, i, l) 3000.





9
Multi-model comparison of sea-level rise
projections

In this chapter, we provide a multi-model comparison of the contribution of the Antarctic ice
sheet to future sea-level rise for short-term (up to 2100 CE) and medium-term (up to 2300 CE)
time horizons under different RCP scenarios. We do not seek to provide new probabilistic
projections of sea-level rise by combining results from different models, but we rather seek
to provide qualitative insight into the impact of structural uncertainty in ice-sheet models on the
response of the Antarctic ice sheet. We also give a comparison with projections from the AR5
IPCC report to provide insight into new advances in the understanding and modelling of the
Antarctic ice-sheet dynamics since AR5. Part of the results presented in this chapter are based
on a contribution to a multi-model comparison in the publication [Hanna et al., 2020].

9.1 Model description

As a way of assessing the impact of structural uncertainty in inducing uncertainty in sea-level
rise projections and to compare the impact of structural uncertainty with the impact of paramet-
ric uncertainty, we perform a simple intercomparison exercise of different sea-level rise projec-
tions from different sources. In order to provide the largest overview of the impact of structural
uncertainty, we consider a wide range of sources, including projections based on expert assess-
ment (K14, Ba19), linear response theory (L14, L19), statistical reanalysis (E19, E19MICI),
minimal ice-sheet models (Ru17), and continental computational ice-sheet models (R15, G15,
G19, B19S, B19T, DP16, DP16BC). All these sources serve to define a so-called multi-model
ensemble even though some projections are not based directly on computational ice-sheet mod-
els. Hereafter, we provide a brief discussion of the different models used in the multi-model
ensemble and we refer the reader to the corresponding references for further discussions about
these models.

• Ba19: Bamber et al. [2019] provided a probabilistic assessment of the AIS contribution
to sea-level rise until 2300 based on a scoring and a combination of probabilistic assess-
ments from a group of experts, a method referred to as structured expert judgement or
elicitation [Colson and Cooke, 2017, 2018]. Bamber et al. [2019] provided projections

247
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for two atmospheric temperature scenarios: in the first scenario, the atmospheric temper-
ature stabilises in 2100 at 2 ◦C above preindustrial global mean surface air temperature
and in the second scenario, the atmospheric temperature stabilises in 2100 at 5 ◦C above
preindustrial global mean surface air temperature. We consider that the first temperature
scenario is representative of the RCP 2.6 scenario and the second temperature scenario is
representative of the RCP 8.5 scenario.

• L14: Levermann et al. [2014] used linear response functions to represent the relationship
between the ocean forcing (sub-shelf melt rates) and the AIS contribution to sea-level rise
for the ice-sheet models involved in the SeaRise intercomparison project [Bindschadler
et al., 2013]. By representing each of the computational ice-sheet models involved in
the SeaRise intercomparison project as a linear time-invariant system, the predicted AIS
contribution to sea-level rise from each of these models for an arbitrary ocean forcing
is expressed as the convolution of the ocean forcing with the linear response function
of the corresponding computational model, that is, the AIS contribution to sea-level rise
when the ocean forcing is a Dirac delta function. In addition, Levermann et al. [2014]
proposed a probabilistic approach to assess the impact of atmospheric and oceanic uncer-
tainty as well as the impact of structural uncertainty in ice-sheet models. Levermann et al.
[2014] proposed to estimate sub-shelf melt rates from projections of subsurface Antarctic
ocean temperature. These projections of the ocean temperature are expressed as scaled
and time-delayed transformations of projections of the global mean atmospheric temper-
ature determined from an ensemble of simulations from a climate emulator. For each
RCP scenario, Levermann et al. [2014] determined probabilistic projections of the AIS
contribution to sea-level rise by repeatedly and randomly selecting a simulation out of the
ensemble of simulations from the climate emulator, a value for each of the parameters in-
volved in the parameterisations of subsurface Antarctic ocean temperature and sub-shelf
melting, and a linear response function out of the linear response functions of the SeaRise
models.

• L19: Levermann et al. [2019] used a similar approach to Levermann et al. [2014] in
which the relationship between sub-shelf melt rates and the AIS contribution to sea-level
rise is approximated by means of a linear response function. Probabilistic projections of
the AIS contribution to sea-level rise are obtained by using a similar sampling method as
in Levermann et al. [2014]. The major difference between both studies lies in the ice-
sheet models used to project ice-sheet changes, with a larger number of ice-sheet models
and generally more accurate ice-sheet models involved in the paper by Levermann et al.
[2019].

• Ru17: Ruckert et al. [2017] used the DAIS ice-sheet model [Shaffer, 2014] to provide a
probabilistic assessment of the AIS contribution to sea-level rise for RCP 8.5. The DAIS
ice-sheet model is a minimal ice-sheet model that solves for the ice-sheet volume, the
volume loss, and the ice-sheet radius. The DAIS ice-sheet model cannot capture regional
characteristics of the ice sheet but is able to capture the MISI mechanism. Uncertain
parameters are constrained by applying a Bayesian inversion method constrained by paleo
and present-day data.

• R15: Ritz et al. [2015] used a probabilistic approach based on estimated probabilities
of MISI onset in different marine basins to provide probabilistic projections of the AIS
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contribution to sea-level rise until 2200 under the IPCC SRES A1B emission scenario.
While results by Ritz et al. [2015] are not provided for the RCP scenarios, we follow
IPCC [2019] and we consider these results representative of the RCP 8.5 scenario.

• G15: Golledge et al. [2015] provided multi-millenial projections of the AIS contribution
to sea-level rise for each RCP scenario using the PISM ice-sheet model [Winkelmann
et al., 2011] with a spatial resolution of 10 km. The PISM ice-sheet model implements
a hybrid SIA/SSA reduced-order model of the ice-flow dynamics and a sub-grid param-
eterisation of the grounding-line position [Feldmann et al., 2014]. The ice-sheet model
is forced with a background change in atmospheric temperature (see Figure 8.2) and a
background change in ocean temperature linked to the change in atmospheric tempera-
ture following Equation (8.1), with Fmelt = 0.25. Golledge et al. [2015] did not provide
a probabilistic assessment of the AIS contribution to sea-level rise but employed two dif-
ferent grounding-line parameterisations. The first parameterisation considers a sub-grid
interpolation of basal melting at the grounding line while the second does not. These two
parameterisations provide respectively “high” and “low” projections of sea-level rise.

• G19: Golledge et al. [2019] investigated the impact of changing Greenland and Antarctic
ice sheets on the Earth climate. They carried out simulations of the Antarctic ice sheet
for RCP 2.5, RCP 4.5, and RCP 8.5 using the PISM ice-sheet model [Winkelmann et al.,
2011] with a spatial resolution of 5 km. Simulations are performed with or without melt-
water feedback.

• K14: Kopp et al. [2014] determined probabilistic projections for the AIS contribution to
sea-level rise by combining the projections of AR5 [Church et al., 2013] and the structured
expert elicitation by Bamber and Aspinall [2013].

• B19S: Probabilistic projections by Bulthuis et al. [2019a] (see also Chapter 8) using
Weertman’s friction law with exponent m = 2 and Schoof grounding-line flux param-
eterisation (Figure 8.6 and Table 8.3).

• B19T: Same as B19S but using Tsai’s grounding-line flux parameterisation (Figure 8.13
and Table 8.5).

• DP16: DeConto and Pollard [2016] used the PSUICE3-D ice-sheet model [Pollard and
DeConto, 2012b] at a spatial resolution of 10 km to predict the AIS contribution to sea-
level rise over the next 500 years in RCP 2.6, RCP 4.5, and RCP 8.5. The implementation
of the PSUICE3-D ice-sheet model is similar to the f.ETISh model, with the implemen-
tation of a hybrid SIA/SSA reduced-order model and the utilisation of the heuristic rule
by Pollard and DeConto [2009] for the migration of the grounding line. However, sim-
ulations performed in DeConto and Pollard [2016] account for hydrofracturing and ma-
rine ice-cliff instability. DeConto and Pollard [2016] performed an ensemble analysis to
quantify the model uncertainty due to poorly known parameter values even though their
approach does not fully explore the parameter space to provide a thorough statistical anal-
ysis of their projections.

• DP16BC: Same as DP16 but corrected for the ocean-model cool bias in the Amundsen
and Bellingshausen Sea sectors (+3 ◦C adjustment).
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• E19, E19MICI: Edwards et al. [2019] carried out a probabilistic reanalysis of the results
by DeConto and Pollard [2016]. They built a Gaussian-process regression emulator of the
computational ice-sheet model, which was later used to perform a statistical analysis of
sea-level rise projections. The probabilistic reanalysis was carried out without (E19) and
with the MICI mechanism (E19MICI). Projections are calibrated by accepting only values
of the parameters that are able to reproduce Antarctic sea-level contributions during the
mid-Pliocene, during the last interglacial, and at present.

For the purpose of comparison, we also provide the projections from AR5 [Church et al.,
2013]. The projections from AR5 represent the first assessment of the AIS contribution to sea-
level rise. They rely mainly on extrapolation of existing observations [Little et al., 2013] and a
single limited simulation study by Bindschadler et al. [2013].

9.2 Multi-model comparison

In this section, we provide a multi-model comparison of sea-level rise projections from the
aforementionned models for all RCP scenarios for short-term (up to 2100) and medium-term
(up to 2300) time horizons. We also discuss the uncertainty in the projections of each model at
years 2100 and 2300. Results by Golledge et al. [2015] and Golledge et al. [2019] do not pro-
vide a probabilistic assessment of sea-level rise projections. For these studies, we determined
a median AIS contribution to sea-level rise as the mean value for the two sets of simulations
(“low” and “high” simulations in Golledge et al. [2015] and simulations with and without melt-
water feedback in Golledge et al. [2019]). We determined the quantiles for the projections
by Golledge et al. [2015] based on a Gaussian interpretation of the projections with the 5th
percentile given by the “low” scenario and the 95th percentile given by the “high” scenario.
Similarly, we determined the quantiles for the projections by Golledge et al. [2019] based on a
Gaussian interpretation of the projections with the 5th percentile given by the simulation without
meltwater feedback and the 95th percentile given by the simulation with meltwater feedback.
The uncertainty ranges for DeConto and Pollard [2016] are based on the ensemble analysis pro-
vided by the authors even though this approach yields extremely large uncertainty ranges that
are sensitive to methodological choices.

9.2.1 Short-term sea-level rise projections (2100)

Figure 9.4 shows the median AIS contribution to sea-level rise until 2100 for each model in the
multi-model ensemble and each RCP scenario. It should be mentioned that due to their initiali-
sation procedure, projections by Golledge et al. [2015] result in a small contribution to sea-level
rise at year 2000. Most models provide projections for RCP 2.6, RCP 4.5, and RCP 8.5, while
projections in RCP 6.0 are limited to a few models that do not include MICI. There is clearly
a large spread in the results from the different models even though general conclusions can be
drawn. In RCP 2.6, all models agree on a limited median contribution to sea-level rise by 2100,
with all models that predict a median contribution to sea-level rise by 2100 below 0.2 m and
most models that predict a median contribution below 0.1 m. For RCP 4.5 and RCP 8.5, we can
distinguish between projections from models that include MICI (DP16, DP16BC, E19MICI)
and those that do not. In RCP 8.5, all models that do not include MICI predict a median AIS
contribution to sea-level rise between 0.04 and 0.23 m by 2100, while median projections for
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models that include MICI exceed 0.66 m. This shows that including processes such as MICI
in ice-sheet models can exert a strong influence on the response of the Antarctic ice sheet and
lead to considerably higher mass loss. Except for models that include MICI, all models show
similar trends regarding the AIS contribution to sea-level rise until 2100. These models predict
a median AIS contribution to sea-level rise by 2100 below 0.25 m for all RCP scenarios. These
models also suggest a limited impact of the RCP scenario on the projections although an accel-
erating trend in the mass loss of the Antarctic ice sheet is observed for warmer RCP scenarios,
especially for RCP 8.5.

Figure 9.1 and Extended Data Figures 9.5–9.8 show probabilistic projections of the AIS
contribution to sea-level rise for each model in the multi-model ensemble at 2100 for all RCP
scenarios. The uncertainty in the models is comparable to or can even be larger than the uncer-
tainty in the projections due to structural uncertainty in the multi-model ensemble, especially
in RCP 2.6. This suggests that parametric uncertainty and structural uncertainty in ice-sheet
models are of similar importance in inducing uncertainty in the projections. Interestingly, we ob-
serve that most projections exhibit large tails towards high sea-level contributions, thus meaning
that projections of high-end estimates of sea-level contribution (for instance 95 % percentiles)
are generally more uncertain than low-end estimates. All models, except for DP16 and E19 in
RCP 2.6, also agree on a positive median contribution of the Antarctic ice sheet to sea-level rise
by 2100 even though uncertainty ranges do not completely rule out a negative contribution.

Discrepancies in the projections from the different models stem from uncertainty in physi-
cal processes and mechanisms driving the ice-sheet dynamics, uncertainty in atmospheric and
oceanic interactions and forcings as well as limitations in the mathematical representation of the
processes and their numerical implementation in computational ice-sheet models. We discuss
below more specifically the projections of some models in the multi-model ensemble in order
to provide insight into structural uncertainty in ice-sheet models and the uncertainty in these
models.

Projections based on structured expert assessment by Bamber et al. [2019] provide median
projections in agreement with projections of other models that do not include MICI. However,
the large uncertainty range in the projections, characterised by large upper tails in the proba-
bility distribution functions, reflects a large divergence of opinion among experts in assessing
the importance and plausibility of different mechanisms in driving the response of the Antarc-
tic ice sheet. In particular, high values for the 95 % percentiles in Bamber et al. [2019] reflect
knowledge about the sensitivity of the Antarctic ice sheet to CO2 forcing during previous warm
periods [Cook et al., 2013; Gasson et al., 2016] or the inclusion of new positive feedback pro-
cesses such as MICI.

Projections by Levermann et al. [2019] only represent the response to basal ice-shelf melt
using linear response functions. For this reason, these projections may lead to an overestimation
of the mass loss of the Antarctic ice sheet, especially for limited warming scenarios, because
projections in Levermann et al. [2019] do not consider mass gain due to, for instance, additional
snowfall. On the other hand, these projections may lead to an underestimation of the mass loss
of the Antarctic ice sheet because projections based on linear response theory do not allow to
capture nonlinearities, feedbacks, or instabilities. The large uncertainty range in the projections



252 Chapter 9. Multi-model comparison of sea-level rise projections

0 0.5 1 1.5 2

DP16BC

Ba19

L14

B19T

G15

AR5

B19S

DP16
−0.02 (−0.16–0.25)

0.66 (0.10–1.37)

0.03 (−0.01–0.09)

0.11 (0.01–0.22)

0.05 (−0.09–0.21)

0.04 (−0.13–0.18)

0.06 (0.01–0.10)

0.23 (0.08–0.38)

0.06 (0.01–0.14)

0.21 (0.05–0.37)

0.06 (0.02–0.23)

0.09 (0.02–0.37)

0.09 (−0.08–0.53)

0.21 (−0.11–1.32)

0.13 (0.05–0.39)

0.71 (0.23–1.66)

∆GMSL (m)

Figure 9.1: Summary figure (adapted from Extended Data Figures 9.5 and 9.8). Projections of
AIS contribution to sea-level rise at 2100 in RCP 2.6 (upper line) and in RCP 8.5 (lower line).
Boxes and whiskers show the 5th, 33th, 50th, 66th, and 95th percentiles. Dashed boxplots: AR5
projections.

reflects uncertainty in atmospheric and ocean forcings as well as (large) discrepancies between
computational ice-sheet models involved in the study. Yet, these projections are based on com-
putational ice-sheet models that do not include the MICI mechanism, thus meaning that the
uncertainty range could have been even larger. The large uncertainty range in the projections by
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Levermann et al. [2014] can be explained similarly. Projections by Levermann et al. [2014] are
however lower than projections by Levermann et al. [2019]. A reason for this difference is that
the participating models in Levermann et al. [2019] are more able to reproduce MISI than the
participating models in Levermann et al. [2014], which were early versions of continental com-
putational ice-sheet models. For this reason, participating models in Levermann et al. [2019]
have a higher sensitivity to basal ice-shelf melt than the participating models in Levermann et al.
[2014].

Our projections with Weertman’s friction law and Schoof’s grounding-line parameterisation
[Bulthuis et al., 2019a] are comparable to other projections based on computational ice-sheet
models without MICI, for instance, projections by Ritz et al. [2015], Golledge et al. [2015],
and Golledge et al. [2019] even though they provide smaller estimates than Ritz et al. [2015]
and Golledge et al. [2015]. As discussed in Section 8.4, we attribute these smaller estimates
to a weak ocean forcing in the Amundsen Sea sector and insufficient sliding at the base of the
Thwaites and Pine Island Glaciers. For these reasons, our projections can be considered as
low-end estimates for the AIS contribution to sea-level rise; see also Le Cozannet et al. [2019],
where results by Bulthuis et al. [2019a] are used to provide low-end probabilistic sea-level rise
projections as a basis for minimum adaptation needs.

Projections by DeConto and Pollard [2016] (DP16 and DP16BC) provide the highest esti-
mates for the AIS contribution to sea-level rise due to the inclusion of MICI and display large
uncertainty in the projections. Figure 9.4 suggests that the risk of MICI is limited before 2050
for all RCP scenarios. Projections by DeConto and Pollard [2016] even have a substantial prob-
ability of negative contribution until the period 2050–2060. By 2100 and for the strongly miti-
gated RCP 2.6 scenario, Figure 9.5 suggests that the risk of MICI could be prevented with high
certainty only in the absence of strong ocean warming in the Amundsen and Bellingshausen
Sea sectors (projections without ocean-bias correction). By 2100 and for the moderate RCP 4.5
scenario, hydrofracturing and marine ice-cliff instability already have the potential to trigger sig-
nificant Antarctic mass loss, with 95 % percentiles exceeding 0.7 m (Figure 9.6). By 2100 and
for the RCP 8.5 scenario, Figure 9.8 suggests that the risk of MICI could not be prevented, with
median contributions and 95 % percentiles exceeding 0.66 m and 1.37 m, respectively. Even
though the validity of MICI is still debated, projections by DeConto and Pollard [2016] can be
considered as high-end estimates for the AIS contribution to sea-level rise and serve as a basis
for extreme risk management; see also Le Bars et al. [2017] and Stammer et al. [2019].

Edwards et al. [2019] showed that the MICI hypothesis was not necessary to reproduce
the high eustatic sea levels in the past as suggested by DeConto and Pollard [2016]. Without
the MICI hypothesis, projections by Edwards et al. [2019], based on the results by DeConto
and Pollard [2016], have median contributions and uncertainty ranges consistent with projec-
tions based on models that do not include MICI. However, projections by Edwards et al. [2019]
with the MICI hypothesis are similar to or even larger than projections by DeConto and Pollard
[2016] with ocean-bias correction.

Finally, projections by Kopp et al. [2014] are a bit more peculiar because they rely on pro-
jections from AR5 and probably underestimate the response of the Antarctic ice sheet; see
discussion below.
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The comparison between the projections from the multi-model ensemble (except perhaps
for Kopp et al. [2014]) and the projections from AR5 shows significant differences. First, all
models predict an increase in the median AIS contribution to sea-level rise as the RCP sce-
nario gets warmer. By contrast, AR5 predicted the median AIS contribution to sea-level rise
in RCP 8.5 to be lower than in other scenarios. In AR5, increased atmospheric temperatures
lead to a mass gain due to increased snowfall, which is only partially compensated by dynam-
ical changes. Since AR5, dynamical changes due to atmospheric and oceanic forcings have
been shown to dominate the response of the Antarctic ice sheet while increased snowfall only
partially compensates mass loss due to dynamical changes. Second, all models from the multi-
model ensemble agree, with high level of certainty, on a positive contribution of the Antarctic
ice to sea-level rise by 2100, especially for warmer RCP scenarios. By contrast, projections in
AR5 suggested that a negative contribution to sea-level rise by 2100 would be almost as likely as
a positive contribution. Third, projections in AR5 suggested that the contribution of the Antarc-
tic ice sheet to sea-level rise by 2100 would only represent a minor contribution when compared
with other contributors such as thermal expansions, glaciers, and the Greenland ice sheet. By
contrast, models from the multi-model ensemble suggest that the Antarctic ice sheet might be a
more important contributor to sea-level rise over this century than previously thought, with some
high-end estimates suggesting that the Antarctic ice sheet might even be the largest contributor
by the end of the century.

9.2.2 Medium-term sea-level rise projections (2300)

Projections of the AIS contribution to sea-level rise beyond 2100 are characterised by deeper
uncertainty than projections by the end of the century, with only a limited number of studies
that provide multicentennial projections of the response of the Antarctic ice sheet. In the multi-
model ensemble, projections up to 2300 include only three studies based on computational
ice-sheet models [Golledge et al., 2015; DeConto and Pollard, 2016; Bulthuis et al., 2019a], one
probabilistic reanalysis of numerical results [Edwards et al., 2019], one reanalysis of numerical
results based on linear response theory [Levermann et al., 2014], and one study based on a min-
imal ice-sheet model [Ruckert et al., 2017].

Figure 9.9 shows the median AIS contribution to sea-level rise until 2300 for each model in
the multi-model ensemble and each RCP scenario. Similarly to projections until 2100, one can
distinguish between projections that include MICI and those that do not. This time, however,
differences in median sea-level rise contributions can amount to several metres, especially for
warmer RCP scenarios. Projections suggest that only the RCP 2.6 scenario can prevent a sub-
stantial ice loss by 2300 for all models (median contribution of less than 0.5 m for all models but
E19MICI). For other scenarios, most models exhibit an increase in mass loss rate beyond 2100,
suggesting the possibility of the onset of an instability. For the RCP 8.5 scenario, all models
exhibit an acceleration in the rate of mass loss in the next centuries. For this same scenario,
all models also agree on a median contribution to sea-level rise above 1 m. While the impact
of the RCP scenario on the projections is rather limited by the end of the century, projections
beyond 2100 are strongly dependent on the emission scenario. Figure 9.2 and Extended Data
Figures 9.10–9.13 show probabilistic projections of the AIS contribution to sea-level rise at 2300
for each model in the multi-model ensemble and each RCP scenario. Except for the RCP 2.6
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Figure 9.2: Summary figure (adapted from Extended Data Figures 9.10 and 9.13). Projections
of AIS contribution to sea-level rise at 2300 in RCP 2.6 (upper line) and in RCP 8.5 (lower line).
Boxes and whiskers show the 5th, 33th, 50th, 66th, and 95th percentiles. For comparison, pro-
jections of the AIS contribution to sea-level rise at 2300 in AR5 give a contribution of −0.03 m
in RCP 2.6 and a contribution that ranges from 0.02 m to 0.19 m in RCP 8.5.

scenario, uncertainty ranges (5–95 % probability intervals) predict a positive contribution of the
Antarctic ice sheet to sea-level rise over the next centuries.

Discrepancies in the projections until 2300 between the different models are qualitatively
similar to discrepancies in the projections until 2100. Our projections under Weertman’s fric-
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tion law and Schoof’s grounding-line parameterisation (B19S) provide in most cases low-end
estimates for the AIS contribution to sea-level rise. Projections under Weertman’s friction law
and Tsai’s grounding-line parameterisation (B19T) are generally consistent with projections by
Golledge et al. [2015]. Projections by Levermann et al. [2014] (L14) are of the same order as
B19S, B19T, and G15. Yet, projections based on linear response theory might be questionnable
on multicentennial timescales because of instabilities in marine basins. Projections by DeConto
and Pollard [2016] without ocean-bias correction suggest that the RCP 2.6 scenario can prevent
substantial ice loss due to the MICI mechanism in the next centuries. Projections from DP16
also show a substantial probability of a negative contribution by 2300. For other scenarios, pro-
jections by DeConto and Pollard [2016] suggest the onset of MICI with high level of certainty
and seem to be relatively insensitive to the ocean-bias correction. Without the MICI hypothesis,
projections by Edwards et al. [2019], based on the results by DeConto and Pollard [2016], have
median contributions and uncertainty ranges consistent with projections based on models that
do not include MICI for the RCP 2.6 and RCP 4.5 scenarios. More surprisingly, projections
by Edwards et al. [2019] without MICI for the RCP 8.5 scenario show high sea-level rise esti-
mates (6.96 m median contribution) that are more consistent with models with MICI than those
without MICI. Edwards et al. [2019] suggested that the computational ice-sheet model used
by DeConto and Pollard [2016] might be oversensitive to very large atmospheric temperature
changes even in the absence of MICI. Also, the uncertainty range from E19 for the RCP 8.5
scenario seems excessively narrow, thus suggesting deficiency in the sampling method in De-
Conto and Pollard [2016] or in the ability of the computational ice-sheet model to represent the
multicentennial response of the Antarctica under warm atmospheric forcings.

Projections in the AR5 report for the AIS contribution to sea-level rise by 2300 rely only
on a small number of available simulations based on coarse-resolution ice-sheet models and
do not provide an uncertainty assessment. These projections show a negative contribution to
sea-level rise by 2300 in RCP 2.6 (−0.03 m) and RCP 4.5 (−0.25 m to −0.03 m) and a small
positive contribution in RCP 8.5 (0.02 m to 0.19 m). Thus, conclusions in AR5 indicated that
the Antarctic ice sheet would be a minor contributor to sea-level rise until 2300 and could even
mitigate the effect of climate warming on sea-level rise. New studies since AR5 definitely rule
out these conclusions. New studies show that the Antarctic ice sheet will most certainly lose
mass over the next centuries, with a potential contribution of several metres if climate warming
is not abated.

Beyond 2300, projections of the AIS contribution to sea-level rise become even further
uncertain, with only a few studies providing projections beyond 2300 [Golledge et al., 2015;
DeConto and Pollard, 2016; Bulthuis et al., 2019a]. Regarding the AIS contribution to sea-
level rise on a millennial time horizon (by 3000), projections by Golledge et al. [2015] give for
the RCP 2.6 scenario a median contribution of 0.32 m with a 5–95 % probability interval that
ranges from 0.36 m to 0.40 m and for the RCP 8.5 scenario a median contribution of 5.70 m
with a 5–95 % probability interval that ranges from 3.39 m to 8.01 m. By comparison, our
projections with Weertman’s friction law and Schoof’s grounding-line parameterisation give
for the RCP 2.6 scenario a median contribution of 0.30 m with a 5–95 % probability interval
that ranges from −0.01 m to 0.82 m and for the RCP 8.5 scenario a median contribution of
5.08 m with a 5–95 % probability interval that ranges from 1.36 m to 6.00 m. In addition, our
projections with Weertman’s friction law and Tsai’s grounding-line parameterisation give for the
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RCP 2.6 scenario a median contribution of 0.46 m with a 5–95 % probability interval that ranges
from 0.00 m to 1.30 m in RCP 2.6 and for the RCP 8.5 scenario a median contribution of 7.43 m
with a 5–95 % probability interval that ranges from 3.85 m to 10.79 m. These limited projections
suggests that the RCP 2.6 scenario can prevent substantial ice loss even on a millennial time
horizon, while the RCP 8.5 scenario will trigger with high certainty the complete collapse of the
West Antarctic ice sheet and a significant retreat of marine basins in East Antarctica over the
next millenium.

9.2.3 Multi-model projections in the SROCC report

We do not seek to provide (probabilistic) projections of the contribution of the Antarctic ice sheet
to sea-level rise by combining projections from different models because we find it unclear how
to properly combine these models. We mention however that a similar exercise has been per-
formed in the SROCC report [IPCC, 2019] to provide reassessed projections of sea-level rise by
2100 since AR5 (Table 9.1 and Figure 9.3). The new assessment is based on computational ice-
sheet models of the Antarctic ice sheet driven by diverse climate scenarios. In particulier, this
new assessment combines the projections by Levermann et al. [2014], Golledge et al. [2015],
Ritz et al. [2015], Bulthuis et al. [2019a], and Golledge et al. [2019] by using a Monte Carlo
technique and by assuming mutual dependence between the different studies. It should be noted
that in the SROCC assessment, projections by DeConto and Pollard [2016] have been discarded
because the timing and the magnitude of their simulated ice loss have been judged too uncertain
to be included in the SROCC projections. Thus, SROCC projections rely on the assumption that
MICI will not happen before 2100 and the contribution of the Antarctic ice sheet to sea-level rise
might be considerably higher than in Table 9.1, as suggested in DeConto and Pollard [2016],
Bamber et al. [2019], and Edwards et al. [2019].

RCP 2.6 RCP 4.5 RCP 8.5

Thermal expansion 0.14 (0.10–0.18) 0.19 (0.14–0.23) 0.27 (0.21–0.33)
Glaciers 0.10 (0.04–0.16) 0.12 (0.06–0.18) 0.16 (0.09–0.23)

Greenland ice sheet 0.06 (0.04–0.10) 0.08 (0.04–0.13) 0.12 (0.07–0.21)
Land water storage 0.04 (−0.01–0.09) 0.04 (−0.01–0.09) 0.04 (−0.01–0.09)
Antarctic ice sheet 0.04 (0.01–0.11) 0.06 (0.01–0.15) 0.12 (0.03–0.28)

Total 0.43 (0.29–0.59) 0.55 (0.39–0.72) 0.84 (0.61–1.10)

Table 9.1: Median values and “likely” ranges (17–83 % probability intervals) for projections
of global mean sea-level rise in metres in 2081–2100 relative to 1986–2005 for three RCP
scenarios as estimated in the SROCC report [IPCC, 2019]. Contribution to sea-level rise due
to thermal expansion, glaciers, the Greenland ice sheet, and land water storage are identical to
AR5 [Church et al., 2013], while the contribution of the Antarctic ice sheet to global sea-level
rise has been reassessed based on recent studies since AR5. For comparison, projections of
future global mean sea-level rise in the AR5 report are given in Table 1.1.

Time series of the SROCC projections of global mean sea-level rise for the different RCP
scenarios (Figure 9.3) show that the median global mean sea-level rise projections in the SROCC
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report are similar to the median global mean sea-level rise projections in the AR5 report for the
RCP 2.6 and RCP 4.5 scenarios. However, these series indicate a divergence in median global
mean sea-level rise projections for the RCP 8.5 scenario during the second half of the century be-
tween the SROCC and AR5 projections. This divergence results from an additional contribution
from the Antarctic ice sheet to global mean sea-level rise due to dynamical changes which are
captured more accurately in recent studies than in AR5. Contrary to the median AR5 projections
of the contribution of the Antarctic ice sheet to sea level, the corresponding SROCC projections
increase as the RCP scenario gets warmer, thus suggesting that ice loss due to ice-sheet dynam-
ical changes driven by increased atmospheric and ocean forcings are more significant than mass
gain due to increased snowfall. Uncertainty ranges between both reports are similar although
slightly increased in the SROCC report for RCP 8.5, especially towards high sea-level rise con-
tributions. Uncertainty ranges in the SROCC report also indicate a positive contribution of the
Antarctic ice sheet to sea-level rise with a high level of certainty, even for the RCP 2.6 scenario.

Figure 9.3: Time series of ∆GMSL for RCP 2.6, RCP 4.5, and RCP 8.5 as determined in the
SROCC report and, for reference the AR5 report. Results are based on AR5 results for all
components except the Antarctic contribution. The shaded region should be considered as the
“likely” range (17–83 % probability interval). Credit: IPCC [2019].

The SROCC report also provides reassessed projections of the AIS contribution to sea-level
rise beyond 2100 based on the results by Levermann et al. [2014], Golledge et al. [2015], and
Bulthuis et al. [2019a] (Table 9.2). As for the SROCC projections by 2100, SROCC projections
beyond 2100 do not account for the possibility of the onset of marine ice-cliff instabilities. Given
the limited number of studies involved in this assessment and the uncertainty in the dominant
processes that could trigger a major retreat of the Antarctic ice sheet, estimates beyond 2100
are considered as highly uncertain. Nonetheless, these projections and studies by Levermann
et al. [2014], Golledge et al. [2015], DeConto and Pollard [2016], and Bulthuis et al. [2019a]
suggest that a substantial ice loss can only be prevented for strongly mitigated scenarios, like
the RCP 2.6 scenario. On the other hand, projections for the RCP 8.5 scenario suggest a high
probability of triggering a significant retreat of the Antarctic ice sheet in the coming centuries.
Overall, projections by 2300 in the SROCC report are significantly higher than projections in
the AR5 report, especially for warm atmospheric scenarios, thus meaning that the response of
the Antarctic ice sheet to climate change was heavily underestimated in the AR5 report.



9.3. Chapter summary 259

RCP 2.6 RCP 4.5 RCP 8.5

2100 0.04 (0.01–0.11) 0.06 (0.01–0.16) 0.13 (0.02–0.31)
2200 0.11 (0.04–0.26) 0.24 (0.10–0.48) 0.71 (0.32–1.39)
2300 0.16 (0.07–0.37) 0.46 (0.24–0.88) 1.46 (0.60–2.90)

Table 9.2: Probabilistic projections (in metres) of the AIS contribution to sea level by 2100,
2200, and 2300 for three RCP scenarios as estimated in the SROCC report [IPCC, 2019].
∆GMSL projections are the median projections with their 5–95 % probability intervals between
parentheses. For comparison, projections of the AIS contribution to sea level rise by 2300 in
AR5 [Church et al., 2013] give a contribution of−0.03 m in RCP 2.6, from−0.25 m to−0.03 m
in RCP 4.5, and from 0.02 m to 0.19 m in RCP 8.5.

9.3 Chapter summary

In this chapter, we provided a multi-model comparison of the contribution of the Antarctic ice
sheet to future sea-level rise for short-term (up to 2100) and medium-term (up to 2300) time
horizons under different RCP scenarios. We compared projections from different studies pub-
lished after the AR5 report. Ice-sheet models used since AR5 are able to capture more accurately
dynamical changes in the Antarctic ice sheet. New studies since AR5 indicate that ice-sheet dy-
namical changes will control the contribution of the Antarctic ice sheet to sea level, while mass
gain due to increased snowfall will only play a mitigation effect. Projections from the multi-
model ensemble suggest a limited contribution of the Antarctic ice sheet to sea level before 2050
for all RCP scenarios. By 2100, models that do not include MICI agree on a limited AIS contri-
bution to sea-level rise (less than 0.35 m for all models without MICI and for all RCP scenarios),
while models that include MICI raise concerns about the potential of climate warming to trigger
substantial mass loss form the Antarctic ice sheet (more than 1 m) by the end of the century.
Projections beyond 2100 are much more uncertain and large differences exist between models
with MICI and those without MICI. Almost all models agree on a limited median contribution
(<0.5 m) by 2300 in RCP 2.6, while median projections by 2300 in RCP 8.5 range from just
over 1 m to more than 9 m.

To summarise, a key finding of studies since AR5 is that substantial mass loss from the
Antarctic ice sheet in the next centuries can only be prevented with high certainty for the strongly
mitigated RCP 2.6, while substantial mass loss from the Antarctic ice sheet in the next centuries
is expected to be triggered with high certainty for the RCP 8.5 scenario. High uncertainty still
remains in determining the increase in atmospheric temperature capable of triggering a major
retreat of the Antarctic ice sheet.
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Figure 9.4: Median projections of AIS contribution to sea-level rise until 2100.



262 Chapter 9. Multi-model comparison of sea-level rise projections

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

E19MICI

L19

DP16BC

Ba19

L14

B19T

K14

G15

AR5

B19S

E19

DP16 −0.02 (−0.16–0.25)

−0.01 (−0.09–0.13)

0.03 (−0.01–0.09)

0.05 (−0.09–0.21)

0.06 (0.01–0.10)

0.06 (−0.08–0.35)

0.06 (0.01–0.14)

0.06 (0.02–0.23)

0.09 (−0.08–0.53)

0.12 (−0.14–0.54)

0.13 (0.05–0.39)

0.19 (−0.03–0.48)

∆GMSL (m)

Figure 9.5: Projections of AIS contribution to sea-level rise at 2100 in RCP 2.6. Boxes and
whiskers show the 5th, 33th, 50th, 66th, and 95th percentiles. Dashed boxplot: AR5 projections.
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Figure 9.6: Projections of AIS contribution to sea-level rise at 2100 in RCP 4.5. Boxes and
whiskers show the 5th, 33th, 50th, 66th, and 95th percentiles. Dashed boxplot: AR5 projections.
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Figure 9.7: Projections of AIS contribution to sea-level rise at 2100 in RCP 6.0. Boxes and
whiskers show the 5th, 33th, 50th, 66th, and 95th percentiles. Dashed boxplot: AR5 projections.
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Figure 9.8: Projections of AIS contribution to sea-level rise at 2100 in RCP 8.5. Boxes and
whiskers show the 5th, 33th, 50th, 66th, and 95th percentiles. Dashed boxplot: AR5 projections.
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Figure 9.9: Median projections of AIS contribution to sea-level rise until 2300.
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Figure 9.10: Projections of AIS contribution to sea-level rise at 2300 in RCP 2.6. Boxes and
whiskers show the 5th, 33th, 50th, 66th, and 95th percentiles. For comparison, projections of
the AIS contribution to sea-level rise at 2300 in AR5 give a contribution of −0.03 m.
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Figure 9.11: Projections of AIS contribution to sea-level rise at 2300 in RCP 4.5. Boxes and
whiskers show the 5th, 33th, 50th, 66th, and 95th percentiles. For comparison, projections of
the AIS contribution to sea-level rise at 2300 in AR5 range from −0.25 m to −0.03 m.
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Figure 9.12: Projections of AIS contribution to sea-level rise at 2300 in RCP 6.0. Boxes and
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Figure 9.13: Projections of AIS contribution to sea-level rise at 2300 in RCP 8.5. Boxes and
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Conclusion and directions for future work

“In order to make progress, one must leave the door to the unknown ajar”
– Richard P. Feynman

10.1 Summary and general conclusions

In this dissertation, we contributed to clarifying the role played by uncertainties in the con-
tinental response of the Antarctic ice sheet to climate change on multicentennial-to-millenial
timescales. On the one hand, we proposed and applied theory and methods from the field of
uncertainty quantification to predict with quantified uncertainty the evolution of the Antarctic
ice sheet over the next millennium. On the other hand, we contributed to new methods for
uncertainty quantification of complex physics-based computational models with a high compu-
tational cost. In the following, we summarise and outline the main conclusions and findings of
this thesis and we provide directions for future research in the next section.

In Part I (Chapters 2–3) of the thesis, we provided an introduction to the physics of ice sheets
and discussed the present state and future state of the Antarctic ice sheet as well as challenges
in predicting the future response of the Antarctic ice sheet to climate change. In Chapter 2, we
focused the discussion on essential (or fundamental) physical processes controlling the ice-sheet
dynamics, including the ice-sheet thermodynamics, the ice-sheet mass balance, glacial isostatic
adjustment, basal friction, and the migration of the grounding line. Such essential processes
can be modelled mathematically with reduced-order models that take advantage of the small as-
pect ratio of ice sheets. These reduced-order models lend themselves well to being numerically
implemented into efficient large-scale computational models of the Antarctic ice sheet and to be-
ing used for uncertainty quantification. A key aspect in the physics of ice sheets is the potential
for instability mechanisms, most notably the marine ice-sheet and ice-cliff instabilities, which
may trigger collapse of marine sectors in response mostly to ocean and atmospheric forcings.
As discussed in Chapter 3, these instability mechanisms are expected to govern the response
of the Antarctic ice sheet to climate change, with interactions between the ice sheet and other
components of the Earth system expected to play a significant role in providing stabilising or
destabilising conditions.
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In Part II (Chapters 4–5) of the thesis, we reviewed and developed theory and methods
from the field of uncertainty quantification to predict with quantified uncertainty the response of
physics-based computational models. Motivated by predicting with quantified uncertainty the
AIS contribution to sea-level rise and assessing the impact of parametric uncertainties on this
contribution, we reviewed in Chapter 4 nonintrusive methods for the propagation of uncertainty
and sensitivity analysis when the quantity of interest is a random variable or vector. Motivated
by predicting with quantified uncertainty the retreat of the Antarctic ice sheet, we proposed in
Chapter 5 a multifidelity quantile-based method for the estimation of confidence sets for ran-
dom excursion sets. Within the probabilistic context of the random set theory, we developed
the concept of confidence sets that either contain or are contained within an excursion set of
the spatial response with a specified probability level. We showed that the identification of a
confidence set in a parametric family of candidate sets can be recast as an equivalent problem
of quantile estimation of a random variable. Then, we proposed a computationally efficient bi-
fidelity method that exploits a polynomial chaos expansion of the random field or the random
variable further away from the quantile to be estimated while the computational model is used
closer to the quantile to be estimated. We found this method to be computationally efficient as
compared to Monte Carlo reference, while avoiding approximation errors induced by surrogate
models. Finally, we also contributed as an additional piece of research to the use of a probabilis-
tic learning method for the estimation of Sobol indices for small datasets, which may provide
an interesting alternative to surrogate models when the dataset encapsulates information that the
probabilistic learning method can exploit.

Part III (Chapters 6–9) of the thesis was concerned with uncertainty quantification and large-
scale and long-term simulations of the Antarctic ice sheet. In Chapter 6, we discussed essential
ice-sheet models that are amenable to multicentennial and large-scale simulations and uncer-
tainty quantification with a focus on the f.ETISh ice-sheet model. In Chapter 7, we illustrated
and demonstrated the performance of existing and newly developed uncertainty quantification
methods on model problems relevant to ice-sheet modelling. We showed that existing UQ meth-
ods based on surrogate models can provide an efficient alternative to computational ice-sheet
models in providing probabilistic sea-level rise projections as long as the surrogate models are
sufficiently accurate and do not tend to overfit the data. We also recommended the use of ex-
perimental designs with enough samples to avoid stochastic variations due to the choice of the
experimental design. We showed how the concept of confidence sets for random excursion sets
developed in Chapter 5 can help predict with quantified uncertainty the retreat of the Antarctic
ice sheet. We demonstrated the efficiency of the multifidelity quantile-based method developed
in Chapter 5 in estimating confidence sets of the grounded portion of the Antarctic ice sheet
when compared with Monte Carlo. We proposed to use confidence sets of the grounded portion
of the Antarctic ice sheet to build a visual representation of the uncertainty in the retreat of the
Antarctic ice sheet by means of risk assessment maps. Finally, as part of our additional contri-
bution to the computation of Sobol indices in small-data settings, we showed that the recently
introduced PLoM algorithm applied to the estimation of sensitivity indices was able to attain
converged estimates based on only a small data set of only a few hundred samples, while a usual
Monte Carlo method would have required a data set of several thousands of samples.

In Chapter 8, we predicted with quantified uncertainty the multicentennial response of the
Antarctic ice sheet to climate change. We investigated the impact of various sources of uncer-
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tainty, namely uncertainty in atmospheric forcing, basal sliding, grounding-line flux parameteri-
sation, calving, sub-shelf melting, ice-shelf rheology and bedrock relaxation, on the projections.
A key finding of this study is that, in the strongly mitigated RCP 2.6 scenario, the AIS contri-
bution to sea-level rise and the retreat of the Antarctic ice sheet remain limited over the next
millenium. By contrast, in the warm RCP 8.5 scenario, the AIS contribution to sea-level rise
exceeds several metres over the next millenium and the West Antarctic ice sheet undergoes an
irreversible retreat. For both scenarios, we found these conclusions to be robust with respect to
the uncertainty in the computational ice-sheet model. These results suggest that the threshold
for instability of the West Antarctic ice sheet is associated with atmospheric forcings similar
to RCP 4.5 and RCP 6.0. However, we found that the occurence of MISI for the RCP 4.5 and
RCP 6.0 scenarios was sensitive to parametric uncertainty, thus precluding a robust identifica-
tion of the threshold for instability. Regarding the impact of the different sources of uncertainty,
we found that the contribution of the uncertainty in sub-shelf melting to the uncertainty in the
projections becomes more and more the dominant source of uncertainty as the scenario gets
warmer. However, for the strongly mitigated RCP 2.6 scenario, we found that the contribution
of the uncertainty in the ice-shelf rheology and the calving to the uncertainty in the projections
was more important than the contribution of the uncertainty in sub-shelf melting.

Finally, in Chapter 9, we provided a multi-model comparison of sea-level projections over
the period 2000–2300 as a means of assessing structural uncertainties in ice-sheet models. We
found that all models agree on a limited contribution of the Antarctic ice sheet to sea level before
2050 for all RCP scenarios. Beyond 2050, sea-level rise projections show discrepancy between
computational ice-sheet models with MICI and without MICI. By 2100, only projections that
include MICI are able to produce an AIS contribution to sea level over 1 metre. Projections
beyond 2100 are much more uncertain but we found that almost all models agree on a limited
median contribution (<0.5 m) by 2300 in RCP 2.6 while substantial mass loss from the Antarctic
ice sheet in the next centuries is expected to be triggered with high certainty for the RCP 8.5
scenario. We showed that our projections generally agree with other projections without MICI
even though they can be considered as low-end estimates due to weak ocean forcing.

10.2 Directions for future research

10.2.1 Directions in ice-sheet modelling

In this dissertation, we discussed and applied methods from uncertainty quantification in the
context of essential ice-sheet models. We identified limitations in using such models as well as
research areas to focus on in order to reduce uncertainties in ice-sheet models and provide more
robust projections. We discuss some of them in the following.

Another source of uncertainty in computational ice-sheet models beyond parametric uncer-
tainties stems from the initialisation procedure. Intercomparison projects [Goelzer et al., 2018;
Seroussi et al., 2019] have shown large discrepancies in projections between computational
models initialised with different methods, with the impact of the initialisation procedure that
might be significant for short-term horizons and low-forcing scenarios. For this reason, new im-
provements in ice-sheet modelling should be directed towards improving initialisation schemes
as well as taking into account uncertainties in initialisation schemes. New opportunities for
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improved initialisation schemes include data assimilation of time series [Larour et al., 2014],
ensemble Kalman filters [Bonan et al., 2014, 2017], and Bayesian inference [Petra et al., 2014;
Isaac et al., 2015; Gopalan et al., 2018; Conrad et al., 2018].

Given the significant impact of atmospheric and oceanic forcings and their uncertainties on
the dynamics of the Antarctic ice sheet, opportunities in ice-sheet modelling lie in improving
ice-sheet coupling with the climate system. From a physical point of view, attention should
be directed towards the understanding of key processes that control the variability of the ice-
ocean-atmosphere system and the interactions between the components at regional scales and
the links with larger spatial scales. In particular, improved representation of the links between
atmospheric warming and changes in ocean temperature and circulation and subsequent changes
in sub-shelf melting is critical to understand and predict the response of marine basins to cli-
mate change. These needs have motivated recent initiatives in ice-sheet modelling such as the
ISMIP6 Intercomparison Project [Nowicki et al., 2016], the MISOMIP intercomparison project
[Asay-Davis et al., 2016], the cryosphere-ocean project in the E3SM Exascale Earth System
Model 1, and the PARAMOUR project 2.

As shown in Section 8.3.4, a significant part of the uncertainty in future sea-level rise pro-
jections can also be attributed to processes such as calving and ice-shelf rheology, especially
for low-forcing scenarios. Thus, additional opportunities in ice-sheet modelling also lie in im-
proved modelling of these processes.

Given the significant role played by the grounding-line dynamics in controlling the response
of marine basins to climate change, opportunities in ice-sheet modelling lie in gaining new un-
derstanding of the impact of grounding-line flux parameterisations in computational ice-sheet
models as well in developing new methods to capture the dynamics of the grounding line more
accurately, including methods that allow to account for the bedrock topography more effec-
tively. In parallel, attention should be directed towards the understanding of basal friction at the
ice-bedrock interface (choice of the friction law) and the representation of basal friction in com-
putational ice-sheet models. New methods for improved numerical modelling of grounding-line
dynamics and basal friction can be built on methods for frictional contact problems in applied
mathematics and computational mechanics.

10.2.2 Directions in uncertainty quantification

Providing robust projections of the response of the Antarctic ice sheet in the presence of uncer-
tainty requires appropriate probabilistic characterisations of the sources of uncertainty. In this
thesis, we focused our attention on the probabilistic characterisation of the quantity of inter-
est while assuming simple probabilistic characterisations of the sources of uncertainty. Further
work could be directed towards using physical constraints to constrain the model parameters.
New research opportunities could include Bayesian inference using paleoconstraints. Further-
more, we limited this work to investigating a rather limited subset of sources of uncertainty,
usually in the form of model parameters constant over the whole ice sheet. However, most pa-

1https://e3sm.org/ (last accessed: 7 December 2019)
2http://www.climate.be/php/users/klein/PARAMOUR/index.html (last accessed: 7 December
2019)

https://e3sm.org/
http://www.climate.be/php/users/klein/PARAMOUR/index.html
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rameters or input quantities in a computational ice-sheet model are ideally described as spatially-
varying and usually non-homogeneous fields. This raises new issues about the identification of
such spatially non-homogeneous fields and uncertainty quantification in high dimension.

In this thesis, we only considered methods based on surrogate models (and to a lesser extent
probabilistic learning) as a means to alleviate the computational cost of Monte Carlo meth-
ods. Uncertainty quantification provides other methods that might be of interest even when
dealing with high-fidelity computational ice-sheet models, for instance, multilevel Monte Carlo
[Cliffe et al., 2011; Giles, 2015], multifidelity methods [Peherstorfer et al., 2018], ensemble
propagation [Phipps et al., 2017], methods from machine learning. Advanced methods for high-
performance computing could also help reduce the computational cost of ice-sheet models.

In Chapter 9, we discussed qualitatively the impact of structural uncertainties in ice-sheet
models through a multi-model comparison. As new projections with quantified uncertainty are
becoming available, interest should be directed towards providing quantitative multi-model pro-
jections of the AIS contribution to sea-level rise. Directions for future research may include
methods for model selection and multi-model inference [Burnham and Anderson, 2002; Link
and Barker, 2006], methods to quantify structural uncertainty [Strong and Oakley, 2014], and
weighted multi-model projections [Knutti et al., 2017].

Finally, future work may also consider the impact of uncertainty and stochastic perturba-
tions on steady states, instabilities, and bifurcations of the Antarctic sheet. This work may build
on the theory of nonlinear dynamical systems, which provides a proper mathematical setting
for looking at nonlinear structure of system dynamics, and the theory of random dynamical
systems; see, for instance, Arnold [1998]. To date only limited studies have been dedicated
to investigating the impact of stochastic perturbations on ice-sheet dynamics [Mantelli et al.,
2016; Mulder et al., 2018], and significant work remains in applying these methods to realistic
ice-sheet models.
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Appendix A
Elements of probability theory

Most of the theory and methods presented and elaborated in this manuscript are based on the
theory of probability. In the following, we provide an overview of fundamental elements of the
theory of probability, which may help the reader to understand more technical aspects of the
manuscript. We refer the reader, for instance, to Billingsley [2012] for a textbook about the
foundations of the theory of probability and to Grigoriu [2002] and Ang and Tang [2007] for
textbooks about probability concepts in science and engineering.

A.1 Probability space

A probability space is defined in the following way. First, let Θ be the set of all possible
outcomes of a random experiment. The set Θ is referred to as the sample space and an element
of Θ is denoted by θ. Second, let B denote a σ-algebra on Θ, that is,

1. ∅ ∈ B;

2. B ∈ B⇒ Bc ∈ B;

3. B1,B2, . . . ∈ B⇒ ∪iBi ∈ B.

An element B in B is called an event. Third, let P denote a probability measure on (Θ,B), that
is, P is a set function from B into [0, 1] that satisfies the postulates

1. P(∅) = 0;

2. P(Θ) = 1;

3. B1,B2, . . . ∈ B,Bi ∩Bj 6=i = ∅ ⇒ P (∪iBi) = ∑
i P(Bi).

The triplet (Θ,B,P) is called a probability space. The probability space is said to be complete
if for all B in B with P(B) = 0 and for all A ⊂ B, one has that A is in B.

In a probability space, the following properties are satisfied for all A and B in B:

P(B) = 1− P(Bc), (A.1)

A ⊂ B ⇒ P(A) ≤ P(B), (A.2)

P(A ∪B) = P(A) + P(B)− P(A ∩B). (A.3)
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A.1.1 Conditional probability

Given a probability space (Θ,B,P), a new measure of probability can be defined on (Θ,B)
assuming that an event B in B has occurred. This probability measure, denoted by P(·|B), is
called the conditional probability on B. Assuming that P(B) > 0, the conditional probability
of A in B given B is given by

P(A|B) = P(A ∩B)
P(B) . (A.4)

If P(A|B) = P(A), then the events A and B are said to be (statistically) independent and
P(A ∩B) can be factorised as P(A)× P (B).

A.2 Random variable

An R-valued random variable X defined on the probability space (Θ,B,P) is a measurable
mapping θ 7→ X(θ) from (Θ,B,P) into (R,D), with D the σ-algebra endowed on R, which
means that

∀D ∈ D,X−1(D) ∈ B, (A.5)

with X−1(D) = {θ ∈ Θ : X(θ) ∈ D}.

(Θ,B,P)
(R,D)

X−1(D)

DX

×

×

θ

X(θ)

Figure A.1: Schematic representation of an R-valued random variable X from (Θ,B) into
(R,D).

For any θ fixed in Θ, X(θ) is a deterministic R-valued scalar called a realisation of the
random variable. The probability distribution PX of X on R is the probability measure, D 7→
PX(D) = P(X−1(D)) from D into [0, 1] such that

0 ≤ PX(D) =
∫
D
PX(dx) =

∫
X−1(D)

P(dθ) ≤ 1, (A.6)

PX(R) =
∫
R
PX(dx) =

∫
Θ
P(dθ) = 1. (A.7)

The cumulative distribution function of X is the function x 7→ FX(x) with values in [0, 1] such
that

FX(x) = P(X ≤ x) = PX(X ≤ x) =
∫ x

−∞
PX(dx). (A.8)
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If FX is absolutely continuous in R, X is said to be a continuous random variable and admits a
probability density function ρX , that is, a function from R into R+ = [0,∞[, such that

PX(D) =
∫
D
ρX(x)dx, (A.9)

for any meaninful subset D of R. If the cumulative distribution function FX is differentiable on
R, then

ρX = dFX
dx

. (A.10)

If X takes only a finite or countable number of values in R, X is said to be a discrete random
variable and admits a probability mass function pX , that is, a function from R into R+ = [0,∞[,
such that

pX(x) = PX(X = x). (A.11)

A random variable X is a q-order random variable, with 1 ≤ q <∞, if∫
Θ
|X(θ)|qP(dθ) =

∫
R
|x|qPX(dx) <∞, (A.12)

that is, X is PX -q-integrable on R. For any PX -integrable random variable X on R, the linear
operator

E[X] =
∫

Θ
X(θ)P(dθ) =

∫
R
xPX(dx) ≡ mX , (A.13)

is called the mathematical expectation or simply the mean value of X . For any PX -square-
integrable random variable X on R, the operator

V[X] =
∫

Θ
(X(θ)−mX)2P(dθ) =

∫
R

(x−mX)2PX(dx) = E[X2]−m2
X ≡ σ2

X , (A.14)

is called the variance of X and σX is its standard deviation. Please note that other statistical
descriptors of X can be deduced from its probability distribution PX , for instance, quantiles,
which will be handled in Chapter 5.

A.3 Random vector

Similarly to an R-valued random variable, an Rn-valued random vectorX defined on the prob-
ability space (Θ,B,P) is a measurable mapping θ 7→ X(θ) from (Θ,B,P) into (Rn,D), with
D being here the σ-algebra endowed on Rn. The cumulative distribution function of X is the
function x 7→ FX(x) with values in [0, 1] such that

FX(x) = P(X ≤ x) =
∫
x′∈Dx

PX(dx′), (A.15)

with Dx =] − ∞,x1] × . . .×] − ∞,xn] and PX the probability distribution of X on Rn.
A continuous random vector admits a probability density function ρX such that PX(D) =∫
D ρX(x)dx for any meaningful D in Rn and its probability density function writes as ρX =
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∂FX
∂x if FX is differentiable on Rn. The marginal probability distribution PXi , 1 ≤ i ≤ n, of the

random variable Xi with values in R satisfies

PXi(Di) =
∫
x1∈R

. . .

∫
xi∈Di

. . .

∫
xn∈R

PX(dx1, . . . , dxn), (A.16)

for any meaningful Di in R. If the random variables X1, . . . ,Xn are independent, then the
probability PX writes as a product of the marginal probability distributions.

For any PX -integrable random vectorX on R, the mathematical expectation ofX is defined
as

E[X] =
∫
Rn
x PX(dx) ≡mX , (A.17)

and for any PX -square-integrable random variable X on R, the covariance matrix [CX ] is the
real symmetric positive-semidefinite matrix

[CX ] = E[XXT ] =
∫
Rn

(x−mX)(x−mX)T PX(dx). (A.18)

A.3.1 Gaussian random vector

Definition A.1. An Rn-valued random vector Z is a multivariate Gaussian vector with mean
µ and covariance matrix [Σ] if every linear combination aTZ, a ∈ Rn, follows a Gaussian
probability distribution N (aTµ,aT [Σ]a). The multivariate Gaussian probability distribution
with mean µ and covariance matrix [Σ] is denoted by N (µ, [Σ]).

A.4 Random field

A random field is a generalisation of a random vector by allowing the random vector to be of
infinite dimension. Let D be a subset of Rd, with d ≥ 1. It is assumed that D is an uncountable
set. A (real-valued) random field {X(s), s ∈ D} defined on the probability space (Θ,B,P) is a
collection of random variables, indexed byD, with values in R. Then for any fixed s inD,X(s)
is a random variable from (Θ,B) into (R,D). For any fixed θ in Θ, the mapping s 7→ X(s, θ)
is called a realisation or a trajectory of the random field. For any finite subset {s1, . . . , st} of
D, the probability distribution of the random vector (X(s1), . . . ,X(st)) defines the marginal
probability distribution of the random field related to the finite subset {s1, . . . , st}. The dis-
tribution of the random field is characterised by all the finite marginal probability distributions
obtained for all finite subsets of D.

For any PX -integrable random field {X(s), s ∈ D}, the mean function is the mapping

x 7→ mX(s) = E[X(s)] (A.19)

from D into R, and for any PX -square-integrable random field {X(s), s ∈ D}, the covariance
function is the mapping

(s, s′) 7→ CX(s, s′) = E[(X(s)− E[X(s)])(X(s′)− E[X(s′)])] (A.20)

from D ×D into R. If mX(s) is a constant in R and CX(s, s′) only depends on the difference
between s and s′, then the random field is said to be mean-square stationary.
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A.4.1 Gaussian process

Definition A.2. A Gaussian process is a random field {Z(s), s ∈ D}, D ⊂ Rd, such that all
finite-dimensional random vector Z = (Z(s1), . . . ,Z(sn)) is an Rn-valued Gaussian random
vector. The Gaussian process with mean function µ(s) = E[Z(s)] and covariance function
C(s, s′) = E[(Z(s)− E[Z(s)])(Z(s′)− E[Z(s′)])] is denoted by GP(µ(s),C(s, s′)).

A Gaussian process is completely characterised by its mean function and its covariance
function, also called the kernel of the Gaussian process and usually denoted by k(s, s′).
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Physical variables (Greek letters)
τb Basal shear stress

η Ice (effective) viscosity

ρ Ice mass density

ρw Sea-water mass density

σ Stress tensor

σD Deviatoric stress tensor

Physical variables (Latin letters)
D Strain-rate tensor

v Velocity field

vb Basal sliding velocity

A Rheological coefficient in Glen’s flow law

ab Mass balance at the ice-bedrock interface

as Mass balance at the ice-air interface

aw Mass balance at the ice-ocean interface

b Bedrock elevation

cf Calving rate

g Gravitational acceleration

h Ice thickness

n Glen’s rheological exponent
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p Pressure field

s Ice surface elevation

T Temperature field

Toc Ocean temperature at the continental shelf

Ts Surface air temperature

Tw Ocean temperature at the ice-ocean interface

Mathematical notations
Deterministic matrix: A deterministic matrix is denoted by an uppercase letter be-

tween brackets such as [A]

Deterministic variable: A deterministic variable is denoted by a lowercase letter such
as x

Deterministic vector: A deterministic vector is denoted by a boldface, lowercase
letter such as in x = (x1, . . . ,xn)

Random variable: A deterministic variable is denoted by an uppercase letter such
as X

Random vector: A random vector is denoted by a boldface, uppercase letter
such as inX = (X1, . . . ,Xn)

E Mathematical expectation

V Variance

1 Indicator function

Cov(X,Y ) Covariance of X and Y

divxf Gradient of the vector-valued function f

tr Trace operator

∇xf Divergence of the scalar-valued function f

N Set of integers

R Set of real numbers
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