Computational & Multiscale Mechanics of Materials COM3

A multi-mechanism non-local porosity model for highlyductile materials; application to high entropy alloys

Van Dung Nguyen⁽¹⁾, Philippe Harik⁽¹⁾, Antoine Hilhorst⁽²⁾, Pascal Jacques⁽²⁾, Thomas Pardoen⁽²⁾, Ludovic Noels⁽¹⁾

¹*University of Liège, Belgium, ²University of Louvain, Belgium*

The research has been funded by the Walloon Region under the agreement no. 1610154- EntroTough in the context of the 2016 WalInnov call.

18-21 December 2019 - APCOM2019 – Taipei, Taiwan

LIÈGE université

• HEAs follow a ductile failure mechanism

LIÈGE
université

- Ductile failure: failure mechanism
	- Void nucleation (dislocation motion, particle/matrix decohesion, particle cracking, …)

– Void growth of existing voids (because of plastic incompressibility)

– Void coalescence (crack growth by shrinking of ligaments between voids)

- Ductile failure: complex coalescence scenarios
	- What does happen inside a « ductile » material under large strain ?

- Ductile failure: complex coalescence scenarios
	- What does happen inside a « ductile » material under large strain ?

- Ductile failure: complex coalescence scenarios
	- Localization band perpendicular to the main loading direction
		- Shrinking of ligaments between voids

- Micro shear bands inclined to the main loading direction
	- Joining primary voids
	- Possibly with secondary voids nucleating in these micro bands

Shear driven coalescence

18-21 December 2019 Asian Pacific Congress on Computational Mechanics (APCOM) 7

(Weck & Wilkinson 2008)

- Ductile failure: stress-state dependent fracture strain
	- Stress triaxiality dependent

$$
\eta = \frac{p'}{\sigma_{\text{eq}}} \in [-\infty \infty] \qquad p' = \frac{\text{tr}(\sigma)}{3} \qquad \sigma_{\text{eq}} = \sqrt{\frac{3}{2}} \text{dev}(\sigma) : \text{dev}(\sigma)
$$

Lode dependent

$$
\theta = \frac{1}{3} \arccos\left(\frac{27J_3}{2\sigma_{\text{eq}}^3}\right) \qquad J_3 = \det\left(\det\left(\sigma\right)\right)
$$

(Bai & Wierzbicki 2010)

EGE université

• Objective & Methodology

- Develop a multi-surface model incorporating
	- Void growth phase
	- Internal necking coalescence phase
		- Driven by maximum principal stress
	- Shear driven coalescence phase
		- Driven by maximum shear stress
- In a nonlocal formalism
	- Why?
		- Local forms suffer from mesh-dependency
	- Implicit formulation

(Peerlings et al. 1998)

- $-$ Introduction of a characteristic length l_c
- New non-local degrees of freedom \bar{Z}_k
- New Helmholtz-type equation to be solved

$$
\bar{Z}_k - Z_k - l_{ck}^2 \Delta_0 \bar{Z}_k = 0
$$
, with $k = 1, ..., N$

- Damage indicators depend on the nonlocal variable
- Multiple nonlocal variables can be considered
	- $-$ Damage indicators depend on N different sources

The maximum principal stress & maximum shear stress are Lode-dependent!

The numerical results change without convergence

• Porous plasticity corotational approach

– Yield condition

$$
\Phi_{nl}=\Phi_{nl}\left(\boldsymbol{\sigma};\sigma_{Y},\mathbf{Y}\right)=0
$$

– Plastic flow

$$
\mathbf{D}^{\mathrm{p}} = \dot{\mathbf{F}}^{\mathrm{p}} \cdot \mathbf{F}^{\mathrm{p}-1} = \dot{\mu} \frac{\partial \Phi_{\mathrm{nl}}}{\partial \pmb{\sigma}}
$$

- Evolution laws
	- Equivalent matrix plastic strain rate:

$$
\dot{\varepsilon}_{\rm m} = \frac{\boldsymbol{\sigma} : \mathbf{D}^{\rm p}}{(1-f) \, \sigma_{\rm Y}}
$$

• Isotropic hardening law:

$$
\sigma_{\rm Y} = \sigma_{\rm Y}^0 + R\left(\varepsilon_{\rm m}\right)
$$

• Evolution laws for void characteristics

 $\mathbf{Y} = \begin{bmatrix} f & \chi & W & \lambda \end{bmatrix}^T$

Yield surface Φ_{nl} *and evolution laws for Y depend on the void expansion solution:*

- *Void growth;*
- *Internal necking coalescence; or*
- *Shear driven coalescence*

Void characteristics Y**:**

Porosity : Void ligament ratio: Void aspect ratio: Void spacing ratio:

• Void growth phase – GTN model

- Yield condition
\n
$$
\Phi_{\rm nl} = \Phi_{\rm G} = \frac{\hat{\sigma}_{\rm G}}{\sigma_{\rm Y}} - 1 = 0
$$
\n
$$
\hat{\sigma}_{\rm G} (\sigma_{\rm eq}, p', \sigma_{\rm Y}, f) = \frac{\sqrt{\sigma_{\rm eq}^2 + 2\sigma_{\rm Y}^2 f q_1 \left[\cosh\left(\frac{3}{2}q_2 \frac{p'}{\sigma_{\rm Y}}\right) - 1\right]}}{1 - q_1 f}
$$

$$
p' = \frac{\text{tr}(\boldsymbol{\sigma})}{3}
$$

$$
\sigma_{\text{eq}} = \sqrt{\frac{3}{2}} \text{dev}(\boldsymbol{\sigma}) : \text{dev}(\boldsymbol{\sigma})
$$

- Parameters:
	- q_1 and q_2
- Hardening law
	- $\sigma_Y(\varepsilon_m)$
	- Matrix plastic deformation ε_m
- Nonlocal evolution laws for void characteristics

$$
\mathbf{Y}_{\text{nl}} = \mathbf{Y}_{\text{G}}(\varepsilon_{\text{m}}, \varepsilon_{\text{v}}, \varepsilon_{\text{d}}, \bar{\varepsilon}_{\text{m}}, \bar{\varepsilon}_{\text{v}}, \bar{\varepsilon}_{\text{d}}, \sigma)
$$

- Void growth phase $Y_{nl} = Y_G(\varepsilon_m, \varepsilon_v, \varepsilon_d, \bar{\varepsilon}_m, \bar{\varepsilon}_v, \bar{\varepsilon}_d, \sigma)$
	- Nonlocal porosity evolution

$$
\dot{f} = \dot{f}_{\rm gr} + \dot{f}_{\rm nu} + \dot{f}_{\rm sh}
$$

• Growth part

$$
\dot{f}_{\rm gr} = (1 - f) \operatorname{tr} (\mathbf{D}^{\rm p}) \implies \dot{f}_{\rm gr} = (1 - f) \dot{\bar{\varepsilon}}_{\rm v}
$$

• Nucleation part

$$
\dot{f}_{\rm nu} = A_n \left(\varepsilon_{\rm m} \right) \dot{\varepsilon}_{\rm m} \quad \Longrightarrow \quad \dot{f}_{\rm nu} = A_n \left(\bar{\varepsilon}_{\rm m} \right) \dot{\bar{\varepsilon}}_{\rm m}
$$

• Shear part

$$
\dot{f}_{\rm sh} = k_w \phi_\eta \phi_\omega f \frac{\text{dev}(\sigma) : \mathbf{D}^{\rm p}}{\sigma_{\rm eq}} \implies \dot{f}_{\rm sh} = k_w \phi_\eta \phi_\omega f \dot{\varepsilon}_d
$$

(Nahshon and Hutchinson 2008)

 $\mathbf{D}^{\mathrm{p}} = \dot{\mathbf{F}}^{\mathrm{p}} \cdot \mathbf{F}^{\mathrm{p}-1} = \dot{\mu} \frac{\partial \Phi_{\mathrm{nl}}}{\partial \boldsymbol{\sigma}}$

 $=\dot{\varepsilon}_{\rm d}$

 $\varepsilon_{\rm v} = {\rm tr} \left({\bf D}^{\rm p} \right)$

 $\mathrm{dev}\left(\boldsymbol{\sigma}\right):\mathbf{D}^{\mathrm{p}}$

 $\sigma_{\rm eq}$

 $\overline{2\sigma_{\rm eq}}$

 $27J_3$

• Parameter: η_s , k_w

$$
\phi_{\eta} = \exp\left(-\frac{1}{2} \left(\frac{\eta}{\eta_s}\right)^2\right) \quad \text{and} \quad \phi_{\omega} = 1 - \omega^2
$$

– Voids shape evolution

$$
\vec{\lambda} = \kappa \lambda \dot{\vec{\varepsilon}}_{\rm d}
$$
\nPeriodic distribution $\kappa = 1.5$,
\nRandom distribution $\kappa = 0$,
\n
$$
\chi = \left(\frac{3f\lambda}{2W}\right)^{\frac{1}{3}}
$$
\nClustered distribution $0 < \kappa < 1.5$
\n(Benzerga et al. 2016)
\n $\dot{W} = 0$

(Thomason 1985)

• Internal necking - Coalescence

- Thomason coalescence onset
	- Localized plastic flow in ligament
	- Limit load factor for uniaxial tension

$$
C_{\text{TF}}(\mathbf{Y}) = \frac{\sigma_{zz}}{\sigma_{\text{Y}}} = (1 - \chi^2) \left[h \left(\frac{1 - \chi}{W \chi} \right)^2 + g \sqrt{\frac{1}{\chi}} \right]
$$

- 'arameters:
	- $g = 0.1$, $h = 1.24$ are generally adopted
- New yield surface accounting for general loading
	- Driven by maximum principal stress (MPS)

$$
\begin{cases}\n\Phi_{\rm nl} = \Phi_{\rm T} = \frac{\hat{\sigma}_{\rm T}}{\sigma_{\rm Y}} - 1 = 0 \\
\hat{\sigma}_{\rm T} = \frac{1}{C_{\rm Tf}} \left(\frac{2}{3} \sigma_{\rm eq} \cos \theta + |p'| \right)\n\end{cases}
$$

$$
\theta\left(\sigma_{\text{eq}}, J_3\right) = \frac{1}{3} \arccos \frac{27 J_3}{2\sigma_{\text{eq}}^3} \, , \qquad p' = \frac{\text{tr}\left(\boldsymbol{\sigma}\right)}{3}
$$

– Evolution laws for void characteristics

$$
\boldsymbol{Y}_{\text{nl}} = \boldsymbol{Y}_{\text{T}}(\varepsilon_{\text{m}}, \varepsilon_{\text{v}}, \varepsilon_{\text{d}}, \bar{\varepsilon}_{\text{m}}, \bar{\varepsilon}_{\text{v}}, \bar{\varepsilon}_{\text{d}}, \boldsymbol{\sigma})
$$

 $p'/\sigma_Y[-]$

 $\sigma_{\rm eq}/$

 $\sigma_{\rm Y}[-]$

• Shear driven – Coalescence

- Thomason-like coalescence onset
	- Limit load factor

$$
C_{\rm Sf}(\mathbf{Y}) = \frac{\sqrt{3}\tau}{\sigma_{\rm Y}} = \xi \left(1 - \chi^2\right)
$$

- Parameter ξ
	- $\zeta = 1$ for σ_Y uniform inside localization band
	- $\xi > 1$ is used for real distribution
- New yield surface

$$
\frac{1}{\sqrt{\frac{1}{n}}}}}}}}}}}}}}{(1+\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{n}}}}}}}}}}}}}}{(1+\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{n}}}}}}}}}}}}}}}}{(1+\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{n}}}}}}}}}}}}}}}}{(1+\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{n}}}}}}}}}}}}}}{(1-\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{n}}}}}}}}}}}}{(1-\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{n}}}}}}}}}}{(1-\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{n}}}}}}}}{(1-\frac{1}{\sqrt{\frac{1}{\sqrt{\frac{1}{n}}}}}}{(1-\frac{1}{\sqrt{\frac{1}{n}}}}}}{(1-\frac{
$$

18-21 December 2019 Asian Pacific Congress on Computational Mechanics (APCOM) 19

 $\sigma_{\rm eq}$

- Solution under proportional loadings
	- **Constant**
		- Stress triaxiality (η) ; and
		- Normalized Lode angle $(\bar{\theta})$
	- $-\varepsilon_{\text{dc}}$ ductility = plastic deformation at coalescence onset

 $\text{tr}\left(\boldsymbol{\sigma}\right)$ $\eta = \frac{F}{\sigma_{\text{eq}}}$ $\overline{3}$ $\sqrt{\frac{3}{2} \text{dev} \left(\boldsymbol{\sigma} \right) : \text{dev} \left(\boldsymbol{\sigma} \right) }$ $\sigma_{\text{eq}} = \sqrt{ }$ $\bar{\theta} = 1 - \frac{6\theta}{\pi}$ $\theta (\sigma_{\text{eq}}, J_3) = \frac{1}{3}$ arccos $\frac{27J_3}{ }$

18-21 December 2019 Asian Pacific Congress on Computational Mechanics (APCOM) 24

Numerical examples

Distribution of void ligament ratio

18-21 December 2019 Asian Pacific Congress on Computational Mechanics (APCOM) 27

- Axisymmetric (notched) specimens under tensile loading
	- Different notch radii: $R_0/R_n = 0, 0.2, 0.6, 1, 1.5$

 $R_0 = 3$ mm $R_1 = 6$ mm $L = 25$ mm $\xi = 1.015 \; (\varepsilon_{\rm d,s} = 0.95)$

Distribution of void ligament ratio χ

Application to HEA: Preliminary tests without MSS-driven coalescence

18-21 December 2019 Asian Pacific Congress on Computational Mechanics (APCOM) 30

Application to HEA: Preliminary tests without MSS-driven coalescence

Application to HEA: Preliminary tests without MSS-driven coalescence

Conclusion

Objective

– Simulation of ductile failure incorporating void growth & coalescence deformation modes

Methodology

- Nonlocal porous plasticity
- Multi-surface model incorporating
	- Void growth;
	- Internal necking coalescence; and
	- Shear driven coalescence
- **Results**
	- The proposed framework is able to model
		- The slant fracture mode in plane strain smooth specimens
		- The cup-cone fracture mode in axisymmetric smooth & notched specimens
- In progress
	- Validation/Calibration with HEAs

Computational & Multiscale Mechanics of Materials CM3

Thank you for your attention

Computational & Multiscale Mechanics of Materials – CM3 <http://www.ltas-cm3.ulg.ac.be/> B52 - Quartier Polytech 1 Allée de la découverte 9, B4000 Liège L.Noels@ulg.ac.be

18-21 December 2019 - APCOM2019 – Taipei, Taiwan

• Elastic predictor

$$
\mathbf{F}^{\mathrm{ppr}} = \mathbf{F}^{\mathrm{p}}_{n} \qquad \mathbf{F}^{\mathrm{epr}} = \mathbf{F} \cdot \mathbf{F}^{\mathrm{ppr}-1}
$$

• Plastic corrector (fully implicit radial return)

$$
\tau = \tau^{\text{pr}} - \mathbb{C} : \Delta \mathbf{E}^p ,
$$

\n
$$
\sigma = J^{-1} \tau ,
$$

\n
$$
\sigma_Y = \sigma_Y (\varepsilon_{\text{m}n} + \Delta \varepsilon_{\text{m}}) ,
$$

\n
$$
\mathbf{Y} = \mathbf{Y}_n + \Delta \mathbf{Y} (\Delta \bar{\mathbf{Z}}, \sigma) ,
$$

\n
$$
\Phi_{\text{nl}}(\sigma; \sigma_Y, \mathbf{Y}) = 0 ,
$$

\n
$$
\Delta \mathbf{E}^p - \Delta \mu \mathbf{N}^{\text{p}}(\sigma; \sigma_Y, \mathbf{Y}) = \mathbf{0} , \text{ and}
$$

\n
$$
\sigma : \Delta \mathbf{E}^p - (1 - f) \sigma_Y \Delta \varepsilon_{\text{m}} = 0 .
$$

Unknowns: τ , σ , σ_Y , $\Delta \varepsilon_m$, Y, ΔE^p , and $\Delta \mu$

