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• High Entropy Alloy

Introduction

18-21 December 2019 Asian Pacific Congress on Computational Mechanics (APCOM) 2

Zhang et al. 2014

Distorted lattice of several elements 

in equivalent proportions

Unexpectedly high 

fracture toughness



• HEAs  follow a ductile failure mechanism

Introduction
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Tests performed at UCL by Antoine Hilhorst



• Ductile failure: failure mechanism

– Void nucleation (dislocation motion, particle/matrix decohesion, particle cracking, …)

– Void growth of existing voids (because of plastic incompressibility)

– Void coalescence (crack growth by shrinking of ligaments between voids)

Introduction
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• Ductile failure: complex coalescence scenarios

– What does happen inside a « ductile » material under large strain ?

Introduction

X-ray tomography of in-situ tensile tests

= scanner for materials

Tests performed at the ESRF synchrotron 

in Grenoble by F. Hannard (Ph. D. UCL) 

collaboration with Dr. E. maire INSA Lyon

(Hannard et al. 2016)
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• Ductile failure: complex coalescence scenarios

– What does happen inside a « ductile » material under large strain ?

Introduction

X-ray tomography 

of in-situ tensile 

tests on Al 6056 

e = 23%
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(Hannard et al. 2016)

e = 30%

e = 38%

e = 50%
e = 60%



• Ductile failure: complex coalescence scenarios

– Localization band perpendicular to the main loading direction

• Shrinking of ligaments between voids 

– Micro shear bands inclined to the main loading direction 

• Joining primary voids 

• Possibly with secondary voids nucleating in these micro bands

Introduction
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Internal necking 

coalescence

Shear driven 

coalescence

(Weck & Wilkinson 2008)



• Ductile failure: stress-state dependent fracture strain

– Stress triaxiality dependent

– Lode dependent 

Introduction
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(Bai & Wierzbicki 2010)
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• Objective & Methodology 

– Develop a multi-surface model incorporating

• Void growth phase

• Internal necking coalescence phase

– Driven by maximum principal stress

• Shear driven coalescence phase

– Driven by maximum shear stress

– In a nonlocal formalism 

• Why? 

– Local forms suffer from mesh-dependency

• Implicit formulation

– Introduction of a characteristic length 𝑙𝑐
– New non-local degrees of freedom  𝑍𝑘
– New Helmholtz-type equation to be solved

– Damage indicators depend on the nonlocal variable

• Multiple nonlocal variables can be considered

– Damage indicators depend on 𝑁 different sources

Introduction

The numerical results 

change without convergence

𝜎

𝜀

Mesh refinement
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The maximum principal 

stress & maximum shear 

stress are Lode-dependent!

(Peerlings et al. 1998)



• Porous plasticity corotational  approach

– Yield condition

– Plastic flow

– Evolution laws

• Equivalent matrix plastic strain rate:

• Isotropic hardening law:

• Evolution laws for void characteristics 

Multi-surface nonlocal porous model

𝜆𝐿

𝜒𝐿

𝐿
𝑓𝑊𝜒𝐿

Porosity : 𝑓
Void ligament ratio: 𝜒
Void aspect ratio: 𝑊
Void spacing ratio: 𝜆

Void characteristics Y:
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Yield surface Φnl and evolution laws for Y depend on the void expansion solution: 

• Void growth; 

• Internal necking coalescence; or 

• Shear driven coalescence



• Void growth phase – GTN model

– Yield condition

– Parameters: 

• 𝑞1 and 𝑞2

– Hardening law 

• 𝜎Y 𝜀𝑚
• Matrix plastic deformation 𝜀𝑚

– Nonlocal evolution laws for void 

characteristics

Multi-surface nonlocal porous model

18-21 December 2019 Asian Pacific Congress on Computational Mechanics (APCOM) 15

𝐘nl = 𝐘G(𝜀m, 𝜀v, 𝜀d,  𝜀m,  𝜀v,  𝜀d, 𝝈)
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• Void growth phase -

– Nonlocal porosity evolution

• Growth part

• Nucleation part

• Shear part 

• Parameter: 𝜂𝑠 , 𝑘𝑤

&

– Voids shape evolution

Multi-surface nonlocal porous model
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(Nahshon and Hutchinson 2008)

𝜆𝐿

𝜒𝐿

𝐿𝑓𝑊𝜒𝐿
(Benzerga et al. 2016)

Periodic distribution κ = 1.5, 

Random distribution κ = 0,

Clustered distribution 0 < κ < 1.5

𝐘nl = 𝐘G(𝜀m, 𝜀v, 𝜀d,  𝜀m,  𝜀v,  𝜀d, 𝝈)
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• Internal necking – Coalescence  

– Thomason coalescence onset

• Localized plastic flow in ligament 

• Limit load factor for uniaxial tension

• Parameters: 

– 𝑔 = 0.1, ℎ = 1.24 are generally adopted

– New yield surface accounting for general loading

• Driven by maximum principal stress (MPS) 

– Evolution laws for void characteristics

Multi-surface nonlocal porous model
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(Thomason 1985)

MPS

𝐘nl = 𝐘T(𝜀m, 𝜀v, 𝜀d,  𝜀m,  𝜀v,  𝜀d, 𝝈)
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• Shear driven – Coalescence   

– Thomason-like coalescence onset

• Limit load factor

• Parameter 𝜉

– 𝜉 = 1 for 𝜎𝑌 uniform inside localization band

– 𝜉 > 1 is used for real distribution 

– New yield surface 

• Driven by maximum shear stress (MSS) 

– Evolution laws for void characteristics

Multi-surface nonlocal porous model
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• Competition between different modes

– Yield surface

• Effective stress

• Approximated form

• Smoothing using  𝑚 ≫ 1

– Onset of void necking coalescence

– Onset of void shear coalescence

Multi-surface nonlocal porous model

Gurson only Gurson+Thomason

Gurson+Thomason+Shear Thomason+Shear

Gurson

Thomason
Shear

Combination
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• Solution under proportional loadings

– Constant 

• Stress triaxiality (𝜂);  and 

• Normalized Lode angle (  𝜃)

– 𝜀dc- ductility = plastic deformation at coalescence onset 

Multi-surface nonlocal porous model
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Internal necking 

Shear driven 
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• Plane strain smooth specimen under tensile loading

– Verification of the nonlocal model: mesh convergence

Numerical examples

Coarse Medium Fine

Distribution of void ligament ratio 𝝌
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Capture slant fracture

𝑒0
𝐿 𝐹𝐹

𝐿 = 12.5 mm
𝑒0 = 3mm



• Axisymmetric (notched) specimens under tensile loading

– Different notch radii: 𝑅0/𝑅𝑛 = 0, 0.2, 0.6, 1, 1.5

Numerical examples
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Distribution of void ligament ratio 𝝌

Capture cup-cone failure

𝑅1
𝐿

𝐹𝐹

𝑅𝑛

𝑅0

𝑅0 = 3mm
𝑅1 = 6mm
𝐿 = 25 mm



• Parameters identification of CrMnFeCoNi

– Hardening law 𝜎Y(𝜀𝑚) identification

Application to HEA: Preliminary tests without MSS-driven coalescence
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Distribution of plastic strain 𝜺𝒅

Elasto-plastic 

hardening 

identification

𝑒0 = 6mm
𝑡0 = 1. 05 mm
𝐿 = 26 mm
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• Parameters identification of CrMnFeCoNi

– Gurson-Thomason parameters identification

Application to HEA: Preliminary tests without MSS-driven coalescence
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𝐴𝑛 = 0.0073
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• Double notched specimen of CrMnFeCoNi

– Preliminary results 

– To characterize non-local length

– To extraction essential work of failure

Application to HEA: Preliminary tests without MSS-driven coalescence
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Distribution of void ligament ratio 𝝌

𝐿 𝐹𝐹

𝑡0

𝐿0

𝑡0 = 1. mm
𝐿 = 26 mm



• Objective

– Simulation of ductile failure incorporating void growth & coalescence deformation 

modes

• Methodology

– Nonlocal porous plasticity

– Multi-surface model incorporating 

• Void growth;

• Internal necking coalescence; and 

• Shear driven coalescence

• Results

– The proposed framework is able to model

• The slant fracture mode in plane strain smooth specimens

• The cup-cone fracture mode in axisymmetric smooth & notched specimens

• In progress

– Validation/Calibration with HEAs

Conclusion
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• Elastic predictor

• Plastic corrector (fully implicit radial return)

Predictor-corrector scheme
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