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1 Introduction
In order to solve the partial differential equations that describe early dia-
genetic processes in medusa, the domain of interest whcich we denote for
simplicity by [0, L], is overlaid with a grid or mesh of points denoted xi
(i = 1, . . . , n), called nodes, such that 0 ≤ x1 < . . . < xi < . . . < xn ≤ L.
Each node is representative of a small sub-interval of [0, L], delimited by the
mid-points between neigbouring nodes. These mid-points are called vertices
and represent thus the boundaries between the sub-intervals called finite vol-
umes or cells. Concentrations and reaction terms are evaluated at the nodes
while the flux terms are evaluated at the vertices. Accordingly, in some in-
stances it is necessary to have a vertex located at 0 or L (e.g., if boundary
conditions involve fluxes only). In such cases, we call upon virtual grid points
x0 < 0 or xn+1 > L outside the domain of interest to define the required ver-
tices, such that [0, L] always includes n nodes xi. In other instances it is
necessary or recommended to have nodes locates at 0 or L (e.g., if boundary
conditions involve prescibed concentrations). In this case there are only half
cells at 0 or L. Such nodes are thus virtual vertices (cell boundaries).

With a few exceptions, the strategy behind grid generation consists in
choosing a function Q to remap a regular grid covering the interval [0, 1]
(ξi = i/N, i = 0, . . . , N) onto an irregular grid qi = Q(ξi) (i = 0, . . . , N)
covering the same interval [0,1]. Accordingly, we always have q0 = 0 and
QN = 1. This qi (i = 0, . . . , N) grid is then scaled and shifted (moved by
translation) to fulfil constraints set by the specific problem requirements:
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• the extent L of the interval [0, L];

• a vertex or a node is located at the starting point 0;

• a vertex or a node is located at the end point L;

• the number of nodes n to have on the grid.

The final grid xi (i = 1, . . . , n), is then derived by

xi = Sqi−m + xtd,

where

• m denotes an index offset (possibly 0) to shift the transformed qi grid
if required;

• S is a scaling factor;

• xtd is the translation distance.

The finally generated grid only includes nodes. Vertices are, by definition,
located mid-may between nodes, or at either end of the gridded domain.

In order to preserve second order truncation error that can be easily
achieved on regular meshes, it is sufficient to use a mapping Q : ξi → qi that
is twice continuously differentiable on [0, 1].

1.1 Node-to-node grids
For node-to-node grids, x1 = 0 and xn = L. Hence,

• q0 must be remapped onto x1, requiring that m = 1;

• qN must be remapped onto xn, requiring that N+m = n, i.e., N = n−1

• x1 = 0 and x1 = Sq0 + xtd = xtd require that xtd = 0

• xn = L and xn = Sqn−1 + xtd = S require that S = L

1.2 Node-to-vertex grids
For node-to-vertex grids, x1 = 0. xn is inside the domain to be gridded and
chosen so that with a virtual next point xn+1, mapped from qN would provide
a vertex between xn and xn+1 such that 1

2(xn + xn+1) = L. Accordingly:

• q0 must be remapped onto x1, requiring that m = 1;
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• qN must be remapped onto xn+1, requiring that N + m = n + 1, i.e.,
N = n;

• x1 = 0 and x1 = Sq0 + xtd = xtd require that xtd = 0;

• noting that

xn + xn+1 = Sqn−1 + Sqn + 2xtd

= SqN−1 + SqN

= SQ(ξN−1) + S

= S(Q(ξN−1) + 1)

the vertex condition 1
2(xn + xn+1) = L finally leads to

S = L
2

Q(ξN−1) + 1 = L
2

Q(n−1
n

) + 1 .

1.3 Vertex-to-node grids
For vertex-to-node grids, xn = L. x1 is inside the domain to be gridded
and chosen so that with a virtual preceding point x0, mapped from q0 would
provide a vertex between x0 and x1 such that 1

2(x0 + x1) = 0. Accordingly:

• q1 must be remapped onto x1, requiring that m = 0;

• qN must be remapped onto xn, requiring that N +m = n, i.e., N = n;

• xn = L and xn = SqN + xtd = S + xtd require that xtd = L− S;

• noting that

x0 + x1 = Sq0 + Sq1 + 2xtd

= Sq1 + 2(L− S)
= SQ(ξ1) + 2(L− S)
= S(Q(ξ1)− 2) + 2L

the vertex condition 1
2(x0 + x1) = 0 finally then leads to

S = L
2

2−Q(ξ1) = L
2

2−Q( 1
n
) .

Hence,

xtd = L− S = L

(
1− 2

2−Q( 1
n
)

)
= −L

Q( 1
n
)

2−Q( 1
n
)
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1.4 Vertex-to-vertex grids
For vertex-to-vertex grids grids, x1 is inside the domain to be gridded and
chosen so that with a virtual preceding point x0, mapped from q0 would
provide a vertex between x0 and x1 such that 1

2(x0 + x1) = 0; xn is also
inside the domain to be gridded and chosen so that with a virtual next point
xn+1, mapped from qN would provide a vertex between xn and xn+1 such
that 1

2(xn + xn+1) = L. Accordingly:

• q1 must be remapped onto x1, requiring that m = 0;

• qN−1 must be remapped onto xn, requiring that N − 1 + m = n, i.e.,
N = n+ 1;

• noting, as above, that

x0 + x1 = SQ(ξ1) + 2xtd

and that

xn + xn+1 = Sqn−1 + Sqn + 2xtd

= SqN−1 + SqN + 2xtd

= S(Q(ξN−1) + 1) + 2xtd

the vertex conditions 1
2(x0 +x1) = 0 and 1

2(xn+xn+1) = L require that
S and xtd obey to a linear system{

Q(ξ1)S + 2xtd = 0
(Q(ξN−1) + 1)S + 2xtd = 2L

i.e., {
Q( 1

n+1)S + 2xtd = 0
(Q( n

n+1) + 1)S + 2xtd = 2L
Hence,

S = L
2

Q( n
n+1)−Q( 1

n+1) + 1

xtd = −L
Q( 1

n+1)
Q( n

n+1)−Q( 1
n+1) + 1

2 Linear grids
For linear grids, the fundamental remapping function is simply

Q(ξi) = ξ.
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3 Quadratic-linear grids
For quadratic-linear grids, the fundamental remapping function is

Q(ξi) = (ξ2
i + ξ2

c )
1
2 − ξc

(1 + ξ2
c )

1
2 − ξc

.

4 Geometric progression grids
For geometric progression grids in general, there are several parameters of
importance, besides the number of grid points, which we assume fixed a
priori:

• the thickness of the first interval, δ;

• the geometric progression ratio, r;

• the extent of the interval to be gridded, L.

The three parameters are not independent of each other. However, the rela-
tionships are different from one grid type to another.

To take advantage of the developments presented in the introduction, let
us start to derive the remapping ξi → qi. For any initial scale factor σ and
progression ratio r, we have

q0 = 0
q1 = σ

q2 = q1 + σr = σ(1 + r)
q3 = q2 + σr2 = σ(1 + r + r2)

...
qi = σ(1 + r + r2 + . . .+ ri−1)

...
qN = σ(1 + r + r2 + . . .+ rN−1)

Notice that qi = σ(1 + r + r2 + . . . + ri−1) = σ(1 − ri)/(1 − r). Hence, if
qN = 1 then σ = 1−r

1−rN , leading to the remapping function

Q(ξi) = 1− ri
1− rN = ri − 1

rN − 1 = rNξi − 1
rN − 1
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4.1 Grid types
4.1.1 Node-to-node

Characteristics: m = 1, N = n− 1, S = L, xtd = 0. Hence,

xi = L ·Q(ξi−1) = L
ri−1 − 1
rn−1 − 1 , i = 1, . . . , n

Since
x2 = δ = L

r − 1
rn−1 − 1

we can rewrite this as

xi = δ
ri−1 − 1
r − 1 , i = 1, . . . , n

and we furthermore have
L = δ

rn−1 − 1
r − 1

4.1.2 Node-to-vertex

Characteristics: m = 1, N = n, S = L 2
Q(ξN−1)+1 , xtd = 0.

xi = L
2

Q(ξN−1) + 1 ·Q(ξi−1) = L
2

rn−1−1
rn−1 + 1

ri−1 − 1
rn − 1 , i = 1, . . . , n

and again

x2 = δ = L
2

rn−1−1
rn−1 + 1

r − 1
rn − 1 = L

2(r − 1)
rn − 1 + rn−1 − 1 .

We can rewrite this as

xi = δ
ri−1 − 1
r − 1 , i = 1, . . . , n

and we furthermore have

L = δ
rn − 1 + rn−1 − 1

2(r − 1)
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4.1.3 Vertex-to-node

Characteristics: m = 0, N = n, S = L 2
2−Q( 1

n
) , xtd == −L Q( 1

n
)

2−Q( 1
n

) .

xi = L
2

2−Q( 1
n
) ·Q(ξi)− L

Q( 1
n
)

2−Q( 1
n
)

= L
1

2−Q( 1
n
) · (2Q(ξi)−Q( 1

n
))

= L
1

2− r−1
rn−1

· (2 r
i − 1
rn − 1 −

r − 1
rn − 1)

= L
2ri − r − 1
2rn − r − 1

In this case,
δ = x1 − x0 = 2L r − 1

2rn − r − 1
and we can rewrite the sequence as

xi = δ

2
2ri − r − 1
r − 1

and we furthermore have

L = δ
2rn − r − 1

2(r − 1)

4.1.4 Vertex-to-vertex

Characteristics: m = 0, N = n + 1, S = 2L/(Q(ξN−1) − Q(ξ1) + 1), xtd =
−LQ(ξ1)/(Q(ξN−1)−Q(ξ1) + 1)

xi = L
2

Q(ξN−1)−Q(ξ1) + 1 ·Q(ξi)− L
Q(ξ1)

Q(ξN−1)−Q(ξ1) + 1

= L
2Q(ξi)−Q(ξ1)

Q(ξN−1)−Q(ξ1) + 1

= L
2 ri−1
rn+1−1 −

r−1
rn+1−1

rn−1
rn+1−1 −

r−1
rn+1−1 + 1

= L
2ri − r − 1

rn+1 − r + rn − 1

= L
2ri − r − 1

(r + 1)(rn − 1)
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In this case,
δ = x1 − x0 = 2L r − 1

(r + 1)(rn − 1)
and we can rewrite the sequence as

xi = δ

2
2ri − r − 1
r − 1

and we have
L = δ

(r + 1)(rn − 1)
2(r − 1) .

Furthermore,

xn+1 + xn = L
2rn+1 − 2r + 2rn − 2

(r + 1)(rn − 1) = 2L(r + 1)(rn − 1)
(r + 1)(rn − 1) = 2L

as expected.

4.2 Derived quantities
As mentioned above, the three parameters of interest, δ, r and L are inter-
dependent. For each of the four grid-types, we have shown that the three
parameters are related by one relationship. Accordingly, one of the three
parameters can be derived from the two others. There are two cases that are
straightforward to handle:

• for given r and δ, L can be directly derived;

• for given r and L, δ can be directly derived;

The third case, where δ and L are given, is more complicated to handle as it
involves a non-linear equation to solve for r. The equation to solve depends
on the grid type adopted.

4.2.1 Node-to-node

The equation to solve is

fnn(r) ≡ rn−1 − 1
r − 1 − L

δ
= 0

r = 1 appears to be a critical value: for r = 1, the equation function evaluates
to

fnn(1) = (n− 1)− L

δ
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4.2.2 Node-to-vertex

The equation to solve is

fnv(r) ≡ rn − 1 + rn−1 − 1
2(r − 1) − L

δ
= 0

For r = 1, the function evaluates to

fnv(1) = 2n− 1
2 − L

δ

4.2.3 Vertex-to-node

The equation to solve is

fvn(r) ≡ 2rn − r − 1
2(r − 1) − L

δ
= 0.

For r = 1, the function evaluates to

fvn(1) = 2n− 1
2 − L

δ

4.2.4 Vertex-to-vertex

The equation to solve is

fvv(r) ≡ (r + 1)(rn − 1)
2(r − 1) − L

δ
= 0.

For r = 1, the function evaluates to

fvv(1) = n− L

δ

4.3 Solving for r
4.3.1 Preliminaries

For r > 1, r2 = r · r > r, . . . , ri = r · ri−1 > r and thus

rp − 1
r − 1 = rp−1 + . . .+ r + 1

> r + . . .+ r + 1
> (p− 1)r + 1
> (p− 1)r
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Accordingly, for r = a/(p− 1), where a > (p− 1),

rp − 1
r − 1 − a > (p− 1) · r − a = (p− 1) · a/(p− 1)− a = 0.

For r > 1, and n sufficiently large, we thus have for the different equation
functions:

fnn(r) = rn−1 − 1
r − 1 − L

δ
> (n− 2)r − L

δ

fnv(r) = rn − 1 + rn−1 − 1
2(r − 1) − L

δ
> (n− 1

2 + n− 2
2 )r − L

δ
= 2n− 3

2 r − L

δ

fvn(r) = 2rn − r − 1
2(r − 1) − L

δ
= rn − 1 + r(rn−1 − 1)

2(r − 1) − L

δ
>

2n− 3
2 r − L

δ

fvv(r) = (r + 1)(rn − 1)
2(r − 1) − L

δ
>
rn − 1
r − 1 −

L

δ
> (n− 1)r − L

δ

This inequalities can be used to derive bounds, so that a Newton method
safe-guarded by a bisection method can be used.

4.3.2 Solution algorithm

Simple cases:

• n = 2

– fnn(r) = r−1
r−1 −

L
δ

= 1 − L
δ
. No condition on r, but it is required

that L = δ

– fnv(r) = r2+r−2
2(r−1) −

L
δ

= 1
2(r + 2)− L

δ
and thus r = 2(L

δ
− 1). Since

r > 0, this is only possible if L > δ.
– fvn(r) = 2r2−r−1

2(r−1) −
L
δ

= 1
2(r+ 1

2)− L
δ

and thus r = 2L
δ
− 1

2 , requiring
that L > 4δ.

– fvv(r) = (r+1)(r2−1)
2(r−1) − L

δ
= 1

2(r+1)2− L
δ

and thus r =
√

2L
δ
−1 (the

negative square root leads to negative r), requiring that L > 2δ.

• n = 3

– fnn(r) = r2−1
r−1 −

L
δ

= (r + 1) − L
δ

and thus r = L
δ
− 1, requiring

that L > δ.
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– fnv(r) = r3−1+r2−1
2(r−1) −

L
δ

= 1
2(r2 +2r+2)− L

δ
. The equation to solve

is then r2 + 2r + 2(1− L
δ
). This equation has a real solution only

if 4− 8 · (1− L
δ
) ≥ 0, i.e., if 1− L

δ
≤ 1

2 , i.e., if L ≥ 1
2δ. In this case,

r = −1 +
√

2L
δ
− 1. That root r is only positive if L > δ.

– fvn(r) = 2r3−r−1
2(r−1) −

L
δ

= (r2 + r + 1
2) − L

δ
. The equation to solve

is then r2 + r + (1
2 −

L
δ
). This equation has only a solution if

1− 4 · (1
2 −

L
δ
) ≥ 0, i.e., if 1

2 −
L
δ
≤ 1

4 , i.e., if L ≥ 1
4δ. In this case,

r = −1
2 + 1

2

√
4L
δ
− 1. That root r is only positive if L > 1

2δ.

– fvv(r) = (r+1)(r3−1)
2(r−1) − L

δ
= 1

2(r + 1)(r2 + r + 1)− L
δ
. The equation

to solve is then (r + 1)(r2 + r + 1) − 2L
δ

= 0. The first term is a
monotonously increasing polynomial. The equation has thus only
one real solution; the other two must be complex conjugate. The
product of the three solutions is equal to −(1 − 2L

δ
). The real

solution can therefore only be positive if L > 1
2δ.

fvv(0) = 1
2 −

L
δ
: always negative

fvv(1) = 3− L
δ

: positive or zero if L
δ
≤ 3

fvv(L
δ
/2) > 0 if L

δ
> 2

General case (n > 3)

• fnn(r) = rn−1−1
r−1 −

L
δ

= GPn−1(r)− L
δ

fnn(0) = 1− L
δ
: fnn(0) ≤ 0 if L

δ
≥ 1

fnn(1) = n− 1− L
δ
: fnn(1) > 0⇔ L

δ
< n− 1

fnn(L
δ
/(n− 2))) > 0 if L

δ
> n− 2

• fnv(r) = rn−1+rn−1−1
2(r−1) − L

δ
= 1

2(GPn(r) + GPn−1(r)) − L
δ

= 1
2((r +

1)GPn−1(r) + 1)− L
δ

fnv(0) = 1− L
δ
: fnv(0) ≤ 0 if L

δ
≥ 1

fnv(1) = n− 1
2 −

L
δ
: fnv(1) > 0⇔ L

δ
< n− 1

2

fn(L
δ
/(n− 3

2)) > 0 if L
δ
> n− 3

2

• fvn(r) = 2rn−r−1
2(r−1) −

L
δ

= 1
2(GPn(r)+rGPn−1(r))− L

δ
= rGPn−1(r)+ 1

2−
L
δ

fvn(0) = 1
2 −

L
δ
: fnv(0) ≤ 0 if L

δ
≥ 1

2

fvn(1) = n− 1
2 −

L
δ
: fnv(1) > 0⇔ L

δ
< n− 1

2

fvn(L
δ
/(n− 3

2)) > 0 if L
δ
> n− 3

2
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• fvv(r) = (r+1)(rn−1)
2(r−1) − L

δ
= 1

2(r + 1)GPn(r)− L
δ

fvv(0) = 1
2 −

L
δ
: fnv(0) ≤ 0 if L

δ
≥ 1

2

fvv(1) = n− L
δ
: fnv(1) > 0⇔ L

δ
< n

fvv(L
δ
/(n− 1)) > 0 if L

δ
> n− 1

So for each case, it is possible to derive lower and upper bounds for the
root r of the equation: r = 0 can always provides a lower bound and the
third bound listed for each grid type above an upper bound for the root of
the equation; r = 1 may be used to override either of them, depending on
whether it is a lower (fxx(1) < 0) or an upper bound (fxx(1) > 0) of the root.

5 General series-based grids
For general series-based grids, we assume that we have a sequence δi > 0
(i = 1, . . . N) and that

qi = 1
∆

i∑
j=1

δi i = 1, . . . N

where
∆ =

N∑
j=1

δi

is a normalizing scale such that qN = 1. Furthermore, q0 = 0.
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