LaMnO₃ Revisited

A Comprehensive First-Principles Study of the Interplay Between Strain, Lattice mode, and Electronic Degrees of Freedom

Michael-Marcus Schmitt, Yajun Zhang, Alain Mercy, Eric Bousquet, & Philippe Ghosez XXIVth International Symposium on the Jahn-Teller Effect 24th-29th June 2018 - Santander

Physique Théorique des Matériaux, Q-MAT, CESAM, Université de Liège

- (Re)classifying Cooperative Jahn-Teller Distortions in Perovskites
- LaMnO₃

Bulk

Epitaxial Thin Films

 $\bullet\,$ An Approach to a Ferromagnetic/Ferroelectric Multiferroic $\rm RMnO_3$ Compound

(Re)classifying Cooperative Jahn-Teller Distortions in Perovskites

John Hasbrouck Van Vleck

Van Vleck, J. H. The Journal of Chemical Physics 7.1 (1939): 72-84.

$$\mathbf{e_g} \otimes \mathbf{e_g} = \mathbf{a_{1g}} + \mathbf{e_g}$$

Van Vleck, J. H. The Journal of Chemical Physics 7.1 (1939): 72-84.

Van Vleck, J. H. The Journal of Chemical Physics 7.1 (1939): 72-84.

Van Vleck, J. H. The Journal of Chemical Physics 7.1 (1939): 72-84.

Van Vleck, J. H. The Journal of Chemical Physics 7.1 (1939): 72-84.

Van Vleck, J. H. The Journal of Chemical Physics 7.1 (1939): 72-84.

John Hasbrouck Van Vleck	$\mathbf{e_g}\otimes\mathbf{e_g}=\mathbf{a_{1g}}+\mathbf{e_g}$			
Many different Notations for	this in the literature!			
Chemists				
$Q_{m{ heta}}, Q_{m{\epsilon}}$				
O'Brien, M. C. & Chancey, C. Am. J.	Phys., 1993, 61 , 688-697			
Labels of Irreducible R	epresentation			
M2+, M3+, R3-, R	3+, R4			
Carpenter, M. A. & Howard, C. J. Acta Crys	stallogr. B., 2009, 65 , 134-146			
Solid State Physicists				
$Q_1^M, Q_1^R, Q_2^+, Q_2^-, M_{JT}, R_{JT},$, Q^x , Q^z , Q^x_R , Q^z_R			
He, Z. & Millis, A. J. Phys. Rev.	B, 2015, 91 , 195138			
Varignon, J.; Bristowe, N. C. et al.; Sc				
Varignon, J.; Bristowe, N. C. & Ghosez, P. E Ph	nys. Rev. Lett., 2016, 116 , 057602			
Ederer, C.; Lin, C. & Millis, A. J. Phys.	Rev. B, 2007, 76 , 155105			

Van Vleck, J. H. The Journal of Chemical Physics 7.1 (1939): 72-84.

Van Vleck, J. H. The Journal of Chemical Physics 7.1 (1939): 72-84.

Van Vleck, J. H. The Journal of Chemical Physics 7.1 (1939): 72-84.

Q_2/Q_3 -Modes and Strains

$Q_{4,5,6}$	Q_4^{Γ}	$Q_4^{\mathbf{M}}$	$Q_4^{\mathbf{R}}$
Origin in A	$\Gamma 5+(a,0,0)$	M1+(a, 0, 0)	R4-(a,0,0)
Ref. $Pm\overline{3}m B$	$\Gamma 5+(a,0,0)$	M4+(a, 0, 0)	R5+(a,0,0)
Displacement Pattern			**
Strain Vector	(0, 0, 0, a, 0, 0)	-	-
Crystal Space Group (Schönflies)	$Cmmm \ (D^{19}_{2h})$	$P4/mmm\ (D^1_{4h})$	$I4/mmm \ (D^{17}_{4h})$
Local Octahedral Symmetry	D_{2h}	D_{2h}	D_{2h}

Q_4, Q_5, Q_6 -Modes and Strains

$LaMnO_3$

Bulk

 $F\propto \alpha_{el}Q_2^M+\beta_1\,Q_2^{M^2}$

$$\begin{split} F \propto \alpha_{el} Q_2^M + \beta_1 Q_2^{M^2} \\ \alpha_{el} = \left\langle \Psi_i^0 \Big| \frac{\partial H_0}{\partial Q_2^M} \Big| \Psi_j^0 \right\rangle \Rightarrow \alpha_{el}(MO) \end{split}$$

$$\begin{split} F &\propto \alpha_{el} Q_2^M + \beta_1 Q_2^{M^2} + \beta_2 \phi^2 Q_2^{M^2} \\ \alpha_{el} &= \left\langle \Psi_i^0 \middle| \frac{\partial H_0}{\partial Q_2^M} \middle| \Psi_j^0 \right\rangle \Rightarrow \alpha_{el}(MO, \{\mathbf{R}\}) \end{split}$$

$$\begin{split} F &\propto \alpha_{el} Q_2^M + \beta_1 Q_2^{M^2} + \beta_2 \phi^2 Q_2^{M^2} + \gamma_1 A P_{xy} \phi^- Q_2^M \\ \alpha_{el} &= \left\langle \Psi_i^0 \left| \frac{\partial H_0}{\partial Q_2^M} \right| \Psi_j^0 \right\rangle \Rightarrow \alpha_{el}(MO, \{\mathbf{R}\}) \end{split}$$

$$\begin{split} F &\propto \alpha_{el} Q_2^M + \beta_1 Q_2^{M^2} + \beta_2 \phi^2 Q_2^{M^2} + \gamma_1 A P_{xy} \phi^- Q_2^M + \beta_3 Q_3^{\Gamma} Q_2^{M^2} + \beta_4 Q_3^{\Gamma^2} Q_2^{M^2} \\ \alpha_{el} &= \left\langle \Psi_i^0 \left| \frac{\partial H_0}{\partial Q_2^M} \right| \Psi_j^0 \right\rangle \Rightarrow \alpha_{el}(MO, \{\mathbf{R}\}) \end{split}$$

$$\begin{split} F &\propto \alpha_{el} Q_2^M + \beta_1 Q_2^{M^2} + \beta_2 \phi^2 Q_2^{M^2} + \gamma_1 A P_{xy} \phi^- Q_2^M + \beta_3 Q_3^{\Gamma} Q_2^{M^2} + \beta_4 Q_3^{\Gamma^2} Q_2^{M^2} \\ \alpha_{el} &= \left\langle \Psi_i^0 \left| \frac{\partial H_0}{\partial Q_2^M} \right| \Psi_j^0 \right\rangle \Rightarrow \alpha_{el}(MO, \{\mathbf{R}\}) \end{split}$$

$LaMnO_3$

Epitaxial Thin Films

REPORTS

MAGNETISM

Imaging and control of ferromagnetism in LaMnO₃/SrTiO₃ heterostructures

X. Renshaw Wang,¹*[†]‡ C. J. Li,^{2,3}[†] W. M. Lü,² T. R. Paudel,⁴ D. P. Leusink,¹ M. Hoek,¹ N. Poccia,¹ A. Vailionis,⁵ T. Venkatesan,^{2,3,6,7}* J. M. D. Coey,^{2,8} E. Y. Tsymbal,⁴ Ariando,^{2,6} H. Hilgenkamp¹

	LMO-STO	LMO-Bulk
	P-1	Pnma
	\mathbf{FM}	AFM-A
Q_3^{Γ}	-0.005	-0.04
Q_{4z}^{Γ}	-0.018	-0.036
Q_2^M (Å)	0.117	0.19
Q_3^R (Å)	0.077	-
ϕ_z^+ (Å)	0.44	0.49
ϕ_{xy}^{-} (Å)	0.62	0.65
A_X (Å)	0.26	0.33
Band Gap (eV)	0.49	1.15

		LMO-STO	STO LMO-Bulk	
<i>P-1</i>		Pnma		
		\mathbf{FM}	AFM-A	
	Q_3^{Γ}	-0.005	-0.04	
	Q_{4z}^{Γ}	-0.018	-0.036	
	Q_2^M (Å)	0.117	0.19	
	Q_3^R (Å)	0.077	-	
	ϕ_z^+ (Å)	0.44	0.49	
	ϕ_{xy}^{-} (Å)	0.62	0.65	
	A_X (Å)	0.26	0.33	
Ba	nd Gap (eV)	0.49	1.15	

Ferromagnetic LaMnO₃ on SrTiO₃

	LMO-STO LMO-Bu	
	<i>P-1</i>	Pnma
	$_{\rm FM}$	AFM-A
Q_3^{Γ}	-0.005	-0.04
Q_{4z}^{Γ}	-0.018	-0.036
Q_2^M (Å)	0.117	0.19
Q_3^R (Å)	0.077	-
ϕ_z^+ (Å)	0.44	0.49
ϕ_{xy}^{-} (Å)	0.62	0.65
A_X (Å)	0.26	0.33
Band Gap (eV)	0.49	1.15

An Approach to a Ferromagnetic/Ferroelectric Multiferroic RMnO₃ Compound

Break The Inversion Symmetry Through Cationic Order!

Break The Inversion Symmetry Through Cationic Order!

	Cation Order	$\Delta E/fu(meV)$	MO	Space Group	BG (eV) $$
$\mathrm{La}_{0.5}\mathrm{Bi}_{0.5}\mathrm{MnO}_3$	Layered	-	FM	<i>P-1</i>	-
$SrTiO_3$	Layered \perp	-5	FM	P1 🗸	-
	Chains	-3	FM	<i>P-1</i>	-
	Rock-Salt	-10	FM	P1 🗸	0.38

Break The Inversion Symmetry Through Cationic Order!

	Cation Order	$\Delta E/fu(meV)$	MO	Space Group	BG (eV) $$
$\mathrm{La}_{0.5}\mathrm{Bi}_{0.5}\mathrm{MnO}_3$	Layered	-	FM	<i>P-1</i>	-
$SrTiO_3$	Layered \perp	-5	FM	P1 🗸	-
	Chains	-3	\mathbf{FM}	<i>P-1</i>	-
	Rock-Salt	-10	FM	P1 🗸	0.38

Conclusions

- Q_i^q a Clear and Revised Notation for Cooperative Jahn-Teller Distortions in Perovskites
- Decomposition of Distorded Perovskite Structures into orthonormal Modes and Strains Allows for Profound Studies of Structural-Electronic Interactions in Perovskite Crystal (ISODISTORT: http://stokes.byu.edu/iso/isodistort.php &/or AMPLIMODES: http://www.cryst.ehu.es/cryst/amplimodes.html)
- Study of the APES With Ab-Inito Methods Show That The Magnetic AFM-A to FM Transition is Controlled by Tetragonal Strain Q_3^{Γ}
- A First-Order Jahn-Teller Effect Takes Place Only in Specific Magnetic Orderings. Do we Need a Revised Jahn-Teller Theorem for Magnetic Space Groups in Solids ?
- The Characterization of Strain/Lattice/Electronic Interplays Permits to Derive New Design-Ideas for Materials with Remarkable Combination of Properties

Thank you for your attention!

Modes and Strains under Temperature

Full Potential Energy Surface

Full Potential Energy Surface

Strain APES

LaMnO₃ LaNiO₃ Bilayers on SrTiO₃

Gibert, M., Nano Letters, 2015, 15, 7355-736

Projected Band Structure

Influence of U|J Parameters

