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Finely tuned process-based tree-growth models are of considerable help in understanding the variations
of biomass increments measured in the dendrochronological series. Using site and species parameters, as
well as daily climate variables, the MAIDEN model computes the water balance at ecosystem level and
the daily increment of carbon storage in the stem through photosynthesis processes to reproduce the
structure of the tree-ring series. In this paper, we use three techniques to calibrate this model with Pinus
halepensis data sampled in the Mediterranean part of France: a standard optimization (PEST), Monte
Carlo Markov Chains (MCMC) and Particle Filtering (PF). Contrary to PEST, which tries to find an optimum
fit (giving the lowest error between observations and simulations), the principle of MCMC and PF is to
walk, from a priori distributions, in the parameter space according to particular statistical rules to
compute each parameter distribution. The PEST and MCMC calibrations of our dendrochronological se-
ries lead to rather similar adjustments between simulations and observations. PF and MCMC calibrations
give different parameter distributions, showing how complementary are these methods, with a better fit
for MCMC. Yet, independent validations over 11 independent meteorological years show a higher effi-
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ciency of the recent PF method over the others.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

When conceiving a model, environmental modelers have to
identify the major sociological or ecological processes, to write the
mathematical equation of the model or to find an algorithm able to
provide solution(s), to estimate its overall sensitivity and to cali-
brate (to parameterize) it, i.e. to estimate the unknown parameters
chosen. Assigning values to the parameters is a difficult task. When
enough data are available, modelers use optimization techniques
which lead to best fit values. Some recent intensive computing
techniques inspired from Bayesian statistics greatly improved this
task (Gelman et al., 1995), as it can be noted in hydrological disci-
plines (Pelletier et al., 2006; Dorner et al., 2007). However, the
different existing techniques must be compared in a common
framework and illustrated in other environmental disciplines such
as ecology (Zhou et al., 2004; Bugg et al., 2006).

In dendrochronology, statistical methods - often linear — have
been developed for several decades to answer various ecological
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questions at large time and spatial scales (Fritts and Swetnam, 1989;
Bugg et al., 2006). However, tree-growth processes are not linear
and, to better understand the tree-growth, more mechanistic
models are necessary. Process-based dendrochronological models
are examples of complex multi-parameter models (Fritts and
Swetnam, 1989; Fritts et al., 1991). Recently, a model (MAIDEN) was
proposed in which parameters can be tuned using both ecophysio-
logical measurements and dendrochronological time series (Misson,
2004; Misson et al., 2004). The authors have determined the pa-
rameters needed by the model on the basis of literature and cali-
bration by trial and error. We propose in this paper to test different
numerical algorithms and inference approaches, with the objective
of comparing their observation/simulation fits (the calibration
phase) and their errors on independent observations (validation
phase). Bayesian approach to these models is rather novel and we
expect new environmental insights, further discussed, by this mean.

There exist numerous optimization routines in the literature,
helping to adjust model parameters by minimizing a quantity re-
lated to the simulation/observation residuals (Yapo et al., 1998;
Dorner et al., 2007). Often based on a gradient of the minimization
function, they all give optimal parameter values sometimes with
a confidence interval, but without any idea of the parameter dis-
tribution. The PEST program for example, one of the most
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commonly used algorithms set for optimization (Doherty, 2003),
adjusts model parameters until the fit between model outputs and
observations is optimized in the weighted least squares sense. For
example, PEST has been recently used with success in order to
optimize parameter estimation in hydrological studies (Gallagher
and Doherty, 2007; Tischler et al., 2007). PEST is a nonlinear esti-
mator using the Gauss—-Marquardt-Levenberg method, needing
fewer runs than most of the other estimation methods.

Bayesian techniques such as Monte Carlo Markov Chains
(MCMQCQ) offer the opportunity to estimate the (a posteriori) pa-
rameter distribution, the calibration being done, starting from their
predefined (a priori) statistical distributions (Gelman et al., 1995;
Andrieu et al., 2001). Such approaches could nevertheless lead to
unrealistic results, in case of inappropriate a priori information or
non-relevant parameter distribution extractions. To bypass this
difficulty, other kinds of procedures such as Particle Filtering (PF)
have been recently imagined on the basis of genetic algorithms
(Doucet et al., 2001; Pelletier et al., 2006). Instead of MCMC ap-
proaches, the procedure still consists of going though the param-
eter space, but with a high number of initial choices called the
particles and defined by their parameter values (their coordinates).
Where MCMC algorithms work with one particle, PF ones make
evolving many of them simultaneously, selecting sequentially the
best in terms of observation/simulation fits.

The aim of this article is to compare three calibration ap-
proaches, namely PEST, the MCMC and PF algorithms, in the specific
case of the MAIDEN model (Misson, 2004), where 11 new param-
eters need to be assigned. Detailed sensitivity and elasticity anal-
yses are performed to compare calibrated parameter values and
distributions and to analyze the performances of each technique
and their ecological implications.

2. Data and model
2.1. Data

We use dendrochronological data from 21 Pinus halepensis
(Aleppo pine) stands located on calcareous soil in Provence,
southeast France (Nicault, 1999). Based on dendrochronological
cores, time series of annual earlywood width (E, ), latewood width
(Lw), earlywood density (Eq) and latewood density (Lg) were used to
calculate an index (W(t)) of annual wood increment that takes into
account not only stem radial growth but also wood density (see
Rathgeber et al., 2000 for a complete description). Based on time
series of W(t) built for each stands, arithmetic means were com-
puted for each year (over 34 years) to generate a series covering the
entire region. This regional dendrochronological series is the main
observational data that we will use to calibrate MAIDEN. Botanical,
ecological and topographical details were also recorded at each
stands (Nicault, 1999). Physiological data come from a pine-oak
experimental mixed forest. Tree transpiration has been measured
using the sap flow technique and is used here at daily time step
during year 2004 on the Aleppo pine species (Granier et al., 1996).

The Aix-en-Provence meteorological station (MétéoFrance)
provides maximum and minimum air temperatures and pre-
cipitation data at daily time steps for the 1961-1994 period. The
distance between this station and the sites varies between 5 and
65 km. For the independent validation stage, we used the daily
temperatures and precipitations that have been recorded at the
neighboring station Istres during the 1948-1960 period. Years 1956
and 1985 are characterized by extremely low winter temperature for
the region (freeze), which induced partial damaging of the cam-
bium, which had an effect on the growth during 3 years. We have
then removed the years 1956-1958 and 1985-1987 from all of the
observation/simulation comparisons made in this study because
MAIDEN does not integrate such processes (see Misson et al., 2004).

2.2. Model

The MAIDEN model is extensively described in Misson (2004)
and analyses of Aleppo pine dendrochronological series can be
found in Misson et al. (2004). The model needs site and species
parameters such as altitude, latitude, maximum absolute LAI,
Specific Leaf Area (SLA), initial bole biomass, soil thickness and soil
textural classes. In addition, the model has 11 unknown parameters
that can be tuned to adjust the outputs of the model to ecophysi-
ological and dendrochronological data. The main output of the
model gives the annual increment of bole carbon reservoir (here-
after named M;) that will be used further to calibrate the model.
Climatic driving variables are daily minimum and maximum tem-
perature and precipitation. MAIDEN uses the MT-CLIM algorithm
(Running et al., 1987) to estimate daily solar radiation and vapor
pressure deficit from daily temperature and precipitation. The
model calculates processes such as photosynthesis, stomatal con-
ductance and carbon allocation. The water balance is computed at
the ecosystem level, including canopy water interception, transpi-
ration, soil evaporation, soil water transfer, drainage and runoff.
MAIDEN partitions daily net primary production (NPP) between
carbon reservoirs (leaf, bole, root and storage) according to phe-
nological phase-dependent ratios. These phases are (1) winter: no
activity, (2) spring: leaf and root expansion, (3) summer: bolewood
production, (4) early fall: carbohydrate-reserve accumulation, (5)
late fall: leaf and root senescence. An original modeling procedure
of carbon storage and mobilization was developed to mimic the
autocorrelation structure of tree-ring series. The annual increment
of bole carbon reservoir at stand level is the modeled variable that
will be compared with the dendrochronological tree-ring series.

We use in this study a new version of the MAIDEN model from
which some of the ecophysiological processes simulated have been
improved. In particular, we modified the carbon allocation dy-
namics, allowing the store reservoir to give some carbon to the bole
reservoir during the whole summer and fall months. Concerning
the physiological processes, we first updated the temperature de-
pendencies of some photosynthetic parameters to equations pro-
posed by Bernacchi et al. (2003), secondly we removed the p
parameter used in the earlier version of the MAIDEN model and
calculated the net photosynthesis as the minimum between the
rate of carboxylation when ribulose biphosphate is saturated (W)
and the rate of carboxylation when ribulose biphosphate re-
generation is limited by electron transport (W), as initially pro-
posed by Farquhar et al. (1980). This new version uses 11
“calibration” parameters, whose only seven are in common with
the previous version (Table 1). Some uncertainties remain in the
exact value to be used for some parameters which were not cali-
brated in the first version of the model. In order to improve the
control on ecophysiological processes during the calibration stage,
we parameterized these parameters: the maximum Leaf Area Index
of the site (LAlpax), the Vcmax photosynthetic parameter, the pho-
toperiod at which the phenological phase 5 begins (Photope;) and
the parameter Rq,y linking leaf dark respiration rate to Vcmax.

3. Inference methods

In this problem the time series is short (34 years), and the ob-
servations are very noisy. Moreover, this experiment is not re-
newable. It is thus clear that we are in a Bayesian context. The
Bayesian approach meets a strong success, especially in environ-
mental sciences, after Markov Chain Monte Carlo algorithms were
applied (Robert and Casella, 1999; Bernier et al., 2000). We will
describe two methods of numerical Bayesian inference, namely the
Markov Chain Monte Carlo (MCMC) and the particle filtering (PF).
As a comparison, we also used a non-Bayesian method, the opti-
mization algorithm PEST.
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Table 1
List of the 11 MAIDEN parameter values after the three MAIDEN calibrations (PEST,
MCMC and PF); the parameters are defined as follows

Gad Growing degree-days in °C

a; Leuning factor, linking the stomatal conductance and the net primary
production

Do Coefficient linking the stomatal conductance and the humidity deficit at
the leaf surface, in Pa

0. Soil water stress parameter, in mm

Cy Temperature function coefficient controlling the fraction of daily net

primary production allocated to the store reservoir during fall
fstore—bole  Fraction of stored carbon to bole during summer

Jopp—bole  Fraction of net primary production to bole during summer
LAImax Maximum Leaf Area Index of the site

VCmax Maximum Vc CO, limitation of the photosynthesis of the species
Photope,  Threshold of duration day-light for growing start

Rday Daily sun radiation coefficient

i Parameter modulating the maximum daily temperatures

i Parameter modulating the minimum daily temperatures

p Parameter modulating the daily precipitation

The fit (%) is computed on the calibration period (1963-1994) and the RMSE on the
Istres independent years (1950-1962). The lower and upper bounds provide the
a priori intervals. The bounds after ecophysiological calibration are given for the six
parameters concerned. For each calibration we give the mode of the distribution and
the 95% confidence intervals.

Here we suppose that the observation data are of the following
form:

Ve = Mi(0,u;) + ov; fort = 1---T @)

where »; is a white Gaussian noise N(0,1), u; is the daily climatic
variable, M¢(0, u;) is the nonlinear annual bole increment, fe R is
the unknown parameter vector, the observation noise variance ¢ is
also unknown.

In the Bayesian context we want to get a numerical approxi-
mation of the following conditional law:

mr (6.0%) 16,071y 1] (2)

where [] defines a probability. A first possibility is given by the
MCMC methods: we build an ergodic Markov Chain whose limit
distribution is w1 (Tierney, 1994; Gilks et al., 1995; Robert and
Casella, 1999). Another possibility is to suppose that (f,02) are
unobserved state variables, then 71 appears to be the solution of
a nonlinear filter problem whose solution can be approximated by
means of Particle Filtering (Gordon et al., 1993; Doucet et al., 2001).

3.1. Monte Carlo Markov Chains

Here the target law is given by Eq. (2). In Eq. (1) we assume that
v, 02, 0%, ..., 0% are mutually independent. Hence, the parameters
prior law satisfies

{02,0‘,---,0"} - [az] x [01] X e x {0"]

and we choose uniform priors:
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where 0 <62, <02, <+ and o <. <b <o,

Bayes formula gives

7rT<z9, 02) o« [y1~.~yr(a, 02] x [0, 02]

According to Eq. (1), the likelihood function is
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otherwise.

Here we propose a simple Metropolis algorithm with sym-
metric proposal distribution. We sample a new candidate

according to
ép = ﬁp+7pwp’ p= 1---d, 6—2 — 02+'YOW0 (4)

where w0, w!, --- wf are independent N(0,1) variables (we restrict
these random walks to the prescribed intervals). The new candidate
is then accepted according to the following probability:

def fr (97 62)

r=min| ———=%1

fr(0,02)°

Here we adapt the variance (yp)2 of the proposal Gaussian
distributions Eq. (4) in order to balance the trade-off between
a high acceptance rate and a low mixing. To do so, we checked the
averaged fit between simulations and observations every 100 it-
erations and divided (respectively multiplied) by 2 the variance if
this fit decreased (respectively increased). This takes into account
the previous values of the Metropolis chain. Note that in this case
the resulting process is no more Markovian, see Haario et al. (2001)
for details.

3.2. Particle Filtering

The original model Eq. (1) can be rewritten as a nonlinear state-
space model:

0 =60 +yPwl, B~qp, p=1-d (5.1)
0t = op 4 +7"WP, ai~do (5.2)
Yt = Me(0¢,ur) + oeve (5.3)

Then, x¢ dif(ﬂt, 0?) is now a non-observed state process. We want
to determine the conditional law:

s

~

= Wr('%ﬂ%) Cﬁf[ﬁuffgb/]”'%} (6)

When 7P = 0, the model Eq. (5) is equivalent to the original one
Eq. (1) and Eq. (6) is consistent with the definition (2). It is well
know that standard Particle Filter implementation cannot handle
such a situation because of degeneracy of particles. Taking y? >0
induces an artificial dynamics of the parameters and increases the
variance errors. This point will be discussed later.

The conditional law Eq. (6) is a solution of an infinite-di-
mensional nonlinear filter. A tractable approximation of this non-
linear filter is achieved by Particle Filtering. This approximation is
of the form of an empirical probability measure:

e (0“ g?) '=~7rltv (0[, o?) déf%ﬁjé(ﬁf‘»"?m) (0& U?) (7)
i=1
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where 6 i1 g2 (6¢,02) denotes the Dirac measure at point
(i [']) The N particle positions (6)',¢7")._,  are then given
by a Partlcle Filter method, for which the bootstrap algorithm is
presented here.

3.2.1. Initialization
The initial set of particles is sampled from the priors:

Pl ~qy, o ~qy forp = 1--d, i = 1--N

Then we repeat iteratively the two classical steps.

3.2.2. Mutation
The particles mimic the state Egs. (5

. . . . 2
B <N ), ol <N (a0 (+°)7) (8)

forp=1-d,i=1-N

.1) and (5.2):

3.2.3. Selection
Using the new observation y; and the model Eq. (5.3), we
compute the likelihood of each particle:

2
(08 )

where f; is given by Eq. (3) and Z?’Zl wy] = 1. We resample N new
particles according to

( tr1 tJ’rl) Zwt (#9020 (9)

The multinomial sampling Eq. (9) could be cumbersome for N
large. The number of particles is stable all along the process and
often ranges from ~10% to 10 (we used 10> particles here). In
practice, we use special procedures like the residual resampling one
(Liu and Chen, 1998).

3.3. Nonlinear least squares (PEST)

One can try to infer this problem through a non-Bayesian ap-
proach like the nonlinear least squares one to get a referenced
approach. The goal here is to find # which minimizes the following
criterion:

M[lgll[)

NMﬂ

We use the PEST package (Model Independent Parameter Esti-
mation), a public domain model independent parameter estimator
based on the Gauss-Marquardt-Levenberg method (Doherty,
2004). Note that PEST also provides estimations of the parameter 2
as a coefficient of proportionality of the covariance error matrix,
and of the confidence intervals for the §P’s.

3.4. Calibration scheme

We had at our disposal only one series of ecophysiological
(transpiration) data in our studied region, coming from the Lama-
non Aleppo pine stands. Hence, in order to improve the model
calibration, we basically proceeded in two main stages. The first
stage involves a calibration of the model on the basis of the six
parameters controlling the ecophysiological processes and the
transpiration data. This first stage used the MCMC method to de-
duce the parameter distributions and boundaries (the 5 and 95%
percentiles of each parameter) calibrated for the studied region.
These boundaries serve to define the a priori laws used in the

second stage. The second stage consists of a complete calibration
based on the 11 model parameters (including the six ones cali-
brated on the transpiration data) and the dendrochronological time
series. This calibration stage is the one used to compare the three
previously described calibration methods. Modal fits and parame-
ter distributions are based on five draws being merged. More pre-
cisely, they are computed on the last 80% of the 5000 iterations
composing each draw (i.e. a 1000 iteration burn’ in). For each of
them, adapted convergence tests have been implemented. While
the PEST algorithm tested the non-uniqueness of the parameter
values obtained, the MCMC algorithm has been coupled with sev-
eral convergence tests proposed by the BUGS project (Spiegelhalter
et al., 1993). We used convergence tests dedicated to isolate draw
for the PF algorithm. For the MCMC algorithm, we used the Gel-
man-Rubin ratio, which compares the inter- and inner-variances of
the various chains (draws) that have been simulated in parallel
(Gelman and Rubin, 1992). This ratio tends to unity when there is
convergence.

In order to improve the method comparison, we performed de-
tailed elasticity tests of the model to test possible misspecifications
of model’'s components, as well as validations on independent
meteorological data to detect possible over-parameterization. First,
a sensitivity analysis has been performed after parameterization,
consisting of varying the values of the calibration parameters one
after the other (5% variations, with all other parameters being kept
constant at their calibrated values) and observing the influence on
the relative change of model predictions (Hamby, 1994). To be
comparable between each other, these sensitivity values have to be
normalized following the elasticity formula:

dM; p
‘M dp5%

p =

where the elasticity e, of the parameter p depends on the main
model output, the bole increment M. We test also the sensitivity of
the model to meteorological conditions (daily minimum tempera-
ture, daily maximum temperature and precipitation). For pre-
cipitations, we used the daily values of an “average” year (1975) to
capture the stochastic behavior of this variable. This averaged
meteorological year also helped us to choose the burn’ in period
necessary before the effective simulation runs, because of the
temporal autocorrelation imposed by the existence of carbon and
water pools in MAIDEN. The validation stage of the three calibra-
tions over independent meteorological data uses the Root Mean
Squared Errors (RMSE) to quantify the differences between ob-
served and simulated bole increments between 1948 and 1961
(after removing the years 1956-1958 having extremely low winter
temperatures).

4. Results
4.1. Physiological calibration

A MCMC calibration of the MAIDEN model has been performed
on the daily transpiration measurements with the six parameters
involved, starting from random f#-parameter values. Only the pa-
rameter boundaries are necessary for the rest of the study (Table 1,
third column). The aim of this first stage was not to compare the
calibration methods, but rather to decompose the global calibration
scheme into ecophysiological and carbon allocation processes. We
choose the MCMC method for this stage, as it was the most
straightforward one to get the ecophysiological parameter distri-
butions (we further use the boundaries rather than the modes) and
to understand the model responses. We launch five runs in parallel
to test the convergence. The determination coefficient r* between
transpiration observations and MAIDEN simulations for the pine
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r?~0.67£0.05 b

Daily transpiration (mm/day)

Days

Fig. 1. The Lamanon stand transpiration curve with its final RMSE mode. Observations
(doted line) are measured at Lamanon site and simulations (plain line) are done with
the MCMC algorithm, both for year 2004.

species at the Lamanon site after a MCMC calibration is equal to
r?=0.67 £0.05, corresponding to a RMSE=0.28 +0.03 (Web
Fig. 1a). The Gelman-Rubin ratio of the five draws tends to 1 and
proves that the convergence has been reached (Web Fig. 1b).

The transpiration simulation based on this calibration and the
corresponding observations shows the same pattern (Fig. 1), suc-
cessively involving an increase in February (day 50), a decrease at
the end of May (day 150), some discrepancies in September and
October (days 240-290), and similar variations in November and
December (days 300-365). The agreement is around 4%. Consid-
ering the water cycle, the discrepancy could be due to a high LAlax
value and/or low soil and vapor pressure deficit (Dg) stresses on
stomatal conductance. However, this discrepancy does not seem to
be due to the parameter values as both observations’ and simula-
tions’ curves present the same daily variations, but rather due to
a high soil depth inducing a low soil water stress. Considering the
carbon cycle, the gross primary productivity (GPP) associated to
this run seems relatively low (~970 gC/m?) with a maximum car-
bon assimilation for the canopy at 6.5 gC/m? in May (day 140). After
that, stomatal conductance decreases, thus reversing the assimi-
lation trend. The assimilation maximum is not synchronous with
the Vcmax maximum in July (day 200). Finally, the six parameter
probability distributions have normal shapes (not shown) and de-
fine the most probable limits (Table 1) used for subsequent cali-
brations of this study.

4.2. Dendrochronological calibrations

The MCMC calibration of MAIDEN with the PACA dendrochro-
nological series has been done starting from random parameter
values within the initial boundaries chosen. It shows a modal fit of
1% =0.37 £ 0.04 (Web Fig. 2a). The fit evolution is progressive on
most of the draws with a reasonable ( ~17%) acceptation/rejection
rate of the Metropolis—-Hastings criteria for 11 parameters. The
MCMC run did globally reach a stationary state as confirmed by the
convergence tests (Web Fig. 2b), leading to the 11 parameter dis-
tributions (Web Fig. 3b, Table 1 columns 6-7). Most of the pa-
rameter distributions have normal shapes, while the uniform or
multi-modal distributions (parameters Do, LAlmax, VCmax and Rday)
are mainly due to the running time constraints not allowing to
reach a stationary state (Web Fig. 3a for Dy). Differences between
the calibrated bole increment simulation and the observations are

quite regular, showing the ability of the model to simulate rather
different growing situations and hence, carbon storage in the tree
compartments (Fig. 2a).

The PEST optimization of the model with the PACA dendro-
chronological series gives a fit equal to % = 0.46. This optimum fit is
in a good agreement with the MCMC final fit distribution, as the
maximum MCMC fit value reached is equal to r? ~ 0.52 (while
r?|memc = 0.37 is the modal fit). PEST needed 16 iterations to reach
this value. Most of the lower parameter boundaries of the 95%
confidence intervals are negative and too large to be realistic and
useful.

Finally, for the PF algorithm, we start from random values for 6 in
the same intervals used for MCMC algorithm. As a sequential al-
gorithm, PF tests each new observation year on the basis of mean-
squares (r2). The last step of this calibration run gives a final fit
equal to % = 0.25 & 0.02 with 1000 particles, a fit lower than for the
other calibration techniques (Web Fig. 4). Years 1987 and 1994 for
example are constraining for this calibration, in the sense that they
bring new data information that forces the model to adapt, while
the fit is improved for years around 1974 and for 1992. The last

V]

3 T T T T T T

2 ~0.37+0.04

At

Standardized ring-width indices
o

2t

-3 . . A . .
1960 1965 1970 1975 1980 1985 1990 1995

o

2 ~0.25+ 0.02

At

Standardized ring-width indices
(=]

2t : !

1

1960 1965 1970 1975 1980 1985 1990 1995
Time (years)

Fig. 2. The standardized bole increment evolutions simulated by MAIDEN over 1963-
1994 years for the MCMC (a) and PF (b) calibration methods and their observation/
simulation fits. The MCMC dendrochronological time series shows the measures
(doted line) and the simulation (plain line). The PF dendrochronological time series is
superimposed with observations (dots), the simulations using the initial parameters
(plain line), the simulated values during the run at each new step (stars) and the
simulations using the final values at the last step (dashed line). The absence of stars for
the freezing years 1984-1985 indicates that they were not used during this calibration.
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calibration stage provides the a posteriori distributions (Fig. 3b) and
their associated confidence intervals (Table 1, columns 8 and 9).
Most of the parameter distributions are normally shaped, in-
dicating a real update of our knowledge on these parameters
whereas for the others (fstore - boles fnpp — bole and Rqay) it seems that
one gained nothing in terms of information. Fig. 2b compares bole

a b
o}
0! '#‘*"‘,,\ ﬂ‘rlv‘ﬂ“
%0+
g ™o e E
=
s { M
> 1 |
b 18 ’ .-"l i' l“
% 10k = i l]
H
= 3 - - -
S W 10 10 10 "0
n“tm-
1000
o0 A ] ;
- D .
LT I B

Iterations

. Probability density...

1285

increment observations and simulations before (plain line), during
(stars) and after (dashed line) the calibration. This highlights in
particular the progressive improvement of the parameter set
choices.

As a validation step, the bole increment simulation on in-
dependent Istres meteorological data after the MCMC calibration

dd

Oc

LAL,,

Ve,

Phntnp"

Parameter values

Fig. 3. The 11 MAIDEN parameter probability distributions (b) and the value evolution of the first three during the PF calibration (a). The whole run values are shown (6000
particles). The heavy dashed lines indicate the optimum parameter value, the dash-doted lines indicate the 5 and 95% percentiles, while the light dashed lines show the MCMC

parameter modes for comparison.
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leads to a RMSE ~ 0.90, a value lower than 1 standard deviation. It
is acceptable but not negligible. The bole increment curve built
from the Istres meteorological data corresponding to the PEST
calibration appears to be very similar to the MCMC (Web Fig. 5). It
leads to a RMSE ~ 0.91. The final PF calibration RMSE over the in-
dependent Istres meteorological data is equal to ~0.79, lower than
the other technique ones. Hence, this better bole increment simu-
lation of the PF algorithm on the basis of the earlier period (before
1960) seems to compensate its rather low calibration score.

4.3. Calibration comparison

Significant differences appear between the MCMC, PF and PEST
calibrations, concerning either the parameter modes and therefore
conditioning the bole increment simulations, or concerning the
parameter distributions and limits (Table 1).

Concerning the calibration modes of the model parameters, PEST
is often in disagreement (20% difference in average and up to ~35%
for a;) with the other method values: in particular parameters Gqg,
ay, €2, LAlmax, VCmax, Photoper, Rqay. Most of the parameter modes are
in agreement between the MCMC and PF methods, except Dy, for
which the MCMC mode is outside the PF limits. As a consequence,
the dendrochronological simulations using the MCMC and PEST
calibration modes seem rather similar, while the parameters and
intermediate ecophysiological simulated variables are different.
Three main differences are identified. MCMC run shows a lower
total water stress (atmosphere + soil), mainly due to a lower soil
water stress and thus higher transpiration and GPP (although with
distinct Vcmax). A second difference is observed for the carbon al-
location, the PEST run having a much lower Photope; (=8) inducing
a reduced but still effective bole growth between the end of the
summer and the beginning of the winter. Moreover, the stored
carbon (in the storage reservoir) and its use for the bole growth are
higher for the PEST run than for the MCMC run. The third difference
is observed on the Ggq values being lower for the PEST run, thus
starting the growing season in average 4 days in advance. The PF
run, while being rather similar to the others, does not simulate
some inter-annual variations (the PF’ coefficient variation is equal to
~8.36 instead of ~7.87 for PESTand ~ 10.75 for MCMC). The use of
the carbon reserves (the storage reservoir fstore—bole) i higher, the
soil water stress 6. is higher and the Leuning coefficient a; lower for
the PF run. This explains why the soil water stress starts quite early
in the year and why the transpiration is too low, leaving too much
water unused in the soil. Most of the bole increment variability
comes thus from the reserve use, leading to a slightly flatter curve
than for the MCMC run.

Concerning the probability distributions of the model parame-
ters, most of the PF distributions appear more regular and normally
shaped than the MCMC ones. Parameters fstore — boles fnpp — boles Rday
are the only one showing non-informative (uniform) distributions
after PF calibration, and truncated normally shaped distributions
after MCMC calibration. The associated MCMC and PF parameter
confidence intervals are often in agreement, while the PEST un-
certainty intervals appear to be unrealistically large. Only Gqq and
Vcmax have confidence intervals physically acceptable. PF confi-
dence intervals are usually narrower than the MCMC ones, in-
dicating a better ability to converge into a relevant (high
observation/simulation fits) region of the parameter space. Three of
the 11 MAIDEN parameters shown rather different values than
what was expected given the calibration done using trial-and-error
method with a previous version of the model (Misson et al., 2004).
The Ggqgq, is found around 300 + 50 degree-days, which is about 100
degree-days higher than the previous value calibrated for P. hale-
pensis. This suggests a bud-burst triggered about 1 week later
during the year. The 6 is found around 200 + 50 mm, which is
about 100 mm higher than the previous value. This suggests, other

things being equal, a soil water stress arriving earlier in the season
than previously expected. The LAly,x is found around 1.9 +0.2,
which is lower than the constant value of 2.7 used in the earlier
version of the model. This suggests less productive pine sites than
previously expected. It is possible that convergence towards lower
LAlnax has influenced a higher f.in order to trigger consistent soil
water stress on stomatal conductance in both the earlier version
and the present version of the model.

4.4. Elasticity comparison

Elasticity and validation tests are necessary to evaluate the
calibration methods. The Photope; imposing the start of the fall
period, the ¢ parameter controlling the fraction of daily NPP allo-
cated to the store reservoir, the tmax parameter modulating the
maximum daily temperatures, and the Vcpax photosynthetic pa-
rameter are the parameters having the highest impact, roughly of
the same order of magnitude (Web Table 1). Only tpyax has a re-
current high elasticity across all the calibration methods and seems
to be the most influent parameter overall. The previous four-pa-
rameter elasticities roughly stay at the same relative order with
higher parameter variations up to +50% for the MCMC calibration
for example. Most of the other model parameters have a weak and
comparable influence. The p parameter modulating the pre-
cipitations appears to have significant influence, mainly for the
MCMC calibration.

4.5. Independent verification

When applied to independent meteorological data (Istres:
1950-1962), the three calibration parameter sets (PEST, MCMC, PF)
lead to simulated bole increment variations being rather similar
(Web Fig. 5). Residuals between the standardized final simulations
and the observations over the 11 years of validation show the dif-
ficulties of the MAIDEN model to simulate some of the years:
namely the freezing years 1956/1985 and following, the rainy year
1963 and years 1993-1994 (Fig. 4). When looking at the residuals
between the three final bole increment series and the corre-
sponding observations, it appears that MCMC and PEST present
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Fig. 4. The residuals of the regional calibrated bole increment curves. The comparison
of the standardized bole increment residuals are deduced from the three calibration
methods and the corresponding observations, on the basis of the Istres meteorological
for independent years (1950-1962) after removing the 1956-1958 freezing years. The
calibration methods are figured by different colors: PEST: green, PF: red, MCMC: blue
and observations in black. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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rather similar behavior, while distinct from that of the PF algorithm.
The final observation/simulation RMSE confirms this (Table 1). The
main contribution to these residuals comes from the first 3 years.

5. Discussion

In this study we used three different approaches to calibrate
(parameterize) a complex nonlinear ecophysiological model: PEST
optimization, MCMC and PF algorithms. We showed that they have
respective advantages and disadvantages that could be exploited
depending on the nature of the environmental model and the
computing power available. We discuss here the results according
to ecophysiological and statistical points of view.

5.1. Ecophysiology

The physiological part of the MAIDEN model has been calibrated
first using 1 year of observed transpiration measurements. The
observation/simulation fit is seasonally correct, while some differ-
ences exist for shorter-term variations. The low residuals (of about
4% over the year) could be due to the maybe high soil thickness in
the model, leading to an inefficient soil water stress on transpira-
tion. In addition, the seasonality of the Vcpax parameter is related to
variations in air temperature only, which could be inappropriate in
the very dry conditions characterizing the experimental site where
the data were collected. Other factors should be taken into account,
however, this is still badly understood and suggest new observa-
tions and experiments (Misson et al., 2006). It must be pointed out
that our simulations correspond to an “averaged” carbon allocation
for P. halepensis on a typical regional site and then that the site
conditions cannot be realistic. This weakness is confirmed by the
sensitivity analyses done above which showed that the tpax pa-
rameter was always the most sensitive one. The water stress pa-
rameters are more dependent on the local conditions.

Then, the dendrochronological part of the MAIDEN model has
been calibrated. MCMC and PEST simulations are rather similar and
slightly different than the PF ones. Simulations are realistic from
1963 to 1984, but the periods 1985-1987 and 1991-1994 are poorly
simulated (Web Fig. 5). For the first period, it could be explained by
the cold winters (low tpjy) that damaged the cells, a process that
MAIDEN is not able to take into account. There is no clear expla-
nation for the second period. The PF simulation is slightly less
correlated with the observations: it shows roughly the same inter-
annual variations than for the two other calibrations, but in a lower
extent. It could be due to a too high carbon allocation in the storage
compartment. The PF run is also the one having the highest soil
water stress . and the lowest Leuning coefficient a;, leading to
a weaker and unrealistic transpiration. Nevertheless, these runs
correspond to “averaged” carbon allocations for P. halepensis on
a typical regional site (Abbas, 1986).

5.2. Bayesian vs. nonlinear least square methods

The MCMC and PEST algorithms globally show the same ability
to calibrate a complex tree-growth model, although built on dif-
ferent inference bases. Both gave relatively similar results, with
slightly higher observation/simulation fits than the PF procedure
(Table 1). PEST gives unrealistic confidence intervals; the MCMC
and PF algorithms are much better in this respect. The counterpart
is a much longer computer time. PEST also suffers from a high de-
pendence on the noise in the observations. The fact that it only
gives a best fit estimate instead of probability distributions makes
that we are not able to appreciate the errors. For example, this fact
is probably responsible for the low Photope; value (=8) as estimated
by PEST. This value, leading to a bole growth during fall, is close to
the lower boundary and should not have a high probability. This

nonlinear least square approach is not comparable to the Bayesian
approach and each of them would be selected only if we need
a quick estimate of the parameters. PEST has the best fit (? ~ 0.45).
It is logical, as an optimization procedure leads to the best fit,
reached several times by MCMC. While PEST retains the highest,
MCMC and PF retain the value the most frequently reached, which
is more robust and less dependent on the observation noise. The
independent validation confirms that a too high value of r? leads to
a more important risk of over-parameterization. PF has the lowest
1 and the best prediction RMSE (~0.8).

5.3. MCMC vs. PF

Although both MCMC and PF are Monte Carlo methods, they are
very different. MCMC is founded on the ergodic theorem, whereas
PF is founded on the law of the large numbers. The MCMC methods
are iterative, whereas PF are not. The problem of convergence of
these methods is a key issue (Cowles and Bradley, 1996; Brooks and
Gareth, 1998). MCMC are batch procedures, whereas PF are se-
quential. Indeed, if a new measurement yr,; is made available,
MCMC methods cannot treat it alone, the procedures must be
restarted from the beginning. PF methods, also called sequential
Monte Carlo, treat the observations available progressively. This is
one of the major issues in nonlinear filtering. In our problem this
point is not essential. One can use a more sophisticated mutation
procedure than Eq. (8), for example an acceptance/rejection
scheme. There exist PF methods which are more adapted to the
present situation, like the kernel ones (Liu and West, 2001; Doucet
and Tadic, 2003; Campillo and Rossi, 2006). They make it possible
to avoid adding the artificial diffusion terms in Egs. (5.1) and (5.2).
Those approaches will be developed in a future work.

Practically in the present study, the MCMC algorithm coupled
with the convergence tests (Gelman-Rubin) remains robust. Yet,
this Bayesian parameterization procedure suffers from a real tuning
difficulty, at the opposite to the PF algorithm. The a priori distri-
butions (and boundary variations to zoom into the parameter
space) and the algorithm convergence require a good knowledge of
this algorithm and even a long experience of their use in various
cases. The main disadvantage of the PF algorithm is that the particle
number is important (from ~10? to 10°) for the algorithm to be
efficient. At counterpart, PF algorithm has several advantages: i)
based on a genetic algorithm concept easy to understand, it is easy
to develop and to implement; ii) no burn’ in period and no pa-
rameter distribution filtering are necessary as the a posteriori dis-
tributions are directly given at the last running step; iii) It can be
parallelized in case of high number of particles; iv) and almost no
tuning algorithm is necessary. As a sequential approach, PF algo-
rithm has the ability to indicate the very constraining years, those
which poorly fit simulations and observations. As a last advantage,
PF algorithm based on the law of the large numbers obtains
smoother and more regular (normal) parameter distributions being
thus easier to analyze and interpret. Yet, we emphasize that all of
these calibration methods could benefit to socio-ecological
scientists.
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