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ABSTRACT 28 

This paper presents a systematic analysis of the influence of nine urban characteristics (distance be-29 

tween buildings, mean building size, building coverage, etc.) on surface flow in case of pluvial 30 

flooding. Time dependent stored volumes, outflow discharges and mean water depths were com-31 

puted for a set of 2,000 synthetic urban forms, considering various terrain slopes and return periods 32 

of the rainfall. An efficient porosity-based surface flow model was used to compute the 2D flow 33 

variables. Statistical analysis of the relationship between the flow and urban variables highlights 34 

that the flooding severity is mostly influenced by the building coverage. 35 

Keywords: urban pluvial flood, porosity shallow-water model, procedural modelling. 36 

1 INTRODUCTION 37 

Worldwide, urban flooding induces a broad range of damage to people, infrastructure and economy 38 

(e.g. Huang et al., 2017, Yin et al., 2016, Kreibich et al. 2019). Urban flood risk is growing as a re-39 

sult of rapid urbanization and increasingly frequent hydroclimatic extremes (Zhou et al. 2012, Chen 40 

et al. 2015, Muis et al. 2015, Yin et al. 2015, Miller and Hutchins 2017). A major cause of flooding 41 

in inland urban areas is pluvial floods, induced by heavy rainfall events (Gaines 2016). Existing re-42 

search on urban pluvial flooding has covered a broad range of aspects, including spatio-temporal 43 

precipitation data, rainfall-runoff modelling, risk management and impact analysis of climate and 44 

land-use change. 45 

1.1 Existing data and models 46 

Hydrological modelling of urban catchments remains particularly challenging due to (i) limitations 47 

in data availability, (ii) specific flow processes such as the interactions between surface flow and 48 

urban drainage systems, (iii) as well as the spatial heterogeneity of urban features influencing runoff 49 

(Leandro et al. 2009, Salvadore et al. 2015). 50 
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In early studies, the urban surface water runoff originating from point sources, such as manholes, 51 

has been simulated with 2D surface flow routing models, either based on the full 2D shallow-water 52 

equations (Mignot et al. 2006, Martins et al. 2017) or on simplified versions such as inertial formu-53 

lation (e.g. Fewtrell et al.,2011). 54 

Other research applied sequentially a 1D model for the urban drainage system and a 2D model for 55 

surface flow routing. The outcome of the urban drainage model consists in hydrographs of sur-56 

charged flow (i.e. excess flow compared to the design discharge of each pipe section), used as an 57 

input for the 2D surface flow routing model. Based on this approach and a 2D diffusive surface 58 

flow model, Hsu et al. (2000) simulated inundation in urban areas caused by the surcharge of storm 59 

sewers and considering the influence of pumping stations. Nonetheless, even in this approach, two-60 

way interactions between the surface flow and the urban drainage system are not reproduced explic-61 

itly. 62 

In contrast, dual-drainage modelling consists in coupling a 1D flow routing model for the urban 63 

drainage system and a 2D surface flow routing model (Schmitt et al. 2004, Djordjević et al. 2005, 64 

Chen et al. 2007, Seyoum et al. 2012, Löwe et al. 2017). The bidirectional interactions between the 65 

two models are ensured through sink and source terms in the respective model equations. These 66 

terms are evaluated from weir or orifice formulae (Bazin et al. 2014). In so-called hydro-inundation 67 

models, precipitation is incorporated as a source term in the 2D surface flow routing model and this 68 

model contains an explicit representation of hydrological processes such as infiltration (Cea et al. 69 

2010, Yu and Coulthard 2015, Leandro et al. 2016, Löwe et al. 2017) and evaporation (Yu and 70 

Coulthard 2015, Yin et al. 2016, 2019) , to replace the total rainfall by the effective rainfall. While 71 

in conventional approaches catchment modelling and floodplain modelling are two successive 72 

steps, in hydro-inundation models they are merged into a single computation. In several studies, 73 

dual-drainage and hydro-inundation features were combined (Hsu et al. 2000, Schmitt et al. 2004, 74 

Leandro et al. 2016). In contrast, others opted for a simplified description of the urban drainage sys-75 
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tem, such as assuming that water is drained away at the design capacity, without explicit representa-76 

tion of drains and manholes (Yu and Coulthard 2015, Yin et al. 2016, 2019), or even neglected the 77 

urban drainage system (Huang et al. 2017). In existing dual-drainage and hydro-inundation models 78 

so far, the surface flow was represented using non-inertia 2D flow models. 79 

The broad range of developed models has proved valuable to support urban flood risk management 80 

as well as for the planning and management of urban drainage systems (Fletcher et al. 2013). They 81 

have been used in various settings, including for evaluating the impact of flooding on traffic disrup-82 

tion (Yu and Coulthard 2015, Yin et al. 2016, 2019), for urban flood forecasting (Chen et al. 2015), 83 

for assessing pluvial flood risk at the local level (Elboshy et al. 2019), among other applications.  84 

1.2 Influence of urban planning on urban pluvial flooding 85 

Many recent studies have investigated the sustainable management of urban storm water based on 86 

Low Impact Development (LID) techniques (i.e. seeking to mimic a site’s pre-development hydrol-87 

ogy), such as tanks, swale, green roof or permeable pavement (Qin et al. 2013, Ahiablame and 88 

Shakya 2016, Chen et al. 2017). Others analysed the impacts of urbanization on urban pluvial 89 

flooding. For instance, based on a hydro-inundation model, Huang et al. (2017) and Miller and 90 

Hutchins (2017) highlighted that land-use and land cover changes substantially contribute to in-91 

crease pluvial flooding in urban areas, especially for extreme rainfall events. 92 

However, a more limited attention has been paid so far to the specific influence of urban planning 93 

policies on urban pluvial flooding. In this regard, only a study carried out by Löwe et al. (2017) 94 

stands out. For an urban catchment of 300 ha in Australia, they coupled a 1D-2D hydrodynamic 95 

model with an urban development model. They tested nine different urban development scenarios, 96 

characterized by contrasting levels of demand for housing, type and location of buildings (uncon-97 

trolled urban sprawl involving detached single-unit houses vs. more compact urban forms with 98 

multi-storey buildings and apartment blocks) as well as flood adaptation options (buyback of prop-99 
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erties, rainwater harvesting, increased stormwater pipe capacity). Their results suggest that, com-100 

pared to the increase of urban drainage capacity, urban planning policies are more efficient to re-101 

duce flood risk under various climate change scenarios. 102 

Nonetheless, even Löwe et al. (2017) paid only limited attention to the role paid by the urban form 103 

on the severity of urban pluvial flooding, whereas geometry and arrangement of buildings alter the 104 

surface flow preferential directions as they represent obstacles to the flow (Leandro et al. 2016). 105 

Additionally, existing research focused on individual real-world case studies, and not on more ge-106 

neric configurations; and previous analyses remained generally at the level of the land-use category 107 

(e.g. residential, industrial vs. green space), not at the building level. 108 

Therefore, in this paper, we aim to understand whether the geometric characteristics of the arrange-109 

ment of buildings (also called urban pattern) influence surface flow during urban pluvial flooding. 110 

More specifically, using regression and correlation analyses, we have been searching for possible 111 

relationships between indicators of the severity of urban flooding (stored volume, inundation depth, 112 

outflow discharge) and geometric parameters characterizing the urban patterns (typical street width, 113 

length, curvature and orientation, building size and distances between buildings). 114 

To do so, we performed a systematic analysis by considering 2,000 synthetic, but realistic, urban 115 

forms, obtained from a procedural urban generation model. For each of them, we computed the sur-116 

face flow variables corresponding to three different design rainfalls (15-, 50- and 100-year return 117 

periods). The terrain slope was also varied, resulting in a total of 12,000 distinct simulations. This 118 

analysis is an extension of the procedure recently developed by (Bruwier et al. 2018) for the case of 119 

river flooding. 120 

To perform the high number of necessary model runs, we used an efficient hydro-inundation model 121 

developed in-house. It is based on a validated integral porosity shallow-water model solving the 122 

fully dynamic shallow-water equations for surface flow (Bruwier et al. 2017a). A simplified ap-123 
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proach is used to represent the urban drainage system, which is deemed justified here since the fo-124 

cus is set on comparing the influence on surface flow of the geometric parameters characterizing the 125 

urban patterns. 126 

The methodology, detailed in Section 2, includes the generation of synthetic urban forms with a 127 

procedural model (Section 2.1), a brief presentation of the hydro-inundation model (Section 2.2) 128 

and the statistical approach used to determine the impact of urban parameters on pluvial flow (Sec-129 

tion 2.3). Computed flow variables and their relationships with the urban characteristics are pre-130 

sented and discussed in Section 3. Conclusions are drawn in Section 4. 131 

2 METHODOLOGY 132 

The methodology for evaluating the influence of the urban forms on urban pluvial flooding consists 133 

of a chain of two modelling steps and one statistical analysis step, as sketched in Figure 1. Each 134 

step is detailed in the following sections: 135 

 Section 2.1 presents the generation of 2,000 synthetic urban forms by means of proce-136 

dural modelling; 137 

 Section 2.2 describes the computation of surface flow using a porosity-based shallow-138 

water model and design storms of various return periods; 139 

 Section 2.3 details the statistical analysis developed to assess the influence of each urban 140 

parameter on the peak values of stored volume, outflow discharge and mean water depth. 141 
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 142 

Figure 1: Methodology involving procedural modelling, hydro-inundation modelling 143 

and statistical analysis. 144 

2.1 Procedural modelling 145 

Synthetic urban forms were generated using a deterministic procedular modelling system presented 146 

by Mustafa et al. (2018). It consists of a set of rules which enable defining the street network and 147 

the arrangement of parcels and buildings based on a limited number of input parameters. The out-148 

puts of this urban procedural modelling are collections of locations and footprint geometries of 149 

buildings over a predefined area. In this study, we considered a square area of 1 km by 1 km and we 150 

generated 2,000 distinct urban forms by randomly selecting the values of the input parameters. 151 
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The input parameters are listed in Table 1. They are identical to those used by Bruwier et al. (2018). 152 

The procedural model operates in three steps: 153 

 The network of streets is made of two perpendicular “major” streets and a number of 154 

“minor” streets. The skeleton of the network of streets is controlled by parameters x1 to 155 

x3. Parameter x1 defines the typical distance in-between street intersections. The street 156 

orientation is controlled by parameter x2 = | sin [ 2 (  -  / 4 ) ] |, with  the angle be-157 

tween the west-east direction and the alignment of one of the two main streets. The cur-158 

vature of the streets is given by x3 (reciprocal of the typical radius of curvature). 159 

 Parameters x4 to x6 influence the number and location of the individual parcels. 160 

 The size and location of the buildings within each parcel are governed by the setbacks x7 161 

and x8, which represent distances between buildings and the borders of the parcels. The 162 

building coverage x9 is the fraction of the total area occupied by buildings. It controls the 163 

number of parcels kept without building (i.e. open space). 164 

As shown in Table 1, each input parameter was restricted to a range of variation defined to ensure a 165 

sufficient degree of realism of the generated urban forms. These ranges of variation were derived 166 

from a sample of real-world cadastral data from Belgium. Nonetheless, the procedural model can 167 

also represent a broad range of other urban forms, especially for European cities, as shown by Mus-168 

tafa et al. (2018). 169 

A complete description the flow process of the procedural model is given by Bruwier et al. (2018). 170 

Examples of generated urban forms are shown in Figure 8 hereafter, as well as in Bruwier et al. 171 

(2017a, 2018) and Mustafa et al. (2018). 172 

 173 

 174 

 175 
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 Urban variable Minimum Maximum 

x1 Average street length 40 m 400 m 

x2 Street orientation 0 1 

x3 Street curvature 0 km-1 10 km-1 

x4 Major street width 18 m 38 m 

x5 Minor street width 10 m 21 m 

x6 Mean parcel area 350 m2 1,100 m2 

x7 Building rear setback 1 m 5 m 

x8 Building side setback 1 m 5 m 

x9 Building coverage 0% 43% 

Table 1: Input parameters characterising the synthetic urban forms,  176 

and ranges of variation. 177 

 178 

To perform flow computations, the building footprints generated by procedural modelling are 179 

placed on an idealized terrain of uniform slope along the direction south-west (highest level) to 180 

north-east (lowest level) (Figure 2). Two distinct slopes were tested: 1.4% and 2.8%. Idealizing the 181 

topography as a plane is a strong assumption; but it is motivated by our intention to focus here our 182 

systematic analysis on the influence of the urban forms. Therefore, we did not want to include addi-183 

tional independent variables characterizing a more complex topography (e.g. location, extent, depth 184 

of sinks …). 185 
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 186 

Figure 2: Schematic representation of the considered 1 km by 1 km urban district on a 187 

terrain of uniform slope, with building footprints. 188 

2.2 Hydro-inundation model 189 

For each of the 2,000 synthetic urban forms introduced in Section 2.1, surface flows occurring dur-190 

ing urban pluvial flooding were computed under identical flow boundary conditions and hydrologi-191 

cal forcing (design storms). 192 

To perform the flow computation, we used an existing porosity-based shallow-water model. Such 193 

porosity-based models enable using relatively coarse computational cells while preserving to some 194 

extent the detailed topographic information at a subgrid-scale by means of storage and conveyance 195 

porosity parameters (Sanders et al. 2008). This approach enables speed-up factors of the order of 196 

102 to 103 compared to standard shallow-water models, while keeping a similar level of accuracy 197 

(Guinot et al. 2017). This made the systematic analysis of 2,000 urban forms tractable. 198 

We applied here the same porosity-based model as used by Bruwier et al. (2018) for assessing the 199 

influence of the urban forms in the case of river flooding. The model was introduced and exten-200 

sively validated by Bruwier et al. (2017a). It was also repeatedly applied for modelling urban flood-201 

ing (Arrault et al. 2016, Bruwier et al. 2017b, 2018). An additional piece of validation against ex-202 

perimental observations is provided in Supplementary material A for flow conditions corresponding 203 

specifically to pluvial flooding. 204 

Impervious boundaries

Terrain
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The flow computations were performed using a Cartesian grid with a spacing Δx = 10 m, a Manning 205 

roughness coefficient n = 0.01 sm-1/3, a drag coefficient cD = 2 and a minimum threshold porosity 206 

ϕmin = 0.1. The influence of these parameters, particularly the grid size, was tested by Bruwier et al. 207 

(2017a) for geometric configurations (urban forms) identical to those considered here. 208 

As sketched in Figure 2, impervious upstream boundaries were prescribed along the south and west 209 

sides of the urban district, while a rating curve was prescribed as a downstream boundary condition 210 

along the north and east sides. This rating curve is a lumped representation of the flow conditions 211 

further downstream of the urban area under study. It relates the local runoff unit discharge to the 212 

power 3/2 of the runoff depth (Bruwier et al. 2018). The buildings are represented as impervious 213 

blocks. 214 

The specific objective of the present study is not to represent a given real-world flooding event, but 215 

instead to conduct a comparative analysis of the influence of urban characteristics on surface flow 216 

during urban pluvial flooding. Therefore, the selection of the rainfall input is to a great extent arbi-217 

trary, provided that it remains representative of real situations. We opted for three distinct design 218 

storms corresponding to return periods of 15, 50 and 100 years in a Belgian municipality 219 

(Hosseinzadehtalaei et al. 2018). This range of return periods is consistent with that used in other 220 

similar researches (Yin et al. 2016, Huang et al. 2017). More details on the design storms are given 221 

in Supplementary material B. 222 

The model accounts for direct rainfall input but it does not represent the urban drainage explicitly. 223 

While in some studies the urban drainage system was assumed overwhelmed and therefore simply 224 

neglected (Mignot et al. 2006, Fewtrell et al. 2011), we opted here for a lumped representation of 225 

the urban drainage (e.g. Yu and Coulthard 2015) by subtracting a portion of the rainfall input (e.g. 226 

Skougaard Kaspersen et al. 2017). Consistently with JBA Consulting (2016), we substracted from 227 

the considered design storm the design storm corresponding to a plausible return period taken into 228 

account for the sizing of urban drainage systems. This return period was assumed equal to two 229 
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years. This simplified approach, assuming that the drainage system drains at its design capacity, 230 

makes the model more suitable for events strongly dominated by direct surface runoff. 231 

In principle, the spatially distributed effect of drains could be incorporated in the hydro-inundation 232 

model; but it was deemed inconsistent with the primary objective of the study, which focuses solely 233 

on the influence of the geometry and arrangement of the buildings. Accounting for spatially distrib-234 

uted drains would have required additional arbitrary assumptions (on their location, pipe sizing, net-235 

work topoly …) which could affect our conclusions. 236 

In previous studies of urban pluvial flooding, infiltration was either neglected (Brown et al. 2007, 237 

Chen et al. 2007, Sampson et al. 2013), replaced by an initial abstraction (Chang et al. 2015, Russo 238 

et al. 2015) or computed explicitly by means of dedicated equations such as Green–Ampt (Yu and 239 

Coulthard 2015, Leandro et al. 2016, Yin et al. 2016), Horton (Fernández-Pato et al. 2016, Löwe et 240 

al. 2017), or a simplification of the former equations (Skougaard Kaspersen et al. 2017). Here, to 241 

avoid extra arbitrary assumptions and keep the focus on the primary aim of this exploratory study, 242 

all spaces not occupied by buildings were assumed impervious. The cumulative effects of the urban 243 

form and green (infiltration) spaces should be analysed separately. Note that, although disregarding 244 

the infiltration in green areas is a strong assumption, adding infiltration processes in the present sys-245 

tematic analysis of a broad range of urban forms would dramatically increase the number of inde-246 

pendent variables (spatial distribution, extent and infiltration capacity of green areas), which in turn 247 

would make the conclusions less focused on the “effects of urban forms”. 248 

Evapotranspiration could safely be neglected due to the urban nature of the catchment and the rela-249 

tively short time scales of interest here (Yu and Coulthard 2015). 250 

Another common challenge in the modelling of urban pluvial flooding relates to the impact of the 251 

building roofs on the rainfall–runoff processes, mainly due to a general lack of knowledge on the 252 

roofs drainage structure. By introducing a constant user-defined routing velocity for shallow areas 253 

(including the roofs of the buildings), Sampson et al. (2013) conducted stable simulations of direct 254 

precipitation onto topography where buildings are present, without requiring prior knowledge or 255 
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roof drainage structures. Chang et al. (2015) utilised some sub-catchments feature of their model to 256 

represent the buildings rainfall–runoff processes. Similarly, Leandro et al. (2016) set up a concep-257 

tual model to reproduce drainage of the rainfall falling on the buildings roofs. 258 

In this study, we opted for a simple conceptual approach, in which we assume that, at every time 259 

step, the total amount of rainfall falling on the roof of a given building is drained instantaneously 260 

and transferred to the surface flow computation in the cells corresponding to the vertices of the 261 

building footprint contour. The rainfall volume reaching a roof over one time step is distributed be-262 

tween the building contour vertices according to the sum of the lengths of the building facades con-263 

nected to each corner (Figure 3): 264 
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 , (1) 265 

with di,j the contribution to the source term in the flow continuity equation due to vertex k of the 266 

considered building, I(t) the rainfall intensity at time t,  the footprint area of the considered build-267 

ing, Lk and Lk+1 the lengths of the building facades connected to vertex k and M the total number of 268 

vertices in the contour of the considered building. 269 

 270 

 271 

Figure 3: Sketch of a building footprint represented on the Cartesian computational grid 272 

(cells i, j), with  the building footprint area, k a vertex of the building contour and Lk, 273 

Lk+1 the lengths of the building facades adjacent to vertex k. 274 
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2.3 Statistical analysis 275 

Three time-dependent flow variables were examined to characterize the severity of urban pluvial 276 

flooding: 277 

 the volume of water stored within the urban area (V),  278 

 the outflow discharge along the downstream sides (Qout), computed as Qout = I(t) A - dV/dt 279 

where A stands for the total surface of the urban area. 280 

 and the mean water depth (hmean), computed as a spatial-average of the water depth: V / Af, 281 

where Af  is the part of the total urban area not occupied by buildings: Af = A ( 1 – x9 ). 282 

For each of these flow variables, a statistical analysis was conducted to highlight possible correla-283 

tions with the nine urban parameters (x1, … x9) used as input for procedural modelling (Sec-284 

tion 2.1). 285 

The dependent variables considered in the statistical analysis are defined as the variation in the peak 286 

value of V, Qout or hmean compared to a reference configuration without buildings: 287 

  1
test ref

max max
t t

y V V     
   

, (2) 288 

 
2 out out

test ref

max max
t t

y Q Q    
   

, (3) 289 

 
3 mean mean

test ref

max max
t t

y h h    
   

, (4) 290 

where subscripts “test” and “ref” refer respectively to any of the 2,000 tested urban configurations, 291 

and to a reference configuration without buildings. Eq. (2) ensures positive values of y1 since the 292 

peak value is maximum in the absence of buildings (section 3.2). 293 

To ensure the robustness of the conclusions, we used three distinct approaches for the correlation 294 

and regression analyses: 295 

 first, a multiple linear regression (MLE) was applied to standardized variables: 296 
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where ai,j (i = 0 to 9, j = 1 to 3) are the coefficients of the MLR, while the subscripts “mean” and 298 

“std” denote respectively the mean and the standard deviation of the corresponding variable 299 

over the sample of 2,000 urban configurations; 300 

 second, a multiple linear regression was applied to the logarithmic transformation of normalized 301 

variables, which is equivalent to: 302 

 
9

0,
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j i
j

ij i

y x
b

y x

 
   

 
 , (6) 303 

with b0,j a coefficient and bi,j the exponents of the normalized explanatory variables x1 to x9; 304 

 third, Pearson correlation coefficients 
ij  were computed. 305 

3 RESULTS 306 

In the following, we present the results of the flow computation (Section 3.1) and the outcomes of 307 

the statistical analysis (Section 3.2). We also discuss which are the most influential urban parame-308 

ters (Section 3.3). 309 

3.1 Flow variables 310 

We first look at the variation of the flow variables when the urban form is varied, and we compare 311 

these variations to those induced by changing the return period of the considered storm or the ter-312 

rain slope. The envelopes of the times series of stored volume in the urban district, outflow dis-313 

charge and mean water depth are displayed in Figure 4, Figure 5 and Figure 6, respectively. These 314 

envelopes reflect the influence of the urban forms on the flow variables. The scatter plots in Figure 315 

7 summarize the influence of the urban form on the peak values of the three flow variables for the 316 

various return periods and terrain slopes. The same information is presented in the form of boxplots 317 

in Figure C.1 in Supplementary material C. The following observations can be made: 318 
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 For the three considered flow variables (stored volume, outflow discharge and mean water 319 

depth), the width of the envelopes of the time series are not affected by a change in the terrain 320 

slope. In contrast, these envelopes become wider when the considered return period is in-321 

creased (Figure 4 to Figure 6). This is also demonstrated by the scatter plots in Figure 7a-c, 322 

which show a trend with a slope steeper than the 1:1 line, corresponding hence to a wider 323 

range of variation along the y-axis (higher return periods) than along the x-axis (lowest return 324 

period). This confirms that the influence of the urban form is magnified in the case of more 325 

extreme rainfall events. In contrast, when the terrain slope is varied between 1.4 % and 2.8 %, 326 

the range of variation of the flow variables is neither substantially widened nor narrowed (Fig-327 

ure 7d-f). 328 

 For the three flow variables, the relative influence of the urban form changes over time; and it 329 

does so differently depending on the considered flow variable (Figure 4 to Figure 6). Indeed, 330 

in the case of the stored volume, the width of the envelopes gradually increases with time, 331 

whereas for the outflow discharge and mean water depth, the width of the envelope is maxi-332 

mum close to the peak and then it decreases during the recession limb. 333 

 Figure 4 reveals that the influence of the urban form on the time series of the stored volume in 334 

the urban district seems relatively lower than the influence of the terrain slope and of the con-335 

sidered return period. Indeed, this is shown by the fact that the envelopes corresponding to dis-336 

tinct terrain slopes and return periods hardly overlap over the whole rising limb and at the peak 337 

of the time series. 338 

 In the case of the outflow discharge (Figure 5), a limited overlap between the envelopes corre-339 

sponding to distinct terrain slopes can be seen; but there is still no overlap between the results 340 

corresponding to different return periods (see also Figure C.1 in Supplementary material C). 341 

This suggests that the influence of the urban form is slightly stronger on the outflow discharge 342 

than on the time series of stored volume. 343 
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 For the peak values of these two flow variables, Figure 7a-b and d-e show that the ranges of 344 

variation corresponding to distinct return periods do not overlap and that the overlaps remain 345 

limited when the terrain slope is varied. This highlights that the considered changes in the re-346 

turn period and the tested terrain slopes have a stronger effect on the peak values of stored vol-347 

ume and outflow discharge than variations in the urban form. 348 

 In contrast, for the times series of mean water depths in the urban district (of the order of 0.01 349 

to 0.04 m), considerable overlaps are found between the envelopes corresponding to distinct 350 

terrain slopes and return periods. This points at a relatively stronger influence of the urban 351 

form on the mean water depth in the urban district than on the outflow discharge and stored 352 

volume. Similarly, substantial overlaps are observed between the ranges of variation of the 353 

peaks in water depth when the terrain slope is varied and, to a lesser extent, when the return 354 

period is changed (Figure 7c and f). 355 

 When the return period is increased, the rise in the peak outflow discharges is found twice to 356 

three times larger than the rise in the stored volume or in the mean water depth, which change 357 

with a similar magnitude, namely + 50 % between T = 15 years and T = 50 years in the present 358 

case (Figure 7a-c). 359 

 A steeper terrain slope leads to higher peaks in the outflow discharges and, conversely, lower 360 

peaks in the stored volumes and mean water depths (Figure 7d-f). Again, the peaks in the out-361 

flow discharges vary more importantly with the terrain slope than the peaks in the stored vol-362 

umes and mean water depths ( 10 % in the present case). 363 

 Finally, as clearly visible in the scatter plots in Figure 7, the results obtained for various return 364 

periods and terrain slopes are strongly correlated. Pearson correlation coefficients are, respec-365 

tively, above 95 %, 91 % and 99.8 % for the stored volumes, the outflow discharges, and the 366 

mean water depths. This implies that a more in-depth analysis of the influence of the urban 367 

form conducted for a given return period or terrain slope, as performed in the next section, will 368 



18 

 

be essentially transferable to the other return periods and terrain slopes. This statement would 369 

certainly not hold if infiltration processes were taken into account by the model. 370 

Note that here the urban forms basically do not influence the timing of the computed peak dis-371 

charges. However, if both pervious and impervious areas were considered in the simulations, de-372 

lays would occur in-between the peak discharges depending on where the impervious areas are 373 

located. 374 
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 375 

Figure 4: Time evolution of the range of values of the stored volume over the 2,000 ur-376 

ban forms. Note that the middle grey area corresponds to the area where the dark and 377 

light grey areas overlap. 378 



20 

 

 379 

Figure 5: Time evolution of the range of values of the outflow discharge over the 2,000 380 

urban forms. Note that the middle grey area corresponds to the area where the dark and 381 

light grey areas overlap. 382 
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 383 

Figure 6: Time evolution of the range of values of the mean water depth over the 2,000 384 

urban forms. Note that the middle grey area corresponds to the area where the dark and 385 

light grey areas overlap. 386 
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 387 

 388 

Figure 7: Scatter plots indicating the influence of the return (a-c) period and the terrain 389 

slope (d-f) on the peak values of the flow variables: stored volume (a, d), outflow dis-390 

charge (b, e) and mean water depth (c, f). 391 

3.2 Influencing urban parameters 392 

Among the 2,000 considered urban forms, we identified those which correspond to extreme values 393 

in the peaks of the three flow variables (i.e. maximum or minimum values of the peaks in the stored 394 

volumes, outflow discharges and mean water depths). This identification was performed inde-395 

pendently for the two terrain slopes and the three return periods, but some urban forms lead to ex-396 

treme peak values in more than one flow variable (Figure 8). 397 
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In Figure 9, we display the standardized values of the nine urban parameters xi (Section 2.1) charac-398 

terising each of the urban forms leading to a minimum or a maximum in the peak values of the flow 399 

variables. Figure 9 shows also a boxplot representing the whole sets of values of each urban param-400 

eter among the 2,000 considered urban forms. 401 

Figure 9 reveals that none of the urban parameters take consistently an extreme value (high or low) 402 

in the configurations leading to extreme peak values in the flow variables; except for parameter x6 403 

(mean parcel area) and even to a greater extent for parameter x9 (building coverage) for which this 404 

is almost systematically the case. Indeed, maximum peak values of the storage volume (symbols ○ 405 

in Figure 9) and minimum peak values of the outflow discharge and mean water depth (symbols  406 

in Figure 9) are consistently associated to low values of the building coverage x9. Conversely, mini-407 

mum peak values of the stored volume (symbols  in Figure 9) and maximum peak values of the 408 

outflow discharge and mean water depths (symbols ○ in Figure 9) correspond mainly to high values 409 

of the building coverage x9. For the outflow discharge, all values of x9 corresponding to extremes in 410 

the peaks of this flow variable lie outside the 25th - 75th percentiles interval, at the exception of a 411 

single case. For the two other flow variables, there is not a single exception. This hints at an over-412 

whelming influence of the building coverage x9 in controlling the analysed flow variables during 413 

urban pluvial flooding. 414 
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 415 

 416 

Figure 8: Building footprints in the urban forms leading to the minimum peak values of the stor-417 

age volume (a) and maximum peak values of the outflow discharge (b) and mean water depth (c) 418 

for the different terrain slopes i and return periods T. 419 
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 421 

Figure 9: Standardized values of the nine urban parameters corresponding to urban 422 

forms leading to extreme peak values of the three flow variables for the different terrain 423 

slopes and return periods (symbols ○: maximum in peak value; symbols : minimum in 424 

peak value). Boxplots represent the whole set of parameter values over the 2,000 urban 425 

forms. Note that symbols x1 to x9 are defined in Table 1. 426 

The influence of the nine urban parameters on the flow variables was quantified using the statistical 427 

approaches presented in Section 2.3. The regression coefficients ai and bi (respectively without and 428 

with logarithmic transform) and the Pearson correlation coefficents i are shown in Figure 10. They 429 

were computed using all the results corresponding to the three return periods and the two terrain 430 

slopes. Error bars in Figure 10 indicate the range of variation of the coefficients obtained when indi-431 

vidual combinations of return period and terrain slope are considered in the analysis (instead of 432 

combining all the configurations). For the outflow discharge and mean water depth, a positive value 433 

of a coefficient indicates that increasing the value of the corresponding urban parameter leads to a 434 

rise in the peak value of the flow variable. In contrast, a positive coefficient corresponds to an oppo-435 

site variation in the case of the stored volume. This is due to the definition of the dependent variable 436 

y1, as detailed in section 2.3.  437 
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The results disclose the following: 438 

 As inferred from previous results, the statistical analysis confirms the dominating influence of 439 

the building coverage x9, which shows generally the coefficient with the largest magnitude. 440 

The corresponding p-values are all virtually equal to zero, confirming the statistical signifi-441 

cance of this result. This means that raising the value of the building coverage reduces the 442 

peak value of the stored volume, consequently to a reduction in the void area, and it increases 443 

the peak values of the outflow discharges and mean water depths. This result is also high-444 

lighted by the scatter plots displayed in Supplementary material D. 445 

 All coefficients associated to the urban parameters x1 to x5 and to x7 remain consistently low in 446 

magnitude, revealing a limited influence of these urban parameters on the studied flow varia-447 

bles. 448 

 The variations in the coefficients associated to x6 (mean parcel area) when the statistical ap-449 

proach is varied are explained by the existing positive correlation between parameters x6 and 450 

x9, as detailed in Bruwier et al. (2018). Indeed, when a statistical approach leads to a relatively 451 

lower (resp. higher) coefficient for x6, it is compensated by a higher (resp. lower) value of the 452 

coefficient associated to x9. 453 

 Besides the building coverage, the second most influential urban parameter seems to be the 454 

lateral setback x8, which is closely related to the distance between adjacent buildings. This is 455 

particularly true for the stored volume and the outflow discharge. Indeed, increasing the side 456 

setback enhances the connectivity between various parts of the urban area, hence enabling 457 

more effective storage over the duration of the storm. The corresponding p-values are gener-458 

ally very close to zero and, at most of the order of 9 × 10–3. 459 

Overall, these results are to a great extent consistent with those obtained by Bruwier et al. (2018) 460 

for river flooding. The main difference is that the dominating influence of the building coverage on 461 

the flow variables is more severe for pluvial flooding than for river flooding. 462 
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 463 

 464 

 465 

Figure 10: Comparison of regression coefficients ai and bi obtained from multiple linear 466 

regression respectively without and with logarithmic transform, and Pearson correlation 467 

coefficients ρi computed from computations over the six combinations of terrain slopes 468 

and return periods. Each set of coefficients are standardized so that the sum of the nine 469 

absolute values is one. Intervals gives the extreme values obtained for specific combina-470 

tions of terrain slopes and return periods. Symbols x1 to x9 are defined in Table 1. 471 
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Since the analysis above is based on the mean water depth, it does not reflect explicitly the effect of 472 

urban forms on the spatial distribution of water depths. To address this, Supplementary material E 473 

looks at the effect of choosing alternate representative water depths (such as various percentiles). 474 

The results of the statistical analysis performed based on these alternate representative water depths 475 

reveal that the relative influence of the urban parameters remains essentially similar in all cases, so 476 

that the above conclusions still apply, particularly as regards the overwhelming influence of the 477 

building coverage (x9). 478 

3.3 Number of urban variables used in the statistical analysis 479 

The statistical analysis presented in section 3.2 highlighted the dominant influence of the building 480 

coverage on the peak values of the flow variables compared to a configuration without buildings. 481 

Here, we compare the predictive capacity of regression models involving either the nine urban pa-482 

rameters x1 to x9 or a subset of them (either the building side setback x8 and the building coverage 483 

x9, or only the building coverage x9). The capacity of each regression model to predict the peak 484 

value of flow variable j is evaluated through the error Ej computed as follows: 485 
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y y
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  (7) 486 

where ijy  is the predicted value of the peak flow variable 
ijy  corresponding to urban form i. 487 

As shown in Table 2, the errors are minimum when all urban parameters are taken into account; but 488 

the errors increase only marginally if all parameters but x9, or x8 and x9, are disregarded. Particularly 489 

for peaks in mean water depths, the error hardly changes when the regression model accounts only 490 

for x9, or x8 and x9 (increase in Ej by maximum 0.2 percentage points). This strengthens the claim 491 

that the considered flow variables are essentially controlled by the building coverage and, to a lower 492 

extent, by the lateral setbacks. 493 
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The results in Table 2 also highlight that, for the three flow variables, the error on the predicted 494 

peak values is lower with the logarithmic transform than without. This is consistent with the formu-495 

lation of Eq.  (6) which appears more physically sound than Eq. (5). Also, the peaks in mean water 496 

depths are predicted with a better accuracy (Ej ≈ 5%) than the peaks in stored volumes (Ej ≈ 12-497 

13%) and in outflow discharges (Ej ≈ 16-17%). Note that the errors are evaluated in the untrans-498 

formed space. 499 

Table 3 shows the coefficients derived from a multiple linear regression model with logarithmic 500 

transform based on urban parameters x8 and x9. The results emphasize the relatively lower influence 501 

of the lateral setback x8 on the peak flow variables. The building coverage has a weight about one to 502 

two orders of magnitude larger than the lateral setback for the prediction of the peaks in stored vol-503 

ume, outflow discharge and mean water depth. From the perspective of urban planning, this consid-504 

erable difference in the weights hampers the compensation of an increased building coverage (i.e. 505 

urban development) by a “flood-sensitive” arrangement of the buildings (e.g. with higher lateral set-506 

backs), since the latter effect remains by far smaller than the former one. This contrasts with the 507 

case of river flooding (Bruwier et al. 2018), where the relative influence of the building coverage 508 

and another composite indicator of the buildings arrangement differs only by a factor three, so that 509 

the detrimental impact of an increase in the building coverage (i.e. new developments) can be effec-510 

tively mitigated by a suitable location of the buildings (Bruwier et al. 2018). 511 

 512 

 Multiple linear regression (MLR): Eq. (5) MLR with logarithmic transform: Eq. (6) 

Urban parameters x1 to x9 x8 and x9 x9 x1 to x9 x8 and x9 x9 

Stored volume 12.4% 12.6% 13.4% 11.7% 11.9% 13.4% 

Outflow discharge 16.2% 17.0% 17.3% 16.1% 16.6% 17.1% 

Mean water depth 7.2% 7.4% 7.4% 4.9% 5.0% 5.1% 

Table 2: Error E on the predicted value of the peak flow variables using different sets of 513 

explanatory urban parameters and two linear regression models. Note that symbols x1 to 514 

x9 are defined in Table 1. 515 
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8, 9,

0, 8 9
j jb b

j jy b x x  b8,j b9,j 

Storage volume -0.27 0.95 

Outflow discharge -0.19 1.1 

Mean water depth 0.034 1.2 

Table 3: Coefficients obtained from a linear regression with logarithmic transform ac-516 

counting for the urban parameters x8 and x9. Note that symbols x1 to x9 are defined in 517 

Table 1. 518 

4 CONCLUSION 519 

In this study, previous research on the influence of the urban form on river flooding (Bruwier et al. 520 

2018) was extended to the case of urban pluvial flooding. We have considered 2,000 synthetic ar-521 

rangements of buildings, characterized by nine urban parameters (typical street orientation, curva-522 

ture, length and width, mean parcel area, building setbacks, …), and two different terrain slopes. 523 

For each of them, we computed surface flow variables using a validated hydro-inundation model 524 

forced by uniform rainfall input corresponding to design storms of various return periods. Our re-525 

sults show the following: 526 

 variations in the urban forms has generally a more limited effect on the peak values of stored 527 

volume in the urban district and on the outflow discharge compared to changes in the storm 528 

return period or in the terrain slope; 529 

 in contrast, a strong influence of the urban form was found on the mean water depths in the 530 

urban area; 531 

 the influence of the urban form is magnified in the case of more extreme rainfall events, which 532 

hints at a growing importance of flood-sensitive urban planning as an adaptation to climate 533 

change; 534 

 based on statistical analysis, we highlighted the overwhelming influence of the building cover-535 

age compared to other urban parameters; 536 
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 the distance between adjacent buildings is another influencing parameter, but to a lesser extent. 537 

From the perspective of urban planning, the strongly dominating influence of the building coverage 538 

seems to hamper the compensation of an increasing building coverage (i.e. urban development) by 539 

means of a more “flood-sensitive” arrangement of the buildings (e.g. with higher lateral setbacks), 540 

since the latter effect remains by far smaller than the former one. This result obtained here for plu-541 

vial flooding differs from earlier results obtained in the context of river flooding (Bruwier et al. 542 

2018). Moreover, these conclusions appear robust with respect to changes in the terrain slope or in 543 

the rainfall intensity. 544 

This study is the first one to date to analyse systematically the influence of the urban form on urban 545 

pluvial flooding. Nonetheless, given the high complexity of the actual interactions between urban 546 

systems and flow processes, our work presents a number of limitations, which should be further an-547 

alysed in future research to pave the way for more flood-resilient urban planning. This includes an 548 

improved representation of urban drainage systems, land-use heterogeneity (parks, gardens …), 549 

real-world topography (e.g. sinks), obstacles (Mignot et al. 2013), rooftops connectivity, and local 550 

water management devices (water tanks, green roofs, storm basin …), which all have a substantial 551 

influence on urban pluvial flooding. 552 
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