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Summary 

Background: Falls among older adults are a major public health problem. One of the 

main challenges is identifying older adults at risk of future fall(s) before the first event. While 

the assessment of gait patterns could be useful in this context, no consensual literature currently 

exists concerning the gait parameters and walking conditions that are useful for identifying, 

among older adults, those who are at risk of future fall(s).  

Objective: The main goal of this exploratory study was to examine the usefulness of gait 

patterns assessed in comfortable and in challenging walking conditions, in order to identify, 

among older adults, those at risk of future fall(s). 

Materials and methods: A two-year, longitudinal, observational study among 

community-dwelling adults older than 65 years, living independently at home and without a 

recent fall history, was conducted between July 2014 and February 2017. At inclusion, all 

participants underwent comprehensive geriatric assessment and gait analysis recording gait 

speed, stride length, frequency, symmetry and regularity and minimal toe clearance using 

accelerometer-based and opto-electronic methods in comfortable, fast and dual task walking 

conditions. Fall(s) during follow-up were self-recorded in a personal notebook and later 

recorded by the research team via phone contact at 3 months. Comparisons and regression 

analyses were performed. Additionally, data mining software including a classification tool 

(J48) was used to better understand the relationship between gait patterns and the future fall(s) 

risk. 

Results: One hundred and five participants were included; two-year follow-up was 

available for 96 (91.4%); 35 participants fell at least once during follow-up. Comparative 

analysis showed that future fallers had longer stride length in the fast walking condition (after 

adjustment for leg length) and higher stride symmetry in the dual task walking condition than 

non-fallers. Regression analysis showed higher stride symmetry cost was significantly and 
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independently associated with higher future fall(s) risk. Moreover, the use of the J48 yielded a 

classification tree able to identify 80% of future fallers based on the stride symmetry dual task 

walking cost, the fast walking stride length, the stiffness and MTC mean and variability 

measures. 

Conclusion: This exploratory study shows the usefulness of data mining to understand 

the nonlinear relationships between gait patterns and future fall(s) risk, and the utility of 

considering clinical characteristics in association with gait patterns assessed in challenging 

walking conditions, in order to identify, among older adults, those who are at risk of future 

fall(s). While these results are encouraging, further research is warranted to confirm our results 

and to improve the identification of older adults at risk of future fall(s). 
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Résumé 

Introduction : La chute est un problème majeur de santé publique et l’identification 

précoce des chuteurs reste un défi. Bien que l’analyse instrumentale de la marche semble être 

utile, aucun consensus ne précise les paramètres ou les conditions de marche à considérer lors 

de l’identification des sujets âgés à risque de chute. 

Objectif : L’objectif de ce travail est de préciser l’intérêt des paramètres de marche 

mesurés lors de différentes conditions de marche lors de l’identification précoce des sujets âgés 

à risque de chute. 

Matériel et méthode : Entre juillet 2014 et septembre 2015, 105 volontaires âgés de 65 

ans et plus, autonomes au domicile et sans antécédents de chute, ont été inclus dans une étude 

longitudinale observationnelle comprenant un relevé prospectif des chutes durant deux ans. A 

l’inclusion, et après une évaluation gériatrique complète, la vitesse de marche, la longueur, la 

cadence la régularité et la symétrie des pas et la distance minimale entre le gros orteil et le sol 

lors de la phase de swing ont été enregistrés en marche de confort, en marche rapide et en tâche 

double. Les volontaires ont reçu un cahier de suivi des chutes et un contact téléphonique 

trimestriel a permis de collecter les évènements. Après deux ans de suivi, les sujets ont été 

classés en chuteurs et non-chuteurs sur base des évènements relevés. Des analyses de 

comparaison et de régression ont été réalisées. Enfin, un outil de classification (J48) a été 

appliqué aux données relevées à l’inclusion. 

Résultats : Parmi les 105 volontaires inclus, 96 sujets ont été suivis à deux ans dont 35 

ont présenté au moins une chute au cours du suivi. Les analyses de comparaison ont montré que 

dès l’inclusion,  les sujets chuteurs présentaient une longueur des pas en marche rapide plus 

courte (y compris après ajustement à la taille de la jambe) et une diminution de la symétrie des 

pas en condition de tâche double plus importante que les sujets non chuteurs lors du suivi. Enfin, 

l’application du J 48 a permis d’obtenir un outil de classification permettant d’identifier 80 % 
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des futurs chuteurs sur base du coût de la symétrie des pas en double tâche, de la longueur des 

pas en marche rapide, de la rigidité, et des valeurs moyennes et de la variabilité de la distance 

minimale entre le gros orteil et le sol lors de la phase de swing. 

Conclusion : Cette étude exploratoire, dont les résultats sont à vérifier au sein d’un 

échantillon plus large, suggère que l’utilisation d’un outil de classification permet de considérer 

le profil individuel de marche qui, étudié dans différentes conditions de marche et associé à des 

données cliniques, permet l’identification précoce des sujets âgés à risque de chute. 
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1. Introduction 

 

According to the World Health Organization (WHO), falls are the second leading cause of 

deaths from accidental or unintentional injury worldwide. Indeed, WHO estimates that each 

year, approximately 646 000 individuals die from falls, with adults aged over 65 years suffering 

the greatest number of fatal falls. Moreover, 37.3 million falls severe enough to require medical 

attention occur every year(WHO 2018). 

In European countries, the population of older adults is growing. In Belgium, the declining 

birth rate, increasing life-expectancy and the consequences of the baby boom generation, now 

aged over 40 years, mean that by 2030, one third of Belgian adult will be older than 66 years 

(M. Vandresse 2017). In this context, the prevalence of pathological conditions linked to ageing 

is growing and, among these, falls represent major issue. Indeed, even in community-dwelling 

adults, the prevalence of falls is around 30% per year (Tinetti , Speechley  et al. 1988, Watson, 

Clapperton et al. 2011, Craig, Murray et al. 2013, Morrison, Fan et al. 2013, Sun, Huang et al. 

2016), reaching up to 45% per year in the study by Delbaere et al. (Delbaere, Close et al. 2010).  

Furthermore, falls among community-dwelling older people are known to be a cause of 

injury, disability, functional decline, decreased quality of life and ultimately, death (Rubenstein 

2006, Thiem, Klaaßen-Mielke et al. 2014). Additionally and even in the absence of injury, falls 

lead to a fear of falling, which in turn is associated with an increased fall risk (Scheffer, 

Schuurmans et al. 2008), and reduced social or physical activities (Delbaere, Crombez et al. 

2004, Choi and Ko 2015), leading to functional decline.  

In this context, the health care costs linked to falls have to be considered. Several studies 

investigating the direct healthcare costs linked to fatal and/or non-fatal falls have been 
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published, and although absolute amounts are difficult to compare between studies (due to 

differences in data sources, national health care organisations, national healthcare resource 

allocations, individual financial resources to allocate to healthcare, etc.), most of the studies 

agree that the direct healthcare costs related to falls are especially incurred in higher age 

groups, in women, when bone fractures or head injury occur, and in hospitals and long-term 

care (Heinrich, Rapp et al. 2010, Watson, Clapperton et al. 2011, Craig, Murray et al. 2013). 

Indeed, according the study published by Heinrich et al., the costs linked to falls among 

community dwelling older adults were between 0.85% and 1.5% of total health care 

expenditure in Europe, the USA, United Kingdom and Australia, meaning falls are a major 

public health concern (Heinrich, Rapp et al. 2010). According to the same authors the cost per 

fall victim ranges from 2,044 to 25,955 US dollars (purchasing power parity) depending on 

the fall severity. However, these amounts do not take into account of the indirect costs related 

to the loss of income (for the patient and for the caregiver) and the costs related to the 

potential functional decline or disability. Unfortunately, to the best of our knowledge, there 

are no studies to date that have published robust data concerning the amount of these indirect 

costs.  

In summary, considering the social and individual burden linked to falls among older adults, 

and as underlined by the WHO, “Prevention strategies should emphasize education, training, 

creating safer environments, prioritizing fall-related research and establishing effective policies 

to reduce risk”. 

Among older adults, several processes are linked to an increased fall risk. First, specific 

diseases increase the fall risk, such as Parkinson's disease, stroke or atrial fibrillation for 

example. In these cases, the fall risk is most often recognized and the physician may implement 

strategies to decrease fall risk, by focusing, for example, on the daily-life environment, use of 

walking aids, shoe or drug review, detection and treatment of osteoporosis, and 
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physiotherapeutic care. Otherwise, non-disease-specific health factors may also increase the 

fall risk, such as pain or sleep disorders. Furthermore, several physiological ageing processes 

(e.g. reduced visual acuity, vascular burden or sarcopenia) and geriatric syndromes (e.g. mood 

or cognitive disorders, incontinence and fall(s) themselves) can also increase the fall risk. 

Finally, socio-demographic characteristics seem to be linked to risk of falls, such as female 

gender, exposure to toxins, social isolation and the daily-life environment (Tinetti , Speechley  

et al. 1988, Rubenstein 2006). In summary, the risk of falls increases with older age, affects 

individuals in different ways, occurs in different conditions and leads to different consequences. 

Even among community dwelling older adults, fallers represent a heterogeneous population.  

Regarding the potential consequences of falls, one of the main issues is to detect, among 

healthy old people, those who are at risk of a fall before the first fall occurs. In this context, 

more comprehensive knowledge of the mechanisms underlying gait could help clinicians to 

detect older adults at risk of falls. Studies focusing on fall risk among older adults have 

highlighted a relationship between gait performance and fall history (Hausdorff, Edelberg et al. 

1997, Auvinet, Berrut et al. 2003), and have also suggested that some gait parameters could be 

used as markers of fall risk (Hausdorff, Rios et al. 2001, Verghese, Holtzer et al. 2009, 

Bautmans, Jansen et al. 2011).  

Recent literature suggests that studies of gait performances and underlying gait mechanisms 

need to assess gait parameters using instrumental methods and better understand the neural 

structures involved in central locomotor commands (Gillain and Petermans 2013). In fact some 

correlations between gait parameters and data related to brain imagery have been already shown 

(Annweiler and Montero-Odasso 2012, Annweiler, Beauchet et al. 2013, Annweiler, Beauchet 

et al. 2013, Annweiler, Montero-Odasso et al. 2014) and recent literature suggests that gait 

performance, falls and cognitive performance could form a triangular relationship in which gait 

and cognitive performances could be linked (Hausdorff, Yogev et al. 2005) and used as a marker 
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of fall risk (Maki 1997, Beauchet, Annweiler et al. 2009, Ambrose, Paul et al. 2013, Gillain, 

Boutaayamou et al. 2018) and to investigate cognitive decline (Scherder, Eggermont et al. 2007, 

Gillain, Warzee et al. 2009, Gillain, Dramé et al. 2015, Allali, Launay et al. 2017).  

 

                            

 

In fact, our department has previously used instrumental method to discern people with 

cognitive decline based on their gait patterns (Gillain, Warzee et al. 2009, Gillain, Dramé et al. 

2015). At the same time, other teams have confirmed that investigating gait parameters could 

be useful for the assessment of the cognitive profile in older adults (Scherder, Eggermont et al. 

2007, Hausdorff, Schweiger et al. 2008, Scherder, Eggermont et al. 2011, Allali, Ayers et al. 

2016).  

Based on previous literature concerning the relationships between brain structure, gait 

parameters and falls, and in light of our encouraging preliminary results concerning the 

relationship between gait parameters and cognitive performance, it therefore appears logical to 

study gait parameters using an instrumental method, and to study neural brain structures with a 

view to earlier identification of persons at risk of fall and of cognitive decline. We conducted a 

two-year longitudinal study including persons aged over 65 years, living independently in their 

own home, and free from pathological processes known to disturb gait or cognitive 

performance. At inclusion, volunteers underwent comprehensive geriatric assessment, gait 

Gait 
performances

Cognitive 
performances

Fall(s)
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analysis, cognitive assessment and structural brain imagery. Unfortunately, at the time of 

writing, the results related to the cognitive follow-up are not fully available. Thus, the results 

presented here will focus on fall incidence and its relationship with data related to clinical 

characteristics, functional performance or gait patterns. In view of the focus of this work, the 

background and methods sections will not further discuss aspects related to neuropsychological 

assessment and brain imagery. Nonetheless, in order to provide a comprehensive overview of 

the data acquired in this research work, brain imagery and neuropsychological assessment will 

be described briefly in the experimental section. 
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2. Theoretical background 

 

This section will present the main definitions, concepts, tools, methods and parameters 

related to the relationships between fall(s) and gait parameters. After a brief explanation of the 

main terms, risk factors for falls and the methods used to assess fall risk will be presented. 

Moreover, the instrumental methods used to study gait patterns will be briefly overviewed and 

the choice of the method used in this research work will be justified. Finally, the gait parameters 

usually available using the two instrumental methods used in this work, and their relationship 

with fall history and/or fall risk, will be discussed. 
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2.1. Definitions and concepts 

 

2.1.1. Walk 

The normal human walking can be defined as “a method for locomotion involving the 

use of two legs, alternately, to provide both support and propulsion”. In order to exclude 

running, the definition should include “at least one foot being in contact with the ground at all 

times” (Levine, Richards et al. 2012). Walking was previously described as an automatic, 

rhythmic and regular motor activity characterized by alternated, coordinated movements of 

crossed flexion –extension of the lower limbs while steady-state walking (J.G. Nutt 1993). The 

French language definition published in 2006 seems to be more comprehensive: “Walking is 

an intentional motor act, aimed towards a goal, leading to movement of the body in the 

horizontal plane, via postural and balance constraints”(Beauchet and Berrut 2006).  

 

2.1.2. Gait 

Gait can be defined as the manner or style of walking (Levine, Richards et al. 2012). 

Actually, the word “gait” is often used in a technical context, underscoring the biomechanical 

aspects linked to the action. More specifically, the human gait could be considered as a complex 

and cyclical process requiring the synergy of muscles, bones, and the nervous system mainly 

aimed at supporting the upright position and maintaining balance in static and dynamic 

conditions (Taborri, Palermo et al. 2016).  

However, these systems all suffer age-related physiological effects (for example, 

sarcopenia). They may also be the target of specific disease processes (for example, diabetes). 

Some of these systems, organs or functions can also suffer from occupation-related effects (for 

example, peripheral neuropathy), iatrogenic side-effects (for example, the use of steroids in 

COPD leads to increased loss of muscle mass), or toxic life habits (for example, peripheral 
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neuropathy and neural toxicity in alcoholics). Thus, gait is the result of the simultaneous 

functioning of several complex organic systems, where any process affecting one of these 

systems may lead to alterations in the harmony and efficiency of gait pattern.  

Moreover, two caveats have to be considered when discussing gait performance and gait 

profiles, namely “normal gait” and “compensatory gait”. Firstly, to consider a gait profile as 

“normal” or not, it is crucial to take into consideration the age, sex, walking condition and 

environment. Secondly, many gait abnormalities are a compensation for some problem 

experienced by the patient and, although abnormal, are nonetheless necessary to maintain 

mobility. In these cases, the gait pattern is different to a “normal” pattern, but is often “as 

efficient as possible”, thereby preventing negative clinical outcomes. A good example of this 

is the older adult, who contracted poliovirus during childhood, and who maintains unilateral 

lower trunk stiffness and or palsy; these older adults have a non-normal gait pattern. However 

some of them will never fall.  

  



29 
 

2.1.3. Balance 

The “static balance” involved in standing or sitting is based on the need to keep the body 

center of mass (COM) into the base of support (BOS) as the BOS remains stationary and the 

COM moves (Woollacott and Tang 1997). The dynamic balance mechanism is involved in 

maintaining balance when the individual is moving (e.g. when walking). Indeed, bipedal human 

walking has an inherent unsteadiness arising from biomechanical disadvantages; 2/3-weighted 

upper body, a small base of support, and long single-support periods. When walking, both the 

BOS and COM are moving, and the COM is never kept within the BOS during the single-limb 

support periods (Woollacott and Tang 1997). Physiological age-related factors are linked to 

substantial changes in dynamic balance mechanisms. First, among older adults, one of the main 

goals of dynamic balance is to minimize the head and pelvis accelerations, in order to keep 

visual and vestibular inferences as stable as possible and ensure a more stable gait pattern 

(Winter, Patla et al. 1990, Menz, Lord et al. 2003, Menz, Lord et al. 2003, Kavanagh, Barrett 

et al. 2004, Kavanagh, Barrett et al. 2005). Moreover, dynamic postural control is based on 

visual, vestibular and somatosensory information which becomes impaired with age, affecting 

appropriate motor commands to perform balance corrections (Diener and Dichgans 1988). 

Furthermore, age-related dynamic postural control changes include less anticipatory control 

mechanisms, more reaction control mechanisms and longer reaction times (Remaud, Thuong-

Cong et al. 2015). Finally, attentional capacities seem to be linked to dynamic balance 

performance. Indeed, according the systematic review of Woollacott et al., “studies using dual 

task paradigms to examine the effect of age-related changes in attentional requirements of 

balance control and age-related reductions in stability when performing a secondary task, 

suggest that these are important contributions to instability in both healthy and balance impaired 

older adults. For both healthy and balance-impaired older adults, attentional demands 
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associated with postural control vary, depending on the complexity of the task and the type of 

second task being performed” (Woollacott and Tang 1997). 

In this context, older-age-related dynamic balance performance changes, with some 

older people adopting a “cautious gait” pattern, reducing gait speed, step length and swing phase 

(increasing double support), more flat foot landing and more stepping reaction in order to 

maintain dynamic balance during walking (Winter, Patla et al. 1990, Woollacott and Tang 1997, 

Jensen, Brown et al. 2001, Menz, Lord et al. 2003, Brodie, Menz et al. 2014). 
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2.1.4. Normal gait pattern 

Gait results from complex, coordinated nerve signals sent to the muscles, which in turn 

move the joints and limbs, producing a repeated sequential contraction and relaxation of muscle 

groups, resulting in walking. This automatic stepping mechanism is organized by the “central 

pattern generators” (CPG), which consist of networks of neurons located in different places in 

the brain and spinal cord, and which receive feedback from sensors in the muscles, joints and 

skin of the leg (Gabell and Nayak 1984, Levine, Richards et al. 2012). The gait results from 

stereotyped limb motions repeated in a cycle (gait cycle), where the occurrence of a step is the 

consequence of the horizontal movement of the COM beyond the limits of the BOS (Jensen, 

Brown et al. 2001). In addition to this rhythmic pattern, the postural control system, through 

many complex substrates, regulates the body segment (pelvis, head, arms) position to keep the 

COM within the BOS (Maki and McIlroy 1996). 

The gait cycle is defined as the period of time between the initial contact of one foot, 

and the next occurrence of the same event with the same foot. The gait cycle can be represented 

as follows (Levine, Richards et al. 2012): 
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In terms of leg position, the gait cycle includes several events. The first event is the right heel 

contact; this step starts the right stance phase. The second event is the left (opposite) toe off; 

this second event starts the swing phase of the left leg. The third event is the right heel rise. The 

fourth event is the left heel strike and this event stops the left swing phase. The fifth event is 

the right toe off and this event starts the right swing phase and stops the left stance phase. The 

sixth event is the left heel rise corresponding to the swing of the right leg. Finally, the last event 

is the last right swing phase through until right heel contact.  

 

In terms of timing, the figure below shows the different cyclic periods following each other and 

constituting the gait cycle (Levine, Richards et al. 2012).  

 

 

 

Considering the first event of the cycle, the right initial contact occurs when the left foot is still 

on the ground; this defines the “double support time”, from the initial contact of the right foot 

to the toe off of the left foot. The next time is the “swing phase”; during the swing phase of the 

left foot, only the right foot is on the ground as “right single support”, which ends with the 

initial contact by the left foot. After this, there is another double support time until toe off on 

the right side. The left single support corresponds to the right swing phase and the cycle ends 
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with the next initial contact on the right. Each gait cycle includes two periods of double support 

and two periods of single support. For each side, the stance phase takes up around 60% of the 

cycle, while the swing takes up 40%, and each double support period takes up almost 10% of 

the gait cycle. Actually, as shown in the figure below, the glossary of the temporal gait 

parameters arises from this gait cycle partitioning. 
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In terms of feet placement on the ground, the gait cycle includes: the stride length; the right and 

left step lengths, the toe out angle and the walking base. These terms are also called spatial gait 

parameters and are represented in the figure below (Levine, Richards et al. 2012). 

 

 

 

By definition, the stride length is the distance between two successive placements of the 

same foot. It consists of two step lengths, left and right, each of which is the distance by which 

the named foot moves forward in front of the other (Levine, Richards et al. 2012). The right 

step length is the distance between the left heel and the right heel measured during the double 

support phase when the right foot is before the left foot. The left step length is the distance 

between the right heel and the left heel measured during the double support phase when the left 

foot is before the right foot. As described above, the stride length is the distance between two 

successive placements of the same foot. In the figure above, the stride length is the distance 

between the left heel and the next left heel strike. The walking base, also known as the “stride 

width” or “base support”, is the stride to stride distance between the two feet, usually measured 

at the midpoint of the back of the heel, but sometimes below the centre of the ankle joint, often 

measured in millimetres (Levine, Richards et al. 2012). The toe out angle is the angle in degrees 



35 
 

between the direction of progression and a reference line on the sole of the foot. The reference 

line varies from one study to another; it may be defined anatomically but is commonly the 

midline of the foot, as judged by eye (Levine, Richards et al. 2012). 

 

Furthermore, gait parameters consider the gait cycle relative to chronological time. 

Thus, the gait speed is the distance covered by the subject during a given time. It should be 

measured in meters per second. The cadence is the number of steps (step frequency) or the 

number of strides (stride frequency) taken in a given time, the usual units being steps per 

minute(Levine, Richards et al. 2012). The cadence, in steps per minute, corresponds to half-

strides per 60 seconds or full strides per 120 seconds. Lastly, the walk ratio is defined as the 

step length (expressed in meters (m)) divided by the cadence (step/min) (Sekiya 1998). 
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2.1.5. Locomotor control of walk 

According to Nutt et al.(Nutt 1993) and, from the biomechanical point of view, two 

abilities are essential to walk with efficient gait: (1) equilibrium, the capacity to assume the 

upright posture and to maintain balance; and (2) locomotion, the ability to initiate and maintain 

rhythmic stepping. The main structures involved in these abilities are the peripheral structures, 

including peripheral sensory (proprioceptive, vestibular and visual systems) and motor systems, 

and the central structures, including the spinal cord, brainstem, basal ganglia and cerebellum. 

The experiment of Grillner, showing that a cat who remained capable of walking on a treadmill 

and following the different speeds of the treadmill after mid-thoracic spinal transection, 

supports the existence of spinal interneurons organized as “locomotor generators” (Grillner 

1985). In humans, the same experiment was not successful; humans with spinal cord 

transections may generate complex stereotyped movements but cannot generate rhythmic 

stepping. However, the theory of the existence of spinal rhythmic generators was born.  

More than fifty years later, supported by progress in functional brain imagery, Jahn 

identified the anatomical structures involved in locomotor control. Indeed, using previous 

works and their own research using the mental imagery of locomotion on functional magnetic 

resonance imaging (fMRI), Jahn and co-workers found that “locomotion modulates sensory 

systems and is itself modulated by sensory signals”.  
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As represented in the figure below, they further delineated separate and distinct areas in 

the brainstem and cerebellum that work together for the purpose of initiating walking initiation 

and regulating speed.  

 

 

 

This schematic organization represents the brainstem and cerebellar locomotor regions (CLR), 

located close to the fastigial nuclei in the dorsal midbrain; mesencephalic locomotor region 

(MLR), which would correspond to the cuneiform and pedunculopontine nuclei in the dorsal 

midbrain; ponto-medullary reticular formation (PMFR); subthalamic locomotor region (SLR) 

located in the lateral hypothalamic area, the spinal central pattern generators (CPG), basal 

ganglia, thalamus, cerebellum and cortex. Descending pathways are drawn as dotted lines, 

ascending pathways in solid lines. Cortical signals project to the brainstem locomotor regions 

via the striatum and pallidum. The locomotor command conveys a message from the pallidum 

via the SLR to the MLR, which is further transmitted to the PMRF, where it converges with 

cerebellar signals from the CLR. The CLR also projects to the MLR via the thalamus and basal 
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ganglia. It receives input from the vermal and paravermal cerebellar cortex. The PMRF is a 

major site of interaction between ascending and descending pathways. Cortical signals are 

modulated via the thalamo-cortical-basal ganglia circuit.   

 

The use of fMRI and [18F]-FDG-PET after real or imagined locomotor tasks has shown 

that different neuronal structures are involved according to the motor task; namely specific 

areas of the hippocampus processing spatial navigation (Jahn, Wagner et al. 2009), the role of 

basal ganglia during walk initiation (Wagner, Stephan et al. 2008), precise walking along a 

curve (Wagner, Stephan et al. 2008), during turning and during termination of gait (Wang, Wai 

et al. 2009), the role of bilateral supplementary motor areas during gait initiation (Verghese, 

Mahoney et al. 2010), the role of bilateral supplementary motor area, the bilateral premotor area 

(ventral and dorsal), the precuneus, the cuneus, the middle occipital gyrus, the cingulate and 

bilateral insula when stepping over an obstacle (Verghese, Mahoney et al. 2010). Moreover, in 

order to acquire deeper knowledge of the involvement of brain structures in locomotion, Jahn 

used two different acquisition methods, namely brain fMRI in subjects during imagined 

walking (imagined locomotion), and [18F]-FDG-PET after a real walk (in the same walking 

conditions as the imagined locomotion), thus obtaining brain imagery of real locomotion. Based 

on this work, these authors highlighted a common network (common to real and imagined 

locomotion) including activations in the frontal cortex, cerebellum, pontomesencephalic 

tegmentum, parahippocampal, fusiform and occipital gyri, and deactivations in the 

multisensory vestibular cortices (esp. superior temporal gyrus, inferior parietal lobule). As a 

difference, the primary motor and somatosensory cortices were activated during real 

locomotion, as opposed to the supplementary motor cortex and basal ganglia during imagined 

locomotion. This specific activation of the supplementary motor cortex and basal ganglia during 

imagined locomotion was confirmed by another team (Malouin, L. Richards et al. 2003). 
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Activations of the brainstem locomotor centres were more prominent in imagined locomotion 

(la Fougère, Zwergal et al. 2010). 

 

Moreover, the relationship between gait performance and neuronal networks was also 

highlighted in studies assessing the relationship between gait and cognitive performance. 

Indeed, Scherder, Verghese, Montero-Odasso and Beauchet have all highlighted the 

relationship between gait performance and cognition, not only in pathological processes such 

as dementia, but also in normal ageing. Indeed, in 2007, Scherder et al. published a review of 

previous data concerning the relationship between gait and cognitive performances (Scherder, 

Eggermont et al. 2007). In 2011, the same author published a well-documented review 

highlighting five neuronal circuits: (1) the superior longitudinal fasciculus, connecting the 

frontal lobe with the parietal, temporal and occipital cortex ; (2) the uncinate fasciculus, 

connecting the frontal lobe with the lateral and medial temporal lobe ; (3) the fronto-cerebellar 

connections between the frontal lobe and the medial and lateral cerebellum ; (4) the fronto-

striatal connections between the frontal lobe, the caudate/putamen and the temporal lobe ; (5) 

the cingulum connecting the frontal, parietal, temporal and occipital brain regions; all 

contributing to the high level of locomotor control, and their implication in gait disturbances 

occurring in normal ageing and mild dementia (Scherder, Eggermont et al. 2011). Similarly, in 

2012, Montero-Odasso et al. published a review underlining the relationship between gait and 

cognition in ageing and showed evidence that gait assessments can provide insights into 

cognitive function and fall risk in older people. According to these authors, the dual-task 

paradigm and the quantification of gait variability could help the clinician to discern people at 

risk of falls (Montero-Odasso, Muir et al. 2012). 
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To summarize the outstanding progress in our knowledge of locomotor control, 

electrical and chemical stimulation in animal and human models has highlighted the role of 

some brain areas, such as the locomotor region working as a dynamic pacemaker that gives 

rhythm to the human walk, taking into account somato-sensory inputs, while functional brain 

imaging studies provide evidence of widespread, complex and dynamic neural network 

organization and modulation of locomotor control based on visual, somato-sensory and 

vestibular inputs. Studies focusing on cognitive performance have highlighted a common neural 

network that is involved in both gait performance and cognitive performance.  

 

Obviously, the central nervous system is associated with the peripheral nervous system 

conducting the locomotor order and somato-sensorial information. Both systems working 

together are needed to ensure efficient walking, as represented in the following figure taken 

from Snijders et al. (Snijders, van de Warrenburg et al. 2007).       
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2.1.6. Gait, balance and postural reaction ageing 

Physiological ageing is associated with declines in several systems including 

musculoskeletal, cardiovascular, visual, vestibular and proprioception, coordination, slowed 

postural responses and cognitive function (Ambrose, Paul et al. 2013). This leads the gait 

pattern to become less coordinated, with poorer postural control (Ambrose, Paul et al. 2013). 

Moreover, as dynamic balance is involved during walking, and considering that among older 

adults, one of the main goals of dynamic balance is to minimize head and pelvis accelerations 

in order to keep visual and vestibular inferences as stable as possible and ensure a more stable 

gait pattern (Winter, Patla et al. 1990, Menz, Lord et al. 2003, Menz, Lord et al. 2003, 

Kavanagh, Barrett et al. 2004, Kavanagh, Barrett et al. 2005), age-related changes in walking 

are numerous, and most will be further detailed.  

Before listing the characteristics of gait ageing, a comment has to be notice. Namely, 

the knowledge concerning gait ageing is improving in the same time the knowledge on the 

ageing. Actually, the growing research on the ageing and especially on the gait ageing allows 

reviewing previous knowledge taking into account the heterogeneity of the ageing. Thus the 

literature focusing on gait aging is not consensual, depending on the participants the studies 

involved.  

Until the end of the previous century, the physiological gait ageing was described as a 

reduced gait speed, with reduced arms swing, wilder base of support, longer double support 

time, shorter single support time, shorter steps and reduced ankle and knee flexion/extension 

movements (Murray MP 1969, Abram, Beer et al. 1995). According to Murray, the shorter 

swing phase, longer double support, wider walking support base and reduced stride length, 

reduced vertical movement of the head while the lateral movements are increasing, are all 

supposed to improve the security of walking (Murray MP 1969). 
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However, several years later, a publication by Nakamura associated these gait pattern 

modifications with pathological neurodegenerative processes (such as Alzheimer’s disease) 

rather than to age alone. Moreover, according to the same author, people with vascular dementia 

show the same gait pattern changes, but to a more pronounced degree (Tanaka, Okuzumi et al. 

1995). 

More recently, the Baltimore Longitudinal Study of Aging comparing gait patterns 

according to age ranges showed that older age is associated with slower self-selected walking 

speed, shorter stride length, a greater tendency to land flat-footed (instead of heel strike landing) 

and lower hip generative mechanical work expenditure and lower knee absorptive mechanical 

work expenditure (Ko, Ling et al. 2009, Ko, Stenholm et al. 2011, Ko, Tolea et al. 2011). 

Indeed, several of these changes could be secondary to age-related changes in the angular 

excursion of the joints, including a reduction in the total range of hip flexion and extension, a 

reduction in swing phase knee flexion and a reduced ankle plantar flexion during the push off 

(Levine, Richards et al. 2012). However, people included in this longitudinal study have not 

been screened for mild or moderate cognitive disorders then some gait modifications observed 

could more be linked to neurodegenerative process than to age alone.  

In another hand, some authors have shown that the decreased stride length observed 

among older adults could be linked to weakness in hip extensor and ankle plantar flexors, 

reduced push-off phase, increased swing phase and a reduced ability to move the body forward 

during gait (Winter, Patla et al. 1990, Bassey, Fiatarone et al. 1992, Judge J 1996). Furthermore, 

walking more slowly with a higher stride frequency and shorter stride length also may help to 

stabilize the gait pattern and allow greater adjustment and flexibility to changes in walking 

condition (Barak, Wagenaar et al. 2006).  However, lastly, Zijlstra et al. showed that there is no 

evidence for a change in the step length – frequency relationship with age among physically 

active community-dwelling older women (Zijlstra, de Bruin et al. 2008).  



45 
 

Furthermore, the term “cautious gait”,  has been coined to characterise the gait of older 

adults who display gait pattern alterations due to unknown disease, associated with higher 

mortality, and which is not to be considered as a normal ageing pattern (Bloem, Gussekloo et 

al. 2000). Cautious gait is characterised by decreased speed and stride length (Giladi, Herman 

et al. 2005). As shown by Giladi et al. (Giladi, Herman et al. 2005), this gait pattern is associated 

with more anxiety, more depressive symptoms, greater fear of falling and lower cognitive 

performance, which are also to be linked to gait pattern modifications and fall risk. This gait 

pattern seems to be linked to the vascular burden on the central nervous system (Giladi, Herman 

et al. 2005). 

 

To summarize, the amplitude and the meaning of this gait pattern (decreased speed and 

stride length) seem to be different in terms of the robustness and health profile of the people 

exhibiting it. Indeed, the walk ratio, although remaining unchanged in the very fit, could change 

as an adaptive and protective behaviour in less fit older adults, while pronounced gait pattern 

modifications could be linked to the “cautious gait” described by Bloem et al. (Bloem, 

Gussekloo et al. 2000), signifying reduced locomotor capacities. Thus, while these studies 

support the idea of a clinical gait continuum between age-related walking patterns, walking 

pattern changes related to neurodegenerative processes and the walking pattern changes related 

to cerebral vascular burden, the same studies also support the idea that individual profiles must 

be kept in mind when discussing gait patterns and their relationship with negative outcomes. 
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Concerning postural reactions, older adults seem to be more likely to use a stepping 

reaction to recover balance and step at lower perturbation magnitudes than younger adults 

(Jensen, Brown et al. 2001). However, studies focusing on stepping reactions when balance is 

overcome are not unanimous. One study has shown that a stepping reaction is often used in 

older adults not only when the COM overcomes the BOS, but also when the velocity of the 

COM change is high (Pai, Rogers et al. 1998). Conversely, other studies have shown that older 

adults (Wolfson, Whipple et al. 1986, McIlroy and Maki 1996) are less prone to weight shifting 

or taking a rapid step when balance abilities were exceeded than younger adults. In our opinion, 

previous falls among older adults included in these studies could explain the differences in the 

results obtained.  

Additionally, older adults appear to be more reliant on arm reactions than younger adults 

but are less able to execute reach-to-grasp reactions rapidly (Maki and McIlroy 2006).  

Finally and regardless of the individual gait ageing process and the reason(s) why older 

adults fall, gait performance, fall risk and fall(s) are intricately inter-related as shown in the 

following figure (Snijders, van de Warrenburg et al. 2007) showing the indirect relations 

between gait ageing and geriatric gait disorders. 
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2.1.7. Gait Variability  

Gait variability is the fluctuation in gait characteristics from one step to the next (Brach, 

Perera et al. 2010) and reflects gait patterning process abilities and balance control  

mechanisms.  

According to Gabell and Nayak, the gait parameters related to balance control 

mechanisms seem to be the stride width and the double support time, while the step length and 

stride time reflect the functioning of the gait patterning mechanisms (Gabell and Nayak 1984). 

According to same authors, an increase in the variability of the stride width or double support 

time could reflect a lack of compensation for stability occurring in case of circumstances that 

stress the balance mechanisms, while an increase in step length or stride time reflects a problem 

in the stepping mechanisms. According to these assumptions, these authors assessed gait 

variability in a large sample of 1187 people aged at least 64 years old, and showed that younger 

and older adults have similar gait variability. The authors concluded that increased gait 

variability occurring in old people is not normal but is due to some pathological cause (Gabell 

and Nayak 1984).  

Some years later, several teams published papers confirming these findings, and 

showing that an increase in gait variability has to be considered as an important indicator of 

impaired mobility in older adults associated with falls and/or disability (Maki 1997, Hausdorff, 

Rios et al. 2001, Brach, Studenski et al. 2007, Brach, Studenski et al. 2008, Storti, Pettee et al. 

2008). In fact, greater variability in stride or swing time seems to be predictive of future falls 

(Maki 1997, Hausdorff, Rios et al. 2001), and a greater stance time variability is an independent 

predictor of future mobility disability (Brach, Studenski et al. 2007). Gait variability has been 

related to less confidence in walking, and lower levels of daily physical activity (Brach, 

Studenski et al. 2008). The relationship between gait impairment and disability is thus clearly 

established (Hausdorff 2005). 
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Furthermore, gait variability has also been considered to reflect cognitive functioning. 

In healthy older adults, stride to stride variability is regulated by automated processes and 

requires minimal cognitive resources (Hausdorff 2005) even during challenging cognitive tasks 

in healthy older adults without fall history, while the gait variability increases in dual task 

walking in older fallers, especially in case of executive function decline (Springer, Giladi et al. 

2006). In another cohort, Brach et al. (Brach, Perera et al. 2010) confirmed that gait variability 

is related more to executive functioning than to age. Finally, greater gait variability was 

observed in impaired executive function syndrome, as in demented adults with frontal lobe 

dysfunction (Allali, Kressig et al. 2007), Parkinson’s disease (Hausdorff, Cudkowicz et al. 

1998) or Alzheimer’s disease (Tanaka, Okuzumi et al. 1995).  

The figure below shows a sample of the alterations that occur in ageing and disease and 

which affect gait stability, at least as reflected in terms of stride time variability, and fall risk 

(where Flexibility ROM means flexibility range of motion, CNS means central nervous system, 

PNS means peripheral nervous system, CBS means cerebral blood flow) (Hausdorff, Nelson et 

al. 2001, Hausdorff 2005). 
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The variability of a gait parameter can be measured as the within-subject standard 

deviation of the gait parameter derived from all of the steps (Brach, Perera et al. 2010) or as the 

coefficient of variation of the gait parameter= [standard deviation of gait parameter/ mean of 

gait parameter) X 100](Hausdorff, Rios et al. 2001). Depending on the topic and the 

instrumental method used, gait parameters assessed for their variability include the step length, 

step width, stride time, stance time, swing time and double support time. At this time, the 

number of recorded strides needed to measure gait variability, the walking condition and/or the 

gait speed required or the prioritisation task to be performed remains non-consensual. 
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 2.2. Assessing gait 

 

Considering the meaningfulness of gait disorders in terms of risk, and considering gait 

as a reflection of the functioning of several organic systems, gait assessment should be 

systematically targeted by anamnesis and clinical evaluation during comprehensive geriatric 

assessment.  

The following section will provide an overview of the various ways to assess gait in the 

clinical setting following recently published guidelines by groups of experts (Beauchet, Allali 

et al. 2017) and according the usual daily practice implemented in our geriatric care department.  

In fact, depending on the setting, the subjects addressed for assessment and the purpose 

of gait pattern assessment, the gait assessment may be rapid, or more in-depth.  

However, irrespective of the context, gait assessment must, at the very least, include 

anamnesis, a comprehensive clinical exam, and a visual evaluation of standing, transferring, 

walking and turning.  

Moreover, depending on the context, a range of questionnaires, functional tools and gait 

analysis methods can be added, and evaluation in different walking conditions may be useful. 
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2.2.1. Anamnesis  

After having considered socio-demographic data, medico-surgical events (including 

sensorial deficits and geriatric syndromes), usual medications and toxic abuse, the anamnesis 

must also consider walking complaints such as pain, weakness or unsteadiness, the need for 

walking aids, the usual shoes, the usual daily living environment, social and physical activities, 

and the potential history of falls, fear of falling, aspects related to well-being, mood and 

cognitive complaints, self-perceived quality of life and social support. 

 

2.2.2. Clinical exam 

The clinical exam should include investigation of osteo-articular and muscular system 

abnormalities, including nervous system assessment, i.e. sensorial abilities, static and dynamic 

balance. Moreover, a cardio-respiratory examination is recommended. 

 

2.2.3. Visual evaluation of walk  

The visual examination should consider the position on chair, standing up and potential 

backward disequilibrium, steady walk in different walking conditions, initiation and ending of 

the walk, turning, ability to deal with obstacles and psycho-motor reactions when faced with 

different level ground surfaces. After training, the clinician can qualitatively assess static and 

dynamic balance performance visually, as well as the quality of the gait (more or less fast, with 

short or long step length, with more or less gait variability, with more or less confidence).  

However, visual evaluation has some limitations. The clinician must be well trained to 

systematically analyse aspects all of the gait pattern and discern among individual gait 

characteristics those that have to be considered as abnormalities and those that are potential 

compensation mechanisms. Moreover, whatever the level of expertise of the clinician, visual 
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evaluation remains subjective. Furthermore, this qualitative assessment does not yield any 

numerical score that can be recorded and compared between individuals. 
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2.2.4. Walking conditions 

To the best of our knowledge, the term “walking condition” is not clearly defined in the 

scientific literature. A comprehensive definition could be “the circumstances in which the 

subject is walking”. These circumstances could be linked to conditions external to the subject 

(for example, the ground, or walking on a treadmill, walking on smooth or irregular surfaces) 

or to conditions internal to the subject, where the volunteers are asked to walk following specific 

instructions, such as a comfortable walking condition, meaning the subject is asked to walk at 

their spontaneous gait speed; fast walking conditions; fastest walking conditions; slow walking 

condition; dual task walking condition; slow walking condition. Since comfortable, fast and 

dual task walking conditions will be used in this research work, these walking conditions will 

be further developed here without consideration for other potential walking conditions. 

“Spontaneous”, “preferred” or “comfortable” walking speed is always used in gait tests 

because this is the obvious way to assess the gait pattern, and secondly, because the spontaneous 

gait pattern reflects ability in terms of central locomotor function. Indeed, at the usual, self-

selected pace, gait variability is lowest, leading to a more efficient gait pattern (McNeill 

Alexander 2002). In fact, humans seem to adjust their walking to minimise the metabolic energy 

cost of locomotion. The walking speed that we tend to prefer is the one that minimises energy 

cost per unit distance (McNeill Alexander 2002). Moreover, the comfortable self-selected gait 

speed is associated with the “more stable” gait pattern where variability in the accelerations in 

the tree axis was the lowest (Menz, Lord et al. 2003) and the stride to stride temporal variations 

are minimized (Hausdorff, Edelberg et al. 1997). 

Among older adults, the ability to walk faster seems to be related to muscle strength, 

and especially to knee extension (Bohannon, Andrews et al. 1996, Bohannon 1997). As faster 

walking seems to be more challenging than a comfortable walking speed, this walking condition 

is also used during gait pattern assessments. Indeed, fast walking makes it possible to show 
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alterations in gait patterns in older adults with type 2 diabetes, even without peripheral 

neuropathy (Ko, Stenholm et al. 2011) and can discern fallers and non-fallers among older 

adults (Barak, Wagenaar et al. 2006), discern people at risk of cognitive decline (Fitzpatrick, 

Buchanan et al. 2007, Deshpande, Metter et al. 2009) or those at risk of disability (Artaud, 

Singh-Manoux et al. 2015). Moreover, the fast walking condition has been suggested to be 

useful for identifying, among older adults, those at risk of future fall(s) (Callisaya, Blizzard et 

al. 2012).   

As previously explained, walking was initially considered as an automatic behaviour. 

However, in daily-life walking conditions, the ability to avoid an obstacle or deal with 

directional changes are evidence that intentional mechanisms are also involved, requiring 

explicit cognitive function. In order to confirm this intuitive feeling, some authors have used 

the dual task paradigm to demonstrate the involvement of cognitive functions during walking.  

The dual-paradigm is based on the hypothesis that two tasks interfere when they have 

to be performed simultaneously and rely on the same functional and/or cerebral system 

(Woollacott and Shumway-Cook 2002). In this type of gait assessment, one of the tasks is 

walking, while the other task could be an "attention-demanding" task, such as an auditory 

Stroop task, a fluency task, or a task involving working memory. The gait modification 

observed during the dual-task walking condition is interpreted as the involvement of attention 

while walking, and demonstrates the involvement of cortical control (Woollacott and Tang 

1997).  

Furthermore, older adults seem to require more attention for motor control while 

walking than younger persons (Woollacott and Shumway-Cook 2002, Laessoe, Hoeck et al. 

2008). Indeed, gait performances in the dual-task walking condition were more affected in 

healthy older adults than in young people (Al-Yahya, Dawes et al. 2011). In this regard, Bloem 

et al. showed that even among healthy subjects, older adults are less inclined to give priority to 
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ensuring balance ("posture first strategy") in the dual-task condition than younger people 

(Bloem, Valkenburg et al. 2001), meaning that some of them give priority to the cognitive task 

rather than to the walking.  

Actually, the dual-task walking condition has also been used in clinical studies to study 

the involvement of attention mechanisms (Siu, Chou et al. 2009, de Bruin and Schmidt 2010) 

and executive function in gait performance; in healthy elderly subjects (Hausdorff, Yogev et al. 

2005) and in people with dementia (Sheridan, Solomont et al. 2003, Allali, Kressig et al. 2007, 

Festa, Heindel et al. 2010). Thus, the dual-task paradigm can be used as a cognitive stress 

resistance model, where the threshold for the occurrence of dual-task-related gait interference 

is dependent on the cognitive load (Bridenbaugh and Kressig 2011). Given that the use of the 

dual-task paradigm leads to changes in gait performance that may go undetected in the single-

task walking condition; the dual-task walking condition has also been used to detect older adults 

at risk of falls in their daily life activities. Indeed, a landmark study published by Lundin-Olsson 

et al. (L. Lundin-Olsson 1997) showed that people who stop walking when talking have an 

increased fall risk compared to those who keep walking. Some years later, several teams around 

the world confirmed that modifications in gait profile during dual-task walking are associated 

with an increased risk of falls (Verghese, Holtzer et al. 2009, Bridenbaugh and Kressig 2011, 

Gschwind, Wolf et al. 2011, Montero-Odasso, Verghese et al. 2012).  

In the same field of interest, a review of the literature explored dual-task walking 

modifications in healthy young and older adults, compared to dual-task modifications in frail 

subjects or elderly fallers. While healthy elderly subjects essentially showed decreased gait 

speed and reaction time, frail subjects and fallers showed reduced gait speed, shorter steps, 

longer double support time, and increased gait variability (Hausdorff, Schweiger et al. 2008).  

However, the scientific literature is not consensual regarding the utility of using the 

dual-task paradigm to better discern people at risk of fall(s). Indeed, two studies involving non-



58 
 

demented people failed to demonstrate the utility of gait performance obtained in the dual-task 

condition in identifying people at risk of future falls (Bootsma-van der Wiel, Gussekloo et al. 

2003, Beauchet, Allali et al. 2008). The prospective study by Herman et al., including healthy 

non-demented older adults, showed that among gait parameters obtained in the dual-task 

walking condition, only gait variability could be useful to discern future fallers (Herman, 

Mirelman et al. 2010). Finally, three literature reviews focusing on the usefulness of gait 

parameters obtained during the dual-task walking condition to detect people at risk of fall(s) 

among healthy older adults have concluded that further prospective studies including larger 

samples and using standardized data acquisition, data processing and statistical analysis are 

needed to show whether the dual-task walking condition could be useful to discern people at 

risk of a future first fall (Zijlstra, Ufkes et al. 2008, Beauchet, Annweiler et al. 2009, Muir-

Hunter and Wittwer 2016). In one of these literature reviews, O. Beauchet et al. confirmed that 

“no association between dual-task-related gait changes and fall incidence was found in the three 

studies that focused on community-dwelling older adults. In contrast, the highest predictive 

values for falls based on dual-task-related gait changes were found in institutionalized 

participants (i.e. frail older adults) and geriatric inpatients" (Beauchet, Annweiler et al. 2009). 
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2.2.5. Functional tools 

Several tools have been developed to assess static and dynamic balance and gait 

performance. The main advantage of these tools is that they yield a score to record, thus 

allowing comparison between individuals, but also across further gait assessments in the same 

person. Most of the functional tools require specific training, but are easy to implement in 

clinical practice. 

The available functional tools are numerous, and to draw up an exhaustive list of them 

is not the goal of this paragraph. Suffice to say that the most important aspects to consider when 

choosing a functional tool are its validation among the population targeted by the gait 

assessment (e.g. among community-dwelling older adults, among institutionalized subjects, 

among fit or frail people, etc.), its validation for the detection of the negative outcome under 

investigation, and finally, the requirements in terms of training and equipment.  

However, even functional tools that give global or sub-scores assessing balance and gait 

performances have failed to assess gait cycle time and gait parameters, which require 

instrumental methods to be adequately addressed. 
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2.2.6. Instrumental methods 

Considering the limits inherent to visual assessment and functional tools, and in order 

to improve accuracy of assessment, instrumental methods have been applied to walking to 

enable the measurement of specific gait parameters. Compared to visual assessment and 

functional tools, instrumental methods offer several advantages, i.e.: (1) accurate and reliable 

measurements, (2) knowledge of the individual and detailed gait performance, i.e. “gait 

profile”, (3) the opportunity in the field of research to link “gait profiles” with physiological 

and/or pathological conditions, thereby improving the current state of knowledge regarding the 

mechanisms underlying the gait process, and finally, (4) the opportunity to link “gait profiles” 

to future negative clinical outcomes, such as fall risk, for example. In this context, methods to 

analyse gait have been widely developed over the last twenty years and numerous methods are 

now available. We will detail available approaches in the next chapter. 

Methods to assess gait can be classified according to the variables they measure: 

temporal and spatial gait parameters, muscle activities or energy expenditure. Regarding the 

topic of this research, this chapter will only overview the instrumental methods that assess 

temporal and spatial gait parameters. 

Instrumental methods to assess gait cycles and gait parameters can be considered as 

“kinetic” or “kinematic” methods, depending on their variable of interest. Kinetic methods 

measure the variables that create the motion (i.e. the force(s)), while kinematic methods 

measure the motion itself (i.e. linear or angular position(s)). Kinematics is the measurement of 

movement in terms of displacement, velocity and acceleration. Kinematic systems are used in 

gait analysis to record the position and orientation of the body segments, the angle of the joints 

and the corresponding linear and angular velocities and acceleration (W.Whittle 2007).  

Another classification considers the properties of the device, rather than the variables 

measured, and divide the instrumental methods into solution-based wearable sensors (including 
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footswitches, foot pressure insoles, accelerometers, gyroscopes and inertial measurement units 

combining accelerometers and gyroscopes or a combination of footswitches or foot pressure 

insoles and inertial measurement units) and non-wearable sensors (including opto-electronic 

systems, and force platforms). 

Regardless of the computational methodologies adopted, different sensor systems can 

be used to capture gait phases/parameters. Nowadays, wearable sensors are largely used to 

decompose the phases of gait; foot pressure insoles or footswitches are the gold standard to 

extract these phases, since each transition between gait phases can be associated with a specific 

value of the sensor output. Alternatively, accelerometers and gyroscopes are widely used to 

inform algorithms for gait phase extraction. In a controlled laboratory environment, non-

wearable sensors, such opto-electronic systems or force platforms, are widely used (Taborri, 

Palermo et al. 2016). Once again, in view of the focus of this research, this chapter will present 

a general overview of available methods assessing gait parameters, focusing particularly on the 

methods involved in the experimental section, namely acceleration-based methods and opto-

electronic methods. 
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A. Force platforms 

Force platforms (also known as force plates), are used to measure the ground reaction 

forces of a subject when they hit the force platform during walking. Within the platform, a 

number of transducers are used to measure tiny deformations of the upper surface, in all three 

axes, when forces are applied to it. Ideally, a force platform should be mounted below floor 

level, with the upper surface being flush with the floor. Acquisition of data using force 

platforms can be subject to several problems. One problem is linked to the “aiming” effect. 

Indeed, to obtain good data, the whole of the subject’s foot must land on the platform. It is 

tempting to tell the subjects where the platform is and to ask them to make sure that their 

footstep lands squarely on it. However, this is likely to lead to an artificial gait pattern.  

Furthermore, when a recording from both feet is required, the relative positioning of two 

force platforms can be a considerable impediment, considering the range of step length in the 

general participants across ages, gender, and pathophysiological processes. There is no single 

related position that is satisfactory for all subjects. Force platforms are essentially used to assess 

balance, rather than walking. To address this problem, some researchers have developed 

devices consisting of a small number of pressure sensors, which are fixed to the sole of a shoe. 

First prototypes seem to be easy to use and efficient, and research in this area is growing with 

a view to enabling gait analyses based on walking periods during daily living (Levine, Richards 

et al. 2012).  

In fact, the human movement laboratory performing this study regularly uses force 

platforms. However, considering the previous cited limitations and in the absence of any 

available and recently developed prototype, force platforms will not be involved in the 

experimental section of this research. 
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B. Footswitches 

Footswitches included sensors able to directly detect the contact between the foot and 

the ground during gait cycles. They are considered the gold standard in the field of gait phase 

detection (Taborri, Palermo et al. 2016) and are often used with shoes to record the timing of 

the cycle such as the timing of initial contact, foot flat, heel rise and toe-off, and the duration 

of the stance phase, the swing phase, and single and double support, according to the 

measurements using one, two or four footswitches. However, they have several disadvantages. 

In fact, focusing on their use among older people, some practical limitations include: (1) the 

placement of the sensors on patients with pathological gait affects the accuracy and reliability 

of the measure; (2) reliability is susceptible to mechanical failures (Willemsen, Bloemhof et al. 

1990, Taborri, Palermo et al. 2016). Considering the usual gait pattern heterogeneity present 

among older adults and in order to avoid encountering technical constraints or limitations, 

footswitches will not be involved in this study. 
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C. Walkways 

Instrumental walkways are used to measure the timing of the foot contact, the position 

of the foot on the ground, or both. In their most advanced versions, walkways contain a large 

number of switch contacts that detect the foot position as well as the timing of the heel contact 

and toe off. Timing information from the foot contacts is used to calculate the cycle time and 

the combination of cycle time and speed may be used to calculate the stride length 

(GaitRite/CIR systems). This system is commonly used in research and in the clinical setting; 

an example of one such system is the “GAITRite” (Levine, Richards et al. 2012). The advantage 

of this system is that walkways are easy to use, and validated for use among older adults 

(Bridenbaugh and Kressig 2011). Disadvantages include the fact that their use in the clinical 

context requires the availability of a dedicated corridor to install the walkway, and the length 

of the walkway (generally less than 10 meters) limits the walk distance available for assessment. 

Finally, this method does not assess the sub-phases of the swing. Nevertheless, considering that 

it is easy to use and yields accurate and reliable gait parameters, this instrument could be used 

for gait assessment among older adults and previous literature already exists (Bridenbaugh and 

Kressig 2011). Unfortunately, at the time of the design of this research project, we did not have 

any available walkway, precluding its use here. 
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D. Camera-based motion analysis 

Pioneering researchers in this field used photography with a succession of pictures at a 

high frame rate to decompose the walk into several steps. Nowadays, advanced kinematic 

systems measure the position of markers, fixed on specific landmarks, in three dimensions. In 

passive marker systems, the markers reflect (infra-red) light emitted by the cameras. Confusion 

between the markers is possible in certain conditions. In active marker systems, the position 

marker emits its own signal (usually light-emitting diodes (LEDs)). Active markers have their 

own emission timing, which enables them to be automatically distinguished. These systems 

allow accurate 3D-position analysis during movement or walk. Actually, these systems could 

be used to perform gait analysis. Kinematic data recorded by an opto-electronic system 

represent the gold standard for quantified gait analysis in the laboratory environment, but cannot 

be used outside the laboratory in real-life situations (Taborri, Palermo et al. 2016). Different 

algorithms can be chosen to extract the gait events from the position of the markers, such as the 

timing of the heel strike (HS) and toe off (TO), the events that mark the transitions between 

stance and the swing phase of gait (O’Connor, Thorpe et al. 2007). The literature reports three 

main sources of error with this type of system, namely: soft tissue artefacts (STA) (Cappello, 

Stagni et al. 2005), errors of marker placement (Della Croce, Leardini et al. 2005, Sint Jan and 

Croce 2005) and instrumental errors (Chiari, Croce et al. 2005). Soft tissue artefacts are linked 

to the relative motion of the soft tissues on which the markers are fixed, and the bone structures 

below the soft tissue. Errors of marker placement are usually reduced through conscientious 

compliance with the instructions and protocols. Instrumental errors are usually no longer a 

major issue, since recent systems offer sub-millimetre accuracy after appropriate calibration 

(Windolf, Götzen et al. 2008). The accuracy depends on the device, on the distance between 

the markers and the cameras, and of course, on the accuracy of the algorithm detecting gait 

events based on the position signal. This method, as the gold standard in motion analysis, is 
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accessible in the Laboratory of Human Motion Analyses installed in the University of Liège, 

and therefore, we chose to use this method to assess gait parameters among older adults.  
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E. Accelerometer-based methods 

The use of accelerometric methods to assess human movement was first suggested in 

the 1970s, but has been refined and perfected thanks to the research of two Norwegian 

physicians, R. Moe-Nilssen and J.L. Helbostad (Moe-Nilssen 1998, Moe-Nilssen 1998, Moe-

Nilssen 1998, Moe-Nilssen and Helbostad 2004). Briefly, the main objective underpinning their 

research was to devise an instrument to measure linear acceleration of the trunk during gait 

under real-life environmental conditions. To achieve this goal, they used a triaxial piezo 

resistant accelerometer connected by a co-axial cable to a battery-operated portable data logger. 

Analog signals were low pass filtered at 200Hz before being sampled at 512 Hz to avoid 

aliasing. The piezo accelerometer registered gravity as a static vertical component in addition 

to the dynamic acceleration caused by change of velocity during locomotion. Using the 

accelerometer as an inclinometer, R. Moe-Nilssen showed an algorithm able to compute 

estimates of the gravitational components in the antero-posterior and the medio-lateral 

directions. Knowing the gravitational components of the antero-posterior and the medio-lateral 

acceleration vectors and the average tilt of the accelerometer, this system was able to transform 

acceleration data to a horizontal-vertical orthogonal coordinate system. The accelerometer was 

tested for precision and accuracy in dynamic conditions showing results close to the precision 

limits of the gold standard instrument used (a servo hydraulic jig).  

Attaching a triaxial accelerometer over the L3 spinous process is suggested to represent 

a close reflection of actual lower trunk accelerations during walking (Moe-Nilssen 1998). This 

is due to the fact that this region of the body has low transverse plane rotation relative to axial 

rotation in the sagittal and frontal planes. A tilt compensation procedure often includes post-

data-collection signal manipulation (specific to the device used). In this context, acceleration-

based instruments were developed and applied to human gait, firstly to demonstrate the 
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reliability of the measurements at different self-selected speeds, confirming that this method 

could be used in walking tests planned in real-life conditions.  

Based on this development process, R. Moe-Nilssen and J.L. Helbostad applied this 

method to human gait and validated the processing method to obtain an estimation of cadence, 

step length and step and stride regularity and symmetry (Moe-Nilssen and Helbostad 2004). 

The use of acceleration-based methods to assess gait among older adults was also validated by 

several others authors (Zijlstra and Hof 2003, Zijlstra 2004, Hartmann, Luzi et al. 2009, 

Hartmann, Murer et al. 2009, Zijlstra and Zijlstra 2013). 

Compared to other gait analysis instruments, accelerometers are low-cost, small and 

non-invasive (Kavanagh and Menz 2008). The availability of direct measurement of 3D 

accelerations eliminates errors associated with differentiating displacement and velocity. A 

major advantage of accelerometers is that measurements are not restricted to a controlled 

laboratory environment, and can handle gait analysis in an entirely natural setting, with the 

possibility to obtain gait parameters over longer walking distances. Thus, accelerometers tend 

to be the most widely used solution for ambulatory gait analysis (Taborri, Palermo et al. 2016).  

Depending on the focus of investigation, accelerometers can be placed on different parts 

of the body such as the head, the trunk, the lumbar position or the feet. In addition, this method 

makes it possible to measure the sub-phases of the swing phase (Taborri, Palermo et al. 2016). 

In fact, in view of these numerous advantages, the use of accelerometric methods is growing in 

research. Moreover, recently, the use of automated gait event detection software (i.e. toe off 

and heel strike) enables more detailed analysis of the granularity of gait cycles.  

Considering previous expertise and these numerous advantages using this method, we 

chose to implement this instrumental method in this research work. 

  



73 
 

F. Gyroscopes 

Gyroscopes measure angular velocity, which is not influenced by the gravity and by the 

vibration occurring during the heel strike (Taborri, Palermo et al. 2016). The data obtained 

using this method are complementary to those obtained using acceleration-based methods 

(Bonnet, Ramdani et al. 2014). As with accelerometers, and depending on the focus of the 

investigation, the data obtained with a gyroscope depend on its placement. At present, the use 

of this method is growing, especially in research focusing on gait and balance disorders (Brodie, 

Psarakis et al. 2016). However, their use remains restricted and further studies are needed to 

demonstrate opportunities for its use among older people. Considering that this method was not 

available for use it at the beginning of this work, we did not use gyroscopes in our assessments. 
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In summary, the potential gait parameters available after gait analysis depend on the 

instrumental method and material used. Most gait parameters can be obtained using different 

instrumental methods. Moreover, gait parameters can be measured or calculated. The table 

below summarizes the instrumental methods available, and shows a non-exhaustive list of the 

gait parameters that can be obtained using the instrumental methods discussed, and whether the 

gait parameters were recorded or calculated. The methods used and the parameters considered 

in the experimental section of this work are highlighted in bold font. 
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Methods Gait cycle/ parameters Measured Calculated 

Force platforms - Ground reaction forces in vertical axis during stance. X  

Footswitches 

- Timing of initial contact, foot flat, heel rise, toe-off. X  

- In case of at least one stride available: duration of the stance phase.  X 

- In case of two or more available: duration of stride and swing phases.  X 

- In case footswitches are on both feet: single and double support time.  X 

- Stride to stride variability measures.  X 

Walkways 

- Timing of initial contact, foot flat, heel rise, toe-off.  X  

- Durations of the stance phase, the swing phase and the single and 

double support phase. 

 X 

- Gait speed, step and stride length, cadence.  X 

- Stride to stride gait variability measures.  X 

Camera-based 

motion analysis 

or opto-electronic 

method 

- Three dimensional positions of active markers in time. X  

- In case of markers on feet: step or stride length.  X 

- Cadence, duration of the stance phase, the swing phase and the single 

and double support phase and stride to stride variability measures. 

 X 

- Minimal toe clearance.  X 

Accelerometer-

based method 

- Accelerations measured on three axes. X  

- Gait event timings: heel strike, toe strike, heel-off, toe-off, maximum 

heel clearance, and maximum toe clearance. 

X  

- Depending on the place on the body where the accelerometer is placed: 

step or stride length, step or stride cadence. 

 X 

- Step or stride regularity and symmetry, harmonic odds ratio, root 

mean square, step time variability, step time asymmetry, step stability 

index, stride to stride variability. 

 X 

Gyroscopes 

- Angular velocities in three axes. X  

- Mean, root means square and coefficient of variation of angular 

velocities in three axes. 

 X 
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2.3. Assessing fall risk 

 

2.3.1. Fall definitions 

Several definitions of a fall are available in the literature. One of the most 

comprehensive is that used by Bautmans et al., namely: “The fall is an unintentional coming 

down to the floor or a lower level, not induced by a major intrinsic or extrinsic event” 

(Bautmans, Jansen et al. 2011). The definition chosen by the Word Health Organization and 

edited by the U.S. Preventive Services Task Force is quite similar, namely “a sudden, 

unintentional change in position causing an individual to land at a lower level, on an object, the 

floor, or the ground, other than as a consequence of sudden onset of paralysis, epileptic seizure, 

or overwhelming external force” (Feder, Cryer et al. 2000).  
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2.3.2. Fall(s) risk factors  

According the published report of the technical meeting organised by the World Health 

Organisation on falls prevention in older age which took place in Victoria, Canada in February 

2007, several societal and individual aspects have to be considered to reach an integrative point 

of view of the fall risk factors that may be present among older adults. These factors are 

summarized in the following figure, taken from the report:  

 

 

 

Accordingly, it is not surprising that the literature regarding the risk factors for falls is 

plentiful. Systematic reviews are available and three literature reviews and meta-analyses 

(Rubenstein 2006, Tinetti and Kumar 2010, Bloch, Thibaud et al. 2013) considering the fall 

risk factors recognized among community dwelling older will be further detailed in this chapter.  

According to Bloch et al.(Bloch, Thibaud et al. 2013), fall risk factors can be divided 

into extrinsic risk factors, iatrogenic risk factors, and intrinsic risk factors.  
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Extrinsic risk factors include walking aids, non-adapted shoes, or obstacles on the 

ground, or in the environment (Rubenstein 2006, Bloch, Thibaud et al. 2013).  

Iatrogenic risk factors include laxatives, sedatives, antidepressants, anti-epileptics, 

antiparkinsonians, digoxin, analgesics, anti-inflammatory drugs, angiotensin-converting 

enzyme (ACE) inhibitors, vasodilators, and antihypertensive drugs (Bloch, Thibaud et al. 

2013). Polypharmacy, defined as > 4 drugs per day (Tinetti and Kumar 2010), was also shown 

to be an independent risk factor for falls. Furthermore, the intrinsic risk factors for fall(s) 

include: fall history (Rubenstein 2006, Tinetti and Kumar 2010, Bloch, Thibaud et al. 2013), 

fear of falling (Bloch, Thibaud et al. 2013), sensory disorders including proprioceptive, hearing 

and visual impairments (Rubenstein 2006, Tinetti and Kumar 2010, Bloch, Thibaud et al. 2013), 

balance impairment (Rubenstein 2006, Tinetti and Kumar 2010), decreased muscle strength 

(upper and lower limbs) (Tinetti and Kumar 2010), gait impairment or walking difficulty 

(Rubenstein 2006, Tinetti and Kumar 2010), dizziness or postural hypotension (Rubenstein 

2006, Tinetti and Kumar 2010, Bloch, Thibaud et al. 2013), vertigo (Rubenstein 2006), drop 

attack (Rubenstein 2006), delirium (Rubenstein 2006), disorientation (Bloch, Thibaud et al. 

2013), cognitive impairment (Rubenstein 2006, Tinetti and Kumar 2010, Bloch, Thibaud et al. 

2013), basic and instrumental activity of daily living disabilities (Rubenstein 2006, Tinetti and 

Kumar 2010), age > 80 years (Tinetti and Kumar 2010), female gender (Tinetti and Kumar 

2010), low body mass index (Tinetti and Kumar 2010, Bloch, Thibaud et al. 2013), urinary 

incontinence (Tinetti and Kumar 2010, Bloch, Thibaud et al. 2013), pain (Tinetti and Kumar 

2010), Parkinson’s disease (Bloch, Thibaud et al. 2013), neurological disease (Bloch, Thibaud 

et al. 2013), digestive disease (Bloch, Thibaud et al. 2013), stroke (Bloch, Thibaud et al. 2013), 

high blood pressure (Bloch, Thibaud et al. 2013), depression (Tinetti and Kumar 2010, Bloch, 

Thibaud et al. 2013), anaemia (Bloch, Thibaud et al. 2013), fracture history (Bloch, Thibaud et 

al. 2013), cardiac and vascular problems (Bloch, Thibaud et al. 2013), cancer (Bloch, Thibaud 
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et al. 2013), arthritis (Rubenstein 2006, Tinetti and Kumar 2010, Bloch, Thibaud et al. 2013), 

diabetes (Tinetti and Kumar 2010, Bloch, Thibaud et al. 2013), alcohol (Rubenstein 2006), 

epilepsy (Rubenstein 2006), falling from bed (Rubenstein 2006), acute illness (Rubenstein 

2006). 

 

Moreover, Rubenstein et al. (Rubenstein 2006) have shown that among older adults 

without a history of falls in the previous year, gait and balance impairment were the most 

consistent risk factors, followed by medications, orthostatic hypotension, visual impairment, 

limitation in the activities of daily living (ADLs) and cognitive impairment. Indeed, in most 

cases, older adults presented more than one risk factor for falls. Even in those having the same 

risk factors, the consistency of each risk factor will differ depending on the individual 

compensation mechanisms of each person. These individual abilities to compensate (or not) for 

the presence of one or more fall risk factor(s) and different daily-life environments probably 

explain the wide range of odds ratios or relative risks obtained in observational or interventional 

studies (Bloch, Thibaud et al. 2010, Tinetti and Kumar 2010, Bloch, Thibaud et al. 2013).   
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Finally, these relationships are constantly changing across the life-time as health-related 

conditions, activities or environments vary. Thus, the fall event could be considered as the result 

of an impaired balance between the fall risk factors and the compensatory fall risk mechanism, 

bearing in mind that this balance is individual, and varies across the life-time.  

 

 

 

The inherent risk factors for fall(s) have been previously been summarized. According 

to Rubenstein et al. (Rubenstein 2006), extrinsic fall risk factors that merit consideration include 

environmental hazards, poor footwear and restraints. The same author considers trips and slips, 

acute medical illness, and dizziness as forward-fall risk factors. 

  

No fall Fall
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2.3.3. Guidelines for fall detection  

Obviously, assessing fall risk includes the detection of extrinsic, iatrogenic and intrinsic 

risk factors. This time-consuming step needs to be comprehensive in order to be effective. 

Accordingly, the American Geriatrics Society has issued a consensual fall prevention algorithm 

(see below)(Kenny, Rubenstein et al. 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to this algorithm, the first step is to assess fall history, and any potential 

difficulties with walking or balance. In fact, the algorithm has included a comprehensive 
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anamnesis similar to that already detailed in the previous chapter. The most important point to 

note is that, irrespective of whether the person has walking or balance complaints or a fall 

history, gait and balance must be assessed.  
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2.3.4. The functional tools used to address the fall risk  

Several tools are available and validated for obtaining either a qualitative description or 

a quantitative evaluation of gait, transferring and balance. Unfortunately, these functional tools 

not always validated for use among elderly people, and threshold values related to community 

dwelling-older are not always published.  

 

According Bloch et al. (Bloch, Thibaud et al. 2013), the most important tests to assess 

fall risk are as follows: abnormal walking test, slow walking speed, to be unable to get up from 

a chair, abnormal Tinetti test score, abnormal balance test, reduction of step length, lower grip 

strength. Unfortunately, these recommendations did not provide threshold values and have an 

obvious ceiling effect among robust or pre-frail people living independently at home. A 

systematic literature review addressing the use of functional tools in fall risk detection has 

shown that the most popular functional tools used include the performance-oriented mobility 

assessment, four square step test, short physical performance battery, Berg balance scale, mini-

balance evaluation system test, dynamic gait index, Timed Up and Go test and dual task walking 

(Ambrose, Paul et al. 2013).   

 

Finally, since the fear of falling can lead to gait modifications (Maki 1997) and increase 

the fall risk (Scheffer, Schuurmans et al. 2008), one of the available tools to assess walking 

confidence (FES-I, ABC scale, or SAFE) should also be implemented (Ambrose, Paul et al. 

2013). Unfortunately, to the best of our knowledge, at the current time, none of these functional 

tests is validated as a predictive functional tool to detect, among older people, those at risk of a 

first fall.  
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2.3.5. The gait parameters to consider in assessing fall risk 

The gait parameters that may be potentially useful when assessing fall risk are 

numerous, and the available literature is abundant in this regard. To keep this background 

section as targeted as possible, this chapter will focus solely on the gait parameters obtained 

using the accelerometric and opto-electronic methods detailed in the experimental section of 

this research work.  

Considering the equipment used (further detailed in the experimental section), gait 

speed, stride length and frequency, stride regularity and symmetry, and minimal toe clearance 

(MTC) will be assessed. All studies cited in this chapter involved community-dwelling older 

adults. In cases where the gait parameters were not recorded in single-task and comfortable 

walking conditions, the walking conditions have been detailed.  

 

A. Gait speed 

Using a cross sectional study design, Cho et al.(Cho and Kamen 1998), Auvinet et 

al.(Auvinet, Berrut et al. 2003) and Cui et al.(Cui, Peng et al. 2014) reported that fallers walked 

significantly slower than non-fallers. Similarly, after defining groups according to the fall risk 

based on functional tools, Menz et al.(Menz, Lord et al. 2003), Senden et al. (Senden, Savelberg 

et al. 2012) and Bautmans et al. (Bautmans, Jansen et al. 2011) showed a significant effect of 

the fall risk category on gait speed. Using a longitudinal study design, Verghese et al. showed 

that slower gait speed was associated with a higher risk of falls in a model adjusted for age, 

gender, education, falls, chronic illnesses, medications, cognition, disability and for functional 

gait and balance test scores (Verghese, Holtzer et al. 2009). Consequently, in this cohort, each 

10 cm/s decrease in gait speed was associated with a 7% increase in the risk of fall. Participants 

with a gait speed slower than ≤ 70 cm/s had a 1.5-fold increase in the risk of fall compared with 

those with normal speed, even after accounting for several fall risk factors (even fall within the 
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previous year). In a cohort of seniors living independently but in senior care facilities (according 

to the participants’ characteristics published, they were less mobile and sometimes used 

walking aids) followed for fall(s) for one year, Maki et al showed that higher stride-to stride 

gait speed variability was associated with future fall(s) (OR. 2.30, CI. 1.17-4.51)(Maki 1997).  

However, the relationship between gait speed and future fall(s) is not consensual. For 

example, in the longitudinal study by Hausdorff et al (Hausdorff, Edelberg et al. 1997) 

involving thirty-five community-dwelling elderly subjects aged over 70 years, walking 

independently for 6 minutes and categorized as fallers and non-fallers based on history, gait 

speed did not differ between fallers and non-fallers, while the stride-to-stride variability of 

temporal gait parameters was significantly different between the two groups (see below). This 

observation suggests that gait speed and stride-to stride temporal gait variability parameters 

could represent two different and independent fall risk factors.  

 

B. Stride length 

In a cross sectional study, Auvinet et al. (Auvinet, Berrut et al. 2003) reported that fallers 

had shorter stride length than non-fallers. However, in the longitudinal study by Verghese et 

al.(Verghese, Holtzer et al. 2009), the prospective relationship between stride length and future 

fall(s) was not found to be significant in the full adjusted model.  
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C. Stride frequency or cadence 

In a cross sectional study, Auvinet et al. (Auvinet, Berrut et al. 2003) showed that fallers 

had significantly slower stride frequency than non-fallers (p <0.001). Menz et al.(Menz, Lord 

et al. 2003) found no difference between groups in terms of step frequency assessed in 

steps/min. Senden et al.(Senden, Savelberg et al. 2012) showed that people with a Tinetti score 

≤ 24/28 had slower step frequency than those with a Tinetti score > 24/28 (p < 0.01), while 

subjects with a Tinetti score between 19 and 24 showed no difference in stride frequency 

compared to those with a Tinetti score < 19/28. There was no difference between groups in 

terms of fall history. In the longitudinal study by Verghese et al. (Verghese, Holtzer et al. 2009), 

the prospective relationship between cadence and future fall(s) was not found to be significant 

in the final adjusted model (relative risk: 1.066 with CI: 0.984-1.155).  

Furthermore, similar non-consensual relationships between cadence and fall(s) risk or 

history have also been found using different instrumental methods to assess cadence (Mortaza 

N 2014). In order to explain why the relationship between fall risk and stride frequency remains 

unclear, different hypotheses can be put forward. Either the stride frequency has a non-linear 

relationship with fall(s), or their relationship is mediated by a third component that is 

unrecognized at this time (e.g. gait speed, or stride regularity), or perhaps stride frequency has 

no relationship with fall(s) risk or/and fall(s) history.  

Moreover, previous studies did not take into account the influence of gender and/or leg 

length or total body height in their comparison groups, introducing bias in the interpretation of 

their results.  
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D. Stride regularity 

In Auvinet et al.(Auvinet, Berrut et al. 2003), stride regularity was automatically derived 

from two coefficients (C1 and C2) computed from an autocorrelation function on the cranial-

caudal signal and quantifying the peak values of the first and second dominant periods of the 

autocorrelation function, respectively corresponding to the step regularity and the stride 

regularity (Moe-Nilssen and Helbostad 2004). These coefficients are automatically transformed 

according to equations detailed in the paper by Auvinet et al (Auvinet, Berrut et al. 2002). Stride 

regularity is calculated as (C1+C2) x100 and describes the similarity of vertical movements 

over successive strides (dimensionless). In their study (Auvinet, Berrut et al. 2003), Auvinet et 

al. showed that fallers had significantly lower stride regularity (191.3 ± 56.0) than non-fallers 

(291.9 ± 51.9) (p < 0.001).  

 

E. Stride symmetry 

According to Auvinet et al.(Auvinet, Berrut et al. 2002), stride symmetry is calculated as 

(C1/C2) x100 and describes the similarity of left and right cranial-caudal movements, and is 

independent of fluctuations in the successive movement of each limb. In their study (Auvinet, 

Berrut et al. 2003), Auvinet et al. reported that fallers had significantly lower stride symmetry 

than non-fallers (p < 0.01). 
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F. Minimum toe clearance (MTC)  

The minimum toe clearance is defined as the local minimum in separation between the 

ground and the toe region of the forward swinging foot (Alan and John 2014).  

 

Tripping while walking seems to be one of the causes of falls in older adults living at 

home (Blake, Morgan et al. 1988). The risk is highest at the point of MTC (Mills and Barrett 

2001). Actually, the risk of tripping is the result of the proximity of the swing foot to the ground, 

the high velocity of the swinging foot and the forward-travelling centre of mass being in front 

of the base of support (Winter 1992, Mills and Barrett 2001, Barrett, Mills et al. 2010). Indeed, 

a one-year prospective study including 8 young people (men age 47 ± 12 years) with transtibial 

amputation showed a positive relationship between lower MTC measured on the prosthetic-

side and future trips (Rosenblatt, Bauer et al. 2016).  

Killeen et al. measured MTC in 121 healthy individuals aged 20-80 during normal 

treadmill walking and in dual task walking. During normal treadmill walking, there was no 

difference between the age groups in terms of mean MTC values or standard deviation. 

However, age differences became apparent during the cognitive dual-task, whereby older adults 

showed significantly smaller mean MTC values (Killeen, Easthope et al. 2017). An additional 

study showed similar decreased foot clearance during stair negotiation in the dual task condition 

(Hashish, Toney-Bolger et al. 2017). Furthermore, a study by Schulz et al., including 10 

volunteers ranging in age from 22–58 years (44 ± 13 years), confirmed the decrease in mean 

MTC values during dual task walking. The same study also highlighted that the MTC increases 
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or decreases depended on the nature of the specific concurrent task performed, and were not 

linearly correlated with toe speed, and were independent of the gait variability of step length, 

step width, step time also assessed in several dual tasking conditions(Schulz, Lloyd et al. 2010).  

To summarize the relationships between mean MTC and fall(s), MTC could be a 

potential fall risk marker given its critical biomechanical aspects (Schulz, Lloyd et al. 2010). In 

fact, mean MTC is lower in people who have a fall(s) history and during dual task walking. 

Nevertheless, to date, and to the best of our knowledge, no study has assessed the relationship 

between mean values of MTC (obtained either in comfortable or in dual task walking 

conditions) and the risk of future fall(s) among healthy older adults. 

Considering the relationships between gait variability and fall risk (Hausdorff, Edelberg 

et al. 1997, Maki 1997, Hausdorff, Rios et al. 2001), the variability in MTC has also been 

considered as a potential marker of fall risk. Indeed, a first study assessing minimum foot 

clearance (measured as MTC) showed a significant relationship between the minimum foot 

clearance variability measured during treadmill walking and fall(s) history (Khandoker, 

Palaniswami et al. 2008). Moreover, studies assessing the relationship between the ageing 

process and variability of the MTC showed that, among healthy older adults without fall history 

and relative to normal walking conditions, the variability of MTC in dual-task walking did not 

significantly change (Hamacher, Hamacher et al. 2014, Santhiranayagam, Lai et al. 2015), 

whereas stride length and stride time variability increased (Hamacher, Hamacher et al. 2016). 

According to these authors, older adults with an intact central control mechanism of MTC are 

not more prone to fall in a dual task condition, while older adults with impaired central control 

mechanisms would be at risk of falling because of tripping in dual task walking.  

To summarize, available literature shows that MTC variability increased after fall 

history, MTC variability remains stable among healthy older people, and MTC variability 

seems to be independent of the variability of stride length and time. To date, and to the best of 
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our knowledge, no study has assessed the relationship between MTC variability (obtained in 

either normal walking or dual task walking conditions) and the risk of future fall(s) among 

healthy older adults. 
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2.2.4. Summary of the rational supporting this research  

 

In summary, relationships between gait parameters and fall(s) history and/or fall risk 

have been partially identified in cross-sectional and longitudinal studies. Since cross-sectional 

studies are more numerous than longitudinal studies, the relationship between gait parameters 

and fall risk over time are not fully understood.  

In fact, slower gait speed, shorter stride length, higher swing time variability, higher 

stance time variability, lower minimal toe clearance and higher minimal toe clearance 

variability in single-task walking seem to have a relationship with fall history, while lower 

minimal toe clearance seems to have a prospective relationship with trips but the relationships 

with future falls among people without fall history is not yet clearly established. 

Furthermore, a recent systematic literature review concluded that, while available 

results support the usefulness of gait parameters obtained using accelerometric methods, further 

prospective studies remain necessary to further elucidate the prospective relationships between 

gait parameters and future fall(s), as well as the usefulness of gait parameters to identify, among 

community-dwelling older adults, those at risk of future fall(s) (Gillain, Boutaayamou et al. 

2018). 

Regarding fall consequences, both for the individual and at a societal level, the major 

challenge is to discern, among older adults, those who are at risk of falling, before the first fall 

and its negative consequences occur. According to previous findings, it appears logical to assess 

the usefulness of gait parameters, obtained in comfortable and in more challenging walking 

conditions, using instrumental method(s) in order to identify at an earlier stage, among older 

people, those at risk of future fall(s). 
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In this context, the main goal of this work is to better understand the underlying 

relationships between gait parameters and falls among older adults. To this end, I have chosen 

to assess gait patterns using two instrumental methods (accelerometric and opto-electronic) and 

in three different walking conditions (comfortable, fast and dual tasking).  

 

In light of the previously outlined literature on the topic, I hypothesized that gait 

parameters obtained in comfortable, fast or dual task walking conditions and their changes 

would be useful to identify, among healthy older adults, those at risk of future falls. I also 

hypothesized that, individual gait patterns, being the results of individual compensatory 

mechanisms, could be the most efficient marker to identify, among community-dwelling 

subjects free of fall history, those at risk of future fall(s). Finally, I hypothesized that data 

mining could be useful to confirm the second hypothesis.  

 

The next section will outline the experimental methods used in this work. 
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3. Objectives 

 

The aims of this exploratory study were: (1) to investigate the relationship between gait 

parameters and future fall(s) among older people living independently at home, free from 

disease-related processes recognized as a fall risk factors, including a history of recent fall(s); 

(2) at the level of the cohort, to assess the predictive association between these gait parameters 

and future fall(s); (3) at the individual level and using data mining, to explore the usefulness of 

gait parameters in classifying the volunteers as being at risk of a fall or not. 
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4. Methods 

 

4.1. Study design 

 

In order to achieve our objective, we performed a two-year longitudinal, observational 

study. 

  

4.2. Participants 

 

Volunteers were invited through a publicity campaign in national and local news media, 

or recruited during a meeting organized for the general public focusing on healthy ageing issues. 

Inclusion criteria were: Individuals aged at least 65 years, living independently at home, who 

could understand French, and who were able to travel to the motion analysis laboratory and 

who provided written informed consent. Exclusion criteria were: a history of fall(s) in the 

previous year, need for walking aids, gait disorders and/or an increased fall risk related to 

neurological or osteoarticular disease (e.g. stroke, Parkinson’s disease, lumbar spinal stenosis 

or polyneuropathy), dementia, recent hip or knee prosthesis (≤ 1 year), musculoskeletal pain 

when walking, acute respiratory or cardiac illness (< 6 months), recent hospitalization (< 3 

months), untreated or uncontrolled comorbidities (e.g. hypertension, diabetes), presence of a 

cardiac pacing device (an exclusion criterion to apply bioelectrical impedance analysis).  
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4.3. Anamnesis, clinical and functional assessment  

 

At inclusion (T0), all participants underwent anamnestic, clinical and functional 

assessment and gait analysis. The aims were to: (1) verify the inclusion and exclusion criteria, 

(2) investigate the relationship between gait performance and social, clinical and functional 

status. Subjects were assessed for age, gender, education, medications, alcohol and tobacco 

consumption and self-perceived quality of life assessed using the question “Currently, are you 

globally satisfied with your quality of life” where the volunteers had to answer “yes” or “no”.  

The burden of medical and surgical histories was scored by the Cumulative Illness 

Rating Scale geriatric version (CIRS-g) (Linn, Linn et al. 1968, Miller, Paradis et al. 1992). The 

total score ranges between 0 and 56 and combines the number of diseases and their functional 

impact.  

Physical activity, exercise and sports habits were assessed by the Physical Activity 

Status Scale (PASS) developed by Jackson et al. (Jackson AS 1990, Jackson and Ross 1996). 

The total score ranges between 0 and 7, with a score of zero indicating no exercise or physical 

activity at all and a score of seven indicating at least three hours of intense physical exercise 

per week.  

Acute or chronic pain perceived before testing was measured using a visual analogue 

pain scale (Hawker, Mian et al. 2011) scored from 0 (no pain) to 10 (maximal pain the subject 

can imagine). Standardized specific material including one graduated side used to measure the 

intensity of the pain (the experimenter side) and another, ungraduated side used by the subject 

to evaluate their own pain without taking numerical value into account. The subject had to move 

the red cursor from left to right on a blue line ungraduated to locate potential pain. Once 

finished, the experimenter looked at the corresponding value on the graduated side and noted 

the intensity of the pain. 



102 
 

Functional assessment included the activities of daily living (ADL) (Katz, Ford et al. 1963) 

and the instrumental activities of daily living (IADL) scales (Lawton MP 1969). The ADL is a 

score ranging from 6 to 24, where a lower score corresponds to higher autonomy in the activities 

of daily living. The IADL is a score ranging from 0 to 8, where a lower score corresponds to 

less autonomy in the instrumental activities of daily living. Considering that some housework 

is usually and preferentially done by the same member of the family (e.g. gardening or preparing 

meals), the IADL score was calculated as the sum of the scores obtained on the items applicable 

to each subject, divided by the sum of the maximum possible score on the applicable items (in 

order to not consider the volunteer disabled for a housework item he or she never performs) 

(Gillain, Warzee et al. 2009). 

Mood was assessed using the geriatric depression scale short version (GDS-4) (D'Ath 1994, 

Clément 1997), which is a score ranging from 0 to 4, where 0 means no depressive symptom is 

present. A score ≥1/4 means depressive disorder may be suspected (Clément 1997). Anxiety 

was assessed using the Covi anxiety rating scale (Lipman 1982), which yields a score ranging 

from 3 to 15, where a higher score means higher anxiety complaints. 

Cognitive performance was assessed using the Montreal cognitive assessment 

(MoCA)(Nasreddine, Phillips et al. 2005), which yields a score ranging from 0 to 30, where a 

higher score means higher overall cognitive performance. A score ≥ 26/30 indicates that the 

subject does not have cognitive disorders (Nasreddine, Phillips et al. 2005). 

Nutritional status was assessed using the Mini Nutritional Assessment short version (MNA-

14) (Rubenstein, Harker et al. 2001), which yields a score ranging from 0 to 14, where a score 

from 12 to 14 means the subject has no risk of malnutrition, a score from 8-11 indicates a risk 

of malnutrition, and a score less than 8 indicates that the subject is malnourished. 

Frailty was detected using two different tools, namely the Gérontopôle frailty screening tool 

(GFST) (Vellas, Balardy et al. 2013), and the Edmonton Frail Scale(Rolfson DB 2006). The 
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GFST is validated for its specificity to detect frail people among community dwelling adults in 

the general practice setting. In this screening tool, the subject has to answer 6 questions to detect 

whether the patient suffers from social isolation, weight loss, weakness, mobility or memory 

problems, and slower gait speed within the previous three months. If at least one question is 

answered positively, then the practitioner has to subjectively answer the question “you’re your 

patient seem to be frail?” The result obtained is a binary answer (yes/no). The Edmonton Frail 

Scale is a more sophisticated screening tool assessing physical, cognitive, and social 

components of frailty and scored out of a total of 17. A score from 0 to 3 means no frailty, a 

score from 4 to 5 means mild frailty, a score from 6 to 8 means moderate frailty and a score ≥ 

9 indicates that the subject is very frail. 

The fear of falling was assessed using the French version of the falls efficacy scale (FES-I) 

(Delbaere, Close et al. 2010), in which 16 activities of daily living are investigated for fall 

concern and scored from 1 to 4, where 0 means the subject is confident during the activity.  

Clinical evaluation included a visual examination of spontaneous gait in order to exclude 

pain, limp or lateral motor deficit during gait. To assess and quantify any extrapyramidal 

stiffness, the examiner applied the unified Parkinson’s disease rating scale criteria 

(UPDRS)(Goetz, Tilley et al. 2008). Stiffness ranged from 0 to 3 (0 = no stiffness; 3= stiffness 

decreasing the amplitude of the movement). As recommend by the Task Force, the measure of 

stiffness was applied for the neck and for the two upper and lower limbs. The total UPDRS 

score ranges from 0 to 12. Distance vision was tested using the French Monoyer’s scale for 3 

meters (Casellato 1994). Visual acuity less than 5/10 was reported as a visual impairment. 

Anthropometric data assessment included the measure of body height, weight, waist 

circumference and hip circumference and the length of the right leg. The body mass index was 

calculated as the weight (in kilograms) divided by the height (in m) squared. The use of a 

bioelectrical impedance analysis device (BodyStat® 1500) enabled us to obtain resistance in 
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ohms. This amount was then included in the following validated equation from Janssen 

estimating skeletal muscle (SM) mass, as follows: SM mass in kg = [(Ht2/R x 0.401)+(gender 

X 3.825)+(age X - 0.071)]+5.102, where Ht is height in centimetres; R is BIA resistance in 

ohms; for gender, men=1 and women=0; and age is in years (Janssen, Heymsfield et al. 2000). 

In order to adjust for stature and the mass of non-skeletal muscle tissues (fat, organ, bone) and 

according to Janssen et al. (Janssen, Heymsfield et al. 2002),  the skeletal muscle mass was 

expressed as a skeletal muscle mass index (SMI) where SMI = skeletal muscle mass/body mass 

x 100 and expressed in %. 

Grip strength, muscle fatigue resistance (time in seconds while the contraction is over 50% 

of the maximal contraction force) and the grip work (fatigue resistance x 75% of the maximal 

grip strength) of the dominant hand were assessed with a Martin’s Vigorimeter used as per 

Bautmans et al. (Bautmans I. 2005).  

Gait and balance were assessed by the Timed Up and Go (TUG) test (Podsiadlo and 

Richardson 1991), the Functional Gait Assessment (FGA) (Wrisley, Marchetti et al. 2004) and 

the Short Physical Performance Battery (SPPB) (Guralnik, Simonsick et al. 1994). During the 

TUG test the subject was asked, at the signal given by the experimenter, to stand up from a 

chair without armrests, to walk at a self-selected comfortable speed over a straight forward 

distance of 3 meters, turn around, and come back and sit down in the chair. The time required 

to perform this test was measured using a stopwatch manually started at the signal, and stopped 

when the subject was sitting in the chair at the end of the test. Functional gait assessment 

investigating static and dynamic balance and walking is scored out of 30 where a higher score 

means higher balance performance. The SPPB investigating static balance, walking speed and 

standing up performance is scored out of 12, where a higher score means better physical 

performance.  
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4.4. Gait analysis 

 

4.4.1. Material 

 

A. The Locometrix® 

The Locometrix is a validated gait analysis system including a 3-D-acceleration sensor, a 

data logger and a computer program for processing the acceleration signals and calculating the 

gait parameters (see figure below). The sensor weighs 20 g. and is composed of three 

accelerometers placed perpendicularly to each other housed in a plastic box (40x18x18mm). 

The sensor is incorporated into an elastic belt, which was placed around the waist of the subject 

in the lumbar position close to the L3-L4 inter-vertebral space. The first accelerometer was 

aligned with the cranio-caudal axis of the body, the second with the anterior axis and the third 

with the medio-lateral axis.  

 

                  

 

  

Locometrix placed in the elastic 
belt worn in the lumbar position
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Signals were recorded by a data logger at a sampling frequency of 100 Hz and an anti-

aliasing filter of 50 Hz was applied (Mignardot, Deschamps et al. 2014).  

Except for gait speed, which is calculated by the software based on the time measured with 

an electronic stopwatch synchronized with the gait data logger, the Locometrix® software 

automatically calculates gait variables considering a steady state walk sample of 20.48s.  

According to the validation data relating to the Locometrix® (Auvinet, Berrut et al. 2002), 

a period of steady state walking of 20.48 s was selected from the recording of each subject. This 

period contained about 1024 acceleration measurements and provided an optimal calculation 

time corresponding to 19–21 gait cycles, about 28 m for healthy adult subjects. In addition, the 

validation paper showed a figure summarizing gait cycle events identified based on the vertical 

acceleration curve. Actually and according Auvinet et al.,  kinetic data recorded by the 

Locometrix® were compared with the kinematics data from a synchronized video image 

analysis, making it possible to detect heel contact, foot flat, opposite toe-off, mid-stance and 

initial pushoff and to calculate right and left stance phases and initial and terminal double 

supports based on right and left cranial–caudal accelerations (unpublished data). According 

Auvinet et al. the software use a fast Fourier transformation  to convert the cranial–caudal 

acceleration signal to the fundamental frequency of periodic movement, the step frequency. By 

definition, a complete stride includes two steps; thus stride frequency (SF) was calculated as 

one half the fundamental frequency and is expressed in Hz or strides per s. The stride length 

(SL) was calculated from the average speed (m/s) divided by the SF (Hz) and expressed in m/s. 

Stride symmetry (SYM) and regularity (REG) were derived from two coefficients of 

correlation, C1 and C2, obtained by calculating the autocorrelation function of the vertical 

acceleration signal. Stride symmetry describes the similarity of left and right cranial– caudal 

movements and is independent of fluctuations in the successive cranial–caudal movements of 

each limb. Stride regularity describes the similarity of vertical movements over successive 
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strides. Symmetry and regularity are dimensionless. The validation of the measurement of these 

parameters, their reliability and their use in the clinical setting has been reported by Auvinet et 

al. (Auvinet, Berrut et al. 2002). 

In the University of Liège, the Locometrix was bought by the Motricity sciences 

department and has been used in a number of research protocols (Gillain, Warzee et al. 2009, 

Beaudart, Maquet et al. 2013, Buckinx, Beaudart et al. 2014, Buckinx F 2015, Gillain, Dramé 

et al. 2015) with expertise using the instrument in this field of research. 

The following pictures show the extraction data steps. 

 

 

First, the accelerometer is connected to the 

computer and the user interface of the software is 

opened.  

Second, the data are transferred from the 

accelerometric device to the computer. 
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Third, and as notified in red 

on the picture, the process includes 

the following steps: - 1 the selection 

the filed containing the walk sample 

-2 and 3 the selection of the walk 

sample to process,  - 4 the selection 

of the walk period to analyse by 

moving the cursors (considering the 

distance between the two cursors is 

always the same and corresponds to 

a 20.48 second period), -5. the selection the movement to analyse is a walk (rather than a run) 

and check that cranio-caudal curves are selected for analysis (usually preset).  

 

 

Then, the user interface asks 

the user to manually insert the whole 

distance walked and the time 

required to walk this distance.  

 

 

 

 

 

 

20.48 s 
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Of note, gait analyses processed by the software are based on the walking period of 

20.48 seconds previoulsly selected by moving cursors, while the gait speed will be calculated 

based on the walking distance and time taken that were manually inserted.   

 

 

The last window shows the gait 

performance and a graphical view. 

An export option to Excel is 

available. 
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B. The CodaMotion® 

The kinematics system used in this project is based on an active optical system able to 

accurately measure the 3D position of active markers placed on the body on the points of 

interest (e.g. ankle, knee, foot). The Codamotion® system (Charnwood Dynamics, Rothley, 

UK) is a 3-dimensional kinematic tool validated for use in laboratories (Gorton Iii, Hebert et 

al. 2009, Schwartz, Denoël et al. 2015). The use of position markers attached to the feet of the 

volunteers enables the application of the kinematic system to gait analysis while the 3-

dimensional position and orientation of the feet were tracked using Codamotion CX1 units 

(cameras) (see picture A below). The Codamotion system used in this research protocol 

includes active position markers connected with the battery pack (see picture B below), a 

battery pack able to support 4 position markers, 4 Codamotion CX units (cameras), each 

including 3 sensing arrays (picture A), and  software to capture kinetic data from each position 

marker.  

  

 

  

A 
The three sensing arrays 
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4.4.2. Data acquisition 

 

A. Calibration, installation of equipment 

 

Prior to first data acquisition, the experimenter was trained to use the opto-electronic 

method. In order to avoid measurement error and according to the gait parameters to be 

measured, a specific set up was dedicated to this study. The camera position was standardized 

as shown in figure below.  

 

 

In order to ensure standardized gait parameter acquisition conditions, a specific 

procedure was followed when placing the markers on the volunteers.  
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Two active position markers were 

attached on the left and right shoes of the 

volunteer on the extremity of the toe. Two 

active position markers were attached to the 

left and right shoes of the volunteer in the heel 

position in the middle of the shoe for the 

medio-lateral axis, and above the shoe heel 

for the cranio-caudal axis.  

 

 

 

Furthermore, all volunteers wore an 

elastic belt in the lumbar position containing the 

accelerometer as recommended by Locometrix. 
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Furthermore, before inclusion of older participants and in order to ensure that data 

acquisition using acceleration-based methods was as accurate as possible, and considering opto-

electronic methods as the gold standard, a “validation” step was performed.  

In this validation step, 19 young volunteers, equipped with the two instrumental methods, 

were assessed for gait speed, stride length and stride frequency during five walking periods.  

The within-subject reliability of these 3 gait parameters using two different instrumental 

methods was measured using the intra-class correlation coefficient.  

The ICC was excellent (> 0.95) for all three parameters.  

These data remain unpublished but were presented in poster format during the annual 

congress of the Belgian Society of Geriatrics and Gerontology in October 2014 I Liège, 

Belgium (See Appendix 1). 
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B. Gait tests 

According to previous data acquisition rules, gait tests were performed by the same 

operator in a wide, clear, straight hallway. Subjects wore their own usual shoes (shoes had to 

have laces in order to attach the battery box). Walking was recorded under 3 different 

experimental conditions: self-selected comfortable walking speed (CW), self-selected fast 

walking speed (FW) and during a dual-task walking condition (DTW). The instruction for FW 

was to “walk quickly without running in order not to miss your train” and for DTW “walk at a 

comfortable walking speed while simultaneously doing mental arithmetic task (a seven 

counting down from the number 100 task). Because explicit instructions concerning priority 

could affect dual tasking (Yogev-Seligmann, Rotem-Galili et al. 2010), the single instruction 

given to volunteers was to “do both tasks simultaneously as well as you can”.  

Since the order of the different walking conditions (CW, FW or DTW) could influence 

gait performance, CW is always the first walking condition requested, and the DTW is 

randomized in order to avoid systematic measurement error. Indeed, one volunteer out of two 

was asked to perform CW, FW and DTW while the other was asked to perform CW, DTW and 

FW.  

At the starting point, the volunteer was asked to walk 5 m in order to increase their 

walking speed and reach a steady walking state. The examiner starts the stopwatch when the 

first foot of the volunteer crosses the time line. The time required to walk 23 m is assessed. The 

last 5 m are used to decrease the walking gait and stop. In the middle of the 23 m, four position 

cameras compute the position of heels and toes over 8 meters.  
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4.4.3. Data extraction 

Using Locometrix®, the software automatically extracts the data relative to the walk and 

calculates the gait parameters. After the data acquisition, the experimenter connects the 

accelerometer to the computer. Next, the software opens a window showing the entire walk 

period recorded, and among those, the experimenter has to select the 10.24 second period of 

stable walking that is to be considered for the calculation of gait parameters. After that, the 

distance walked (23 meters in this study) and the time required to walk it were manually entered 

by the experimenter, before pressing on an optional button to calculate the gait parameters 

(stride length, stride frequency, stride regularity and symmetry) based on the walk period 

selected by the experimenter. Gait speed was calculated based on the distance and the time 

required walking the distance, as manually entered by the experimenter.  

Using Coda Motion®, the position signal obtained using the opto-electronic method was 

extracted using validated software automatically detecting gait events (heel strike and toe off) 

and calculating the gait parameters further explained below. The software allows visual control 

of gait event detection. 
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4.4.4. Data processing 

Concerning Locometrix®, mean gait speed (GS) was computed from the time required to 

cover 23.04 meters according to the following formula: 23.04 (m) / time elapsed (s). Time was 

recorded by means of a stopwatch. The following gait variables were inferred from walking 

speed and 20.48 s of stationary cranial-caudal acceleration signal: 

- the stride frequency (SF) or number of cycles per second (Hz) was calculated from the cranio-

caudal acceleration following the application of a Fourier transform. 

- the stride length (SL) was deduced from the equation [speed (m/s)= frequency (Hz) x stride 

length (m)] and expressed in meters. 

- the regularity (REG) and symmetry (SYM) indices were automatically derived from two 

coefficients (C1 and C2) computed from an autocorrelation function on the cranial-caudal 

signal. The autocorrelation coefficients C1 and C2 quantify the peak values of the first and 

second dominant periods of the autocorrelation function, respectively corresponding to step 

regularity and stride regularity (Moe-Nilssen and Helbostad 2004). These coefficients are 

automatically transformed according to equations detailed in the paper by Auvinet et al. 

(Auvinet, Berrut et al. 2002). Regularity and symmetry indices are dimensionless. The 

regularity index describes the similarity of vertical movements over successive strides. The 

symmetry index describes the similarity of left and right cranial-caudal movements and it is 

independent of fluctuations in the successive movement of each limb (Auvinet, Berrut et al. 

2002). 
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Concerning the position signal obtained from opto-electronic method, a signal-

processing algorithm was then applied to these recorded coordinates to extract the heel strike 

(HS) and toe-off (TO) timings for the right and left feet. This algorithm is based on a piecewise 

linear fitting method (Boutaayamou, Schwartz et al. 2015) that identifies accurately, on a stride-

by-stride basis, HSs and TOs as times associated with local minima in Zh and Zt, respectively 

(see figure below).  

In addition, we extracted the minimum toe clearance time (minTC) as the first sampling 

period at which Zt reaches a minimum during the swing phase prior to HS (Figure XXXX). We 

visually checked the extraction of HS, TO, and minTC timings for each measured left/right gait 

cycle.  
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The minimum toe clearance position (MTC) is calculated as Zt (minTC(i)) – Zt(TO(i)). 

MTC from the left or the right foot are equally considered as MTC.  

After comparison analysis showing that the MTC obtained during the swing phase of 

the left foot was not significantly different from the MTC obtained during the swing phase of 

the right foot each subject with at least five gait events where MTC (whether from the left or 

right foot) was available, was considered for processing.  

After processing and calculation, the MTC is expressed as the mean MTC value 

(MeanMTC), the median MTC values (MedMTC), the minimal MTC values (MinMTC), the 

standard deviation of MTC values (SDMTC), the interquartile range of MTC values 

(IQRMTC), the variance of MTC values (VarMTC) and the coefficient of variation of the MTC 

values (CVMTC). The delta1 MTC = the maximal value of all MTC of the same subjects – 

MeanMTC (expressed in mm). The delta2 MTC = Mean MTC – Min MTC. 
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4.5. Additional gait patterns 

 

According to Montero-Odasso et al.(Montero-Odasso, Sarquis-Adamson et al. 2017), 

and in order to assess the walking profile changes occurring between the comfortable walking 

condition and the dual task walking condition, the “DTW cost” was calculated for each gait 

parameter as follows: dual task cost parameter = [(CW gait parameter – DTW gait parameter) 

/ CW gait parameter] x100 (expressed in %) where a “positive value” means a higher gait 

parameter value during CW than in DTW and a “negative value” means a higher gait parameter 

value during DTW than CW.  Indeed “a positive DTW cost value” for a gait parameter means 

that for this parameter, the performance during DTW is lower than during CW, and a “negative 

DTW cost value” means that the gait parameter performance increased during DTW. For 

example, a gait speed DTW cost = 33.2 % means that gait speed during DTW is 33.2 % lower 

than gait speed during CW. In the same way, a symmetry DTW cost = -23.5 % means that the 

symmetry in DTW increases by 23.5% compared to symmetry in CW. 

Similarly, and in order to assess the walking profile changes occurring between the CW 

condition and the FW condition, the authors calculated “FW improvement”. Indeed, the gait 

parameter FW improvement is calculated as follows: gait parameter FW improvement = [(FW 

gait parameter – CW gait parameter)/ CW gait parameter] x 100 (expressed in %), where a 

“positive value” means a higher gait parameter value during FW than during CW, and a 

“negative value” means a higher gait parameter value during CW than FW. For example, a “gait 

speed change in FW” = 33.2 % means that the subject increased their gait speed by 33.2 % in 

FW compared to their own gait speed in CW. 
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4.6. Brain MRI 

 

In order to investigate relationships between fall incidence, gait pattern and brain 

structure volumes, volunteers underwent structural brain MRI within a few weeks after their 

inclusion in the study. Acquisition sequences used involved multiparametric T1 weighted 

sequences, T2 weighted and Flair sequences and diffusion sequences.  

Since the data from brain MRI exams are not shown in this work, brain MRI acquisition 

methods are not further detailed. 

 

4.7. Neuropsychological evaluation 

 

In order to examine the relationship between fall incidence, gait pattern and cognitive 

performances, volunteers were asked to undergo neuropsychological evaluation focusing on 

episodic memory, executive function, visuo-spatial abilities and attentional resources.  

As the data relative to neuropsychological evaluation are not shown in this work, the 

evaluation methods are not further detailed. 
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4.8. Follow-up 

 

During follow-up, we recorded fall(s), missteps, ADL and IADL dependencies, 

hospitalization, need for external help in daily life, institutionalization and death. At inclusion, 

all volunteers received a booklet explaining the goals of the study, the events to record, and 

their operational definitions. Finally, the names of the investigator and the department 

organizing the study and their contact details were indicated. The follow-up booklet and its 

contents was systematically shown and detailed by the investigator to each participant. The 

investigator paid attention to use the same terms for standardized recommendations and 

comments. A fall was defined as an unexpected event in which the participant comes to rest on 

the ground, floor, or lower level (Lamb, Jørstad-Stein et al. 2005). Regarding the potential 

consequences of only one fall, no distinction was made in this project between volunteers who 

experienced a single fall and those who experienced more than one fall. Furthermore, we chose 

to consider the term “misstep” (regardless of whether it was a slip or a trip) as a gait event to 

be recorded during follow up. A misstep was defined as a trip, slip, or other loss of balance in 

which recovery occurred to prevent a fall (Srygley, Herman et al. 2009). 

Follow-up included phone contact every three months in order to record fall(s) history. The 

volunteers were asked to note every fall and to detail the fall circumstances. Every three months, 

an occupational therapist from the geriatrics department contacted each volunteer by phone to 

ask about fall(s) history, and fixed a date for the next phone contact to be sure the volunteer 

would be available. People who reported at least one fall during the follow-up period were 

considered as fallers. 
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4.9. Ethical considerations 

 

The study was approved by the university’s ethics review board and all participants signed a 

consent form prior to participating. The papers relative to ethical considerations are available 

in the appendices section (appendix 2). 
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4.10. Statistical analyses 

 

Statistical analyses were performed using SAS version 9.4 (SAS Institute Inc., Cary, NC, 

USA) and MATLAB R2013a (Math Works, Natick, MA). Quantitative parameters are 

expressed as mean ± standard deviation (SD), 25th percentile (Q1), median, 75th percentile (Q3). 

Qualitative parameters are expressed as number (percentage). Normality was tested using the 

Shapiro-Wilk test and by investigating mean and median values, histograms and Quantile-

Quantile plots. Homoscedasticity was tested using the Levenne test. Quantitative values were 

compared by one-way analysis of Variance (ANOVA) or by the Kruskal-Wallis test depending 

on the normality of their distribution. The association between qualitative parameters was tested 

using Chi square or Fisher’s exact test as appropriate. Results were considered significant for a 

p-value <0.05, except for the comparison between the subjects who completed follow-up and 

those who dropped out, where a p-value < 0.001 was considered significant. 

The correlation between gait parameters and right leg length or within the gait parameters 

was tested by Pearson’s or Spearman’s correlation coefficient according to the linearity of their 

distribution. Normalisation for right leg length was performed as “normalized parameter = 

parameter/right leg length (m)” for gait parameters correlated to the right leg length and 

showing significant differences according to fall incidence. 

Interrelation between gait parameters showing a p-value < 0.15 after univariate analysis was 

tested by correlation analysis of Pearson or Spearman according the symmetry of their 

distribution. According the number of variables to consider (regarding the number of events), 

logistic regression was performed including the selected relevant variables.  

According to their distribution, the IADL scores were categorized before logistic regression 

analysis. Indeed most people were autonomous for instrumental activities, while few were 
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dependant for one or two activities. Furthermore and as previously explained, the IADL score 

was calculated as the sum of the scores obtained on the items applicable to each subject, divided 

by the sum of the maximum possible score on the applicable items. Regarding the results 

obtained, most of the IADLs were equal to 1 while other scores were (7/8= 0.875) or (6/7= 

0.857) or (6/8= 0.75). The IADL scores were categorized as “0”, meaning the participant was 

autonomous for the IADL (where the item was applicable); and “1” for participants dependant 

on at least one instrumental activity. 
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4.11. Data Mining 

 

Classification trees differentiating fallers and non-fallers after two-year follow-up based 

on their gait pattern at inclusion were developed using the J48 classifier available on the free 

downloaded software WEKA (Waikato Environment for Knowledge Analysis) version 3.8.1. 

The Waikato Environment for Knowledge Analysis (WEKA) is free, open-source software for 

data mining. WEKA is a product of the University of Waikato (New Zealand) and was first 

implemented in its modern form in 1997. The software is written in the Java™ language. Weka 

is a collection of machine learning algorithms for data mining tasks. The algorithms can be 

applied directly to a dataset. Weka contains tools for data pre-processing, classification, 

regression, clustering, association rules, and visualization. Several free online courses that teach 

machine learning and data mining using Weka are available in the free tutorial (Abernethy 

2010). The version of Weka used in this study is version 3.8.1. The J48 classification is a 

supervised learning algorithm, where the class of an instance in the training set is known. J48 

uses the training data to construct the decision model for the instance to class assignment and 

uses the model to predict a class of the instances in the test data. In the case of this study, the 

classes were defined as “fallers during follow-up” (noted “1”) or “non-fallers during follow-

up” (noted “0”). The model was developed using the cross-validation method where the default 

number of folds is 10. The data are subdivided into 10 segments for the first 10 algorithm runs. 

In turn, one of the segments is used for the test data and the remaining 9 segments are used as 

training data. On the last run, the entire dataset is used as training data. The algorithm output 

shows the average of 11 runs. By default, the setting evaluation options involve a confidence 

factor of 0.25, a pruned option, and a minimum number of instances that should fall in each leaf 

node of the classification tree = 2.  
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At the end of the process the model obtained is shown as a classification tree and the 

performance is detailed. Using the J48, several performance indices were available. However, 

based on their clinical relevance, the following performance measurements were noted:  

accuracy (the number of correctly classified instances expressed in percentage); sensitivity, 

which measures the proportion of positives (the fallers in this study) that are correctly identified 

as fallers (also called the true positive rate or the recall); specificity, which measures the 

proportion of negatives (non-fallers) that are correctly identified as non-fallers (also called the 

true negative rate); positive predictive value (PPV), which is the proportion of positive results 

that are true positives; negative predictive value (NPV), which is the proportion of negative 

results that are true negatives; the ROC AUC value (Receiver Operating Characteristic Area 

Under the Curve) value, also called ROC area, which ranges from 0.5 (meaning discriminatory 

ability between fallers and non-fallers is similar to that due to chance) to 1 (meaning a perfect 

discriminatory capacity), and the PR AUC (Precision Recall Area Under the Curve). The ROC 

curve plots the true positive rate against the false positive rate, while a PR curve plots precision 

against recall. In case of an imbalanced data set, where the true negatives are more numerous 

than true positives, the use of the PR curve is recommended (Davis Jesse and 2006).  Last but 

not least, for each classification node leading to a classification as “fallers” or “non-fallers”, the 

model gives two numbers in brackets; the first number is the total number of instances (weight 

of instances) reaching the leaf. The second number is the number (weight) of those instances 

that are misclassified. In case of a missing attribute value; the model will end up with fractional 

instances at the leaf. When splitting on an attribute, where some of the training instances have 

missing values, J48 will divide a training instance with a missing value for the split attribute up 

into fractional parts proportional to the frequencies of the observed non-missing values. This is 

discussed in the Witten & Frank Data Mining book as well as Ross Quinlan's original 

publications on C4.5.  
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In order to obtain the model with the highest accuracy, the authors proceeded step by step. 

For each model, the authors showed the accuracy, sensitivity, specificity, PPV, NPV, the ROC 

AUC and the area under the Precision-Recall Curve (PRC). The performance of each model 

was individually considered and compared to that of previous models in order to consider the 

usefulness of the variables included in the model. The first three models involved all gait 

parameters according to the walking condition in which they were obtained. The first model 

included the gait parameters obtained in CW, the second model included those obtained in FW 

and the third model included the gait parameters obtained in DTW. The fourth model included 

the calculated “FW improvement” for each gait parameter. The fifth included the calculated 

“DTW cost” for each gait parameter. In the sixth model, we included all the gait parameters 

obtained in CW, their “DTW cost” and their “FW improvement”. At this time, considering the 

large volume of data involved and to increase the accuracy of the model, the unnecessary 

attributes were removed. Indeed, in order to select the most informative instances to retain in 

the model, the authors performed step-by-step manual selection. Considering the accuracy of 

the “full version” of the model (including all instances), the first instance of the model was 

removed and model performance was measured again and compared to the performance of the 

“full version”. If the accuracy of the reduced model was higher than the accuracy of the “full 

version”, the gait parameter was definitively left out of the model and the same process was 

applied to the next gait parameter. If the accuracy of the reduced model was lower than that of 

the full model, the authors considered this instance as “informative” and kept this instance in 

the model, and so on for each gait parameter. In the end, the “short version” of the model 

included only the “informative” gait parameters. Following this process, the sixth model 

included a “full version” and a “short version”. The seventh model included all gait parameters, 

whatever the walking condition they were obtained in (CW, FW or DTW) and also the “DTW 

cost” and the “FW improvement”. A full version and a short version of the seventh model are 
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presented. The eighth model also included all gait parameters, whatever the walking condition 

they were obtained in (CW, FW or DTW) and their “DTW cost” and their “FW improvement” 

AND age, gender and the right leg length of each subject. A full version and a short version of 

the eighth model are presented. The ninth model included all gait parameters whatever the 

walking condition they were obtained in (CW, FW or DTW) and their “DTW cost” and their 

“FW improvement” AND the SPPB score, the IADL score and the rigidity scored using the 

UPDRS scale of each subject. A full version and a short version of the ninth model are 

presented. The tenth model includes the same variables as the ninth model (all gait parameters 

whatever the walking condition they were obtained in, their DTW cost and FW improvement, 

the SPPB score, the IADL score and the rigidity scored using the UPDRS scale of each subjects) 

AND age, gender and right leg length. A full version and a short version of the tenth model are 

presented. 
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5. Results 

 

This section will detail the participants included and followed up, the comparison between 

fallers and non-fallers, the results of the logistic regression analysis addressing the prospective 

relationship between clinical data or gait parameters and fall(s) during follow-up. Finally, this 

section will show the classification models obtained using the J48. 

 

5.1. Study participants  

 

One hundred and thirty three volunteers were screened for eligibility between July 2014 

and October 2015. Among these, twenty eight (21%) had a history of falls in the previous year, 

and thus, a total of one hundred and five subjects free of recent fall history were included and 

considered for the final analyses shown in this work. Two year follow-up was available for 96 

subjects (91.5%).  
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The socio-demographic, clinical and functional characteristics of the 105 participants 

included in the study are shown in Tables 1 and 2.  

During the two-year follow-up period, nine volunteers were censored: 1 died, 1 

developed a neoplasm, 1 was diagnosed with dementia at inclusion, 1 was admitted to a nursing 

home; two volunteers did not leave the study but could not be contacted by telephone; 2 

volunteers moved house and 1 person was excluded from follow-up because she fell close to 

stroke. A comparison of the clinical and functional characteristics of the study participants and 

those who dropped out is shown in Tables 3 and 4. Briefly, subjects who dropped out reported 

higher pain scores than people who completed follow up.  

Among 96 participants, 48 were women and 48 were men, mean age was 71.3 ± 5.4 

years (range 65 to 89 years). Overall, participants were well educated (the average duration of 

education was 13.03 ± 3.55 years), with low co-morbidities (mean CIRS score 9.42 ± 0.49) and 

were taking few medications (71% were taking fewer than 5 drugs per day). The vast majority 

were not frail (90%; mean GFTS and Edmonton score 1.99 ± 1.46), had no nutritional disorder 

• Call for recruitment by local media and recruitment among close relatives

133
•133 community-dwelling elders were screened for inclusion  

• Among these, 28 volunteers reported  a history of falls in the previous year. 

105

• 105 volunteers assessed for anamnesis, clinical and functional evaluation, 
gait  analysis , brain MRI and neuropsychological assessment. 

• Nine volunteers (8.5%) were not available  to complete the 2-year follow-up .

96

• 96 older adults were followed up for at least 2 years

• Among these, 35 (36.5%) experienced at least one fall during follow-up, 
while 61 (63.5%) volunteers experienced no fall.
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(mean MNA score 12.81 ± 1.72), most had no mood disorders (15% were depressed, mean 

GDS score 0.74 ± 0.97) or cognitive disorders (mean MoCA score 26.89 ± 2.75). Fifty percent 

reported memory complaints, 25% reported walking complaints and 35% reported a fear of 

falling, while 95% reported feeling well, and 90% were satisfied with their overall quality of 

life. Clinical assessment confirmed that the participants were independent in the activities of 

daily living (mean ADL score 6.21 ± 0.41; 87% lived at home without any help), were not frail 

and performed the functional tests with satisfying results (90% performed the Timed Up and 

Go test in less than 11 seconds, mean FGA score 26.8 ± 2.92, mean SPPB score 10.41 ± 1.57).  

Furthermore, in terms of physical and functional performance, volunteers were non-

sarcopenic, and had higher muscle mass, greater muscle strength and better muscle function 

than the consensual cut-off values used to define sarcopenia. Indeed, the mean skeletal muscle 

index measured in our sample was 38.0 ± 5.2 in men and 33.3 ± 5.2 in women and thus higher 

than the threshold of Janssen et al. (Janssen, Heymsfield et al. 2002). Furthermore, the mean 

grip strength assessed with Martin’s Vigorimeter was 72.4 ± 16.1 kPa in men and 51.9 ± 15.9 

in women, and was also higher than the threshold values published by Bautmans et al. (even 

after considering age categories) (Bautmans, Van Puyvelde et al. 2009). Finally, the mean gait 

speed was 1.29 ± 0.18 m/s, which is higher than the cut-off (≤ 0.8 m/s) used in the definition of 

sarcopenia issued by the European Working Group on Sarcopenia in Older People (EWGSOP) 

(Cruz-Jentoft, Baeyens et al. 2010). 
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5.2. Fall incidence 

 

Among the 96 participants who were followed for at least two years, 35 (36.4%) fell at 

least once during the follow-up period. 
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5.3. Univariate analysis of factors related to falls 

 

5.3.1. Comparison of socio-demographic, anamnestic, clinical 

and functional data 

 

During the two years of follow-up, 18 men and 17 women experienced a fall (p-value = 

0.83). Age at inclusion was not different between fallers (72.0 ± 6.9 years) and non-fallers (70.9 

± 4.3 years; p = 0.94). The fallers group included more subjects who lived alone (p = 0.01). 

There was no difference between groups in terms of tobacco or alcohol consumption; fallers 

reported 7.8 ± 12.7 pack-years vs 9.0 ± 14.1 pack-years in non-fallers (p= 0.78) and 5 

participants among the non-fallers (8.2 %) reported drinking at least 4 doses of alcohol per day 

compared to 4 among fallers (11.4 %) (p = 0.72). Finally, the daily-life environment and the 

need for help were also similar between groups: among non-fallers, 54 people had no help, 6 

had occasional help and 1 had regular help for housework, while among fallers, 30 had no help, 

4 had occasional help and 1 person needed regular help for housework, (p = 1.00). 

The medical and surgical data (except CIRS-G score) as well as the usual treatments in 

both groups are presented in Table 5. All medical data were similar between groups. CIRS score 

was 9.5 ± 4.8 in non-fallers and 9.3 ± 3.9 in fallers (p=0.82). 

Anamnestic data concerning self-reported quality of life are shown in Table 6. There 

were no significant differences between fallers and non-fallers.  

The comparison of clinical and functional characteristics measured at inclusion is shown 

in Table 7, according to the occurrence of a fall during follow-up. Briefly, both groups were 

similar.  
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The table below focuses on variables showing a significant difference according to fall 

occurrence; there was a statistically significant difference in IADL score, stiffness as assessed 

with the UPDRS scale and physical performance obtained on the SPPB test.  

 

 

Variable 

 

Group (n) 

 

Mean ± SD 

 

Q1 

 

Median 

 

Q3 

 

p-value 

IADL (score /1) All (96) 0.99 ± 0.04 1.00 1.00 1.00  

 Non-fallers (61) 1.00 ± 0.02 1.00 1.00 1.00 

0.014 

 Fallers (35) 0.98 ± 0.06 1.00 1.00 1.00 

Stiffness (score /15) All (94) 0.62 ± 1.32 0.00 0.00 1.00  

 Non-fallers (60) 0.45 ± 1.25 0.00 0.00 0.00 

0.043 

 Fallers (34) 0.91 ± 1.40 0.00 0.00 2.00 

SPPB (score /12) All (96) 10.41 ± 1.57 10.00 11.00 12.00  

 Non-fallers (61) 10.70 ± 1.42 10.00 11.00 12.00 

0.015 

 Fallers (35) 9.89 ± 1.71 9.00 10.00 11.00 
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5.3.2. Comparison of gait parameters obtained from the 

accelerometric method  

 

Table 8 shows the comparison of gait parameters obtained from the accelerometric 

method according to fall incidence. Table 9 shows the comparison of the FW and DTW changes 

calculated for these gait parameters according to fall incidence. The reduced table below shows 

the statistically significant differences. Briefly, fallers had a significantly lower gait speed in 

FW and a shorter stride length in CW and in FW than non-fallers. Furthermore, fallers 

decreased their stride symmetry in DTW whereas non-fallers increased their stride symmetry 

in DTW. 

 

 

Variables 

 

Groups 

 

Mean ± SD 

 

Q1 

 

Median 

 

Q3 

 

p-value 

FW Gait Speed (m/s) All (96) 1.70 ± 0.23 1.52 1.72 1.86  

 Non-fallers (61) 1.74 ± 0.22 1.59 1.75 1.87 

0.035 

 Fallers (35) 1.64 ± 0.24 1.43 1.68 1.85 

CW Stride Length (m) All (96) 1.34 ± 0.16 1.23 1.37 1.45  

 Non-fallers (61) 1.37 ± 0.15 1.26 1.38 1.48 

0.035 

 Fallers (35) 1.30 ± 0.17 1.16 1.27 1.45 

FW Stride Length (m) All (96) 1.55 ± 0.24 1.38 1.58 1.71  

 Non-fallers (61) 1.60 ± 0.24 1.41 1.62 1.73 

0.010 

 Fallers (35) 1.47 ± 0.23 1.28 1.42 1.66 

Symmetry DTW cost (%) All (n=95) -5.93 ± 36.62 -28.11 1.43 22.31  

 Non-fallers (n=60) -13.61 ± 40.54 -41.56 -11.83 18.44 

0.022 

 Fallers (n=35) 7.24 ± 23.94 -15.42 7.32 26.07 
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In view of the correlation between gait speed and stride length, and right leg length, a 

comparison of normalized gait parameters was performed according to fall incidence. As shown 

below, after normalization for the right leg length, FW gait speed and CW stride length were 

similar in both groups, whereas FW stride length remained significantly different. Participants 

who experienced a fall during follow-up had a shorter FW stride length than those who did not 

fall. No normalisation was applied to the DTW symmetry cost. 

 

 

Normalized gait parameters 

 

Groups (n) 

 

Mean ± SD 

 

Q1 

 

Median 

 

Q3 

 

p-value 

FW Gait speed normalized                          

for right leg length (/s) 
All (n=96) 2.02 ± 0.26 1.80 2.02 2.20  

 Non-fallers (61) 2.04 ± 0.26 1.87 2.05 2.19 

0.19 

 Fallers (35) 1.97 ± 0.27 1.75 1.93 2.21 

CW Stride length normalized                     

for right leg length (m) 
All (96) 1.59 ± 0.16 1.48 1.59 1.68  

 Non-fallers (61) 1.60 ± 0.15 1.49 1.61 1.68 

0.18 

 Fallers (35) 1.56 ± 0.17 1.44 1.58 1.68 

FW Stride length normalized                     

for right leg length (m) 
All (96) 1.84 ± 0.27 1.64 1.81 2.00  

 Non-fallers (61) 1.88 ± 0.28 1.70 1.87 2.00 

0.046 

 Fallers (35) 1.77 ± 0.24 1.61 1.75 1.95 
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In order to better visualize the difference between groups according to gait performance, 

figures 1 and 2 show the distribution histograms and box plot of the FW stride length 

normalized for right leg length, and the stride symmetry DTW cost respectively. Considering 

their distribution, means and medians, the two variables were considered as having a normal 

distribution. 

  

In figure 2, the blue line indicates zero stride symmetry DTW cost (0%) to highlight that 

the median stride symmetry DTW cost of non-fallers is below the blue line, meaning the non-

fallers have a negative stride symmetry DTW cost, i.e. they increase their stride symmetry in 

DTW compared to CW. Conversely, the median stride symmetry DTW cost of fallers is above 

the blue line, indicating that fallers have a positive stride symmetry DTW cost (i.e. they 

decrease their stride symmetry in DTW compared to CW). 
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Figure 1: 

Distribution histogram of the FW Stride Length normalized for leg length 

And box plot of the same variable according to the falls during the follow-up 
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Figure 2: 

Distribution histogram of the Stride Symmetry DTW cost 

And box plot of the same variable according to the falls during the follow-up 
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5.3.3. Comparison of gait parameters obtained from the opto-

electronic method 

 

Table 10 shows the comparison of all gait parameters obtained from the opto-electronic 

method in CW, FW and DTW. All parameters were similar between the two groups. Although 

the differences were not statistically significant, some trends were apparent. Mean MTC values 

(Mean MTC), median MTC values (Med MTC) and minimal MTC values (Min MTC) were 

lower in fallers than in non-fallers, whatever the walking condition. The parameters measuring 

intra-subject variability of the MTC, such as the standard deviation of MTC values (SD MTC), 

the interquartile range of MTC (IQR MTC), the variance of MTC (Var. MTC) and the 

coefficient of variation of the MTC (CV MTC) were similar in the two groups. 

 Changes in MTC during FW and DTW are shown in Table 11. All parameters were 

similar between groups. Most fallers and non-fallers had an increase in Mean MTC, a decrease 

in Min MTC and an increase in CV MTC in FW. Conversely in DTW, most fallers and non-

fallers had a decrease in Mean MTC, an increase in Min MTC and a decrease in CV MTC.  
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5.4. Correlation between the right leg length and gait parameters recorded 

in CW 

 

The gait parameters recorded in CW that were significantly correlated with right leg 

length were: gait speed (p = 0.0009, r = 0.33), stride length (p < 0.0001, r = 0.56), stride 

frequency (p = 0.0071, r = -0.27), stride regularity, (p = 0.039, r = 0.21), Mean MTC (p = 0.014, 

r = 0.26), Med MTC (p = 0.022, r = 0.24), Min MTC (p = 0.0005, r = 0.36) and CV MTC (p = 

0.0002, r = -0.39). 
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5.5. Logistic regression analysis according to fall(s) during follow-up 

 

The variables included in the logistic regression analysis were the symmetry DTW cost, 

FW stride length normalized to the leg length, stiffness according to the UPDRS scale, SPPB 

score and categorized IADL score.  

Ninety-three observations were used for regression analysis; three observations were 

not used due to missing values for explanatory variables. The number of events was 34 (34 

fallers and 59 non-fallers).  

After logistic regression analysis, the symmetry DTW cost (unit measure in percent) 

was shown to be significantly related to the risk of falls, with an odds ratio (OR) = 1.018 (95% 

confidence interval (CI) 1.002-1.033), p-value = 0.027. 
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5.6. The use of WEKA 

 

The performances of all models obtained are shown in Table 12.   

 

As shown in Table 12, models 1 to 6 had mediocre to low performances. Accordingly, 

they were processed only to identify the variables to include in the more complete models. The 

overall performance of models 1 to 6 is shown and but the classification trees yielded by these 

models are not detailed. However, the findings from these models concerning the relationship 

between gait parameters or walking conditions and model performance will be discussed later. 

 

As shown below, models 1, 2 and 3 were processed successively; respectively involving 

all gait parameters obtained in comfortable walking condition (CW), fast walking condition 

(FW) and dual task walking condition (DTW). Models 1 to 3 showed poor accuracy, low 

sensitivity and good to excellent specificity. The second model involving the gait parameters 

obtained in FW yielded the best performance. 

 

 

  

Models Accuracy Sensitivity Specificity PPV NPV ROC Area PRC Area 

CW 

Model 1 
56% 3% 87% 11% 61% 0.42 0.49 

FW 

Model 2 
70% 29% 93% 71% 70% 0.52 0.56 

DTW 

Model 3 
62% 17% 88% 46% 65% 0.60 0.62 
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The performance of models 4 to 6 is shown in the table below.  

 

 

The fourth model including the FW improvement in gait parameters showed very poor 

sensitivity and high specificity. The fifth model included the DTW cost of gait parameters and 

showed similar accuracy, higher sensitivity and lower specificity than the fourth model. The 

full version of the sixth model, which included FW gait parameters and DTW cost gait 

parameters, showed better accuracy, higher sensitivity and specificity, higher positive and 

negative predictive values than the previous models. The short version of the sixth model 

showed the highest accuracy, PPV and NPV of all six models; however, the sensitivity and 

specificity of the short version of the sixth model were lower than those of the second model. 

  

Models Accuracy Sensitivity Specificity PPV NPV ROC Area PRC Area 

 

FW improvement 

= Model 4 

58% 3% 90% 14% 62% 0.42 0.49 

 

DTW cost 

= Model 5 

59% 34% 74% 43% 66% 0.57 0.60 

 

FW + DTW cost 

= Model 6          

full version 

73% 37% 93% 76% 72% 0.67 0.71 

 

Model 6 

short version 

76% 22% 92% 77% 76% 0.64 0.65 
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Models 7 to 10 will be further shown in an “original version” classification tree (i.e. the 

classification tree directly obtained from WEKA), an “enhanced version” classification tree (the 

original version classification tree modified to show gait parameter names and misclassification 

rates, see below) and a “reader-friendly version” classification tree, which makes the 

classification tree easier to read and use. Based on their usefulness for obtaining the final model, 

models 7 and 8 will be described but not detailed. In view of the high performance of models 9 

and 10, these models will be described and further detailed.  

Two points should be noted regarding the classification nodes. First, for each node 

leading to a classification into fallers or non-fallers, the classification tree gives the number of 

participants classified (the first number in brackets). In case of two numbers in the brackets, the 

second number corresponds to the number of people incorrectly classified (i.e. total number of 

classified people/ number of misclassified people). This data is retained in the full text of this 

section. Numbers that are not integers mean that the gait parameter is not available for all the 

people classified in this class. Secondly, in case of “negative” DTW cost values, the names of 

the classification nodes were changed to make them easier to understand. For example, and as 

in the first classification node, a “negative cost of symmetry” has been rephrased as an “increase 

in symmetry” and the arithmetic relationship has been inverted for easier reading and 

interpretation.  
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The seventh model included all gait parameters (whatever the walking condition in 

which they were obtained) and their changes during FW and DTW. The performances of the 

full and short versions are shown below. The “original”, “enhanced” and “reader friendly” 

versions of the classification tree obtained from the short version of Model 7 are respectively 

shown in Figures 3, 4 and 5.  

 

Models Accuracy Sensitivity Specificity PPV NPV ROC Area PRC Area 

 

Model 7         

full version 

61% 54% 66% 48% 71% 0.66 0.66 

 

Model 7      

short version 

80% 69% 87% 75% 83% 0.79 0.77 

 

The performances of the short version are higher than those of the full version of the 

seventh model. Furthermore, the performances of the seventh model short version are higher 

than those of the sixth model short version.  
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The eighth model included all gait parameters (whatever the walking condition in which 

they were obtained), their FW and DTW changes as well as age, gender and right leg length of 

the volunteers. The “original”, “enhanced” and “reader friendly” versions of the classification 

tree obtained from model 8 short version are respectively shown in Figures 6, 7 and 8. The 

performances of the full and short versions of model 8 are shown below.   

 

Models Accuracy Sensitivity Specificity PPV NPV ROC Area PRC Area 

 

Model 8      

full version 

61% 57% 54% 47% 72% 0.66 0.65 

 

Model 8   

short version 

76% 51% 90% 75% 76% 0.76 0.76 

 

The performances of the short version of the model 8 were better than those of the full 

version of model 8. The specificity of the short version of model 8 was higher that of the short 

version of model 7, whereas the accuracy, sensitivity and negative predictive value of the short 

version of model 8 were lower than those of the short version of model 7. 
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The ninth model included gait parameters obtained in all walking conditions, their FW 

and DTW changes and the clinical or functional variables that were significantly different 

between fallers and non-fallers by univariate analysis (i.e. IADL score, SPPB score and stiffness 

scored using the UPDRS). The “original”, “enhanced” and “reader friendly” versions of the 

classification tree obtained from model 9 short version are shown in Figures 9, 10 and 11 

respectively. The performances of the full and short versions of model 9 are shown below. 

 

Models Accuracy Sensitivity Specificity PPV NPV ROC Area PRC Area 

 

Model 9        

full version 

59% 46% 67% 44% 68% 0.57 0.59 

 

Model 9      

short version 

82% 69% 90% 80% 83% 0.80 0.79 

 

The performances of the short version were better than those of the full version. All the 

performances of model 9 were better than those of model 8 (except for specificity, which was 

similar in both models). Similarly, all the performances of model 9 were better than those of 

model 7 (except for sensitivity, which was similar in both models). 

 

As explained before, model 9 will be detailed using short extracts showing the 

classification nodes and threshold values used by J48 to classify subjects into fallers or non-

fallers.  
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The first extract shows that the first classification 

node used by J48 is the symmetry DTW cost (“increased” 

when there is a “negative cost value”). According to this 

classification node, participants who present a symmetry 

increase ≥ 36% in DTW are classified as non-fallers. Furthermore, as shown in the “enhanced” 

version of the classification tree (Figure 10), no participant was misclassified at this step 

(17.18). As used in the first classification node, the percentage increase in symmetry in DTW 

makes it possible to identify non-fallers.  

 

The second classification node shows that subjects who do 

not have an increase in symmetry ≥ 36% are considered 

for their FW stride length. Indeed, those with a FW stride 

length ≤ 1.29 m are classified as fallers, while those who 

have a FW stride length > 1.29 m will be considered in the next classification node.  The 

“enhanced version” of the model shows that participants are classified as fallers at this stage, 

without misclassification (11.0). As used in the second classification node, the FW stride length 

makes it possible to identify fallers. 

 

The next node evaluates stiffness; the model 

differentiates subjects without stiffness (≤ 1 according the 

UPDRS scale) from subjects with stiffness (> 1 according 

the UPDRS scale). This node does not allow any 

classification of participants.  
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Among those with stiffness, those who have a CW Mean 

MTC > 17.3 mm are classified as fallers, without 

misclassification (7.58). The subjects who have a CW Mean 

MTC ≤ 17.3 mm are classified as non-fallers, albeit with some misclassification, meaning that 

fallers were under-recognized and incorrectly classified as non-fallers by the model (5.42/0.42). 

According to the following extract, among people without stiffness, subjects who increased the 

coefficient of variation of MTC in DTW ≥ 26 % (negative cost in DTW in the original version 

of the model) are classified as non-fallers (17.2/0.63), while those who did not increase the 

same parameter were considered for the variance of MTC in FW.   

 

 

 

Indeed, people without stiffness, without an increase of ≥ 26 % in CV MTC in DTW 

and without an MTC Variance > 15.6 mm2 in FW are considered for the percentage of regularity 

improvement in FW; those who have an improvement in regularity > 8.5 % in FW are classified 

as non-fallers (5.24/1.0), while those who do have an improvement in regularity ≤ 8.5 % in FW 

are classified as fallers (14.4/2.36). Of note, the last three classification nodes involving FW 

MTV variance and regularity FW improvement showed misclassification (see enhanced version 

of the ninth model, Figure 10). 
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The tenth model included gait parameters obtained in all walking conditions, their FW 

and DTW changes, IADL score, SPPB score and stiffness scored using the UPDRS as well as 

age, gender and right leg length of the volunteers. The “original”, “enhanced” and “reader 

friendly” versions of the classification tree obtained from model 10 short version are shown in 

Figures 12, 13 and 14 respectively. The performances of the full and the sort versions of the 

tenth model are shown below. 

 

Models Accuracy Sensitivity Specificity PPV NPV ROC Area PRC Area 

 

Model 10    

full version 

69% 46% 67% 4% 68% 0.58 0.59 

 

Model 10 

short version 

84% 80% 87% 78% 88% 0.84 0.83 

 

 The performances of the short version of model 10 were better than those of the full 

version. Overall, the performances of the short version of model 10 were better than those of 

the previous models. Indeed, the performances of model 10 were better than those of model 7, 

model 8 (except for specificity), and model 9 (except for specificity and positive predictive 

value). As for model 9, model 10 will be detailed using short extracts showing the classification 

nodes and threshold values used by J48 to classify subjects into fallers or non-fallers. Moreover, 

the two models will be compared, and their differences discussed in the next section.  
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As shown in the extract below, the first nodes are similar to those of model 9.  

 

The first four nodes of the classification tree involve the increase in symmetry in DTW, 

FW stride length, presence of stiffness, CW Mean MTC, and the increase in CV MTC in DTW.  

However, the inclusion of gender in this model changed the last nodes; two changes in particular 

were observed. The first change was that, rather than considering all subjects who had a 

variance of MTC in FW > 15.6 mm2 as non-fallers (as in model 9), model 10 considered the 

variable delta1 MTC in DTW (where delta1 MTC = the maximal value of all MTC of the same 

subject – Mean MTC); subjects were classified as fallers when the delta 1 MTC in DTW was > 

11.6 mm (2.35/0.31) while those with a delta 1 MTC in DTW ≤ 11.6 mm were classified as 

non-fallers (15.63/0.29). According to the enhanced version of the classification tree obtained 

from model 10, and displayed in Figure 13, the number of people classified as fallers based on 

the delta1 in DTW is similar to the number of people previously misclassified as “non-fallers” 

based on the FW MTC variance in model 9. 

The second change concerns those who had a FW MTC variance ≤ 15.6 mm2; indeed, 

rather than being considered in terms of the regularity of FW improvement (as in model 9), 

these subjects were considered in terms of FW Mean MTC. Subjects with FW Mean MTC ≤ 
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18.5 mm were classified as fallers (8.29/0.45), while those with FW Mean MTC > 18.5 mm 

were subsequently considered for gender; women were classified as non-fallers (4.41/1.0), 

while men were considered in terms of the symmetry DTW cost: those with a symmetry DTW 

cost ≤ 22 % were classified as fallers (4.21/0.21) while those with a lower symmetry DTW cost 

were classified as non-fallers (2.73/0.21). As shown in Figure 13, the number of 

misclassifications for these last three classification nodes was less than 1. 

 

The figure 15 and 16 show ROC are and PRC are related to model 10. 
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Figure 15: Receiver Operating Characteristic Curve 

Where false positive rate is on x axis while true positive rate is on y axis 

 

Figure 16: Precision Recall Curve  

Were recall is on x axis while precision is on y axis 
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6. Discussion 

 

The main goal of this exploratory prospective study was to investigate whether, among 

healthy older adults, the assessment of gait patterns could be useful to discern people at risk of 

future fall(s).  After two years of follow-up, one third of the volunteers had fallen at least once. 

At inclusion, fallers had a significantly lower comfortable gait speed and shorter stride length 

in comfortable and fast walking conditions and higher symmetry DTW cost than non-fallers. 

After adjustment to the right leg length, the FW normalized stride length and the symmetry 

DTW cost remain different between fallers and non-fallers. Logistic regression analysis showed 

that higher stride symmetry DTW cost was significantly associated with a higher fall risk. 

Furthermore, the use of the J48 classifier showed that the symmetry DTW cost, the FW stride 

length, the stiffness and the MTC values (mean and variability measures) could be useful for 

the evaluation of the individual future fall risk. Used in this study, the data mining highlighted 

the usefulness of gait patterns to identify people at risk for future fall(s). Indeed, in this cohort, 

a classifier tool considering several gait parameters and clinical measures simultaneously made 

it possible to identify 80% of future fallers. This result is encouraging, and tends to confirm the 

utility of considering gait patterns for the assessment of fall risk among older adults.  

In order to discuss the results obtained, the next section is dedicated to a discussion of: 

(1) the participants involved; (2) the fall incidence; (3) the relationship between anamnestic, 

clinical or functional data and future fall(s); (4) the relationship between gait parameters and 

future fall(s); (5) the classification trees obtained using WEKA; (6) the overall significance of 

the results obtained. Finally, the strengths and limitations of this exploratory study will be 

discussed. 
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Before discussing the results, a comment has to be made about the choice between a p-

value < 0.001 and a p-value < 0.05 to be considered as statistically significant. Indeed, after 

ANOVA analyses, and considering the number of comparisons performed, we considered the 

need to apply Bonferroni correction. According to a recent review of the use of Bonferroni 

correction (Armstrong 2014), there is a lack of consensus about the need to apply correction in 

scientific papers, and the use of the Bonferroni method should be considered in light of the 

goals of the study, the number of comparisons planned, and the interpretation of the significance 

obtained. In our study, concerning the comparison between the participants who were followed 

up and those were excluded, and according to Armstrong’s recommendations: “A Bonferroni 

correction should be considered if: (1) it is imperative to avoid a type I error. (2) a large number 

of tests are carried out without pre planned hypotheses in an attempt to establish any results that 

may be significant”.  

In view of these recommendations, when comparisons would assume the difference 

between groups is significant, we decided that a p-value < 0.001 should be used as the threshold 

to consider a difference as statistically significant.  

However, concerning the functional data and the gait parameters, and again in line with 

the recommendations of Armstrong: “No correction would be advised in the following 

circumstances: if a study is exploratory involving post-hoc testing of unplanned comparisons 

which are regarded as hypotheses for further investigation”, we therefore decided to accept a p-

value < 0.05 as being statistically significant. Indeed, this study is an exploratory study where 

the comparative analyses will be followed by a logistic regression analysis exploring further 

the relationship between functional data/gait parameters and future fall(s).  
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6.1. Participants 

 

One hundred thirty-three volunteers were considered for inclusion. Since the clinical 

endpoint considered in this part of the study was future fall(s), subjects with a recent history of 

falls were not considered for analysis to avoid bias. However, these 28 participants with a recent 

fall history were fully assessed using the same material and methods, and their performances 

will be useful to discuss the second clinical outcome (cognitive decline) in further analyses. 

Thus, although 133 participants were assessed in this longitudinal study, only the gait 

performances of the subjects without a recent fall history were considered in the results shown 

here. 

As detailed in the results section and related tables (Tables 1-4), 96 participants were 

included in the present analysis, and followed-up for a period of 2 years. All were younger than 

75 years (which is the age beyond which older adults are considered for geriatric care), 

independent, robust and non-sarcopenic, which may seem disappointing given that the study 

was evaluating fall risk in this population. However, in our opinion, this sample truly represents 

the people who should be targeted for fall prevention programs, to avoid the burden of negative 

consequences linked with falls (including the first fall). From an epidemiological point of view, 

the robustness of the sample could be the result of a selection bias. Indeed, recruitment was 

very quick among these well-educated, fit, independent and well-informed participants, who 

were also attentive to health related issues. Furthermore, the profile of our study population 

could also explain the low rate of censored.  

The comparison of the participants censored with the participants who completed 

follow-up showed no significant differences. Thus, according the participants censored have 

similar profile to those who were considered for analysis, and therefore, the risk of obtaining 

significantly different results is likely to be small. 
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Unfortunately, the number of subjects included in this study and, consequently, the 

number of falls observed during follow-up was relatively low, thus limiting the power of the 

statistical analysis. Further studies with larger sample sizes are warranted to confirm our 

findings.  
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6.3. Fall incidence 

 

During the two years of follow-up, 36% of participants experienced at least one fall. 

This rate is similar to that reported in the study by Verghese et al on fall risk in community-

dwelling older adults, reporting a fall rate of 38% after a mean follow-up period of 20 months 

(Verghese, Holtzer et al. 2009). In the study by Srygley et al., 25.6% of the participants reported 

at least 1 fall during the one-year follow-up (Srygley, Herman et al. 2009). However, other 

prospective studies have shown different results. Laessoe et al. reported a fall incidence of 15% 

per year, but the authors underlined that the follow-up was not sufficient to ensure complete 

fall event collection (Laessoe, Hoeck et al. 2007). In contrast, Callisaya et al. reported a fall 

incidence of 45% over a one-year follow-up period. However, the characteristics of the 

participants included in both studies were quite similar. These different results support the idea 

that, even in similar participants and using same definition of the negative outcome, the varying 

fall rates are probably related to different levels or types of physical activity, and different daily-

life environments, which were not taken into account in these studies. 
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6.4. The relationship between anamnestic, clinical or functional data and 

fall(s) 

 

In our cohort, fallers and non-fallers were similar in terms of age, gender, medical 

history and drug treatments, habits and co-morbidities. The only socio-demographic factor that 

was statistically significant different was marital status. This observation warrants specific 

comment. Indeed, comparison showed that there were more single persons in the faller group 

compared to the non-faller group. However, I chose not to consider this socio-demographic 

variable in further analysis. Indeed, initially the question about marital status was not 

considered for the evaluation of the future fall(s) risk but rather for the purposes of describing 

the socio-demographic characteristics of the sample. Any discussion of the relationship 

between marital status and future fall(s) risk would require taking into account other relevant 

data related to the daily life, such as social support and mood, in order to more accurately 

consider the real impact of marital status on social and functional aspects. The following two 

examples, although they may seem exaggerated, illustrate the importance of consider not only 

marital status, but also other functional aspects. For example, is it correct to compare, based on 

their marital status, a man who lost his wife two months previously to disease, a woman who 

left her husband twenty years ago because he was a drunkard? In the same way, is it correct to 

compare, based on their marital status, a man living maritally who bears the responsibility for 

the household and cares for his partner at home because she suffers from dementia with 

anosognosia, with a woman who lives maritally with a dynamic and sporty man who enjoys 

participating in leisure activities and city trips? It is probably better to assess the links between 

marital status and fall risk with more comprehensive anamnesis. Thus, for single subjects, 

relevant questions might include: “For what reason are you living alone? Is it by choice?”, 

“How long have you been living alone?”, “How do you feel now that you are alone?”, “Do you 



178 
 

have better or lower quality of life?”, “Have you more or fewer social relationships?”, “Have 

you more or fewer physical activities?”. For people living maritally, relevant questions could 

include “Are you mostly satisfied to be living maritally?”, “Are you mostly happy to be living 

with your current partner?”, “Who does the housework and the gardening?”… Unfortunately, 

because the marital status was initially not considered as potentially linked with future fall(s), 

the circumstances were not sufficiently documented and therefore, in view of this limitation, I 

chose to not include this variable either in the logistic regression or in the J48 classifier. 

Nonetheless, we cannot exclude the existence of an independent relation between marital status 

and fall risk, but the design of this study does not make it possible to answer this question; this 

would nevertheless be an interesting research topic to address in future research. 

In terms of clinical characteristics and functional performances, the two groups were 

also similar except for IADL score, SPPB score and stiffness scored based on the UPDRS scale. 

However, even though the p-value was statistically significant (<0.05), the differences between 

fallers and non-fallers were not clinically relevant. As previously explained, and according to 

Armstrong, if the IADL, SPPB and UPDRS were to be used to significantly differentiate future 

fallers from other participants, then Bonferroni correction would be need to be applied 

(Armstrong 2014). In this scenario, considering a p-value < 0.001 as significant, then none of 

these variables would be considered as statistically significant. However, as this exploratory 

study includes logistic regression analysis, Bonferroni correction was not applied. 

Concerning the relationships between anamnestic, clinical or functional data and fall 

incidence, in this study, fallers had a lower IADL score, corresponding to less autonomy in the 

instrumental activities of daily living, than non-fallers. This relationship between lower IADL 

score and fall risk was also suggested in the systematic review and meta-analysis (based on 

3,747 indexed articles published between 1981 and 2007, of which 129 reported data on social-

demographic risk factors for falls) (Bloch, Thibaud et al. 2010). According to this meta-
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analysis, among community-dwelling elders living at home, impairment of one or more IADL 

was associated with a higher fall risk (OR 2.10, 95% CI 1.68-2.64). In our study, the IADL 

score was not associated with future fall risk after logistic regression. In our opinion, the 

absence of a significant association in this study does not mean that no association exists. 

Indeed, our results are probably due to a lack of power resulting from the relatively small 

number of people dependent for IADLs and the low number of falls. 

Furthermore, in our study, subjects who went on to fall during the follow-up period of 

two years had a lower SPPB score at inclusion than those who did not fall. However, this link 

was no longer significant after multivariate analysis. Our results are similar to those of Quadri 

et al. who included 144 patients aged 70 or older (60 men and 84 women, mean age 78.7 ± 5.6 

years) in a one-year observational study where fall(s) were one of the outcomes (Quadri, 

Tettamanti et al. 2005). As in our study, after univariate analysis, a lower score in SPPB was 

associated with higher fall incidence, but the relation did not remain significant after 

multivariate analysis. Similar results were also shown by Ward et al. who evaluated 755 Boston 

area community-dwelling adults (mean age 78.1 ± 5.4 years, 64.1% women) with or without 

fall history in a 4-year prospective study assessing injurious fall incidence (Ward, Leveille et 

al. 2015). In this study, the SPPB score was not predictive of injurious falls; however, the group 

with the poorest chair stand performance (≥16.7s) had the greatest hazard of injurious falls 

compared to any other groups. Unfortunately, the component scores of the SPPB were not 

recorded in our study, precluding comparison with these data. Substantial differences also limit 

the comparison between the two studies. First, the American study included fallers and people 

less physically robust than those included in our study, which could lead to substantial 

differences in the results; e.g. in the Ward’ study, 32 subjects included (4.3%) had an SPPB 

score = 1–3/12, 68 (9.1%) a score = 4–6/ 12, 204 (27.3%) a score = 7–9 /12, and 443 (59.3%) 

a score = 10–12. Secondly, Ward’s study considered injurious falls as defined by fractures, 
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sprains, dislocations; pulled or torn muscles, ligaments, or tendons; or by seeking medical 

attention, while falls were defined as an unintentionally coming to rest on the ground or another 

lower level not resulting from a major health event (e.g. myocardial infarction) or an 

overwhelming external hazard (e.g. vehicular accident), whereas our study considered 

accidental fall(s), meaning that syncopal falls or falls leading to a medical check-up were not 

considered in the follow-up). Finally, and given the importance of the individual components 

of the SPPB score in the American study (e.g. the chair stand performance), the usefulness of 

these components should be considered in future works involving robust older adults. 

 

Finally, to the best of our knowledge, no similar study including robust community older 

subjects in a prospective study evaluating fall(s) incidence has assessed the possible relationship 

between stiffness, as measured using the UPDRS scale, and the risk of falls. Since the UPDRS 

scale is most often used in studies focusing on neurological disorders, cardiovascular disease 

or burden, it is unsurprising that it is not reported in studies involving robust older adults. 

However, considering that the stiffness accompanying high level gait disorders (Giladi, Herman 

et al. 2005) is associated with increasing age, it seems logical to measure it among the subjects 

involved in this study, which aimed to investigate whether gait patterns could help clinicians to 

detect people at risk of fall(s). In our cohort, after multivariate analysis, stiffness was not found 

to be related to the risk of falls. However, stiffness was used by the classifier tool as one of the 

earlier classification nodes. Indeed, when considered at an individual level, stiffness together 

with consideration of CW Mean MTC value helped to identify future fallers. In our opinion, 

these results support the idea that stiffness should be systematically considered in clinical 

assessment, even in the absence of neurological or cardiovascular disease or burden, in order to 

highlight emerging high level gait disorders. 
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To summarize, our results, in line with previous studies, did not show a strong 

relationship between clinical or functional data and future fall risk. Of course, this could be 

partially explained by the robustness of the subjects included in our sample, and the low number 

of events. Nevertheless, one third of the subjects included fell at least once during follow-up. 

The absence of statistically significant differences between groups based on clinical and 

functional data does not mean that no differences exist. Studies with larger sample sizes are 

warranted to confirm our findings. Moreover, it would also be interesting to consider data 

related to indoor and outdoor physical activities, daily-life environment and fall context. 
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6.5. Gait parameters and their relationship with fall incidence 

 

Univariate analysis according to fall occurrence showed that subjects who fell during 

follow-up had lower FW gait speed, shorter CW and FW stride length and higher symmetry 

DTW cost than those who did not fall during follow-up. After regression analysis, higher stride 

symmetry DTW cost was significantly associated with a higher future fall(s) risk.  

Before discussing the results showed in the results section, this chapter will discuss the 

methodological limitations meet starting the logistic regression analyses and the attempt to deal 

with. After this, the chapter will discuss the gait parameter and their relationship with future 

fall(s) one by one also integrating the previous reflection and their substantial inputs. 

 

6.5.1. Comments concerning the methodological aspects 

The logistic regression performed in this study suffers from some limitations that merit 

comment. Firstly, the number of events was low in absolute value (35 fallers after two years of 

follow-up) and therefore, the number of variables that can be included in the analysis is limited 

by the low number of events.  

Consequently, a selection of the variables to be included was performed. First, only 

variables with a p-value <0.05 by univariate analysis were considered for further analysis. Then, 

to further reduce the number of candidate variables, only gait parameters with a p-value <0.05 

after normalization for the right leg length were considered. Thus, 6 variables remained eligible 

for inclusion in the regression analysis, namely: marital status, IADL, SPPB score, stiffness, 

FW normalized stride length, and stride symmetry DTW cost. As explained previously, marital 

status was not considered for analysis. Finally, considering that each of the five other variables 

could potentially contain complementary information related to the future fall(s) risk, I chose 

to include all 5 variables in the logistic regression. Indeed, even though these variables were 
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correlated to each other, we considered that IADL score, SPPB score and stiffness do not 

contain the same information regarding the participants’ characteristics, and thus, these 

variables would likely not have the same relationship with the future fall(s) risk.  

 

Considering the normalized FW stride length and the stride symmetry DTW cost, these 

two variables could appear to yield different information related to the future fall(s) risk. Indeed, 

additional analyses were performed to further explore the relationship between the stride length 

and the stride symmetry and other anamnestic, clinical, functional characteristics and gait 

parameters. Actually, comparison analysis was performed according to quartiles of gait 

parameter performances.  

Concerning the symmetry DTW cost (see appendix 3), twenty-four (25%) participants 

had stride symmetry DTW cost ≤ -28.1 % (Q1) while twenty-four (25%) participants had stride 

symmetry DTW cost ≥ 22.3 % (Q3). No anamnestic, clinical or functional characteristic was 

significantly different according to the quartile groups. The gait parameters showing a 

significant difference according to quartiles were CW stride symmetry (p< 0.0001) and DTW 

stride symmetry (p< 0.0001). Moreover, correlation analysis was also performed between CW 

stride symmetry and other anamnestic, clinical or functional variables and other gait parameters, 

confirming that CW stride symmetry was only correlated with other stride symmetry measures.  

Concerning normalized FW stride length, 24 participants (25%) had a normalized FW 

stride length ≤ 1.64 (Q1), while 25 participants (26%) have a normalized FW stride length ≥ 2 

(Q3). Compared to the participants who had a lower normalized FW stride length, those who 

have a higher normalized FW stride length were more often men (80 % of men versus 12.5% 

of men in the lower normalized FW stride length group, p < 0.0001), less often had a fear of 

falling (12 % had fear of falling versus 42% in the lower normalized FW stride length group, p 

= 0.0008). Concerning the quantitative variables (please see appendix 4), participants who had 
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a lower normalized FW stride length had significant lower scores on the Edmonton scale, higher 

grip strength and grip work, and higher functional performances on the  FGA test and on the 

SPPB test. Furthermore, all gait speed measures were significantly different according to the 

FW stride length quartiles with a p-value < 0.0001, except for gait speed DTW cost. In the same 

way, all stride length measures were significantly different according to FW stride length 

quartiles with a p-value < 0.0001 except for stride length DTW cost. In our opinion, these 

analyses suggest that normalized FW stride length and stride symmetry DTW cost carry 

different information. Finally, in view of the distribution of the IADL scores, this variable was 

categorized into a dichotomous variable (totally independent for IADL, vs not totally 

independent for IADL).  

Thus, the variables included in the logistic regression analysis were categorized IADL, 

stiffness, SPPB score, normalized FW stride length and stride symmetry DTW cost. 

 

Furthermore, in line with the consensual recommendation that one variable should be 

included in the multivariate model for every 10 events, the number of variables that we could 

theoretically include in the logistic regression was only 4 (Motulsky 2002). A choice has to be 

made between risking overfitting of the model, or excluding the categorized IADL. Considering 

that both of these choices would mean limitations requiring further discussion, we performed 

both analyses, namely logistic regression analysis including the categorized IADL score (5 

variables), as shown in the results section; and a second analysis, not including the categorized 

IADL score (4 variables); both models yielded the same results (see appendix 5). 

 

Moreover, most of the variables considered for analysis were correlated (see appendix 

6), which induces major limitations due to co-linearity. Actually, as shown in Appendix 6, 

IADL and stiffness and also FW normalized Stride length and SPPB are significantly correlated 
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in this sample. Furthermore, stiffness and SPPB also show substantial correlation. In view of 

this correlation, one solution might be to include variables with a p-value < 0.15 by univariate 

analysis in order to consider variables carrying “complementary” and “non-redundant” 

information concerning the future fall risk. Unfortunately, in this case, the number of variables 

to consider would be high: 20 variables. Considering these limitations, a stepwise method was 

used. Actually, a total of twenty variables was included in the stepwise method; 2 qualitative 

variables (anxiety and the feeling of dependency), and 18 quantitative variables, namely: IADL 

score, COVI score, Edmonton scale score, score obtained in the MoCA item assessing 

language, grip strength, muscular muscle mass, stiffness according the UPDRS scale score, 

SPPB score, CW and FW gait speeds, CW and FW stride lengths, the DTW stride frequency, 

DTW symmetry, gait speed DTW costs, stride length FW improvements, stride frequency DTW 

costs and symmetry DTW cost. Moreover, age, gender and right leg length were forced in the 

model as explicative variables. Eighty-one observations were used for regression analysis 

(fifteen observations were not used due to missing values for explanatory variables) and the 

number of events was 31. According to the stepwise method performed, longer FW stride length 

seemed have a protective effect against future falls with an OR of 0.026 (CI 95% 0.002-0.312, 

p-value = 0.004) when stride length was expressed in meters, and an OR of 0.70 (CI 95% 0.54-

0.89, p-value=0.004) when stride length was expressed in decimetres. Although this model 

could be contested regarding the disproportion between the number of variables and the number 

of events, this result suggests that assessing gait parameters in challenging walking conditions 

could be useful to discern people at risk for future fall(s). 

To summarize, the logistic regression analyses realized, whatever with or without 

including the IADL score, show that stride symmetry DTW cost is significantly and 

independently associated with the future fall(s) risk, while the stepwise method suggests that 

that gait parameter independently associated with future fall(s) risk is FW stride length, instead 
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of the stride symmetry DTW cost. Although the results obtained are not similar, these results 

are, in our opinion, not in opposition. Indeed, the variables included in the two analyses were 

not the same: in the restricted regression analysis, the normalized FW stride length was included 

in order to keep the number of included variables as lower as possible; including one variable 

(normalized FW stride length) instead of two variables (leg length and FW stride length). This 

choice could influence the results obtained. While the more restricted model seems to be more 

robust in terms of the number of variables included and the number of events observed, it could 

be influenced by the choice to include normalized FW stride length. On the other hand, the 

stepwise method including 20 variables for 31 events could be debatable in terms of robustness. 

As previously explained, the sample size and the low number of events are probably the most 

important limitations in this study. Thus, in the absence of consensual results, in our opinion, 

the FW stride length and the stride symmetry DTW cost both seem to be important. Indeed, the 

classification models obtained using the J48 classifier confirm the importance of considering 

both gait parameters together to identify people at risk for future fall(s). 

After these considerations concerning the regression analyses, their results and 

limitations, this chapter will discuss the relationships between gait parameters and future fall(s) 

according to univariate and regression analyses and the comparison with available literature. 

  



188 
 

  



189 
 

6.5.2. The gait parameters and their changes according 

walking conditions  

 

A. Gait speed 

Concerning participants who went on to fall during follow-up had a lower FW gait speed  

than those who did not fall during follow-up, while CW and DTW gait speeds were similar. 

Whatever the walking condition, gait speed and its change according to walking conditions 

were not associated with future fall(s) risk. Although a larger sample could bring to light a 

significant relationship that could be masked in this study, it is important to note that the 

available literature tends to confirm our results.  

Indeed, concerning CW gait speed, Scott et al. (Scott, McLaughlin et al. 2015) included 135 

women (mean age 76.7 years; range 70-92) in a 4 year longitudinal study in which gait 

parameters were assessed at inclusion using an electronic walkway, and failed to show a 

significant difference between future fallers and non-fallers in terms of CW gait speed at 

inclusion. Two other prospective studies also tend to confirm our results. First, the study by 

Maki et al. (Maki 1997) showed that slower gait speed is in fact more indicative of fear of 

falling than fall risk. Secondly, the study by Hausdorff et al. (Hausdorff, Rios et al. 2001) 

involving fifty-two subjects (36 women, 16 men) with a mean age of 80 ± 6 years in a one-year 

longitudinal study, also confirmed than fallers and non-fallers had similar CW gait speed. 

Finally, another prospective study, published by Verghese et al. (Verghese, Holtzer et al. 2009) 

and including 597 adults (mean age 80.5 years) showed a significant prospective relationship 

between slower CW gait speed and higher risk of fall(s) in the fully adjusted model. In fact, the 

sample included in the Verghese ’study was probably less robust than our sample, as the low 

mean gait speed of the Varghese’ cohort (92.8 ± 24.1 cm/s.) suggests. Actually, the prospective 

relationship between CW gait speed and fall risk could probably be explained by the low mean 
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CW gait speed showed in Verghese’ study. Indeed, the prospective Boston MOBILIZE study 

including a cohort of 765 community-dwelling women and men, mainly aged 70 years or older 

and in which, over 4.3 years, 1737 falls were recorded, showed that although low gait speed 

could be indicative of a higher fall risk, comfortable gait speeds ≥ 1.3 m/s do not seem to have 

a prospective relationship with future fall(s)(Kelsey, Procter-Gray et al. 2012). The finding that 

CW gait speed in our cohort was 1.64 ± 0.24 m/s in fallers and 1.74 ± 0.22 m/s in non-fallers 

could explain why CW gait speed did not show any prospective association with future fall(s) 

in our study. 

Concerning FW gait speed, our results are similar to those of the TASCOG study, a one-

year follow-up study involving 176 adults aged 60-86 years, living at home, without walking 

aids and non-demented (Callisaya, Blizzard et al. 2012). The TASCOG study assessed FW gait 

speed, cadence, step length and walk ratio at inclusion and their changes in CW and FW 

expressed in percentage. The authors considered three groups (rather than two groups in our 

study), namely a group with no fall during follow-up, a group with a single fall during follow-

up, and a group with multiple falls. The study did not include comparison of gait parameters 

according to fall occurrence, thus limiting comparison with our results. However, after 

adjustment for age, sex, height and weight, no prospective relationship was found between FW 

gait speed at inclusion and occurrence of falls during follow-up. Thus, these findings tend to 

confirm our results.  

Concerning DTW gait speed, no association was found in our study between DTW gait 

speed and future fall(s) risk. It is noteworthy that none of the gait parameter obtained in DTW 

showed a relationship with future fall(s). These results are in line with the available literature 

and, as previously detailed in the rationale section, three recent literature reviews (Zijlstra, 

Ufkes et al. 2008, Beauchet, Annweiler et al. 2009, Muir-Hunter and Wittwer 2016) have 

recently underlined that the usefullness of the dual task walking condition for the detection of 
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future fallers among community-dwelling older adults remains unclear, and additional 

prospective studies are warranted. In our opinion, the failure to observe any significant impact 

in this study supports the idea that the dual task walking condition is not useful to detect people 

at risk of future fall(s) among robust older adults living independently at home, and who have 

no recognised cogitive disorders, as previously suggested by Beauchet et al. (Beauchet, 

Annweiler et al. 2009). 

The gait speed FW improvement and DTW cost were not signicantly different between 

fallers and non-fallers in our cohort. The results obtained in terms of gait FW improvement in 

the TASCOG study confirm the absence of a propective relation between fall(s) and gait speed 

FW improvement recorded at baseline (Callisaya, Blizzard et al. 2012). To the best of our 

knowledge, no published data are avalaible investigating the relation between gait speed DTW 

cost and prospective fall risk among healthy older adults. 
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B. Stride length 

 Briefly, in this study, subjects who fell during follow-up had a lower CW and FW stride 

length than those who did not fall, while DTW stride length was similar. After adjustment for 

leg length, only the normalized FW stride length showed a significant difference between 

groups. Logistic regression did not confirm the significant association between normalized FW 

stride length and future fall risk. But the stepwise method suggests a higher FW stride length 

was significantly and independently associated with a reduced fall risk. 

Concerning CW stride length, our results are confirmed by available literature. Indeed, in 

the studies previously cited, Scott et al.(Scott, McLaughlin et al. 2015) and Verghese at al. 

(Verghese, Holtzer et al. 2009) failed to show any significant correlation after adjustment.  

Concerning FW stride length, and stride length FW improvement, our results are partially 

confirmed by the TASCOG study, where the FW step length (expressed in cm) was 

significantly associated with the risk of experiencing multiple falls (RR 0.95; 95% CI 0.89-

0.99) after adjustment, albeit not with the risk of a single fall. Similarly, the step length change 

(between CW and FW), expressed in %, was not associated with occurrence of a single fall, but 

was significantly associated, after adjustment, with multiple falls (RR 0.55; 95% C-I 0.36-0.84). 

Unfortunately, our limited sample size precluded any sub-group analysis according to the 

number of falls. 

Furthermore, considering the results of the TASCOG study and the results obtained in our 

study using a stepwise method, the FW stride length seems to be protective against future fall(s). 

This may suggest that FW stride length is a marker of robustness. In order to highlight this 

potential relationship in our sample, additional comparisons were performed by quartiles of FW 

stride length. The hypothesis that FW stride length could be a marker of robustness could be 

supported by previous knowledge. From a biomechanical point of view, the stride length 

depends on the dynamic balance resources, the articular amplitude and the strength of several 
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muscles. Indeed, during the gait cycle, and especially during the swing phase (on which the 

stride length directly depends), an efficient dynamic postural balance, which can face even 

stressful walking conditions, is needed to keep the gait pattern safe without becoming 

“cautious”. Moreover, during the swing phase, several muscles are called into action; the upper 

body moves forwards, the trunk twists about a vertical axis, the shoulder girdle rotates in the 

opposite direction to the pelvis, the arms swing out of the phase with the legs, the spinal muscles 

are selectively activated to keep the head moving as little as possible, and the hip flexes and 

extends according the swing phase steps. The strength of the ilio-psoas, gluteus maximus, 

quadriceps and tibial anterior muscles ensure a maximal forwards movement of the body, 

increasing the stride length (Levine, Richards et al. 2012). Finally, the articular amplitude of 

the joints of the body segments involved in the swing phase could limit or conversely allow the 

swing movement of the leg during the swing phase. Furthermore, considering that all these 

systems may potentially suffer from age related disorders, co-morbidities, medico-surgical 

events and drugs, it is not surprising to note that more robust people show higher FW stride 

length.  

Additionally, the anamnestic, clinical and functional data available in this study also support 

the idea that FW stride length could be a marker of robustness. Indeed, additional comparisons 

were performed according to FW stride length performances. Among the 96 participants 

followed for two years, 25 participants (26%) had a FW stride length ≤ 1.38 meters (Q1), while 

24 participants (24%) had a FW stride length ≥1.71 (Q3). Participants who had the highest FW 

stride length were often men (86% of men versus 24 % among those who had lower FW stride 

length, p < 0.0001), took fewer medications (92% took less than 5 medications daily versus 

48% among those who had lower FW stride length, p = 0.0009), less often had a fear of falling 

(86 % without fear of falling versus 40 % among those who had lower FW stride length p = 

0.0006). Regarding the quantitative data (appendix 7), participants who had a higher FW stride 
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length had a lower score on the Edmonton scale, stronger grip strength and more powerful grip 

work, even after correction for body height, greater skeletal muscle mass and higher functional 

performance on the FGA and SPPB tests. 

In our opinion, these results suggest the usefulness of considering FW stride length as a 

marker of robustness and suggest that it should be considered in the clinical setting, but also in 

further research studies involving older adults.  

Concerning the normalized FW stride length, to the best of our knowledge, no study to date 

has investigated the relationship between FW stride length normalized to the leg length and 

future fall(s) risk among older adults thus precluding comparisons. 

Concerning DTW stride length and stride length DTW cost, our results are similar to those 

of previous studies and review concluding that stride length obtained in DTW is not useful to 

identify future fallers among healthy older people without cognitive decline (Zijlstra, Ufkes et 

al. 2008, Beauchet, Annweiler et al. 2009, Muir-Hunter and Wittwer 2016). 



196 
 

  



197 
 

C. Stride frequency  

Our results are in line with those of Scott et al. (Scott, McLaughlin et al. 2015) and Verghese 

et al. (Verghese, Holtzer et al. 2009) who also failed to show a significant relation between CW 

cadence (expressed in step/min. rather than in stride/s as in our study) and futures fall(s). The 

TASCOG study showed a significant relation between FW cadence (also expressed in 

step/min.) and multiple falls (RR 1.09; C-I 1.03-1.16) and between FW cadence changes 

(expressed in %) (RR 1.05; C-I 1.01-1.10), but no significant association with the risk of a 

single fall (Callisaya, Blizzard et al. 2012). As explained before, this result is different to those 

obtained in our study, and could be linked to classification of participants into three groups (no 

fall, a single fall, multiple falls) in the TASCOG study. As previous similar studies assessing 

gait parameters in DTW, the DTW stride frequency and the stride frequency DTW cost not 

seem useful to discern future fallers among older people without cognitive disorders (Zijlstra, 

Ufkes et al. 2008, Beauchet, Annweiler et al. 2009, Muir-Hunter and Wittwer 2016). 
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D. Stride regularity 

In our study, the univariate and multivariate analyses failed to show any significant 

relationship between stride regularity and future fall(s). Of course, a larger sample size could 

highlight a significant difference that remains unrecognized in this study. Actually, some 

studies have suggested a relationship between falls and stride regularity. Indeed, Auvinet et al., 

previously showed, using the Locometrix® device, that people who fell had significantly lower 

stride regularity than those who did not fall (Auvinet, Berrut et al. 2003). Unfortunately this 

preliminary study did not make it possible to draw robust conclusion regarding the prospective 

relationship with future fall(s). Several years later, the results of a two-year prospective 

observational study involving 259 home-dwelling people aged 66 to 75 years who had never 

fallen (Mignardot, Deschamps et al. 2014), were published, but did not perform any 

comparisons according to the stride regularity recorded at baseline and the fall incidence during 

follow-up. Only principal component analyses results were published restricting the 

comparison with our results. 

Furthermore, after consideration of other gait parameters with similar significance, and 

similar extraction and calculation processes, the cranio-caudal stride regularity computed by 

Bautmans et al. (Bautmans, Jansen et al. 2011), as an unbiased autocorrelation coefficient 

according to Moe-Nilssen and Helbostad (Moe-Nilssen and Helbostad 2004) and the stride-to-

stride variability calculated by Senden et al. (Senden, Savelberg et al. 2012) based on cranio-

caudal accelerations, were considered for comparison. These cross-sectional studies (both 

including people with recent fall history) also observed that older people at risk for falls have 

low stride regularity. Nevertheless, in view of the lack of available studies highlighting a 

prospective relationship between lower stride regularity and higher future fall risk, the stride 

regularity should be considered as a marker of fall history rather than a marker of future fall(s). 
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E. Stride symmetry 

In this exploratory study, fallers had positive mean stride symmetry DTW cost, meaning 

that they decreased their stride symmetry during DTW, while non-fallers had negative mean 

stride symmetry DTW cost, meaning that their stride symmetry increased in DTW. Moreover, 

the stepwise method shows higher stride symmetry cost are significantly and independently 

associated with an increased risk of future fall(s).  

The measurement of gait changes between the comfortable walking condition and the dual 

task walking condition is an original concept first published by Montero-Odasso. Indeed, 

according to this author, the type and amplitude of the gait changes measured from the comfort 

through the dual task walking condition have to be considered in addition to gait performances 

obtained in CW or DTW alone (Montero-Odasso, Sarquis-Adamson et al. 2017). Unfortunately, 

to the best of our knowledge, no similar data (regarding the symmetry DTW cost) is available 

in the published literature for strict comparison.  

However, a cross sectional study including 15 idiopathic fallers and 11 healthy controls, 

confirmed that idiopathic fallers had a less symmetric gait pattern in DTW than in CW (Yogev, 

Plotnik et al. 2007).  

Furthermore, if we assume that stride symmetry assesses a similar gait component to step 

regularity, then our results are in line with Bautmans et al. who compared gait patterns of 40 

older adults who had a high fall risk (mean age 80.6 ± 5.4 years) with those of 41 non-faller 

older adults (mean age 79.1 ± 4.9 years) founding that older adults at risk of fall had less step 

regularity than non-fallers (Bautmans, Jansen et al. 2011).  

In addition, in a one year cohort study including 319 community-dwelling older adults 

(mean age 75.5 ± 6.9), gait symmetry, assessed as harmonic ratio measured in three axes and 

in daily-life walking conditions, was found to have a negative relationship with future fall risk 

(van Schooten, Pijnappels et al. 2016). 
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Actually, stride symmetry could be linked to the automatic stepping activity coming from 

central pattern generators (CPGs)(Yogev, Plotnik et al. 2007). Our results suggest that healthy 

older people walking in the dual task condition benefit from the locomotor rhythmic stepping 

control. In our opinion, this “automatic” gait pattern behaviour is supposed to enable the subject 

to adequately perform the additional cognitive task while at the same time, ensuring the distance 

is covered.  

Our hypothesis is partially confirmed by a study of 100 healthy older adults assessed for 

gait and cognitive performances during single or dual-tasking (Beauchet, Allali et al. 2010). In 

this study, while most of the subjects had higher stride time variability and worse backward 

counting performance while dual-tasking, a limited number of subjects significantly reduced 

their gait variability and simultaneously improved their backward counting performance while 

walking compared to sitting. This behaviour was called the "magnet effect" because of the 

hypothesis that in some subjects, dual tasking leads to a global positive effect as much on 

reducing gait variability as in cognitively performing. In our opinion, even if the data observed 

in our study do not allow us to confirm the hypothesis formulated by Beauchet et al., this 

“magnet effect” could perhaps be a marker of healthy gait pattern ageing.  

Unfortunately, as previously detailed, comparative analysis according to stride symmetry 

DTW cost performance in this sample did not yield a deeper understanding of the potential 

determinants of stride symmetry DTW cost. Considering the available literature linking gait 

symmetry with CGP activity, data related to central nervous systems structures and cognitive 

functions could be more relevant to take into account. 
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F. MTC values 

 In this study, all MTC values (whatever Mean MTC, Min MTC or the values of 

variability) and their changes in FW and DTW were similar between fallers and non-fallers. To 

the best of our knowledge, this is the first prospective study focusing on prospective 

relationships between MTC values and future fall risk among older adults without a recent fall 

history and living independently at home. Thus, no similar study is available at this time for 

comparison.  

 Several points are noteworthy. Firstly, considering the sample size, the absence of 

significant difference both by univariate analysis and logistic regression and the stepwise 

method, does not mean that no relationship actually exists between MTC values and future 

fall(s) risk. Moreover, in our opinion, one of the most important points in the further exploration 

of the relationship between MTC and future fall(s) risk is the circumstances of the fall. Indeed, 

in our study, no distinction was made between participants who tripped (with or without an 

obstacle on the ground), slipped (with or without an obstacle on the ground), had a stepping 

reaction or lost their balance. However, some falls, especially those due to tripping, could be 

linked to MTC values. Thus, since our study did not distinguish trips and slips, the relationship 

between MTC values and fall(s) could be unrecognized.  
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6.6. The use of WEKA 

 

The general linear model seems to fail to understand the complexity of the relationship 

between gait patterns and fall risk among older adults. Indeed, although the inclusion and 

exclusion criteria used in his study were designed to select a homogeneous population, one of 

the major characteristic of the older adult population is their heterogeneity. Moreover, as 

previously discussed, falls among older adults could be linked to several different mechanisms 

(and furthermore, different mechanisms could be associated). Thus, falls among older adults 

are a complicated and multifactorial issue. Considering the heterogeneity of the population 

included and the complexity of the issue addressed, it appeared logical to use data mining to 

better take into account individual gait patterns rather than differences between groups, with a 

view to highlighting the potential relationship between gait parameters, walking conditions and 

future fall(s) risk.  

As previously explained, walking is not an automatic task (Hausdorff, Yogev et al. 

2005). Indeed, among older adults, one of the priorities of the postural system is to reduce head 

motion during locomotion (Kavanagh, Barrett et al. 2005). According to Menz et al. adopting 

a more conservative gait pattern during ageing may be a compensatory strategy to ensure that 

the head and pelvis remain stable (thereby preventing falls) (Menz, Lord et al. 2003). As 

previously outlined, individual gait patterns are the result of the relationship between the central 

nervous system and the musculoskeletal system, of which coordination and perfect functioning 

are necessary to obtain motion control that is as efficient as possible. Given that age-related 

effects on the central nervous and musculoskeletal systems could affect postural balance 

efficacy, it could be assumed that, in case of adaptive resources, the native gait profile is adapted 

to compensate for age-related effects, thus keeping the walk safe and as efficient as possible. 
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In light of this hypothesis, the use of a tool that considers individual gait profile seems to be 

more informative than group analysis.  

Actually, the use of the J48 was inspired by a German study comparing the usefulness 

of functional balance and gait tests with those of gait parameters obtained using an 

accelerometric method to discern faller or demented subjects among older adults (Gietzelt, 

Nemitz et al. 2009, Marschollek, Nemitz et al. 2009, Marschollek, Rehwald et al. 2011, 

Marschollek, Rehwald et al. 2011, Gietzelt, Wolf et al. 2013). Through several published 

papers, this German team demonstrated the utility of considering gait patterns (Marschollek, 

Rehwald et al. 2011), presented the WEKA (Marschollek, Rehwald et al. 2011) and showed 

that the best classification rate was obtained using the J48 classification tool (Gietzelt, Wolf et 

al. 2013). Considering the similarities between the German study and our own research, after 

consideration of the available literature concerning the WEKA (currently more than 140 

published references available on the website), and considering that the WEKA software makes 

supervised machine learning easy to use for people who wish to apply it to their own data, we 

chose to apply this approach to our data. Given the step by step selection of attributes involved 

in the short versions of the models (in order to increase the performance of each model), we 

chose to select one by one the attributes to be included, in order to check the utility of each (one 

by one) in the model, retaining those that were useful (i.e. variables whose removal led to a 

decrease in model accuracy) and to avoid retaining variables that were not useful (i.e. those 

whose removal led to similar or higher model accuracy). Other methods, that are faster to use, 

are suggested by the software. In order to choose the best way to select the attribute to retain in 

the short version, we compared our step by step methods with the methods suggested by the 

software. When the number of attributes was small, the methods suggested by the software were 

more useful. However, when the number of attributes increased, the usefulness of the step by 
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step method become clear (data not shown). For this reason, we chose to apply this step by step 

attribute selection method. 

When applied to our data, the classification tool confirmed that gait patterns could be 

useful to discern, among older people without a history of falls, those who were at risk of future 

fall(s). The models obtained also showed the interest of considering gender, clinical factors 

(stiffness) and functional aspects (IADL and SPPB scores) of the subjects to be classified. 

Indeed, the J48 classifier processed two classification trees; i.e. the ninth model, which was 

shorter and easier to use, and made it possible to identify 24 fallers among 35; and the tenth 

model, which was longer but performed better, making it possible to identify 28 fallers out of 

35.  

As in the German study, our results show the interest of adding clinical or functional 

variables to gait pattern to increase the performance of the classification tree. Indeed, the 

classification tree involving only gait patterns in the German study (as in the seventh model of 

our study), showed similar performance to the short version of the seventh model in our study 

with an accuracy of 80% (80% in our study), a sensitivity of 58% (69% in our study), a 

specificity of 96% (87% in our study), a positive predictive value of 92% (75% in our study), a 

negative predictive value of 77% (83% in our study) and a ROC area of 0.83 (0.79 in our study). 

After adding data related to physical performance, the performances of the German 

classification tree increased (as did those of the tenth classification tree here) with an accuracy 

of 78 % (versus 84% in our study), a sensitivity of 74% (versus 80% in our study), a specificity 

of 82% (versus 87% in our study), a positive predictive value of 74% (versus 78 % in our study), 

a negative predictive value of 74% (versus 88% in our study) and an AUC of 0.87 (versus 0.84 

in our study). The German study and our own study both support the idea that gait pattern, 

clinical and physical performance included in a classification tree could be useful to identify 

among older adults those who are at risk of future fall(s). 
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6.6.1. Use of the J48 classifier 

The J48 classification tree is a supervised learning algorithm based on hierarchical 

relationships between gait parameters and the class (fallers or non-fallers). Thus, the first 

variable the model uses is the gait parameter that makes it possible to classify as many people 

as possible in one of the two classes. In fact, the classifier tests the ability of each gait parameter 

to classify fallers and non-fallers; the tool then chooses as first node the gait parameter that 

classifies the larget number of subjects as faller or non-fallers. After this step, the classifier 

explores the data to find the second variable to use as a node to classify as many people as 

possible, and so on. In our opinion, this orginal approach to processing makes it possible to 

move away from the usual “groups-based analysis” and explore unknown links between the 

gait parameters composing the individual gait patterns. Morevoer, some parameters involved 

as classification nodes make it possible to classify people as fallers or non-fallers, whereas other 

gait parameters classify people in only one of the classes or not at all. In our opinion, this 

supports the idea some gait parameters are directly and strongly linked to fall(s), while others 

have a more complex relationship with fall risk, and need to be balanced or compensated by 

other gait parameters.   

In case of missing values, instances for which the relevant attribute value is missing are 

notionally split into pieces, one piece for each branch, in the same proportion as the known 

instances go down the various branches (Witten I. 2005). This automated calculation process 

applied by the J48 explains why some classification rates shown in brackets in the “enhanced” 

version of the models are not integers.   

Finally, a 10% cross-validation method is used to measure the performance of each 

model obtained. As previously explained, during the first 10 runs of the algorithm, 10% of the 

data are used for the test data and the remaining 90% are used as the training set. On the tenth 

iteration, the entire dataset is used as training data. The eleventh run takes into account the 
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entire data set as the test set. The algorithm output shows the average of eleven runs. The 

standard way of predicting the error rate of a learning technique given a single, fixed sample of 

data is to use stratified 10-fold cross-validation. One may ask, why 10? Extensive tests on 

numerous datasets, with different learning techniques, have shown that 10 is about the right 

number of iterations to get the best estimate of error, and there is also some theoretical evidence 

that backs this up. Although these arguments are by no means conclusive, and debate continues 

to rage in machine learning and data mining circles about what the best schema for evaluation 

is, 10-fold cross-validation has become the standard method in practical terms. Tests have also 

shown that the use of stratification improves results slightly. Thus the standard evaluation 

technique in situations where only limited data is available is stratified 10-fold cross-validation 

(Witten I. 2005).  

To summarize, the classification nodes were chosen based on the ability to classify the 

highest number of people, thereafter the performances of the model was evaluated using cross 

validation processes. This validated process strongly support the robustess of the models 

obtained. 
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6.6.2. Models obtained and process used 

The ten models were obtained one by one, including gait parameters or clinical variables 

step by step, and taking into account the performances obtained on each previous model to 

select the variables to include in the next one. Indeed, considering that the highest sensitivity is 

obtained in the fifth model, and the highest specificity in the second model, the sixth model 

included the FW gait parameters (included in the second model) and the DTW cost gait 

parameters (included in the fifth model). Thus, in our opinion, the most useful knowledge 

coming from the six first models is that FW seems to be helpful in identifying non-fallers 

(improving the specificity and the negative predictive value in the second model) while the 

DTW costs improve sensitivity and seem to be helpful in identifying fallers. Indeed, this 

potential relationship between FW gait performances and non-fallers is also supported by the 

previously explained relationship between the FW stride length and robustness. 

Another lesson coming from these first six models is that the selection of attributes one 

by one made it possible to obtain a short version model with the highest performances in terms 

of the number of correctly classified instances (accuracy). 

The seventh model included all gait parameters obtained (whatever the walking 

condition) and their FW improvement and DTW cost. Once again, the performances of the six 

previous models obtained oriented the choice of walking conditions to consider. Given that the 

one-by-one attribute selection process was efficient, all gait parameters were included. In fact, 

the short version of the seventh model had better performances than the six models previously 

obtained, but remained insufficient in terms of sensitivity and thus, further models were 

processed to improve the sensitivity and positive predictive value. 

The eighth model, including all gait parameters obtained (whatever the walking 

condition) and their FW improvement and DTW cost as well as age, gender and right leg length, 

had higher specificity than the seventh model. The one by one attribute selection process 
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confirmed that age and leg length are useless attributes. Gender appears useful in helping the 

model to perform better, even though it was not involved in a classification node. The ninth and 

the tenth models were developed in view of these previous findings.  
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The ninth model included all the gait parameters (whatever the walking condition in 

which they were obtained), their changes compared to CW, as well as IADL score, SPPB score 

and stiffness based on the UPDRS score. The ninth model appears to perform better and was 

shorter than the seventh and eighth models, highlighting the utility of adding clinical data. In 

terms of the additional data, the IADL score was not useful and was removed. The stiffness and 

SPPB scores increased the performances of the model and the UPDRS score was used as 

classification node. Indeed, stiffness appears early in the classification tree and its inclusion as 

a classification node changed the following nodes, suggesting that this parameter is relevant to 

future fall(s) risk.  

After comparison with the previous models obtained, the ninth model confirms the 

usefulness of the symmetry changes in DTW, FW stride length and stride regularity changes in 

FW for classification, and suggests considering the utility of Mean MTC in CW and CV MTC 

changes in DTW to improve classification performances. 

Actually, as shown below, three parameters (indicated by the green boxes) seem to be 

protective against falls, namely high symmetry increase in DTW, high CV MTC increase in 

DTW and high FW Var. MTC.  

 

 

  



214 
 

The relationship between the increased stride symmetry in DTW has already been 

discussed above. The measures of the variability of MTC (DTW CV MTC and FW Var. MTC) 

suggest an inverse relationship between the variability of the MTC and the fall risk. In our 

opinion, these results could suggest that the variability of MTC is related to efficient postural 

mechanisms involved in the swing phase to keep the body center of mass in the base of support. 

Indeed, Schultz et al. have previously shown that mean MTC has no linear relationship with 

gait speed, step time and step length, suggesting that mean MTC is not associated with the same 

control mechanisms (Schulz, Lloyd et al. 2010). Moreover, the same study also highlighted that 

the task-related effect on mean MTC is different according the type of secondary task. This 

implies that mean MTC could be more closely related to whether the walking condition 

challenges postural balance mechanisms than the automatic step production processes. 

Moreover, Hamacher et al. showed that MTC variability, assessed in DTW among older adults, 

is not related to stride length and stride time variability (Hamacher, Hamacher et al. 2016). 

Thus, although the study by Schutz et al. assessed mean MTC rather than variability of MTC, 

these two studies and our results suggest two co-existing postural control mechanisms ensuring 

maximal head and pelvic stability: one depending on the CPG network production of a rhythmic 

stepping activity (leading to an increase in stride symmetry and regularity) and the other, 

probably depending on cortical locomotor control areas, a more complex, less automatic 

mechanism controlling the swing phase leading to the foot landing pattern. Furthermore, the 

implication of the second mechanism is also supported by the fact that, among people with 

stiffness, the last classification node involved MTC values. Unfortunately, without 

accelerometric data relative to head motion, the design of this exploratory study does not make 

it possible to confirm our hypothesis, which, in our opinion, warrants exploration in further 

studies. 
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Briefly, these comments are in line with previous literature showing that gait variability 

in healthy older people could be a compensatory strategy to ensure that the head and pelvis 

remain stable, reducing the fall risk (Woollacott and Tang 1997, Menz, Lord et al. 2003, 

Kavanagh, Barrett et al. 2005). Thus, among older adults without fall history, the variability of 

the MTC observed in challenging walking conditions seems to be a marker of the postural 

mechanisms involved. 

Furthermore, in the ninth model, one parameter (indicated in red boxes) seems to lead 

to fall(s), namely short FW stride length. It is surprising to notice that the ninth model highlights 

a relationship with shorter FW stride length, while the results of the stepwise method suggested 

that a longer FW stride length seems to be linked with a reduced fall risk. This relationship 

between the FW stride length and fall risk, emerging in this model, is probably explained by 

the fact that the model previously identified a high number of non-fallers based on their 

symmetry increase in DTW. Indeed, those who are at lowest risk of falling (and probably having 

the highest FW stride length) had already been classified by the first node.  

Finally, two black boxes indicate classification nodes involving gait parameters that 

identified both fallers and non-fallers. At this time, it is not possible to understand why the 

classification at this node is dichotomist. Several hypotheses could be put forward; such as, the 

gait parameters involved could lead to the fall, or could be compensatory mechanisms, or the 

final classification node position explains the dichotomy. Available literature suggests that 

older adults have tendency to have a more flat-footed landing to ensure a more stable pattern 

(Winter, Patla et al. 1990). The link between a shorter CW Mean MTC and non-fallers seems 

to be based on a compensatory mechanism. Moreover, among people suffering from stiffness 

that reduces postural reactions, a decrease in the distance between the toe and the ground could 

reduce the time needed to put the foot down on the ground in case of postural adaptations. Thus, 

although in people without stiffness, high mean MTC seems intuitively protective, among 
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people with stiffness, a reduced Mean MTC could be an adaptation of the individual gait pattern 

to ensure a more stable foot landing. Finally, among those who did not sufficiently increase the 

CV of MTC in DTW or the FW variance MTC, a higher stride regularity improvement in FW 

helps to discern non-fallers, and seems to be a compensatory mechanism. Once again, the use 

of a classification tool makes it possible to observe gait compensation mechanisms and supports 

the idea of two co-existing postural control mechanisms (one to ensure stride symmetry and 

regularity, and the other to ensure balance aspects related to swing phase). In this context, given 

that the univariate analysis showed a dichotomisation in the regularity of FW improvement 

among fallers and non-fallers (Table 9; some subjects showed a “positive” regularity FW 

improvement, while others showed a “negative” regularity FW improvement, regardless of 

whether they were fallers or not) and in order to deepen our knowledge of potential 

compensatory gait mechanisms, an additional comparison was performed between volunteers 

who had a “positive” regularity FW improvement and those who had a “negative” regularity 

FW improvement (see appendix 8). Briefly, data concerning the regularity FW improvement 

were available for 96 people. Among these, 57 (59.4%) had a “positive” regularity FW 

improvement, meaning that they increased the regularity in FW, while 39 (40.6%) had a 

“negative” FW regularity improvement meaning that they decreased their regularity in FW. No 

anamnestic, clinical or functional variables were significantly different according to the 

regularity FW improvement; only certain gait parameters were different between these two 

groups. Indeed, those who had a positive FW regularity improvement had higher FW regularity, 

and higher FW Min MTC, while those with a negative FW regularity improvement had lower 

Min MTC in FW. We could hypothesise that the positive regularity FW improvement could be 

protective gait behaviour in order to increase the FW regularity and the FW Min MTC, i.e. to 

increase the distance between the toe and the ground during the swing phase, thus reducing the 
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risk of tripping. However, the p-value (< 0.05 but > 0.001) does not enable us to consider these 

differences as significant. A larger sample could confirm our hypothesis. 

 

To summarize, the ninth models suggests the following: - a greater increase in symmetry 

in DTW is protective against fall risk; - among those who are unable to increase symmetry 

sufficiently, a FW stride length lower than 1.29 m leads to a fall; - among those whose FW 

stride length is ≥ 1.29 m, the model considers stiffness. In case of stiffness, a reduced CW MTC 

is protective against a fall, allowing a quick stepping reaction. In the absence of stiffness, higher 

MTC variability during challenging walking conditions is the result of postural adaptation 

mechanisms targeting the swing phase, ensuring a safer foot landing and a more stable walking 

pattern. At the same time, among those who do not activate postural mechanisms controlling 

the swing phase aspects, the automatic step production ensures a regular walking pattern.  
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As the eighth model showed that adding data relative to gender tended to increase the 

specificity of the model. We processed the tenth model involving all gait parameters (whatever 

the walking condition they were obtained in), their changes compared to CW, IADL score, 

SPPB score and stiffness based on the UPDRS score, as well as age, gender and right leg length. 

The tenth model showed the best performances overall, classifying 27 fallers out of 35 (i.e. 8 

false negatives), and 53 non-fallers out of 61 (i.e. 8 false positives). Thus, the involvement of 

gender in this model made it possible to discern more fallers than in the ninth model, explaining 

the higher sensitivity and negative predictive value. As in the eighth model age and leg length 

were uninformative. However, the involvement in the same model of gender and data relative 

to functional status and physical performances led to better performances than the ninth model, 

and final classification node modification. Indeed, the tenth model considers the FW Mean 

MTC and the Delta1 MTC in DTW rather than the regularity FW improvement.   

 

 

The figure above shows the tenth model, the red line identifies the classification node 

changes linked to the inclusion of gender in the model. As shown in the figure, one parameter 

seems to be protective (in the green boxes); namely a high Mean MTC in FW among women 

(once again, among people without stiffness high Mean MTC values seem to be protective), 
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while two red boxes indicate parameters linked to the fall risk; namely, a high delta1 MTC 

(Max MTC value – Mean MTC value) in DTW and lower FW Mean MTC. 

Regarding the first red box, the model shows that among people whose FW variance 

MTC is high, people who have a Delta1 MTC > 11.6 mm in the dual task walking condition 

were classified as fallers. Because the delta1 MTC appears after consideration of the increase 

in CV MT in DTW, the involvement of the delta 1 MTC is, in our opinion, more likely linked 

to a reduced mean MTC value rather than to high MTC variability. Unfortunately, the design 

of this study does not allow us to confirm this hypothesis. Given the number of misclassified 

instances, the number of fallers identified using the delta1 MTC is similar to the number of 

instances previously misclassified by the ninth model. 

Regarding the second red box and according to the model, among people with a lower 

increase in CV MTC in DTW (and even in case of high MTC variance in FW) a lower FW 

Mean MTC leads to fall(s). Once again, the model suggests that among people without stiffness, 

higher mean MTC values protect against fall(s). 

Unfortunately, the reason why the last classification node used symmetry DTW cost to 

detect fallers among men remains unclear. Considering this is the last classification node, we 

may suppose that additional gait patterns or clinical data could lead to other classifications. 
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6.6.3. Summary of knowledge from the models 

Although our results warrant confirmation in a larger cohort, the results obtained are 

encouraging. In fact, the application of a classifier tool to our data made it possible to obtain a 

classification model that correctly identified 28 future fallers (among a total of 35 future fallers) 

and 53 non-fallers (among the 61 non-fallers). In this context, several models confirm the 

importance of considering stride symmetry DTW cost, FW stride length, stiffness and mean 

and variability measures of MTC. Furthermore, the models show that clinical and functional 

data have additional utility in increasing the performance of the models obtained. 

In our opinion, the models obtained using the J48 support the following posits: - gait 

pattern assessment could help to identify, among older adults, those who are at risk of future 

fall(s); - individual gait patterns are the result of several gait components that balance each 

other, and produce a walk that is as efficient as possible; - gait parameters have to be considered 

in terms of individual gait patterns rather than for any overall group effect.   
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6.7. Overall significance of the results obtained whatever walking condition, 

instrumental method used for data acquisition or statistical approach 

 

Since the main goal of this study was to investigate whether gait pattern assessment 

could be useful to identify, among older adults without a fall history, those at risk of future 

fall(s), the results obtained in this study are encouraging. Indeed, at the level of the whole cohort 

and according to logistic regression analysis, a greater FW stride length seems to be associated 

with a lower risk of fall(s). Furthermore, the use of a classifier tool, addressing the same 

hypothesis at the individual level, suggests a compensatory relationship between gait 

parameters, supports the idea of two co-existing postural balance mechanisms, and confirms 

the utility of considering symmetry DTW cost, FW stride length, mean and variability measures 

of MTC when assessing individual gait patterns in different challenging walking conditions. 

Actually, even if the models shown here need to be validated in other samples, the use 

of a classification tool on our data made it possible to obtain models that classified subjects as 

“future fallers” or “non-future-fallers” based on gait performances recorded at inclusion. These 

models also support the idea that gait parameters are related each other in a dynamic process 

that involves robustness, weakness and compensatory behaviours linked to the individual 

profile of the walker. Indeed, compensatory behaviours exist and could be observed daily by 

clinicians during their practice. The study by Levinger et al. illustrates one of the compensatory 

behaviours that older adults may adopt. In this study, the authors investigated how the MTC of 

older adults with osteoarthritis compared to MTC of controls. Surprisingly, MTC were similar 

in both groups and the authors identified the compensatory behaviours adopted by people with 

osteoarthritis to keep safe (Levinger, Lai et al.). Unfortunately, most of the time, the 

heterogeneity of these behaviours limits their systematic assessment and understanding. As 

suggested in this exploratory research work, no single gait parameter alone is sufficient to 
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detect, among robust older adults, people who are at risk of future fall(s). Furthermore, this 

works also supports the idea that the relationship between gait parameters and fall risk does not 

seem to be linear, probably because of individual compensation mechanisms. This hypothesis 

was also suggested in the study of Callisaya et al. in which some people in the fastest quartile 

of gait speed in FW were at increased of fall risk while the majority of the people in the second 

and the third quartiles of gait speed were at lower risk (Callisaya, Blizzard et al. 2012). 

Therefore, further research is needed to better understand the underlying relationships between 

gait parameters and future fall risk and in this context, data mining use could be useful. 
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6.8. Strengths and limitations of this work 

 

6.8.1. The strengths 

One of the main strengths of this study is his relatively well documented sample and 

outcomes. Indeed, initial phone contact, anamnesis, clinical exam and functional evaluation 

guarantee the absence of subjects who presented exclusion criteria. Furthermore, anamnestic, 

clinical and functional data obtained at inclusion made it possible to discuss the gait patterns 

obtained and their relationship with future fall(s). Finally, considering only gait parameters 

show significant differences between fallers and non-fallers among a fully documented cohort 

strongly supports the idea that gait pattern assessment is more useful than other tools 

(considered in this work) to detect people at risk of future fall(s) among robust older adults. 

In our opinion, a further strength of this study is the low rate of drop outs. Indeed, fewer 

than 10 percent of those included did not complete follow-up to two years. After comparison, 

subjects who did not complete the follow0up were not significantly different from those who 

did. The reduced dropout rate and the similarity between those included and those who dropped 

out suggests that fall(s) incidence among the people who left the study iw likely similar, and 

thus, no substantial missing information or data would change the results or the conclusions of 

this study. Indeed, the time spent at inclusion to explain the goals of this study, and the relevance 

of the follow-up also explain the high number of negative outcomes reported and supports the 

relevance of the results shown in this study. Indeed, at inclusion, all volunteers received a 

follow-up book explaining the goals of the study, as well as the definition of falls and missteps, 

with a page dedicated to each phone contact in order to note negative outcome circumstances 

and comments. Finally, the contact details of the main investigator and the occupational 

therapist in charge of phone contacts were given. During follow-up, volunteers were contacted 

every 3 months to record outcomes, answer some questions and fix the date for the next phone 
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contact in order to maximize the answer rate and reduce loss of contact. Unfortunately, despite 

the rigour of this process, data from two volunteers were not considered for analysis and follow-

up was interrupted. 

The methods used during acquisition and extraction data strongly suggest that the results 

obtained can be considered as robust. Indeed, data acquisition was performed in a laboratory 

environment dedicated to movement analyses, the equipment used is validated, installed and 

used by experienced investigators, and all gait analyses were supervised by the main 

investigator.  

Moreover, the use of three different walking conditions and the calculation of the gait 

changes occurring between CW and FW (i.e. gait parameter FW improvement) or between CW 

and DTW (i.e. gait parameter DTW cost) is one of the originalities of this experimental 

research. To the best of our knowledge, this study is the first to show so many gait parameters 

in three walking conditions and their changes according to the walking condition. Moreover, 

systematic randomisation of the FW and DTW rules out any fatigue effect that could be due to 

performance of the same walking condition. The advantages of considering these different 

walking conditions are numerous. First, the use of the comfortable walking condition makes it 

possible to obtain the spontaneous gait pattern and reference data among relatively robust 

people without a fall history. The spontaneous gait pattern and its changes in FW and DTW 

could further be addressed to deepen our knowledge of individual gait patterns and their 

changes in case of stressful walking conditions. Second, the use of the fast walking condition 

makes it possible to show that gait performances in this walking condition could be useful for 

the evaluation of fall risk among robust people, arguing in favour of its systematic use in clinical 

setting. Thirdly, the use of the dual task walking condition confirms that gait parameters 

obtained in DTW are less useful than among older people with cognitive decline. Given that 

serial subtraction of seven from 100 leads to the greatest deterioration in gait performances as 
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shown by Muir et al. (Muir, Speechley et al. 2012), the cognitive task was probably challenging 

enough to mobilise attentional resources of the volunteers. However, given that the subjects 

included were relatively robust and free from cognitive disorders, the attentional resources they 

had should have been sufficient to perform the task and ensure safe walking patterns, even 

among those who would fall in the next two years. Additional data relative to the 

neuropsychological performances of the volunteers could be helpful to confirm this hypothesis. 

Unfortunately, at this time, these data remain unavailable. Furthermore, while the gait pattern 

obtained in DTW seems to be less useful than hoped, the dual task costs calculated in this study 

appear to be useful to detect people at risk for future falls (symmetry DTW cost and CV MTC 

DTW cost). In our opinion, these results illustrate that gait patterns have to be considered as 

dynamic processes where gait changes are at least as important as gait performance. 

In addition, the systematic anthropometric measurements make it possible to consider 

individual physical characteristics when discussing gait patterns and their relationships with 

fall(s) and misstep(s), but also show that many gait parameters were correlated to the leg length. 

This supports the idea that cohort studies including people who have substantial anthropometric 

differences should consider these relationships. 

Finally, although this study is not the first to apply data mining to gait patterns, the use 

of a classifier tool offered by the free platform WEKA is undoubtedly another originality of 

this study and supports the idea that gait parameters could have non-linear relationships with 

future fall(s). The use of data mining makes it possible, despite the reduced sample size and the 

limited number of falls observed during follow-up, to further explore the relationships between 

gait parameters and future fall(s) risk. Indeed, considering each gait pattern individually, the 

J48 overcomes the limitations of comparison and regression analyses in a small sample. The 

systematic and logical approach used to obtain the models, and the use of a 10-fold cross 

validation process strongly support the robustness of the models obtained. The models obtained 
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support the idea of two co-existing balance mechanisms, where one is linked to step production 

and gait pattern regularity, and the other is linked to the control of the swing period in more 

challenging walking conditions. Moreover, the models obtained also suggest non- linear 

relationships between gait parameters and future fall risk, suggesting co-existing compensation 

mechanisms.  
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6.8.2. The limitations 

Unfortunately, this study has some limitations that deserve to be underlined. First, the 

sample size is small. Indeed, a larger sample would make more closely resemble the 

characteristics of the real population of healthy older adults. Thus, the absence of significant 

relationships between some gait parameters and future falls does not mean that no significant 

relationship exists. Furthermore, a larger sample would make it possible to observe a higher 

number of falls and include more explicative variables in the logistic regression. 

Second, although this study only considered accidental fall(s) and the follow-up made 

it possible to exclude falls due to organic disorders such as cardiac or neurologic disorders, our 

study did not take into account the number of falls (i.e. no difference was made between people 

who fell once and those who fell several times), the fall consequences, or the context in which 

the fall occurred (e.g. at home, in the street, on snow, in a dual task situation, in more complex 

situations, during challenging physical activity, tripping, slipping or losing balance). 

Consequently, the relationship between MTC value and future fall(s) was not further discussed. 

Moreover, this study did not take into account the cognitive performance during the dual 

task walking condition. Thus, we were unable to identify whether priority was equally given to 

the cognitive and the motor task, or whether the priority was different among fallers and non-

fallers.  

Furthermore, although the gait parameter changes between CW and FW or the DTW 

were compared in terms of fall(s) or missteps(s) incidence, no comparison was made between 

the walking conditions. Actually, the comparisons made considered the outcomes as the main 

point of view. Additional analyses should consider the comparison of gait parameters according 

to the walking condition used. 

Last but not least, the acquisition protocol did not make it possible to obtain robust data 

concerning the double support, stance and swing times and Locometrix® only gives mean 
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values, and thus, stride to stride variability measures were not available for analysis. This 

technical limitation in obtaining gait variability measurements (except for MTC) is in our 

opinion the main limitation of this study. Indeed, the choice to use an accelerometric method 

and an opto-electronic method in this study was based on consideration of the main advantages 

of each method, their validation among older adults, their availability in the University of Liège 

and the previous experiments with this equipment. Using these two instrumental methods 

simultaneously appeared to be complementary, obtaining mean values on long walking 

distances, using the Locometrix, and stride by stride analysis using the opto-electronic method. 

Fortunately, an ambulatory accelerometer-based system used with a signal processing 

algorithm to automatically extract the temporal gait events involved in the estimation of the 

phase/sub-phase durations is under development and validation in the University of Liège and 

further work should confirm, using this software, an accelerometric method allows stride-by-

stride analysis.  
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7. Conclusions 

 

In conclusion, the results obtained in this work support the idea that gait pattern assessment 

could be useful to detect, among healthy older adults, those at risk of future falls, especially the 

symmetry DTW cost and the FW stride length. 

Moreover, this study shows the utility of considering data mining processes to assess 

individual gait patterns. Actually, the use of a classifier tool on our data made it possible to 

obtain a model based on gait patterns and data related to clinical and functional characteristics 

of the participant that detected more than 80% of people who would go on to fall during follow-

up. In our opinion, this study strongly suggests that a better understanding of this complex issue 

in a heterogeneous population requires consideration of individual profiles integrating gait 

performance but also clinical and functional measurements (as usually done in a comprehensive 

geriatric approach).  

Of course, our results warrant confirmation in a larger sample and the models obtained need 

to be validated in terms of the relevant gait parameter to consider in classification nodes, the 

threshold values used and the performances obtained.  

However, considering the limitations but also the strengths of this exploratory research 

work, we consider the results obtained to be robust and encouraging, and justifying further 

studies in this field of research.  
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8. Perspectives 

 

Based on these encouraging results, further studies should be planned to confirm the 

usefulness of gait patterns to identify people at risk of future fall(s). In fact, based on the results 

obtained in this exploratory study, further studies should consider calculation of statistical 

power in order to include enough participants to ensure adequate statistical power.  

Moreover, the inclusion of a larger sample would allow the step by step development and 

validation of a signal processing algorithm initially started in this study among a small 

proportion of volunteers. Indeed, one engineer working in the INTELSIG Laboratory for the 

Department of Electrical Engineering and Computer Science, in University of Liège (M. 

Boutaayamou), has developed and validated an ambulatory accelerometer-based system used 

with a signal processing algorithm to automatically extract the temporal gait events involved in 

the estimation of the phase/sub-phase durations, namely heel strike (HS), toe strike (TS), toe-

off (TO), maximum of heel clearance (MHC), and maximum of toe clearance (MTC) making 

it possible to obtain the durations of stride, stance, swing, and double support phases. Data 

relative to the minimal toe clearance are also available for calculation. The main advantages of 

foot worn devices are to obtain gait sub-phase information and to record gait patterns over 

longer distances than using a walkway (limited to 8 meters). In this context, 38 volunteers from 

this study were asked to participate in the development process of this new equipment and the 

validation step has shown a promising degree of accuracy/precision compared to reference data.  

Therefore, further studies should use these foot-worn accelerometers in addition to 

accelerometers in the lumbar position and on the head to assess gait patterns, and especially 

gait variability. In our opinion this acquisition protocol could assess the potential contribution 
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of these additional gait parameters in future fallers, and address the relationship between MTC 

values (mean, min and variables assessing the variability of the MTC).  

Currently, the University of Liège offers specific dedicated structures (i.e. the laboratory 

analyses of human movement, LAHM) and specialised human resources with different 

backgrounds (medical doctors, physiotherapists, and engineers) focusing on the development 

of gait analysis tools and methods making it possible to use gait pattern assessment to prevent, 

care for and support healthy ageing. In my opinion, the results obtained and the resources 

available suggest further ambitious research works have to be planned in this area. 

Furthermore, after follow-up, 80 people from among the 96 initially included, were assessed 

for anamnestic, clinical, and functional evaluation and for gait parameters (according to the 

acquisition data protocol used at inclusion). Based on these data, the gait parameters of people 

who have fallen could be compared with the gait parameters of those who have not fallen in 

order to better understand the consequence of the first fall event on the gait pattern. 

Finally, as previously explained, this study initially considered two main outcomes, namely 

falls and cognitive decline, and explores two potential health-related biomarkers, namely gait 

performance and brain structure resources. The current work reports only the gait analysis and 

relationship with fall(s), but additional data remain available for analyses; namely the brain 

MRI acquired at inclusion and the neuropsychological assessment recorded at inclusion and at 

the end of the follow-up period. Below, we show the main analyses that have to be done to use 

available data and explore the relationship with falls and cognitive decline.  First, considering 

data related to brain MRI, a brain MRI is available for 95 out of the 96 non fallers. Then, next 

steps have to consider the relationships between data related to brain imagery, those related to 

neuropsychological performances and gait performances, and the fall(s) incidence or/and the 

cognitive decline occurring during follow-up. A multivariate model is warranted, and the 

potential usefulness of PRoNTo (Pattern Recognition for Neuroimaging Toolbox) has to be 
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addressed in the aftermath of this study. PRoNTo is a user-friendly and open-source MATLAB 

toolbox that could make machine learning modeling available to neuroimaging data. As 

explained by Schrouff et al., in PRoNTo, brain scans are treated as spatial patterns and statistical 

learning models are used to identify statistical properties of the data that can be used to 

discriminate between experimental conditions or groups of subjects (classification models) or 

to predict a continuous measure (regression models) (Schrouff, Rosa et al. 2013). Applied to 

the brain MRI data acquired among our sample, PRoNTo could be used to obtain a classification 

model based on fall(s) during follow-up. Moreover, the brain volumes obtained using VBM 

analyses could be considered as additional variables to include in the classification model 

obtained using WEKA, in order to show how these brain volumes could help the model to better 

classify people as fallers or non-fallers.  

In addition, considering the volunteers have been assessed for mood and cognitive 

performances at inclusion and after follow-up, data relative to cognitive performances at 

inclusion and after two years are available for univariate and multivariate analyses in terms of 

their relationship with gait patterns and future fall(s). Data mining resources should investigate 

the same relationships in a complementary and individual approach. 
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9. Tables and figures 

 

This section includes the following tables: 

- Table 1: Characteristics of the 105 volunteers included:  qualitative variables 

- Table 2: Characteristics of the 105 volunteers included: quantitative variables 

- Table 3: Comparison of characteristics of the 96 volunteers followed and the 9 

volunteers censored: qualitative variables 

- Table 4: Comparison of characteristics of the 96 volunteers followed and the 9 

volunteers censored:  quantitative variables 

- Table 5: Comparison of medico-surgical data according to fall incidence 

- Table 6: Comparison of anamnestic data according to fall incidence 

- Table 7: Comparison of clinical and functional data according to fall incidence 

- Table 8: Comparison of gait parameters obtained using the accelerometric method 

according to fall incidence 

- Table 9: Comparison of FW and DTW changes of gait parameters obtained using the 

accelerometric method according to fall incidence 

- Table 10: Comparison of gait parameters obtained using the opto-electronic method 

according to fall incidence 

- Table 11: Comparison of FW and DTW changes of gait parameters obtained using the 

opto-electronic method according to fall incidence 

- Table 12: Performances of all models obtained using J48 
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This section includes the following figures 

- Figure 3: The raw classification model obtained with WEKA: the seventh model 

short version 

- Figure 4: The raw classification model obtained with WEKA including the gait 

parameters names: The seventh model short version 

- Figure 5: The short version of the seventh model obtained using WEKA 

- Figure 6: The raw classification model obtained with WEKA: the eighth model short 

version 

- Figure 7: The raw classification model obtained with WEKA including the gait 

parameters names: The eighth model short version 

- Figure 8: The short version of the eighth model obtained using WEKA 

- Figure 9: The raw classification model obtained with WEKA: the ninth model short 

version 

- Figure 10: The raw classification model obtained with WEKA including the gait 

parameters names: The ninth model short version 

- Figure 11: The short version of the ninth model obtained using WEKA 

- Figure 12: The raw classification model obtained with WEKA: the tenth model short 

version 

- Figure 13: The raw classification model obtained with WEKA including the gait 

parameters names: The tenth model short version 

- Figure 14: The short version of the tenth model obtained using WEKA 
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Table 1: Characteristics of the 105 volunteers included: Qualitative variables 

Variable Categories Number (%) 

Gender   

 Men 52 (49.5) 

 Women 53 (50.5) 

Marital status   

 Single 28 (26.7) 

 In couple 77 (73.3) 

Alcohol Consumption   

 < 4 doses / day 96 (91.4) 

 ≥ 4 doses / day 9 (8.6) 

Number of drugs   

 < 5 drugs / day 73 (69.5) 

 ≥ 5 drugs / day 32 (30.5) 

Sleeping Pill   

 No 65 (61.9) 

 Yes 40 (38.1) 

Antidepressant   

 No 91 (86.7) 

 Yes 14 (13.3) 

Diabetes history   

 No 84 (80.0) 

 Yes 21 (20.0) 

HTA history   

 No 60 (57.1) 

 Yes 45 (42.9) 

Stroke history   

 No 102 (97.1) 

 Yes 3 (2.9) 

TIA history   

 No 101 (96.2) 

 Yes 4 (3.8) 
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Variable Categories Number (%) 

Hip or knee prosthesis   

 No 98 (93.3) 

 Yes 7 (6.7) 

Memory complain   

 No 55 (52.4) 

 Yes 50 (47.6) 

In case of positive answer to the 
previous question; does exist a 
functional limitation linked to the 

memory complain 

  

 No 88 (83.8) 

 Yes 17 (16.2) 

Sleep satisfaction   

 No 71 (67.6) 

 Yes 34 (32.4) 

Depressive feeling   

 No 90 (85.7) 

 Yes 15 (14.3) 

Anxiety feeling   

 No 64 (61.0) 

 Yes 41 (39.0) 

Walking complain   

 No 74 (70.5) 

 Yes 31 (29.5) 

Fear of falling   

 No 71 (67.6) 

 Yes 34 (32.4) 

Regular Physiotherapeutic Cares   

 No 104 (99.0) 

 Yes 1 (1.0) 

Well-being feeling   

 Yes 100 (95.2) 

 No 5 (4.8) 
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Variable Categories Number (%) 

Quality of life satisfaction   

 Yes 95 (90.5) 

 No 10 (9.5) 

Feeling of dependency   

 No 93 (89.4) 

 Yes 11 (10.6) 

Daily-life environment 

and structural help need 
  

 House or flat without any help 92 (87.6) 

 
House or flat with punctual help for hard 

home house or gardening 
11 (10.5) 

 
House or flat with regular help  for hard 

home house or gardening 
2 (1.9) 

Frailty according to GFST   

 Not frail(s) 94 (89.5) 

 Frail(s) 11 (10.5) 

Visual deficit (< 3 meters)   

 No 57 (54.3) 

 Yes 48 (45.7) 

Timed need to realise the 

Timed Up and Go test (sec.) 
  

 < 11 93 (88.6) 

 ≥ 11 and < 20 12 (11.4) 

 ≥ 20 0 

ROMBERG   

 No oscillation 77 (73.3) 

 Mild and non-lateralized oscillation 28 (26.7) 

 Lateralisation 0 
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Table 2: Characteristics of the 105 volunteers included: Quantitative variables 

 

Variable N Mean SD SE Min Q1 Median Q3 Max 

Age 

(years) 
105 71.38 5.37 0.52 65.0 67.0 70.0 75.0 89.0 

Education 

(number of years) 
105 13.04 3.52 0.34 5.0 11.0 13.0 15.0 25.0 

Tobacco consumption 

(boxes per year) 
105 8.56 13.64 1.33 0.0 0.0 0.0 15.0 60.0 

EVA Pain score 

(0-10) 
105 0.49 1.30 0.13 0.0 0.0 0.0 0.0 6.4 

Physical activity score 

(0-7) 
105 2.97 2.31 0.23 0.0 1.0 3.0 5.0 7.0 

ADL 

(score / 24) 
105 6.24 0.45 0.04 6.0 6.0 6.0 6.0 8.0 

IADL 

(score /1) 
105 0.99 0.04 0.00 0.8 1.0 1.0 1.0 1.0 

GDS 

(score /4) 
105 0.72 0.95 0.09 0.0 0.0 0.0 1.0 4.0 

FES 

(score /64) 
105 18.71 3.43 0.33 7.0 17.0 18.0 19.0 34.0 

MNA 

(score /14) 
105 12.86 1.68 0.16 7.0 12.0 14.0 14.0 14.0 

CIRS-G 

(score /56) 
105 9.45 4.45 0.43 2.0 6.0 9.0 12.0 22.0 

Number of diseases 

scored as severity 3 or 4 
105 0.73 1.11 0.11 0.0 0.0 0.0 1.0 6.0 

COVI 

(score 3-15) 
105 3.19 0.67 0.07 3.0 3.0 3.0 3.0 7.0 

Edmonton 

(score /17) 
105 2.11 1.56 0.15 0.0 1.0 2.0 3.0 7.0 

Moca 

(score /30) 
105 26.88 2.72 0.27 13.0 26.0 27.0 29.0 31.0 

Moca, visuo-spatial item 

(score /5) 
105 4.13 1.01 0.10 1.0 4.0 4.0 5.0 5.0 

Moca, naming item 

(score /3) 
105 2.80 0.49 0.05 1.0 3.0 3.0 3.0 3.0 

Moca, attention item 

(score /6) 
105 5.09 1.07 0.10 0.0 5.0 5.0 6.0 6.0 
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Variable N Mean SD SE Min Q1 Median Q3 Max 

Moca, langage item 

(score /3) 
105 2.67 0.55 0.05 1.0 2.0 3.0 3.0 3.0 

Moca, abstraction item 

(score /2) 
105 1.81 0.42 0.04 0.0 2.0 2.0 2.0 2.0 

Moca, rappel item 

(score /5) 
105 4.02 1.10 0.11 0.0 4.0 4.0 5.0 5.0 

Moca, orientation item 

(score /6) 
105 5.88 0.41 0.04 3.0 6.0 6.0 6.0 6.0 

Body weight 

(kg) 
105 73.18 13.28 1.30 43.5 65.0 73.0 80.0 110.0 

Body height 

(cm) 
105 167.82 9.88 0.96 147.0 160.0 168.0 176.0 189.0 

Waist circumference 

(cm) 
105 94.70 11.70 1.14 65.0 87.0 93.0 102.0 121.0 

Hip circumference 

(cm) 
105 103.62 9.14 0.89 75.0 98.0 103.0 108.0 132.0 

Waist/Hip ratio 

 
105 0.91 0.08 0.01 0.8 0.8 0.9 1.0 1.1 

Right leg length 

(cm) 
105 83.37 9.85 0.96 1.0 80.5 84.0 88.0 98.0 

Body Mass Index 

(kg/m²) 
105 25.92 3.72 0.36 18.6 23.5 25.5 28.2 36.0 

Systolic blood pressure 

(mm Hg) 
105 126.78 20.32 1.98 92.0 110.0 124.0 140.0 180.0 

Diastolic blood pressure 

(mm Hg) 
104 63.54 12.06 1.18 2.0 60.0 60.0 70.0 100.0 

Pulse pressure 

(mm Hg) 
104 63.50 19.02 1.86 30.0 51.0 60.0 74.0 168.0 

Grip strength 

(kPa) 
105 62.11 15.70 1.53 34.0 50.0 60.0 72.0 115.0 

Fatigue resistance 

(s) 
104 50.05 30.15 2.96 3.0 28.2 42.4 65.8 143.1 

Grip work 

(kPa*s) 
104 2409.06 1623.89 159.24 108.0 1218.9 1846.3 3215.7 7352.9 

Grip work / Body weight 

(kPa*s*kg-1) 
104 32.87 21.52 2.11 2.3 16.8 26.7 42.5 99.4 

Grip work / SMM 

(kPa*s*kg-1) 
97 90.89 56.38 5.72 8.1 47.9 76.9 124.7 298.3 

Grip work / SMI 

(kPa*s*%) 
97 66.92 42.48 4.31 3.7 37.0 53.6 90.0 217.8 
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Variable N Mean SD SE Min Q1 Median Q3 Max 

Skeletal Muscle Mass, 

SMM (kg) 
97 26.25 5.85 0.59 13.4 21.7 25.1 30.0 44.8 

Skeletal Muscle Index 

SMI (%) 
97 35.70 5.36 0.54 23.0 32.2 35.4 38.5 56.0 

Stiffness according 

UPDRS (score /15) 
103 0.65 1.36 0.13 0.0 0.0 0.0 1.0 8.0 

FGA 

(score / 30) 
105 26.68 3.00 0.29 17.0 25.0 27.0 29.0 30.0 

SPPB 

(score / 12) 
105 10.42 1.57 0.15 6.0 10.0 11.0 12.0 12.0 
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Table 3: Comparison of characteristics of the 96 volunteers followed              

and the 9 volunteers censored: qualitative variables 

Variable Categories N Number (%) N Number (%) 
Chi² 

p-value 

Gender  9  96   

 Men  4 (44.4)  48 (50.0) 
1.00 

 Women  5 (55.6)  48 (50.0) 

Marital status  9  96   

 Single  4 (44.4)  24 (25.0) 
0.24 

 In couple  5 (55.6)  72 (75.0) 

Alcohol  9  96   

 < 4 dosis / day  9 (100.0  87 (90.6) 
NA 

 ≥ 4 dosis / day  0 (0.0)  9 (9.4) 

Number of drugs  9  96   

 < 5 drugs / day  5 (55.6)  68 (70.8) 
0.45 

 ≥ 5 drugs / day  4 (44.4)  28 (29.2) 

Sleep pill  9  96   

 No  5 (55.6)  60 (62.5) 
0.73 

 Yes  4 (44.4)  36 (37.5) 

Antidepressant  9  96   

 No  8 (88.9)  83 (86.5) 
1.00 

 Yes  1 (11.1)  13 (13.5) 

Diabetes history  9  96   

 No  6 (66.7)  78 (81.3) 
0.38 

 Yes  3 (33.3)  18 (18.8) 

High blood pressure 

history 
 9  96   

 No  7 (77.8)  53 (55.2) 
0.29 

 Yes  2 (22.2)  43 (44.8) 

Stroke history  9  96   

 No  7 (77.8)  95 (99.0) 
0.019 

 Yes  2 (22.2)  1 (1.0) 

TIA history  9  96   

 No  8 (88.9)  93 (96.9) 
0.31 

 Yes  1 (11.1)  3 (3.1) 

Hip or knee prothesis  9  96   

 No  9 (100.0  89 (92.7) NA 
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Variable Categories N Number (%) N Number (%) 
Chi² 

p-value 

 Yes  0 (0.0)  7 (7.3) 

Memory complain  9  96   

 No  7 (77.8)  48 (50.0) 0.17 

 Yes  2 (22.2)  48 (50.0)  

In case of positive answer 

to the previous question; 

does exist a functional 

limitation linked to the 

memory complain? 

 9  96   

 No  9 (100.0  79 (82.3) 
NA 

 Yes  0 (0.0)  17 (17.7) 

Sleep satisfaction  9  96   

 No  8 (88.9)  63 (65.6) 
0.27 

 Yes  1 (11.1)  33 (34.4) 

Depressive feeling  9  96   

 No  8 (88.9)  82 (85.4) 
1.00 

 Yes  1 (11.1)  14 (14.6) 

Anxiety feeling  9  96   

 No  8 (88.9)  56 (58.3) 
0.087 

 Yes  1 (11.1)  40 (41.7) 

Walking complain  9  96   

 No  2 (22.2)  72 (75.0) 
0.0026 

 Yes  7 (77.8)  24 (25.0) 

Fear of falling  9  96   

 No  6 (66.7)  65 (67.7) 
1.00 

 Yes  3 (33.3)  31 (32.3) 

Regular physiotherapeutic 

cares 
 9  96   

 No  8 (88.9)  96 (100.0 
1.00 

 Yes  1 (11.1)  0 (0.0) 

Well-being feeling  9  96   

 Yes  9 (100.0  91 (94.8) 
NA 

 No  0 (0.0)  5 (5.2) 

Quality of life satisfaction  9  96   

 Yes  9 (100.0  86 (89.6) 
NA 

 No  0 (0.0)  10 (10.4) 
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Variable Categories N Number (%) N Number (%) 
Chi² 

p-value 

Feeling of dependency  8  96   

 No  7 (87.5)  86 (89.6) 
1.00 

 Yes  1 (12.5)  10 (10.4) 

Daily-life environment 

and structural help need 
 9  96   

 
House or flat without 

any help 
 8 (88.9)  84 (87.5) 

1.00 

 

House or flat with 

punctual help for 

hard home house or 

gardening 

 1 (11.1)  10 (10.4) 

 

House or flat with 

regular help  for hard 

home house or 

gardening 

 0 (0.0)  2 (2.1) 

Frailty according to GFST  9  96   

 Not frail(s)  8 (88.9)  86 (89.6) 
1.00 

 Frail(s)  1 (11.1)  10 (10.4) 

Visual deficit (3 meters)  9  96   

 No  6 (66.7)  51 (53.1) 
0.50 

 Yes  3 (33.3)  45 (46.9) 

Timed need to realise the 

Timed Up and Go test 

(sec.) 

 9  96   

 < 11  6 (66.7)  87 (90.6) 
0.065 

 ≥ 11 and < 20  3 (33.3)  9 (9.4) 

ROMBERG  9  96   

 No oscillation  7 (77.8)  70 (72.9) 

1.00 
 

Mild and non-

lateralized oscillation 
 2 (22.2)  26 (27.1) 
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Table 4: Comparison of characteristics of the 96 volunteers followed and the 9 

volunteers censored:  quantitative variables 

 

Variable Variable N Mean ± SD Q1 Median Q3 p-value 

Age 

(years) 
All 105 71.38 ±  5.37 67.00 70.00 75.00  

 Dropped 9 72.56 ±  5.25 68.00 73.00 75.00 
0.37 

 Followed 96 71.27 ±  5.40 67.00 69.50 74.50 

Education 

(number of years) 
All 105 13.04 ±  3.52 11.00 13.00 15.00  

 Dropped 9 13.11 ±  3.33 10.00 15.00 15.00 
0.86 

 Followed 96 13.03 ±  3.55 11.00 13.00 15.00 

Tobacco consumption 

(boxes/year) 
All 105 8.56 ± 13.64 0.00 0.00 15.00  

 Dropped 9 8.67 ± 15.63 0.00 0.00 11.00 
0.75 

 Followed 96 8.55  ± 13.53 0.00 0.00 16.50 

EVA pain 

(score 0-10) 
All 105 0.49± 1.30 0.00 0.00 0.00  

 Dropped 9 2.28 ± 2.43 0.00 1.50 4.70 
<.0001 

 Followed 96 0.32 ± 1.01 0.00 0.00 0.00 

Physical activity 

(score 0-7) 
All 105 2.97 ± 2.31 1.00 3.00 5.00  

 Dropped 9 2.33 ± 2.29 1.00 1.00 3.00 
0.35 

 Followed 96 3.03 ± 2.31 1.00 3.00 5.00 

ADL 

(score / 24) 
All 105 6.24 ± 0.45 6.00 6.00 6.00  

 Dropped 9 6.56 ± 0.73 6.00 6.00 7.00 
0.078 

 Followed 96 6.21 ± 0.41 6.00 6.00 6.00 

IADL 

(score /1) 
All 105 0.99 ± 0.04 1.00 1.00 1.00  

 Dropped 9 0.97 ± 0.07 1.00 1.00 1.00 
0.079 

 Followed 96 0.99 ± 0.04 1.00 1.00 1.00 

GDS 

(score / 4) 
All 105 0.72 ± 0.95 0.00 0.00 1.00  

 Dropped 9 0.56 ± 0.73 0.00 0.00 1.00 
0.72 

 Followed 96 0.74 ± 0.97 0.00 0.00 1.00 

FES 

(score / 64) 
All 105 18.71 ± 3.43 17.00 18.00 19.00  

 Dropped 9 20.89 ± 5.67 18.00 19.00 22.00 0.22 
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Variable Variable N Mean ± SD Q1 Median Q3 p-value 

 Followed 96 18.51 ± 3.11 17.00 18.00 19.00 

MNA 

(score / 14) 
All 105 12.86 ± 1.68 12.00 14.00 14.00  

 Dropped 9 13.33 ± 1.12 13.00 14.00 14.00 
0.43 

 Followed 96 12.81 ± 1.72 12.00 14.00 14.00 

CIRS-G total 

(score / 56) 
All 105 9.45 ± 4.45 6.00 9.00 12.00  

 Dropped 9 9.78 ± 4.35 8.00 9.00 11.00 
0.78 

 Followed 96 9.42 ± 4.49 6.00 9.00 12.00 

Number of diseases scored as 

severity 3 or 4 
105 105 0.73 ± 1.11 0.00 0.00 1.00  

 Dropped 9 0.78 ± 1.09 0.00 0.00 1.00 
0.82 

 Followed 96 0.73 ± 1.12 0.00 0.00 1.00 

COVI 

(score 3-15) 
All 105 3.19 ± 0.67 3.00 3.00 3.00  

 Dropped 9 3.22 ± 0.67 3.00 3.00 3.00 
0.86 

 Followed 96 3.19 ± 0.67 3.00 3.00 3.00 

Edmonton 

(score / 17) 
All 105 2.11 ± 1.56 1.00 2.00 3.00  

 Dropped 9 3.44 ± 2.07 2.00 4.00 5.00 
0.035 

 Followed 96 1.99 ± 1.46 1.00 2.00 3.00 

MoCA total 

(score / 30) 
All 105 26.88 ± 2.72 26.00 27.00 29.00  

 Dropped 9 26.78 ± 2.54 26.00 27.00 29.00 
0.83 

 Followed 96 26.89 ± 2.75 26.00 27.00 29.00 

MoCA visuo-spatial item 

(score /5) 
All 105 4.13 ± 1.01 4.00 4.00 5.00  

 Dropped 9 3.89 ± 1.27 3.00 4.00 5.00 
0.60 

 Followed 96 4.16 ± 0.99 4.00 4.00 5.00 

MoCA naming item 

(score /3) 
All 105 2.80 ± 0.49 3.00 3.00 3.00  

 Dropped 9 2.78 ± 0.67 3.00 3.00 3.00 
0.75 

 Followed 96 2.80 ± 0.47 3.00 3.00 3.00 

MoCA attention item 

(score / 6) 
All 105 5.09 ± 1.07 5.00 5.00 6.00  

 Dropped 9 5.11 ± 0.93 5.00 5.00 6.00 
0.98 

 Followed 96 5.08 ± 1.08 5.00 5.00 6.00 



253 
 

Variable Variable N Mean ± SD Q1 Median Q3 p-value 

MoCA language item 

(score / 3) 
All 105 2.67 ± 0.55 2.00 3.00 3.00  

 Dropped 9 2.33 ± 0.50 2.00 2.00 3.00 
0.019 

 Followed 96 2.70 ± 0.55 2.00 3.00 3.00 

MoCA abstraction item 

(score / 2) 
All 105 1.81 ± 0.42 2.00 2.00 2.00  

 Dropped 9 1.89 ± 0.33 2.00 2.00 2.00 
0.57 

 Followed 96 1.80 ± 0.43 2.00 2.00 2.00 

MoCA recall item 

(score / 5) 
All 105 4.02 ± 1.10 4.00 4.00 5.00  

 Dropped 9 4.44 ± 0.73 4.00 5.00 5.00 
0.24 

 Followed 96 3.98 ± 1.12 3.50 4.00 5.00 

MoCA orientation item 

(score / 6) 
All 105 5.88 ± 0.41 6.00 6.00 6.00  

 Dropped 9 5.89 ± 0.33 6.00 6.00 6.00 
0.96 

 Followed 96 5.88 ± 0.42 6.00 6.00 6.00 

Body Weight 

(kg) 
All 105 73.18 ± 13.28 65.00 73.00 80.00  

 Dropped 9 74.67 ± 17.10 68.50 75.00 77.00 
0.73 

 Followed 96 73.04 ± 12.97 64.00 73.00 80.50 

Body Height 

(cm) 
All 105 167.82 ± 9.88 160.00 168.00 176.00  

 Dropped 9 165.89 ± 11.82 156.00 163.00 168.00 
0.54 

 Followed 96 168.01 ± 9.73 160.00 169.00 176.50 

Waist size 

(cm) 
All 105 94.70 ± 11.70 87.00 93.00 102.00  

 Dropped 9 94.33 ± 14.62 87.00 96.00 100.00 
0.92 

 Followed 96 94.73 ± 11.48 87.00 93.00 102.00 

Hip size 

(cm) 
All 105 103.62 ± 9.14 98.00 103.00 108.00  

 Dropped 9 103.78 ± 10.13 99.00 107.00 112.00 
0.96 

 Followed 96 103.61 ± 9.10 98.00 102.50 108.00 

Waist/Hip ratio 

 
All 105 0.91 ± 0.08 0.85 0.90 0.97  

 Dropped 9 0.91 ± 0.08 0.85 0.89 0.90 
0.76 

 Followed 96 0.91 ± 0.08 0.85 0.91 0.97 

Right leg length 

(cm) 
All 105 84.31 ± 5.79 81.00 84.00 88.00  
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Variable Variable N Mean ± SD Q1 Median Q3 p-value 

 Dropped 9 81.94 ± 6.28 78.00 81.00 85.00 
0.22 

 Followed 96 84.54 ± 5.73 81.00 84.50 88.00 

Systolic blood pressure 

(mm Hg) 
All 105 126.78 ± 20.32 110.00 124.00 140.00  

 Dropped 9 121.33 ± 28.09 102.00 110.00 134.00 
0.19 

 Followed 96 127.29 ± 19.56 110.00 124.00 140.00 

Diastolic blood pressure 

(mm Hg) 
All 104 63.54 ± 12.06 60.00 60.00 70.00  

 Dropped 9 65.89 ± 7.11 60.00 63.00 70.00 
0.36 

 Followed 95 63.32 ± 12.43 58.00 60.00 70.00 

Pulse pressure 

(mm Hg) 
All 104 63.50 ± 19.02 51.00 60.00 74.00  

 Dropped 9 55.44 ± 23.94 38.00 48.00 74.00 
0.13 

 Followed 95 64.26 ± 18.46 52.00 62.00 74.00 

Grip strength 

(kPa) 
All 105 62.11 ± 15.70 50.00 60.00 72.00  

 Dropped 9 61.33 ± 11.66 50.00 62.00 68.00 
0.97 

 Followed 96 62.18 ± 16.07 50.00 60.00 74.00 

Fatigue resistance 

(s) 
All 104 50.05 ± 30.15 28.19 42.41 65.77  

 Dropped 9 55.58 ± 40.14 26.12 47.25 69.78 
0.84 

 Followed 95 49.52 ± 29.25 28.43 41.15 63.25 

Grip work 

(kPa*s) 
All 104 2409.1 ± 1623.9 1218.9 1846.3 3215.7  

 Dropped 9 2686.2 ± 2101.5 1237.5 2126.3 4186.8 
0.89 

 Followed 95 2382.8 ± 1582.9 1200.2 1805.6 3208.1 

Grip work / Body weight 

(kPa*s*Kg-1) 
All 104 32.87 ± 21.52 16.82 26.72 42.51  

 Dropped 9 35.05 ± 24.19 17.76 28.45 52.88 
0.73 

 Followed 95 32.66 ± 21.39 16.45 26.07 42.47 

Grip work / SMM 

(kPa*s*kg-1) 
All 97 90.89 ± 56.38 47.91 76.90 124.66  

 Dropped 7 86.62 ± 46.93 62.32 77.19 137.71 
0.85 

 Followed 90 91.23 ± 57.26 47.55 75.92 124.66 

Grip work / SMI 

(kPa*s*%) 
All 97 66.92 ± 42.48 36.95 53.60 90.02  

 Dropped 7 66.62 ± 48.47 33.58 50.76 93.64 
0.98 

 Followed 90 66.95 ± 42.29 36.95 54.11 90.02 
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Variable Variable N Mean ± SD Q1 Median Q3 p-value 

Skeletal Muscle Mass 

SMM (kg) 
All 97 26.25 ± 5.85 21.71 25.10 30.03  

 Dropped 7 25.91 ± 9.25 17.00 23.56 33.51 
0.87 

 Followed 90 26.28 ± 5.58 21.80 25.22 29.72 

Skeletal Muscle Index 

SMI (%) 
All 97 35.70 ± 5.36 32.15 35.41 38.47  

 Dropped 7 34.77 ± 7.58 29.37 36.86 41.88 
0.64 

 Followed 90 35.77 ± 5.20 32.42 35.32 38.47 

Body Mass Index 

(kg/m²) 
All 105 25.92 ± 3.72 23.50 25.50 28.20  

 Dropped 9 26.89 ± 4.44 24.20 28.30 28.50 
0.42 

 Followed 96 25.83 ± 3.66 23.40 25.45 27.85 

Stiffness according UPDRS 

(score /15) 
All 103 0.65 ± 1.36 0.00 0.00 1.00  

 Dropped 9 1.00 ± 1.73 0.00 0.00 1.00 
0.57 

 Followed 94 0.62 ± 1.32 0.00 0.00 1.00 

FGA (score / 30) All 105 26.68 ± 3.00 25.00 27.00 29.00  

 Dropped 9 25.33 ± 3.74 24.00 26.00 28.00 
0.19 

 Followed 96 26.80 ± 2.92 26.00 27.00 29.00 

SPPB (score / 12) All 105 10.42 ± 1.57 10.00 11.00 12.00  

 Dropped 9 10.56 ± 1.59 9.00 11.00 12.00 
0.77 

 Followed 96 10.41 ± 1.57 10.00 11.00 12.00 
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Table 5: Comparison of medico-surgical data according to fall incidence 

 

Variables Categories 

 

N-fallers (n=61) 

Number (%) 

Fallers (n=35) 

Number (%) 

Chi² 

p-value 

Number of drugs / day 

< 5 /day 44 (72.1) 24 (68.6) 

0.71 

≥ 5 / day 17 (27.9) 11 (31.4) 

Sleeping pill 

No 41 (67.2) 19 (54.3) 

0.21 

Yes 20 (32.8) 16 (45.7) 

Antidepressant 

No 51 (83.6) 32 (91.4) 

0.36 

Yes 10 (16.4) 3 (8.6) 

Diabetes history 

No 52 (85.2) 26 (74.3) 

0.19 

Yes 9 (14.8) 9 (25.7) 

HTA history 

No 33 (54.1) 20 (57.1) 

0.77 

Yes 28 (45.9) 15 (42.9) 

Stroke history 

No 60 (98.4) 35 (100.0) 

1.00 

Yes 1 (1.6) 0 (0.0) 

TIA history 

No 60 (98.4) 33 (94.3) 

0.55 

Yes 1 (1.6) 2 (5.7) 

Hip or Knee 

prosthesis 

No 59 (96.7) 30 (85.7) 

0.095 

Yes 2 (3.3) 5 (14.3) 

Far vision deficit 

No 34 (55.7) 17 (48.6) 

0.50 

Yes 27 (44.03) 18 (51.4) 

 

  



258 
 

  



259 
 

Table 6: Comparison of anamnestic data according to fall incidence 

 

Variables Categories 
N-Fallers, n=61 

Number (%) 

Fallers, n=35 

Number (%) 

Chi² 

p-value 

Memory complain     

 No 30 (49.2) 18 (51.4) 
0.83 

 Yes 31 (50.8) 17 (48.6) 

Functional limitation linked 

with memory complain 

    

No 51 (83.6) 28 (80.0) 
0.66 

 Yes 10 (16.4) 7 (20.0) 

Sleep satisfaction     

 No 37 (60.7) 26 (74.3) 
0.18 

 Yes 24 (39.3) 9 (25.7) 

Depressive feeling     

 No 52 (85.2) 30 (85.7) 
0.95 

 Yes 9 (14.8) 5 (14.3) 

Anxiety feeling     

 No 39 (63.9) 17 (48.6) 
0.14 

 Yes 22 (36.1) 18 (51.4) 

Walking complain     

 No 45 (73.8) 27 (77.1) 
0.71 

 Yes 16 (26.2) 8 (22.9) 

Fear of falling     

 No 42 (68.9) 23 (65.7) 
0.75 

 Yes 19 (31.1) 12 (34.3) 

Well-being feeling     

 Yes 57 (93.4) 34 (97.1) 
0.65 

 No 4 (6.6) 1 (2.9) 

Quality of life satisfaction 
    

No 55 (90.2) 31 (88.6) 
1.00 

 Yes 6 (9.8) 4 (11.4) 

Feeling of dependency     

 No 52 (85.2) 34 (97.1) 
0.088 

 Yes 9 (14.8) 1 (2.9) 
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Table 7: Comparison of clinical and functional data according to fall incidence 

Variables Group (n) Mean ± SD Q1 Median Q3 p-value 

BMI (kg/m²) All (96) 25.83 ± 3.66 23.40 25.45 27.85  

 N-fallers (61) 26.19 ± 3.83 23.50 25.60 28.00 
0.21 

 Fallers (35) 25.21 ± 3.30 23.10 25.00 27.20 

Right leg length (cm) All (96) 83.51 ± 10.13 81.00 84.00 88.00  

 N-fallers (61) 83.69 ± 11.98 83.00 86.00 88.00 
0.82 

 Fallers (35) 83.19 ± 5.78 78.00 84.00 87.00 

Pain score (0-10) All (96) 0.32 ±  1.01 0.00 0.00 0.00  

 N-fallers (61) 0.24 ± 0.73 0.00 0.00 0.00 
0.80 

 Fallers (35) 0.46 ± 1.36 0.00 0.00 0.00 

PAS score (0-7) All (96) 3.03 ± 2.31 1.00 3.00 5.00  

 N-fallers (61) 2.97 ± 2.47 1.00 3.00 6.00 
0.46 

 Fallers (35) 3.14 ± 2.05 1.00 3.00 5.00 

ADL (score /24) All (96) 6.21 ± 0.41 6.00 6.00 6.00  

 N-fallers (61) 6.18 ± 0.39 6.00 6.00 6.00 
0.37 

 Fallers (35) 6.26 ± 0.44 6.00 6.00 7.00 

IADL (score /1) All (96) 0.99 ± 0.04 1.00 1.00 1.00  

 N-fallers (61) 1.00 ± 0.02 1.00 1.00 1.00 
0.014 

 Fallers (35) 0.98 ± 0.06 1.00 1.00 1.00 

GDS (score /4) All (96) 0.74 ± 0.97 0.00 0.00 1.00  

 N-fallers (61) 0.62 ± 0.88 0.00 0.00 1.00 
0.15 

 Fallers (35) 0.94 ± 1.08 0.00 1.00 2.00 

Covi (score /15) All (96) 3.19 ± 0.67 3.00 3.00 3.00  

 N-fallers (61) 3.13 ± 0.64 3.00 3.00 3.00 
0.057 

 Fallers (35) 3.29 ± 0.71 3.00 3.00 3.00 

FES (score /64) All (96) 18.51 ± 3.11 17.00 18.00 19.00  

 N-fallers (61) 18.23 ± 2.61 17.00 18.00 19.00 
0.073 

 Fallers (35) 19.00 ± 3.82 17.00 19.00 20.00 

MNA (score /14) All (96) 12.81 ± 1.72 12.00 14.00 14.00  

 N-fallers (61) 12.90 ± 1.72 12.00 14.00 14.00 
0.36 

 Fallers (35) 12.66 ± 1.73 12.00 13.00 14.00 

Edmonton (/17) All (96) 1.99 ± 1.46 1.00 2.00 3.00  

 N-fallers (61) 1.84 ± 1.46 1.00 2.00 3.00 
0.14 

 Fallers (35) 2.26 ± 1.44 1.00 2.00 3.00 

MoCA total (score /30) All (96) 26.89 ± 2.75 26.00 27.00 29.00  
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 N-fallers (61) 27.18 ± 2.00 26.00 28.00 29.00 
0.62 

 Fallers (35) 26.37 ± 3.69 26.00 27.00 29.00 

MoCA visuo-spatial  

item (score /5) 
All (96) 4.16 ± 0.99 4.00 4.00 5.00  

 N-fallers (61) 4.18 ± 0.99 4.00 4.00 5.00 0.72 

 Fallers (35) 4.11 ± 0.99 3.00 4.00 5.00  

MoCA naming item 

(score /3) 
All (96) 2.80 ± 0.47 3.00 3.00 3.00  

 N-fallers (61) 2.85 ± 0.40 3.00 3.00 3.00 0.20 

 Fallers (35) 2.71 ± 0.57 3.00 3.00 3.00  

MoCA attention item 

(score /6) 
All (96) 5.08 ± 1.08 5.00 5.00 6.00  

 N-fallers (61) 5.16 ± 0.88 5.00 5.00 6.00 0.81 

 Fallers (35) 4.94 ± 1.37 5.00 5.00 6.00  

MoCA language item 

(score /3) 
All (96) 2.70 ± 0.55 2.00 3.00 3.00  

 N-fallers (61) 2.77 ± 0.46 3.00 3.00 3.00 0.13 

 Fallers (35) 2.57 ± 0.65 2.00 3.00 3.00  

MoCA abstraction item 

(score /2) 
All (96) 1.80 ± 0.43 2.00 2.00 2.00  

 N-fallers (61) 1.84 ± 0.37 2.00 2.00 2.00 0.41 

 Fallers (35) 1.74 ± 0.51 2.00 2.00 2.00  

MoCA recall item  

(score /5) 
All (96) 3.98 ± 1.12 3.50 4.00 5.00  

 N-fallers (61) 4.02 ± 0.96 3.00 4.00 5.00 0.71 

 Fallers (35) 3.91 ± 1.38 4.00 4.00 5.00  

MoCA orientation item 

(score /6) 
All (96) 5.88 ± 0.42 6.00 6.00 6.00  

 N-fallers (61) 5.87 ± 0.46 6.00 6.00 6.00 0.83 

 Fallers (35) 5.89 ± 0.32 6.00 6.00 6.00  

Grip strength (kPa) All (96) 62.18 ± 16.07 50.00 60.00 74.00  

 N-fallers (61) 63.77 ± 15.62 52.00 60.00 74.00 
0.12 

 Fallers (35) 59.40 ± 16.69 48.00 54.00 74.00 

Fatigue resistance (s) All (96) 49.52 ± 29.25 28.43 41.15 63.25  

 N-fallers (61) 51.61 ± 27.78 30.28 44.42 68.55 
0.27 

 Fallers (35) 45.93 ± 31.71 23.47 39.97 60.44 

Grip work (kPa x s) All (95) 2382.8 ± 1582.9 1200.2 1805.6 3208.1  

 N-fallers (60) 2529.8 ± 1537.2 1397.0 1874.7 3559.4 
0.24 

 Fallers (35) 2130.9 ± 1650.3 774.51 1802.3 2910.6 
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Grip work/ body weight 

(kPa x s/kg) 
All (95) 32.66 ± 21.39 16.45 26.07 42.47  

 N-fallers (60) 34.30 ± 20.56 19.17 26.54 44.97 
0.21 

 Fallers (35) 29.85 ± 22.76 12.55 26.07 42.47 

Grip work / SMM 

(kPa x s/kg) 
All (95) 91.23 ± 57.26 47.55 75.92 124.66  

 N-fallers (60) 91.69 ± 50.18 55.38 74.90 126.43 
0.51 

 Fallers (35) 90.42 ± 68.64 41.13 76.90 116.76 

Grip work / SMI 

(kPa x s/%) 
All (95) 66.95 ± 42.29 36.95 54.11 90.02  

 N-fallers (60) 68.25 ± 38.28 37.69 54.63 90.16 
0.46 

 Fallers (35) 64.69 ± 49.00 34.71 53.60 82.54 

Skeletal Muscle Mass, 

SSM (kg) 
All (90) 26.28 ± 5.58 21.80 25.22 29.72  

 N-fallers (57) 27.02 ± 5.63 22.67 25.75 31.01 
0.095 

 Fallers (33) 24.99 ± 5.34 21.51 24.87 28.23 

Skeletal Muscle Index, 

SMI (%) 
All (90) 35.77 ± 5.20 32.42 35.32 38.47  

 N-fallers (57) 36.26 ± 5.62 33.05 35.75 38.90 
0.25 

 Fallers (33) 34.93 ± 4.34 32.10 34.41 37.30 

Stiffness according 

UPDRS (/15) 
All (94) 0.62 ± 1.32 0.00 0.00 1.00  

 N-fallers (60) 0.45 ± 1.25 0.00 0.00 0.00 
0.043 

 Fallers (34) 0.91 ± 1.40 0.00 0.00 2.00 

FGA (score /30) All (96) 26.80 ± 2.92 26.00 27.00 29.00  

 N-fallers (61) 27.15 ± 2.59 26.00 28.00 29.00 
0.24 

 Fallers (35) 26.20 ± 3.37 24.00 27.00 29.00 

SPPB (score /12) All (96) 10.41 ± 1.57 10.00 11.00 12.00  

 N-fallers (61) 10.70 ± 1.42 10.00 11.00 12.00 
0.015 

 Fallers (35) 9.89 ± 1.71 9.00 10.00 11.00 
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Table 8: Comparison of gait parameters obtained using the accelerometric 

method according to fall incidence 

 

Variables 

 

Groups 

 

Mean ± SD 

 

Q1 

 

Median 

 

Q3 

 

p-value 

 

CW Gait Speed  

(m/s) 
All (96) 1.29 ± 0.18 1.17 1.28 1.41  

 N-fallers (61) 1.31 ± 0.18 1.20 1.28 1.43 
0.078 

 Fallers (35) 1.24 ± 0.18 1.12 1.25 1.40 

FW Gait Speed 

(m/s) 
All (96) 1.70 ± 0.23 1.52 1.72 1.86  

 N-fallers (61) 1.74 ± 0.22 1.59 1.75 1.87 
0.035 

 Fallers (35) 1.64 ± 0.24 1.43 1.68 1.85 

DTW Gait Speed 

(m/s) 
All (95) 1.16 ± 0.22 1.02 1.16 1.32  

 N-fallers (60) 1.17 ± 0.24 1.01 1.16 1.33 
0.86 

 Fallers (35) 1.16 ± 0.19 1.02 1.14 1.32 

CW Stride Length  

(m) 
All (96) 1.34 ± 0.16 1.23 1.37 1.45  

 N-fallers (61) 1.37 ± 0.15 1.26 1.38 1.48 
0.035 

 Fallers (35) 1.30 ± 0.17 1.16 1.27 1.45 

FW Stride Length 

(m) 
All (96) 1.55 ± 0.24 1.38 1.58 1.71  

 N-fallers (61) 1.60 ± 0.24 1.41 1.62 1.73 
0.010 

 Fallers (35) 1.47 ± 0.23 1.28 1.42 1.66 

DTW Stride Length 

(m) 
All (95) 1.29 ± 0.25 1.15 1.28 1.43  

 N-fallers (60) 1.31 ± 0.28 1.15 1.28 1.44 
0.31 

 Fallers (35) 1.26 ± 0.18 1.10 1.27 1.37 

CW Stride Frequency 

(Stride/s) 
All (96) 0.96 ± 0.07 0.93 0.93 1.03  

 N-fallers (61) 0.96 ± 0.07 0.93 0.93 0.98 
0.91 

 Fallers (35) 0.96 ± 0.08 0.88 0.98 1.03 

FW Stride Frequency 

(Stride/s) 
All (96) 1.09 ± 0.10 1.03 1.07 1.15  

 N-fallers (61) 1.08 ± 0.11 1.03 1.07 1.17 
0.39 

 Fallers (35) 1.10 ± 0.08 1.03 1.07 1.12 

DTW Stride Frequency 

(Stride/s) 
All (95) 0.91 ± 0.10 0.88 0.93 0.98  
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 N-fallers (60) 0.89 ± 0.10 0.83 0.93 0.96 
0.14 

 Fallers (35) 0.93 ± 0.10 0.88 0.93 1.03 

CW Regularity 

(dimensionless) 
All (96) 304.01 ± 47.24 269.00 310.00 340.00  

 N-fallers (61) 305.28 ± 46.98 271.00 313.00 338.00 
0.73 

 Fallers (35) 301.80 ± 48.29 262.00 301.00 341.00 

FW Regularity 

(dimensionless) 
All (96) 307.15 ± 53.62 275.00 310.00 346.50  

 N-fallers (61) 311.33 ± 51.87 276.00 311.00 353.00 
0.32 

 Fallers (35) 299.86 ± 56.55 273.00 310.00 340.00 

DTW Regularity 

(dimensionless) 
All (94) 254.34 ± 62.40 218.00 259.50 300.00  

 N-fallers (59) 248.80 ± 63.71 209.00 253.00 290.00 
0.27 

 Fallers (35) 263.69 ± 59.85 228.00 265.00 307.00 

CW Symmetry 

(dimensionless) 
All (96) 213.69 ±63.86 178.50 201.50 239.00  

 N-fallers (61) 208.90 ± 59.84 178.00 208.00 239.00 
0.64 

 Fallers (35) 222.03 ± 70.46 181.00 201.00 239.00 

FW Symmetry 

(dimensionless) 
All (96) 213.73 ± 53.46 180.00 205.50 248.50  

 N-fallers (61) 218.34 ± 54.51 184.00 205.00 253.00 
0.27 

 Fallers (35) 205.69 ± 51.37 174.00 206.00 223.00 

DTW Symmetry 

(dimensionless) 
All (95) 213.97 ± 64.66 166.00 202.00 243.00  

 N-fallers (60) 224.42 ± 72.55 170.00 208.00 275.50 
0.11 

 Fallers (35) 196.06 ± 43.60 162.00 197.00 223.00 
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Table 9: Comparison of FW and DTW changes of gait parameters obtained 

using the accelerometric method according to fall incidence 

Variables Group (n) Mean ± SD Q1 Median Q3 P-value 

Gait speed DTW cost (%) All (n=95) 9.76 ± 11.73 1.69 7.69 16.54  

 Non-fallers (n=60) 11.42 ± 12.55 2.43 8.45 18.85 
0.14 

 Fallers (n=35) 6.92 ± 9.68 0.83 6.90 13.55 

Gait speed FW improvement (%) All (n=96) 32.84 ± 11.93 26.30 32.22 38.91  

 Non-fallers (n=61) 33.21 ± 10.91 27.97 32.87 38.53 
0.69 

 Fallers (n=35) 32.20 ± 13.68 22.90 31.69 42.15 

Stride length DTW cost (%) All (n=96) 4.80 ± 15.40 -0.67 4.41 8.68  

 Non-fallers (n=61) 5.87 ± 18.56 -0.69 4.65 11.76 
0.37 

 Fallers (n=35) 2.94 ± 7.00 -0.66 4.17 7.38 

Stride length FW improvement (%) All (n=96) 15.91 ± 12.40 10.62 14.95 19.78  

 Non-fallers (n=61) 17.36 ± 14.20 12.20 16.34 19.84 
0.13 

 Fallers (n=35) 13.39 ± 7.96 8.51 13.82 18.84 

Stride frequency DTW cost (%) All (n=95) 5.56 ± 8.88 0.00 5.10 10.20  

 Non-fallers (n=60) 7.12 ± 9.07 0.00 5.24 10.20 
0.11 

 Fallers (n=35) 2.88 ± 7.98 0.00 4.85 8.04 

Stride frequency FW improvement (%) All (n=96) 13.90 ± 10.63 9.26 15.05 19.39  

 Non-fallers (n=61) 13.30 ± 11.70 10.75 15.05 18.45 
0.93 

 Fallers (n=35) 14.96 ± 8.52 9.18 14.29 20.43 

Regularity DTW cost (%) All (n=96) 17.96 ± 20.34 5.95 16.28 27.25  

 Non-fallers (n=61) 21.01 ± 22.70 5.60 18.79 29.54 
0.052 

 Fallers (n=35) 12.64 ± 14.16 6.31 12.10 19.57 

Regularity FW improvement (%) All (n=96) 1.56 ± 13.63 -7.15 1.45 11.15  

 Non-fallers (n=61) 2.67 ± 13.89 -7.40 3.22 12.62 
0.29 

 Fallers (n=35) -0.37 ± 13.14 -6.91 0.71 9.64 

Symmetry DTW cost (%) All (n=95) -5.93 ± 36.62 -28.11 1.43 22.31  

 Non-fallers (n=60) -13.61 ± 40.54 -41.56 -11.83 18.44 
0.022 

 Fallers (n=35) 7.24 ± 23.94 -15.42 7.32 26.07 

Symmetry FW improvement (%) All (n=96) 5.58 ± 31.39 -13.36 2.25 24.47  

 Non-fallers (n=61) 10.39 ± 32.89 -8.76 10.21 32.11 
0.059 

 Fallers (n=35) -2.80 ± 27.04 -20.79 -6.63 16.78 
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Table 10: Comparison of gait parameters obtained using the opto-electronic 

method according to fall incidence 

Variables Groups (n) Mean ± SD Q1 Median Q3 p-value 

CW Mean MTC (mm) All (n=88) 17.60 ± 5.32 14.38 17.04 20.87  

 Non-fallers (n= 55) 17.76 ± 5.16 14.30 17.20 20.85 
0.71 

 Fallers (n = 33) 17.32 ± 5.66 14.54 16.64 20.89 

FW Mean MTC (mm) All (n=87) 20.19 ± 6.84 15.45 19.54 24.14  

 Non-fallers (n= 54) 20.73 ± 7.23 16.21 20.61 24.14 
0.35 

 Fallers (n = 30) 19.32 ± 6.15 14.78 17.98 22.93 

DTW Mean MTC (mm) All (n=84) 15.20 ± 5.52 11.68 14.24 17.83  

 Non-fallers (n= 54) 15.31 ± 5.50 11.83 14.16 17.65 
0.82 

 Fallers (n = 30) 15.01 ± 5.65 11.45 15.28 17.83 

CW Med MTC (mm) All (n=88) 17.57 ± 5.42 14.09 16.88 21.17  

 Non-fallers (n= 55) 17.70 ± 5.20 14.35 16.65 21.05 
0.77 

 Fallers (n = 33) 17.35 ± 5.85 13.47 16.93 21.29 

FW Med. MTC (mm) All (n=87) 20.00 ± 6.96 15.13 20.10 24.50  

 Non-fallers (n= 54) 20.78 ± 7.35 16.01 20.22 25.26 
0.18 

 Fallers (n = 30) 18.72 ± 6.18 13.00 18.18 22.81 

DTW Med. MTC (mm) All (n=84) 15.09 ± 5.63 11.60 14.40 18.02  

 Non-fallers (n= 54) 15.27 ± 5.58 11.54 14.40 17.36 
0.70 

 Fallers (n = 30) 14.77 ± 5.80 11.71 14.55 20.00 

CW SD MTC (mm) All (n=88) 4.44 ± 1.69 3.06 4.38 5.39  

 Non-fallers (n= 55) 4.31 ± 1.78 2.83 4.12 5.42 
0.21 

 Fallers (n = 33) 4.66 ± 1.54 3.32 4.99 5.35 

FW SD MTC (mm) All (n=87) 5.00 ± 2.67 3.31 4.49 6.62  

 Non-fallers (n= 54) 5.00 ± 2.79 3.21 4.52 6.47 
0.74 

 Fallers (n = 30) 4.99 ± 2.49 3.37 4.46 7.07 

DTW SD MTC (mm) All (n=84) 4.18 ± 1.93 2.71 3.89 5.26  

 Non-fallers (n= 54) 4.18 ± 1.86 2.72 4.12 5.20 
0.77 

 Fallers (n = 30) 4.17 ± 2.07 2.68 3.59 6.13 

CW IQR MTC (mm) All (n=88) 6.23 ± 2.92 3.86 5.52 8.06  

 Non-fallers (n= 55) 6.06 ± 2.99 3.60 4.73 8.32 
0.36 

 Fallers (n = 33) 6.50 ± 2.83 4.99 5.67 7.71 

FW IQR MTC (mm) All (n=87) 6.99 ± 4.12 4.15 5.95 9.03  

 Non-fallers (n= 54) 7.25 ± 4.40 4.17 6.43 9.61 
0.51 

 Fallers (n = 30) 6.56 ± 3.65 4.15 5.81 8.80 

DTW IQR MTC (mm) All (n=84) 5.72 ± 2.91 3.40 5.40 7.22  
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Variables Groups (n) Mean ± SD Q1 Median Q3 p-value 

 Non-fallers (n= 54) 5.63 ± 2.75 3.29 5.44 7.11 
0.92 

 Fallers (n = 30) 5.89 ± 3.22 3.55 5.31 7.80 

CW Var. MTC (mm2) All (n=88) 22.57 ± 17.44 9.39 19.16 29.00  

 Non-fallers (n= 55) 21.71 ± 18.66 8.03 16.94 29.39 
0.21 

 Fallers (n = 33) 23.98 ± 15.35 11.04 24.89 28.61 

FW Var. MTC (mm2) All (n=87) 21.01 ± 19.02 7.30 15.27 27.98  

 Non-fallers (n= 54) 21.35 ± 18.92 8.89 17.31 27.39 
0.47 

 Fallers (n = 30) 20.46 ± 19.46 5.86 12.66 27.98 

DTW Var. MTC (mm2) All (n=84) 32.78 ± 37.92 11.40 21.94 44.98  

 Non-fallers (n= 54) 34.22 ± 43.15 11.44 22.17 43.79 
0.90 

 Fallers (n = 30) 30.19 ± 26.48 11.37 21.59 50.05 

CW COV MTC (%) All (n=88) 27.18 ± 12.51 18.21 24.84 32.55  

 Non-fallers (n= 55) 25.69 ± 11.62 17.17 24.33 30.94 
0.16 

 Fallers (n = 33) 29.65 ± 13.69 20.13 27.00 34.07 

FW COV MTC (%) All (n=87) 29.83 ± 16.17 18.18 26.75 36.96  

 Non-fallers (n= 54) 29.28 ± 13.91 18.23 27.59 35.00 
0.90 

 Fallers (n = 30) 30.72 ± 19.51 16.79 26.14 39.19 

DTW COV. MTC (%) All (n=84) 28.25 ± 17.01 14.93 25.28 35.71  

 Non-fallers (n= 54) 28.58 ± 17.69 15.05 24.92 38.67 
0.98 

 Fallers (n = 30) 27.66 ± 15.98 12.84 27.10 35.59 

CW Min MTC (mm) All (n=88) 11.89 ± 5.43 8.42 11.65 15.15  

 Non-fallers (n= 55) 12.42 ± 5.49 9.31 11.97 16.09 
0.24 

 Fallers (n = 33) 11.01 ± 5.29 8.36 10.75 14.48 

FW Min. MTC (mm) All (n=87) 9.96 ± 5.20 6.88 9.48 12.20  

 Non-fallers (n= 54) 10.06 ± 5.22 6.88 9.13 11.69 
0.87 

 Fallers (n = 30) 9.80 ± 5.24 6.93 9.88 12.20 

DTW Min. MTC (mm) All (n=84) 13.97 ± 7.12 8.69 13.50 18.80  

 Non-fallers (n= 54) 14.15 ± 7.37 8.47 13.96 18.62 
0.76 

 Fallers (n = 30) 13.65 ± 6.77 9.56 12.13 19.86 

CW Delta1 MTC (mm) All (n=88) 6.16 ± 3.05 3.88 5.33 7.79  

 Non-fallers (n= 55) 6.01 ± 3.33 3.42 5.16 7.25 
0.20 

 Fallers (n = 33) 6.41 ± 2.55 4.60 6.00 8.26 

FW Delta1 MTC (mm) All (n=87) 5.82 ± 3.43 3.46 5.05 7.69  

 Non-fallers (n= 54) 5.93 ± 3.38 3.82 5.15 7.83 
0.52 

 Fallers (n = 30) 5.64 ± 3.55 3.11 4.95 6.91 

DTW Delta1 MTC (mm) All (n=84) 6.59 ± 3.70 3.69 6.18 8.37  

 Non-fallers (n= 54) 6.47 ± 3.44 3.73 5.84 8.12 0.99 
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Variables Groups (n) Mean ± SD Q1 Median Q3 p-value 

 Fallers (n = 30) 6.80 ± 4.17 3.51 6.30 9.28 

CW Delta2 MTC (mm) All (n=88) 5.70 ± 2.52 3.72 5.26 6.84  

 Non-fallers (n= 55) 5.34 ± 2.38 3.47 4.88 6.56 
0.089 

 Fallers (n = 33) 6.31 ± 2.67 4.05 6.16 7.97 

FW Delta2 MTC (mm) All (n=87) 5.39 ± 2.50 3.45 5.02 7.50  

 Non-fallers (n= 54) 5.42 ± 2.53 3.45 5.02 7.53 
0.81 

 Fallers (n = 30) 5.35 ± 2.48 3.47 5.02 7.40 

DTW Delta2 MTC (mm) All (n=84) 6.08 ± 3.32 3.85 5.65 7.31  

 Non-fallers (n= 54) 6.15 ± 3.50 3.66 5.70 7.27 
0.99 

 Fallers (n = 30) 5.94 ± 3.01 4.22 5.55 7.36 
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Table 11: Comparison of FW and DTW changes of gait parameters obtained 

using the opto-electronic method according to fall incidence 

 

Variables Groups (n) Mean ± SD Q1 Median Q3 P-value 

Mean MTC FW improvement (%) All (n=87) 16.52 ± 30.31 -1.03 13.66 27.33  

 
Non-fallers 

(n=54) 
16.47 ± 26.24 0.78 15.38 28.16 

0.42 

 
Fallers 

(n=33) 
16.61 ± 36.44 -1.03 9.78 22.02 

Mean MTC DTW cost (%) All (n=83) 12.75 ± 16.03 3.26 15.08 22.42  

 
Non-fallers 

(n=53) 
12.14 ± 16.72 -1.13 14.60 22.42 

0.61 

 
Fallers 

(n=30) 
13.83 ± 14.96 5.32 15.99 21.37 

Min MTC FW improvement (%) All (n=87) -4.14 ± 77.69 -39.98 -17.47 6.44  

 
Non-fallers 

(n=54) 
-8.52 ± 54.10 -41.67 -17.99 12.74 

0.73 

 
Fallers 

(n=33) 
3.03 ± 106.25 -38.20 -10.66 -2.29 

Min MTC DTW cost (%) All (n=83) -35.62 ± 96.77 -57.70 -13.20 9.68  

 
Non-fallers 

(n=53) 
-23.65 ± 63.45 -50.33 -11.12 9.68 

0.32 

 
Fallers 

(n=30) 
-56.78 ± 136.15 -60.58 -22.51 6.58 

COV MTC FW improvement (%) All (n=87) 18.79 ± 61.32 -26.24 6.75 58.41  

 
Non-fallers 

(n=54) 
25.67 ± 63.37 -21.71 15.91 64.49 

0.12 

 
Fallers 

(n=33) 
7.52 ± 56.94 -29.92 -5.82 29.89 

COV MTC DTW cost (%) All (n=83) -10.12 ± 62.81 -39.82 1.87 39.89  

 
Non-fallers 

(n=53) 
-18.30 ± 69.96 -54.98 -3.71 39.89 

0.28 

 
Fallers 

(n=30) 
4.33 ± 45.17 -14.78 3.14 27.21 
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Table 12: Performances of all models obtained using J48 

Models 

 

Accuracy 

 

Sensitivity Specificity PPV NPV ROC Area PRC Area 

Comfort W = Model 1 56% 3% 87% 11% 61% 0.42 0.49 

Fast W = Model 2 70% 29% 93% 71% 70% 0.52 0.56 

Dual Task W = = Model 3 62% 17% 88% 46% 65% 0.60 0.62 

FW improvement = Model 4 58% 3% 90% 14% 62% 0.42 0.49 

DTW cost = Model 5 59% 34% 74% 43% 66% 0.57 0.60 

FW + DTW cost 

= Model 6 full version 

73% 37% 93% 76% 72% 0.67 0.71 

Model 6 = short version 76% 22% 92% 77% 76% 0.64 0.65 

All gait parameters 

= Model 7 full version 

61% 54% 66% 48% 71% 0.66 0.66 

Model 7 short version 80% 69% 87% 75% 83% 0.79 0.77 

All gait parameters+ Age 

+gender+ leg length                               

= Model 8 full version 

61% 57% 54% 47% 72% 0.66 0.65 

Model 8 short version 76% 51% 90% 75% 76% 0.76 0.76 

All gait parameters +IADL+ 

Stiffness +SPPB =                          

Model 9 full version 

59% 46% 67% 44% 68% 0.57 0.59 

Model 9 short version 82% 69% 90% 80% 83% 0.80 0.79 

All gait parameters +Age + 

gender + leg length + IADL 

+Stiffness +SPPB = Model 10 full 

version 

69% 46% 67% 4% 68% 0.58 0.59 

Model 10 short version 84% 80% 87% 78% 88% 0.84 0.83 
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Figure 3: The raw seventh model short version 

 

Scheme:       weka.classifiers.trees.J48 -C 0.25 -M 2 

Relation:     T0marchecomplet_sex_ageNaN_120-weka.filters.unsupervised.attribute.Remove-R1-

13,15-17,19-20,22,25-26,28-29,32-33,35-38-weka.filters.unsupervised.attribute.Remove-R10,12-22-

weka.filters.unsupervised.attribute.Remove-R12-14,16-23 

Instances:    96 

Attributes:   14 

              x14 

              x18 

              x21 

              x23 

              x24 

              x27 

              x30 

              x31 

              x34 

              x40 

              x52 

              x56 

              x65 

              class 

Test mode:    10-fold cross-validation 
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=== Classifier model (full training set) === 

J48 pruned tree 

------------------ 

x31 <= -35.981308: 0 (17.18) 

x31 > -35.981308 

|   x14 <= 1.29: 1 (11.0) 

|   x14 > 1.29 

|   |   x40 <= 3.3: 0 (12.96/0.38) 

|   |   x40 > 3.3 

|   |   |   x21 <= -4.672897: 1 (6.91/0.1) 

|   |   |   x21 > -4.672897 

|   |   |   |   x18 <= 0.88 

|   |   |   |   |   x27 <= 12.684366: 1 (8.81/1.0) 

|   |   |   |   |   x27 > 12.684366: 0 (3.53) 

|   |   |   |   x18 > 0.88 

|   |   |   |   |   x30 <= 188: 0 (12.81) 

|   |   |   |   |   x30 > 188 

|   |   |   |   |   |   x30 <= 239 

|   |   |   |   |   |   |   x21 <= 0: 0 (6.0/1.0) 

|   |   |   |   |   |   |   x21 > 0 

|   |   |   |   |   |   |   |   x21 <= 8.035714: 1 (7.0) 

|   |   |   |   |   |   |   |   x21 > 8.035714: 0 (4.0/1.0) 

|   |   |   |   |   |   x30 > 239: 0 (5.81) 

Number of Leaves  :  11 

Size of the tree :  21 

Time taken to build model: 0.02 seconds 
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=== Stratified cross-validation === 

=== Summary === 

Correctly Classified Instances          77               80.2083 % 

Incorrectly Classified Instances        19               19.7917 % 

Kappa statistic                          0.5649 

Mean absolute error                      0.2342 

Root mean squared error                  0.4251 

Relative absolute error                 50.4204 % 

Root relative squared error             88.2471 % 

Total Number of Instances               96      

 

 

=== Detailed Accuracy By Class === 

                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                 0,869    0,314    0,828      0,869    0,848      0,566    0,787     0,818     0 

                 0,686    0,131    0,750      0,686    0,716      0,566    0,787     0,674     1 

Weighted Avg.    0,802    0,248    0,800      0,802    0,800      0,566    0,787     0,766      

 

 

=== Confusion Matrix === 

  a  b   <-- classified as 

 53  8 |  a = 0 

 11 24 |  b = 1 
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Figure 4: The raw seventh model short version including the gait parameters  

 

Scheme:       weka.classifiers.trees.J48 -C 0.25 -M 2 

Relation:     T0marchecomplet_sex_ageNaN_120-weka.filters.unsupervised.attribute.Remove-R1-

13,15-17,19-20,22,25-26,28-29,32-33,35-38-weka.filters.unsupervised.attribute.Remove-R10,12-22-

weka.filters.unsupervised.attribute.Remove-R12-14,16-23 

Instances:    96 

Attributes:   14 

              x14 

              x18 

              x21 

              x23 

              x24 

              x27 

              x30 

              x31 

              x34 

              x40 

              x52 

              x56 

              x65 

              class 

Test mode:    10-fold cross-validation 

 

 

 

 

 



282 
 

=== Classifier model (full training set) === 

J48 pruned tree 

Symmetry DTW cost <= -35.981308: 0 (17.18) 

Symmetry DTW cost > -35.981308 

|   FW Stride Length <= 1.29: 1 (11.0) 

|   FW Stride Length > 1.29 

|   |   CW Delta 1 MTC <= 3.3: 0 (12.96/0.38) 

|   |   CW Delta 1 MTC > 3.3 

|   |   |   Stride Frequency DTW cost <= -4.672897: 1 (6.91/0.1) 

|   |   |   Stride Frequency DTW cost > -4.672897 

|   |   |   |   CW Stride Frequency <= 0.88 

|   |   |   |   |   Regularity FW improvement <= 12.684366: 1 (8.81/1.0) 

|   |   |   |   |   Regularity FW improvement > 12.684366: 0 (3.53) 

|   |   |   |   CW Stride Frequency > 0.88 

|   |   |   |   |   DTW Symmetry <= 188: 0 (12.81) 

|   |   |   |   |   DTW Symmetry > 188 

|   |   |   |   |   |   DTW Symmetry <= 239 

|   |   |   |   |   |   |   Stride Frequency DTW cost <= 0: 0 (6.0/1.0) 

|   |   |   |   |   |   |   Stride Frequency DTW cost > 0 

|   |   |   |   |   |   |   |   Stride Frequency DTW cost <= 8.035714: 1 (7.0) 

|   |   |   |   |   |   |   |   Stride Frequency DTW cost > 8.035714: 0 (4.0/1.0) 

|   |   |   |   |   |   DTW Symmetry > 239: 0 (5.81) 

 

Number of Leaves :  11 

Size of the tree :  21 

Time taken to build model: 0.02 seconds 
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=== Stratified cross-validation === 

=== Summary === 

Correctly Classified Instances          77               80.2083 % 

Incorrectly Classified Instances        19               19.7917 % 

Kappa statistic                          0.5649 

Mean absolute error                      0.2342 

Root mean squared error                  0.4251 

Relative absolute error                 50.4204 % 

Root relative squared error             88.2471 % 

Total Number of Instances               96      

 

 

=== Detailed Accuracy By Class === 

                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                 0,869    0,314    0,828      0,869    0,848      0,566    0,787     0,818     0 

                 0,686    0,131    0,750      0,686    0,716      0,566    0,787     0,674     1 

Weighted Avg.    0,802    0,248    0,800      0,802    0,800      0,566    0,787     0,766      

 

 

=== Confusion Matrix === 

  a  b   <-- classified as 

 53  8 |  a = 0 

 11 24 |  b = 1 
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Figure 5: The short version of the seventh model 

Fallers, n=35 True positive = 24 False negative =11 

Non-fallers, n=61 True negative = 53 False positive = 8 

 

 

Model Accuracy Sensitivity Specificity PPV NPV ROC Area PRC Area 

Model 7 

“ Short version” 
80% 69% 87% 75% 83% 0.79 0.77 

All

Symmetry 
increased in 
DTW < 36%

FW stride 
length   

> 1.29 m

CW delta1 MTC

> 3.3 mm

Stride  
frequency 
increased

in DTW             
≥ 5%

Fallers

Stride 
frequency 
increased      
in DTW           
<  5%

CW Stride 
frequency

≤ 0.88 stride/s.

FW improv. 
REGUL  > 13 %

Non-fallers

FW improv. 
REGUL  ≤ 13 %

Fallers

CW Stride 
frequency

> 0.88 stride/s.

DTW symmetry

> 188

DTW symmetry

≤ 239

DTW stride 
frequency cost 

≤ 0 %

Non-fallers

DTW stride 
frequency cost 

> 0 %

DTW stride 
frequency cost 

> 8 %

Non-fallers

DTW stride 
frequency cost 

≤ 8 %

Fallers
DTW symmetry

> 239

Non-fallers

DTW symmetry

≤ 188

Non-fallers 

CW delta1 MTC

≤ 3.3 mm

Non-fallers

FW stride 
length   

≤ 1.29 m

Fallers
Symmetry 

increased in  
DTW ≥ 36% 

Non-fallers

fallers) and 

24 fallers (/35 fallers) are correctly classified 
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Figure 6: The raw eighth model short version 

 

Scheme:       weka.classifiers.trees.J48 -C 0.25 -M 2 

Relation:     T0marchecomplet_sex_ageNaN_120-weka.filters.unsupervised.attribute.Remove-R1-2,4-

8,10-12,15-17,19-20-weka.filters.unsupervised.attribute.Remove-R7-11,13-14,17-23-

weka.filters.unsupervised.attribute.Remove-R10-11,14-23-

weka.filters.unsupervised.attribute.Remove-R13-23 

Instances:    96 

Attributes:   14 

              x3 

              x9 

              x13 

              x14 

              x18 

              x21 

              x27 

              x30 

              x31 

              x41 

              x42 

              x53 

              x65 

              class 

Test mode:    10-fold cross-validation 
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J48 pruned tree 

x31 <= -35.981308: 0 (17.18) 

x31 > -35.981308 

|   x14 <= 1.29: 1 (11.0) 

|   x14 > 1.29 

|   |   x21 <= -4.672897 

|   |   |   x65 <= -66.8: 0 (2.56/0.56) 

|   |   |   x65 > -66.8: 1 (6.55/0.11) 

|   |   x21 > -4.672897 

|   |   |   x18 <= 0.88 

|   |   |   |   x27 <= 12.684366 

|   |   |   |   |   x31 <= 32.720588: 1 (8.0) 

|   |   |   |   |   x31 > 32.720588: 0 (2.0) 

|   |   |   |   x27 > 12.684366: 0 (4.71) 

|   |   |   x18 > 0.88 

|   |   |   |   x9 <= 1.75: 0 (17.0) 

|   |   |   |   x9 > 1.75 

|   |   |   |   |   x30 <= 188: 0 (10.0) 

|   |   |   |   |   x30 > 188 

|   |   |   |   |   |   x65 <= -26.4: 0 (3.4/0.2) 

|   |   |   |   |   |   x65 > -26.4 

|   |   |   |   |   |   |   x21 <= 9.708738 

|   |   |   |   |   |   |   |   x53 <= 4 

|   |   |   |   |   |   |   |   |   x13 <= 1.45: 0 (2.8) 

|   |   |   |   |   |   |   |   |   x13 > 1.45: 1 (3.0) 

|   |   |   |   |   |   |   |   x53 > 4: 1 (5.8) 

|   |   |   |   |   |   |   x21 > 9.708738: 0 (2.0) 
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Number of Leaves  :  14 

Size of the tree :  27 

Time taken to build model: 0.03 seconds 

 

=== Stratified cross-validation === 

=== Summary === 

Correctly Classified Instances          73               76.0417 % 

Incorrectly Classified Instances        23               23.9583 % 

Kappa statistic                          0.4458 

Mean absolute error                      0.2643 

Root mean squared error                  0.4489 

Relative absolute error                 56.9031 % 

Root relative squared error             93.1991 % 

Total Number of Instances               96      

 

=== Detailed Accuracy By Class === 

                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                 0,902    0,486    0,764      0,902    0,827      0,462    0,763     0,797     0 

                 0,514    0,098    0,750      0,514    0,610      0,462    0,763     0,696     1 

Weighted Avg.    0,760    0,344    0,759      0,760    0,748      0,462    0,763     0,760      

 

=== Confusion Matrix === 

  a  b   <-- classified as 

 55  6 |  a = 0 

 17 18 |  b = 1 
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Figure 7: The raw eighth model short version including gait parameters 

 

Scheme:       weka.classifiers.trees.J48 -C 0.25 -M 2 

Relation:     T0marchecomplet_sex_ageNaN_120-weka.filters.unsupervised.attribute.Remove-R1-2,4-

8,10-12,15-17,19-20-weka.filters.unsupervised.attribute.Remove-R7-11,13-14,17-23-

weka.filters.unsupervised.attribute.Remove-R10-11,14-23-

weka.filters.unsupervised.attribute.Remove-R13-23 

Instances:    96 

Attributes:   14 

              x3 

              x9 

              x13 

              x14 

              x18 

              x21 

              x27 

              x30 

              x31 

              x41 

              x42 

              x53 

              x65 

              class 

Test mode:    10-fold cross-validation 

 

 

 

 



292 
 

J48 pruned tree 

Symmetry DTW cost <= -35.981308: 0 (17.18) 

Symmetry DTW cost > -35.981308 

|   FW Stride Length <= 1.29: 1 (11.0) 

|   FW Stride Length > 1.29 

|   |   Stride Frequency DTW cost <= -4.672897 

|   |   |   CoV MTC DTW cost <= -66.8: 0 (2.56/0.56) 

|   |   |   CoV MTC DTW cost > -66.8: 1 (6.55/0.11) 

|   |   Stride Frequency DTW cost > -4.672897 

|   |   |   CW Stride Frequency <= 0.88 

|   |   |   |   Regularity FW improvement <= 12.684366 

|   |   |   |   |   Symmetry DTW cost <= 32.720588: 1 (8.0) 

|   |   |   |   |   Symmetry DTW cost > 32.720588: 0 (2.0) 

|   |   |   |   Regularity FW improvement > 12.684366: 0 (4.71) 

|   |   |   CW Stride Frequency > 0.88 

|   |   |   |   FW Gait Speed <= 1.75: 0 (17.0) 

|   |   |   |   FW Gait Speed > 1.75 

|   |   |   |   |   DTW Symmetry <= 188: 0 (10.0) 

|   |   |   |   |   DTW Symmetry > 188 

|   |   |   |   |   |   CoV MTC DTW cost <= -26.4: 0 (3.4/0.2) 

|   |   |   |   |   |   CoV MTC DTW cost > -26.4 

|   |   |   |   |   |   |   Stride Frequency DTW cost <= 9.708738 

|   |   |   |   |   |   |   |   FW SD MTC <= 4 

|   |   |   |   |   |   |   |   |   CW Stride Length <= 1.45: 0 (2.8) 

|   |   |   |   |   |   |   |   |   CW Stride Length > 1.45: 1 (3.0) 

|   |   |   |   |   |   |   |   FW SD MTC > 4: 1 (5.8) 

|   |   |   |   |   |   |   Stride Frequency DTW cost > 9.708738: 0 (2.0) 
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Number of Leaves  :  14 

Size of the tree :  27 

Time taken to build model: 0.03 seconds 

 

=== Stratified cross-validation === 

=== Summary === 

Correctly Classified Instances          73               76.0417 % 

Incorrectly Classified Instances        23               23.9583 % 

Kappa statistic                          0.4458 

Mean absolute error                      0.2643 

Root mean squared error                  0.4489 

Relative absolute error                 56.9031 % 

Root relative squared error             93.1991 % 

Total Number of Instances               96      

 

 

=== Detailed Accuracy By Class === 

                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                 0,902    0,486    0,764      0,902    0,827      0,462    0,763     0,797     0 

                 0,514    0,098    0,750      0,514    0,610      0,462    0,763     0,696     1 

Weighted Avg.    0,760    0,344    0,759      0,760    0,748      0,462    0,763     0,760      

 

=== Confusion Matrix === 

  a  b   <-- classified as 

 55  6 |  a = 0 

 17 18 |  b = 1 
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Figure 8: The short version of the eighth model 

Fallers, n=35 True positive = 18 False negative =17 

Non-fallers, n=61 True negative = 55 False positive = 6 

 

Model Accuracy Sensitivity Specificity PPV NPV ROC Area PRC Area 

Model 8  

short version 
76% 51% 90% 75% 76% 0.76 0.76 

All

Symmetry 
increased    
in DTW        
< 36%

FW stride 
length   

> 1.29 m

Stride 
frequency 
increased

in DTW       
≥ 5%

CV MTC 
increased 

DTW ≥ 67%

Non-fallers

CV MTC 
increased 

DTW <  67%

Fallers

Stride 
frequency 
increased  
in DTW       
<  5%

CW Stride 
frequency

≤ 0.88 
stride/s.

FW improv. 
REGUL  > 13 %

Non-fallers

FW improv. 
REGUL  ≤ 13 % 

Symmetry DTW 
cost > 33%

Non-fallers

Symmetry DTW 
cost ≤ 33%

Fallers

CW Stride 
frequency

> 0.88 
stride/s.

FW gait speed 
≤ 1.75 m/s

Non-fallers

FW gait speed 

> 1.75 m/s

DTW 

symmetry 
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Non-fallers

DTW 
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CV MTC 
increased 

> 26% in DTW

Non-fallers

CV MTC 
increased

≤ 26% in DTW

Stride Freq 
DTW cost  

≤ 10 %

SD MTD in 
FW ≤ 4 mm
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≤ 1.45 m

Non-fallers

CW Stride 
length  

> 1.45 m
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Figure 9: The raw ninth model short version 

 

Scheme:       weka.classifiers.trees.J48 -C 0.25 -M 2 

Relation:     T0marchecomplet_sex_ageNaN_120-weka.filters.unsupervised.attribute.Remove-R1-5,8-

12,15-17,19-21-weka.filters.unsupervised.attribute.Remove-R7-10,12-13,16,18-19,21-22-

weka.filters.unsupervised.attribute.Remove-R13-14,16-26,29-34-

weka.filters.unsupervised.attribute.Remove-R16 

Instances:    96 

Attributes:   19 

              x6 

              x7 

              x13 

              x14 

              x18 

              x22 

              x27 

              x30 

              x31 

              x33 

              x36 

              x39 

              x42 

              x54 

              x55 

              x63 

              x64 

              x65 

              class 
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Test mode:    10-fold cross-validation 

 

=== Classifier model (full training set) === 

J48 pruned tree 

x31 <= -35.981308: 0 (17.18) 

x31 > -35.981308 

|   x14 <= 1.29: 1 (11.0) 

|   x14 > 1.29 

|   |   x6 <= 1 

|   |   |   x65 <= -26.4: 0 (17.2/0.63) 

|   |   |   x65 > -26.4 

|   |   |   |   x55 <= 15.6 

|   |   |   |   |   x27 <= 8.518519: 1 (14.4/2.36) 

|   |   |   |   |   x27 > 8.518519: 0 (5.24/1.0) 

|   |   |   |   x55 > 15.6: 0 (17.98/2.33) 

|   |   x6 > 1 

|   |   |   x33 <= 17.3: 0 (5.42/0.42) 

|   |   |   x33 > 17.3: 1 (7.58) 

 

Number of Leaves  :  8 

Size of the tree :  15 

Time taken to build model: 0.02 seconds 
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=== Stratified cross-validation === 

=== Summary === 

Correctly Classified Instances          79               82.2917 % 

Incorrectly Classified Instances        17               17.7083 % 

Kappa statistic                          0.6058 

Mean absolute error                      0.2388 

Root mean squared error                  0.4049 

Relative absolute error                 51.4195 % 

Root relative squared error             84.0564 % 

Total Number of Instances               96      

 

 

=== Detailed Accuracy By Class === 

                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                 0,902    0,314    0,833      0,902    0,866      0,610    0,801     0,821     0 

                 0,686    0,098    0,800      0,686    0,738      0,610    0,801     0,739     1 

Weighted Avg.    0,823    0,236    0,821      0,823    0,820      0,610    0,801     0,791      

 

 

=== Confusion Matrix === 

  a  b   <-- classified as 

 55  6 |  a = 0 

 11 24 |  b = 1 

  



300 
 

  



301 
 

Figure 10: The raw ninth model short version including the gait parameters 

 

Scheme:       weka.classifiers.trees.J48 -C 0.25 -M 2 

Relation:     T0marchecomplet_sex_ageNaN_120-weka.filters.unsupervised.attribute.Remove-R1-5,8-

12,15-17,19-21-weka.filters.unsupervised.attribute.Remove-R7-10,12-13,16,18-19,21-22-

weka.filters.unsupervised.attribute.Remove-R13-14,16-26,29-34-

weka.filters.unsupervised.attribute.Remove-R16 

Instances:    96 

Attributes:   19 

              x6 

              x7 

              x13 

              x14 

              x18 

              x22 

              x27 

              x30 

              x31 

              x33 

              x36 

              x39 

              x42 

              x54 

              x55 

              x63 

              x64 

              x65 

              class 
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Test mode:    10-fold cross-validation 

 

=== Classifier model (full training set) === 

J48 pruned tree 

Symmetry DTW cost <= -35.981308: 0 (17.18) 

Symmetry DTW cost > -35.981308 

|   FW Stride Length <= 1.29: 1 (11.0) 

|   FW Stride Length > 1.29 

|   |   Stiffness according UPDRS <= 1 

|   |   |   CoV MTC DTW cost <= -26.4: 0 (17.2/0.63) 

|   |   |   CoV MTC DTW cost > -26.4 

|   |   |   |   FW Var. MTC <= 15.6 

|   |   |   |   |   Regularity FW improvement <= 8.518519: 1 (14.4/2.36) 

|   |   |   |   |   Regularity FW improvement > 8.518519: 0 (5.24/1.0) 

|   |   |   |   FW Var. MTC > 15.6: 0 (17.98/2.33) 

|   |   Stiffness according UPDRS > 1 

|   |   |   CW Mean MTC <= 17.3: 0 (5.42/0.42) 

|   |   |   CW Mean MTC > 17.3: 1 (7.58) 

 

Number of Leaves :  8 

Size of the tree :  15 

Time taken to build model: 0.02 seconds 
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=== Stratified cross-validation === 

=== Summary === 

Correctly Classified Instances          79               82.2917 % 

Incorrectly Classified Instances        17               17.7083 % 

Kappa statistic                          0.6058 

Mean absolute error                      0.2388 

Root mean squared error                  0.4049 

Relative absolute error                 51.4195 % 

Root relative squared error             84.0564 % 

Total Number of Instances               96      

 

 

=== Detailed Accuracy By Class === 

                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                 0,902    0,314    0,833      0,902    0,866      0,610    0,801     0,821     0 

                 0,686    0,098    0,800      0,686    0,738      0,610    0,801     0,739     1 

Weighted Avg.    0,823    0,236    0,821      0,823    0,820      0,610    0,801     0,791      

 

 

=== Confusion Matrix === 

  a  b   <-- classified as 

 55  6 |  a = 0 

 11 24 |  b = 1 
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Figure 11: The short version of the ninth model 

Fallers, n=35 True positive = 24 False negative =11 

Non-fallers, n=61 True negative = 55 False positive = 6 

 

 

Model Accuracy Sensitivity Specificity PPV NPV ROC Area PRC Area 

 

Model 9 
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82% 69% 90% 80% 83% 0.80 0.79 
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Non-fallers



306 
 

 

 



307 
 

Figure 12: The raw tenth model short version 

 

Scheme:       weka.classifiers.trees.J48 -C 0.25 -M 2 

Relation:     T0marchecomplet_sex_ageNaN_120-weka.filters.unsupervised.attribute.Remove-R1-2,4-

5,7-12,15-23-weka.filters.unsupervised.attribute.Remove-R5-10,13,15-23-

weka.filters.unsupervised.attribute.Remove-R8-13,15,17-19,21-23-

weka.filters.unsupervised.attribute.Remove-R11-14 

Instances:    96 

Attributes:   14 

              x3 

              x6 

              x13 

              x14 

              x30 

              x31 

              x33 

              x49 

              x51 

              x55 

              x63 

              x64 

              x65 

              class 

Test mode:    10-fold cross-validation 
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=== Classifier model (full training set) === 

J48 pruned tree 

x31 <= -35.981308: 0 (17.18) 

x31 > -35.981308 

|   x14 <= 1.29: 1 (11.0) 

|   x14 > 1.29 

|   |   x6 <= 1 

|   |   |   x65 <= -26.4: 0 (17.2/0.63) 

|   |   |   x65 > -26.4 

|   |   |   |   x55 <= 15.6 

|   |   |   |   |   x51 <= 18.5: 1 (8.29/0.45) 

|   |   |   |   |   x51 > 18.5 

|   |   |   |   |   |   x3 <= 0 

|   |   |   |   |   |   |   x31 <= 22.310757: 1 (4.21/0.21) 

|   |   |   |   |   |   |   x31 > 22.310757: 0 (2.73/0.21) 

|   |   |   |   |   |   x3 > 0: 0 (4.41/1.0) 

|   |   |   |   x55 > 15.6 

|   |   |   |   |   x49 <= 11.6: 0 (15.63/0.29) 

|   |   |   |   |   x49 > 11.6: 1 (2.35/0.31) 

|   |   x6 > 1 

|   |   |   x33 <= 17.3: 0 (5.42/0.42) 

|   |   |   x33 > 17.3: 1 (7.58) 

 

Number of Leaves  :  11 

Size of the tree :  21 

Time taken to build model: 0.02 seconds 

 



309 
 

=== Stratified cross-validation === 

=== Summary === 

Correctly Classified Instances          81               84.375  % 

Incorrectly Classified Instances        15               15.625  % 

Kappa statistic                          0.6648 

Mean absolute error                      0.2054 

Root mean squared error                  0.3842 

Relative absolute error                 44.2357 % 

Root relative squared error             79.7538 % 

Total Number of Instances               96      

 

 

=== Detailed Accuracy By Class === 

                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                 0,869    0,200    0,883      0,869    0,876      0,665    0,839     0,855     0 

                 0,800    0,131    0,778      0,800    0,789      0,665    0,839     0,791     1 

Weighted Avg.    0,844    0,175    0,845      0,844    0,844      0,665    0,839     0,831      

 

 

=== Confusion Matrix === 

  a  b   <-- classified as 

 53  8 |  a = 0 

  7 28 |  b = 1 
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Figure 13: The raw tenth model including the gait parameters 

 

Scheme:       weka.classifiers.trees.J48 -C 0.25 -M 2 

Relation:     T0marchecomplet_sex_ageNaN_120-weka.filters.unsupervised.attribute.Remove-R1-2,4-

5,7-12,15-23-weka.filters.unsupervised.attribute.Remove-R5-10,13,15-23-

weka.filters.unsupervised.attribute.Remove-R8-13,15,17-19,21-23-

weka.filters.unsupervised.attribute.Remove-R11-14 

Instances:    96 

Attributes:   14 

              x3 

              x6 

              x13 

              x14 

              x30 

              x31 

              x33 

              x49 

              x51 

              x55 

              x63 

              x64 

              x65 

              class 

Test mode:    10-fold cross-validation 
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=== Classifier model (full training set) === 

J48 pruned tree 

Symmetry DTW cost <= -35.981308: 0 (17.18) 

Symmetry DTW cost > -35.981308 

|   FW Stride Length <= 1.29: 1 (11.0) 

|   FW Stride Length > 1.29 

|   |   Stiffness according UPDRS <= 1 

|   |   |   CoV MTC DTW cost <= -26.4: 0 (17.2/0.63) 

|   |   |   CoV MTC DTW cost > -26.4 

|   |   |   |   FW Var. MTC <= 15.6 

|   |   |   |   |   FW Mean MTC <= 18.5: 1 (8.29/0.45) 

|   |   |   |   |   FW Mean MTC > 18.5 

|   |   |   |   |   |   Men 

|   |   |   |   |   |   |   Symmetry DTW cost <= 22.310757: 1 (4.21/0.21) 

|   |   |   |   |   |   |   Symmetry DTW cost > 22.310757: 0 (2.73/0.21) 

|   |   |   |   |   |   Women: 0 (4.41/1.0) 

|   |   |   |   FW Var. MTC > 15.6 

|   |   |   |   |   DTW Delta 1 MTC <= 11.6: 0 (15.63/0.29) 

|   |   |   |   |   DTW Delta 1 MTC > 11.6: 1 (2.35/0.31) 

|   |   Stiffness according UPDRS > 1 

|   |   |   CW Mean MTC <= 17.3: 0 (5.42/0.42) 

|   |   |   CW Mean MTC > 17.3: 1 (7.58) 

 

Number of Leaves  :  11 

Size of the tree :  21 

Time taken to build model: 0.02 seconds 
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=== Stratified cross-validation === 

=== Summary === 

Correctly Classified Instances          81               84.375  % 

Incorrectly Classified Instances        15               15.625  % 

Kappa statistic                          0.6648 

Mean absolute error                      0.2054 

Root mean squared error                  0.3842 

Relative absolute error                 44.2357 % 

Root relative squared error             79.7538 % 

Total Number of Instances               96      

 

 

=== Detailed Accuracy By Class === 

                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                 0,869    0,200    0,883      0,869    0,876      0,665    0,839     0,855     0 

                 0,800    0,131    0,778      0,800    0,789      0,665    0,839     0,791     1 

Weighted Avg.    0,844    0,175    0,845      0,844    0,844      0,665    0,839     0,831      

 

 

=== Confusion Matrix ===  

  a  b   <-- classified as 

 53  8 |  a = 0 

  7 28 |  b = 1 
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Figure 14: The short version of the tenth model 

Fallers, n= 35 True positive = 28 False negative = 7 

Non-fallers, n= 61 True negative = 53 False positive = 8 

Model Accuracy Sensitivity Specificity PPV NPV ROC Area PRC Area 

All gait parameters + 

Age + gender + leg length 

+IADL+SPPB+UPDRS 

Model 10 “short version” 

84% 80% 87% 

 

78% 

 

88% 0.84 0.83 
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CW Mean MTC
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UPDRS ≤ 1

CoV MTC 
increased in 
DTW < 26 %

FW Var MTC 

≤ 15.6 mm2

FW Mean MTC 

> 18.5 mm

Women
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11. Abbreviations list 

 

ADL: Activities of daily living 

AUC: Area under the curve  

BIA: bioelectrical impedance  

CIRS-g: Cumulative Illness Rating Scale geriatric version  

CoV MTC: coefficient variation of MTC values 

CW: Comfort walking condition 

DTW: Dual task walking condition 

FES-I: French version of the falls efficacy scale 

FGA: Functional gait assessment test  

FW: Fast walking condition 

GDS-4: Geriatric depression scale short version  

GFST: Gerontopôle frailty screening tool  

GS: Gait speed 

HS: Hell strike 

IADL: Instrumental activities of daily living 

ICC: Intra-correlation coefficient  

IQR MTC: Interquartile range of MTC values 

Max: Maximal 

Mean MTC: the mean MTC value 

Med MTC: the median MTC value 

Min: Minimal 

Min MTC: the minima MTC value 
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MNA-14: Mini Nutritional Assessment short version  

MoCA: Montreal cognitive assessment 

MTC: Minimal Toe Clearance 

NPV: Negative predictive value 

PASS: Physical Activity Status Scale  

PRC: Precision recall area 

PPV: Positive predictive value 

Q1: 25th percentile 

Q3: 75th percentile 

REG: Stride regularity 

ROC: Receiver operating characteristics 

SD: Standard deviation 

SD MTC: Standard deviation of MTC values 

SF: Stride frequency 

SL: Stride length 

SM: skeletal muscle  

SMI: skeletal muscle index 

SMM: skeletal muscle mass 

SPPB: Short physical performance battery 

SYM: Stride symmetry 

TO: Toe off 

TUG: Timed up and go test 

UPDRS: Unified Parkinson’s disease rating scale  

Var. MTC: Variance of MTC values 

WHO: World Health Organisation 
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12. Appendices 

 

Appendices following are namely: 

- Appendix 1: Correlation between the parameters obtained from the two different 

instrumental methods used in this study. 

- Appendix 2: Approval of the Ethical Committee 

- Appendix 3: Comparison according the symmetry DTW cost quartiles 

- Appendix 4: Comparison according the FW normalized stride length quartiles 

- Appendix 5: Logistic regression analyses with or without considering IADL 

- Appendix 7: Comparison according the FW stride length quartiles 

- Appendix 8: Comparison of anamnestic, clinical and functional data including gait 

parameters according to the regularity FW improvement 

 

 

 

 

 

  



336 
 



337 
 

Appendix 1: Correlation between the parameters obtained from the two 

different instrumental methods used in this study. 
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Appendix 2 : Approval of the Ethical Committee 
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Appendix 3: Comparison according the symmetry DTW cost quartiles 

 

Variable Groups Mean ± SD Q1 Median Q3 p-value 

CW Symmetry 

(dimensionless) 
All (n=48) 221.71 ± 76.74 178.50 218.00 254.00  

 

Symmetry DTW    

gain ≥ 28 % 

(n=24) 

175.42 ± 44.09 142.00 178.50 211.00 

<.0001 

 

Symmetry DTW   

cost ≥ 22 % 

(n=24) 

268.00 ± 74.95 228.50 252.50 272.50 

DTW Symmetry 

(dimensionless) 
All (n=48) 221.48 ± 78.72 161.50 198.50 277.50  

 
Symmetry DTW   

gain ≥ 28 % 
273.04 ± 77.15 211.00 277.50 322.50 

<.0001 

 

Symmetry DTW   

cost ≥ 22 % 

(n=24) 

169.92 ± 34.10 142.50 168.00 189.50 

DTW Symmetry         

Cost (%) 
All (n=48) -10.37 ± 49.41 -49.15 -2.90 33.69  

 

Symmetry DTW   

gain ≥ 28 % 

(n=24) 

-55.79 ± 24.15 -79.95 -49.15 -34.39 

<.0001 

 

Symmetry DTW   

cost ≥ 22 % 

(n=24) 

35.06 ± 9.96 27.66 33.69 40.28 
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Appendix 4: Comparison according the FW normalized stride length quartiles 

Variable Groups Mean ± SD Q1 Median Q3 p-value 

Edmonton (/ 17) All (n=49) 2.02 ± 1.59 1.00 2.00 3.00  

 
FW norm. Stride length 

≤ 1.64 (n=24) 
2.75 ± 1.54 2.00 2.50 4.00 

0.0006 

 
FW norm. Stride length 

≥ 2 (n=25) 
1.32 ± 1.31 1.00 1.00 2.00 

Body Height (cm) All (n=49) 165.65 ± 9.55 158.00 165.00 173.00  

 
FW norm. Stride length 

≤ 1.64 (n=24) 
160.33 ± 6.27 156.50 160.00 165.00 

<.0001 

 
FW norm. Stride length 

≥ 2 (n=25) 
170.76 ± 9.45 169.00 173.00 177.00 

Grip Strength (kPa) All (n=49) 60.76 ± 17.91 50.00 52.00 72.00  

 
FW norm. Stride length 

≤ 1.64 (n=24) 
49.50 ± 8.05 45.00 50.00 52.00 

<.0001 

 
FW norm. Stride length 

≥ 2 (n=25) 
71.56 ± 18.19 52.00 72.00 86.00 

Grip Work (kPa x s) All (n=49) 2202.2 ± 1710.8 940.28 1706.3 3208.1  

 
FW norm. Stride length 

≤ 1.64 (n=24) 
1332.6 ± 901.15 658.41 1041.2 1785.0 

0.0004 

 
FW norm. Stride length 

≥ 2 (n=25) 
3037.0 ± 1895.5 1706.3 3049.7 4404.1 

Grip work/body weight 

(kPa x s / kg) 
All (n=49) 29.14 ± 21.79 13.43 24.39 39.33  

 
FW norm. Stride length 

≤ 1.64 (n=24) 
18.59 ± 11.58 9.05 14.71 26.08 

0.0009 

 
FW norm. Stride length 

≥ 2 (n=25) 
39.26 ± 24.56 23.70 38.37 47.59 

FGA (/30) All (n=49) 26.31 ± 3.12 24.00 27.00 29.00  

 
FW norm. Stride length 

≤ 1.64 (n=24) 
24.67 ± 3.16 23.00 25.00 27.50 

0.0002 

 
FW norm. Stride length 

≥ 2 (n=25) 
27.88 ± 2.15 27.00 28.00 29.00 

SPPB (/12) All (n=49) 10.22 ± 1.79 9.00 11.00 12.00  

 
FW norm. Stride length 

≤ 1.64 (n=24) 
9.17 ± 1.90 8.00 9.50 10.50 

<.0001 

 
FW norm. Stride length 

≥ 2 (n=25) 
11.24 ± 0.88 11.00 11.00 12.00 

CW gait speed (m/s) All (n=49) 1.26 ± 0.19 1.12 1.22 1.42  

 
FW norm. Stride length 

≤ 1.64 (n=24) 
1.13 ± 0.12 1.04 1.13 1.20 <.0001 
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FW norm. Stride length 

≥ 2 (n=25) 
1.39 ± 0.15 1.28 1.41 1.46 

CW norm. gait speed 

(/s) 
All (n=49) 1.53 ± 0.22 1.37 1.47 1.68  

 
FW norm. Stride length 

≤ 1.64 (n=24) 
1.36 ± 0.12 1.31 1.37 1.43 

<.0001 

 
FW norm. Stride length 

≥ 2 (n=25) 
1.69 ± 0.18 1.59 1.64 1.81 

FW gait speed (m/s) All (n=49) 1.67 ± 0.28 1.44 1.65 1.88  

 
FW norm. Stride length 

≤ 1.64 (n=24) 
1.45 ± 0.17 1.32 1.44 1.55 

<.0001 

 
FW norm. Stride length 

≥ 2 (n=25) 
1.89 ± 0.17 1.82 1.88 1.92 

FW norm. gait speed 

(/s) 
All (n=49) 2.02 ± 0.32 1.73 2.06 2.23  

 
FW norm. Stride length 

≤ 1.64 (n=24) 
1.74 ± 0.16 1.64 1.73 1.80 

<.0001 

 
FW norm. Stride length 

≥ 2 (n=25) 
2.28 ± 0.19 2.18 2.22 2.37 

DTW gait speed (m/s) All (n=48) 1.13 ± 0.22 1.00 1.11 1.30  

 
FW norm. Stride length 

≤ 1.64 (n=24) 
1.01 ± 0.15 0.94 1.02 1.11 

<.0001 

 
FW norm. Stride length 

≥ 2 (n=24) 
1.25 ± 0.21 1.11 1.25 1.34 

DTW norm. gait speed 

(/s) 
All (n=48) 1.37 ± 0.26 1.20 1.32 1.51  

 
FW norm. Stride length 

≤ 1.64 (n=24) 
1.22 ± 0.18 1.14 1.24 1.32 

<.0001 

 
FW norm. Stride length 

≥ 2 (n=24) 
1.51 ± 0.24 1.32 1.49 1.60 

CW stride length (m) All (n=49) 1.31 ± 0.18 1.18 1.27 1.45  

 
FW norm. Stride length 

≤ 1.64 (n=24) 
1.16 ± 0.09 1.12 1.17 1.23 

<.0001 

 
FW norm. Stride length 

≥ 2 (n=25) 
1.44 ± 0.12 1.36 1.45 1.53 

CW norm. stride 

length 
All (n=49) 1.58 ± 0.20 1.40 1.56 1.76  

 
FW norm. Stride length 

≤ 1.64 (n=24) 
1.40 ± 0.09 1.35 1.40 1.46 

<.0001 

 
FW norm. Stride length 

≥ 2 (n=25) 
1.74 ± 0.10 1.66 1.76 1.80 

FW stride length (m) All (n=49) 1.54 ± 0.31 1.29 1.47 1.76  

 
FW norm. Stride length 

≤ 1.64 (n=24) 
1.29 ± 0.11 1.24 1.29 1.35 <.0001 
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FW norm. Stride length 

≥ 2 (n=25) 
1.78 ± 0.24 1.67 1.76 1.84 

FW norm. stride 

length 
All (n=49) 1.85 ± 0.37 1.57 2.00 2.07  

 
FW norm. Stride length 

≤ 1.64 (n=24) 
1.55 ± 0.09 1.51 1.55 1.61 

<.0001 

 
FW norm. Stride length 

≥ 2 (n=25) 
2.15 ± 0.28 2.04 2.07 2.12 

DTW stride length (m) All (n=48) 1.28 ± 0.31 1.11 1.26 1.35  

 
FW norm. Stride length 

≤ 1.64 (n=24) 
1.12 ± 0.14 1.04 1.13 1.16 

0.0002 

 
FW norm. Stride length 

≥ 2 (n=25) 
1.43 ± 0.35 1.28 1.31 1.53 

DTW norm. stride 

length 
All (n=48) 1.54 ± 0.35 1.35 1.49 1.68  

 
FW norm. Stride length 

≤ 1.64 (n=24) 
1.35 ± 0.16 1.24 1.36 1.43 

<.0001 

 
FW norm. Stride length 

≥ 2 (n=24) 
1.73 ± 0.39 1.56 1.67 1.74 
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Appendix 5: Logistic regression analyses with or without considering IADL 

 

The model obtained including the categorized IADL score (0 or 1)  

 

Number of Observations Used 93 

 

Response Profile 

Ordered 

Value 
chuteT2 

Total 

Frequency 

1 1 34 

2 0 59 

 

Probability modeled is chuteT2=1. 

 

Class Level Information 

Class Value Design Variables 

iadl_cat 0 1 

 1 -1 

 

 

Model Convergence Status 

Convergence criterion (GCONV=1E-8) satisfied. 
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Model Fit Statistics 

Criterion 
Intercept 

Only 

Intercept and 

Covariates 

AIC 124.122 116.382 

SC 126.654 131.577 

-2 Log L 122.122 104.382 

 

 

Testing Global Null Hypothesis: BETA=0 

Test Chi-Square DF Pr > ChiSq 

Likelihood Ratio 17.7400 5 0.0033 

Score 15.8485 5 0.0073 

Wald 11.9379 5 0.0356 

 

 

Type 3 Analysis of Effects 

Effect DF 

Wald 

Chi-Square Pr > ChiSq 

iadl_cat 1 2.8339 0.0923 

UPDRS 1 0.3041 0.5813 

SPPB 1 2.0537 0.1518 

Symdualcost 1 4.9250 0.0265 

LongRAPLOCO1Norm 1 1.1618 0.2811 
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Analysis of Maximum Likelihood Estimates 

Parameter  DF Estimate 

Standard 

Error 

Wald 

Chi-Square Pr > ChiSq 

Intercept  1 5.2852 2.4600 4.6160 0.0317 

iadl_cat 0 1 -1.0365 0.6157 2.8339 0.0923 

UPDRS  1 0.1050 0.1905 0.3041 0.5813 

SPPB  1 -0.2476 0.1728 2.0537 0.1518 

Symdualcost  1 0.0174 0.00784 4.9250 0.0265 

LongRAPLOCO1Norm  1 -1.2997 1.2058 1.1618 0.2811 

 

 

Odds Ratio Estimates 

Effect 

Point 

Estimate 

95% Wald 

Confidence Limits 

iadl_cat         0 vs 1 0.126 0.011 1.406 

UPDRS 1.111 0.765 1.613 

SPPB 0.781 0.556 1.095 

Symdualcost 1.018 1.002 1.033 

LongRAPLOCO1Norm 0.273 0.026 2.897 

 

 

Association of Predicted Probabilities and Observed Responses 

Percent Concordant 72.2 Somers' D 0.448 

Percent Discordant 27.4 Gamma 0.450 

Percent Tied 0.3 Tau-a 0.210 

Pairs 2006 c 0.724 
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The model obtained without considering IADL   

 

Number of Observations Used 93 

 

Response Profile 

Ordered 

Value chuteT2 

Total 

Frequency 

1 1 34 

2 0 59 

 

Probability modeled is chuteT2=1. 

 

 

Model Convergence Status 

Convergence criterion (GCONV=1E-8) satisfied. 

 

Model Fit Statistics 

Criterion 

Intercept 

Only 

Intercept and 

Covariates 

AIC 124.122 117.831 

SC 126.654 130.494 

-2 Log L 122.122 107.831 
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Testing Global Null Hypothesis: BETA=0 

Test Chi-Square DF Pr > ChiSq 

Likelihood Ratio 14.2906 4 0.0064 

Score 13.0658 4 0.0110 

Wald 11.1717 4 0.0247 

 

 

Analysis of Maximum Likelihood Estimates 

Parameter DF Estimate 

Standard 

Error 

Wald 

Chi-Square Pr > ChiSq 

Intercept 1 3.9730 2.1933 3.2812 0.0701 

UPDRS 1 0.2145 0.1737 1.5247 0.2169 

SPPB 1 -0.2663 0.1708 2.4315 0.1189 

Symdualcost 1 0.0177 0.00765 5.3387 0.0209 

LongRAPLOCO1Norm 1 -1.0161 1.1464 0.7857 0.3754 

 

 

Odds Ratio Estimates 

Effect 

Point 

Estimate 

95% Wald 

Confidence Limits 

UPDRS 1.239 0.882 1.742 

SPPB 0.766 0.548 1.071 

Symdualcost 1.018 1.003 1.033 

LongRAPLOCO1Norm 0.362 0.038 3.424 

 

 

 



352 
 

Association of Predicted Probabilities and Observed Responses 

Percent Concordant 69.9 Somers' D 0.399 

Percent Discordant 30.0 Gamma 0.400 

Percent Tied 0.1 Tau-a 0.187 

Pairs 2006 c 0.700 

 

 

  



353 
 

Appendix 6: Correlations between variables involved in logistic regression 

 

Variables Stiffness IADL SPPB 

FW 

Normalized. 

Stride length 

Stride 

Symmetry 

DTW cost 

Stiffness 

 

 

 -0.36890 

0.0003 

94 

0.22659 

0.0281 

94 

-0.10580 

0.3101 

94 

-0.02733 

0.7948 

93 

IADL 

 

 

-0.36890 

0.0003 

94 

 0.13079 

0.2040 

96 

0.01104 

0.9150 

96 

-0.02033 

0.8450 

95 

SPPB 

 

 

-0.22659 

0.0281 

94 

0.13079 

0.2040 

96 

 0.40676 

<.0001 

96 

-0.00693 

0.9469 

95 

FW 

Normalized. 

Stride length 

-0.10580 

0.3101 

94 

0.01104 

0.9150 

96 

0.40676 

<.0001 

96 

 -0.11540 

0.2654 

95 

Stride 

Symmetry 

DTW cost 

-0.02733 

0.7948 

93 

-0.02033 

0.8450 

95 

-0.00693 

0.9469 

95 

-0.11540 

0.2654 

95 
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Appendix 7: Comparison according the FW stride length quartiles 

Variables Groups Mean ± SD Q1 Median Q3 p-value 

Edmonton (score / 17) All (n=49) 2.20 ± 1.66 1.00 2.00 3.00  

 
FW stride length ≤ 

1.38 m. (n=25) 
2.96 ± 1.72 2.00 3.00 4.00 

0.0009 

 
FW stride length ≥ 

1.71 m. (n=24) 
1.42 ± 1.18 1.00 1.00 2.00 

Body Height (cm) All (n=49) 168.02 ±10.33 160.00 169.00 177.00  

 
FW stride length ≤ 

1.38 m. (n=25) 
160.56 ± 7.00 156.00 160.00 165.00 

<.0001 

 
FW stride length ≥ 

1.71 m. (n=24) 
175.79 ± 6.93 171.00 177.00 180.00 

Right leg length (cm) All (n=49) 84.27 ± 5.25 81.00 84.00 87.00  

 
FW stride length ≤ 

1.38 m. (n=25) 
81.14 ± 4.30 78.00 81.00 83.00 

<.0001 

 
FW stride length ≥ 

1.71 m. (n=24) 
87.52 ± 4.06 85.00 87.00 90.00 

Grip strength (kPa) All (n=49) 62.18 ± 16.18 50.00 60.00 78.00  

 
FW stride length ≤ 

1.38 m. (n=25) 
50.20 ± 8.23 46.00 50.00 54.00 

<.0001 

 
FW stride length ≥ 

1.71 m. (n=24) 
74.67 ± 12.52 68.00 78.00 84.00 

Grip work (kPa*s) All (n=49) 2435.5 ± 1697.2 1152.9 1887.0 3208.1  

 
FW stride length ≤ 

1.38 m. (n=25) 
1483.8 ± 938.26 720.90 1380.8 1938.8 

<.0001 

 
FW stride length ≥ 

1.71 m. (n=24) 
3426.9 ± 1755.7 1795.0 3128.9 4530.1 

Grip work / Body weight 

(kPa*s*Kg-1) 
All (n=49) 32.89 ± 22.80 15.34 27.21 42.35  

 
FW stride length ≤ 

1.38 m. (n=25) 
21.22± 13.86 9.82 15.67 29.03 

0.0003 

 
FW stride length ≥ 

1.71 m. (n=24) 
45.04 ± 24.13 25.01 39.35 63.01 

Skeletal Muscle Mass 

SMM (kg) 
All (n=46) 26.82 ± 5.27 22.55 26.03 30.03  

 
FW stride length ≤ 

1.38 m. (n=22) 
23.90 ± 4.49 21.51 23.15 25.75 

0.0001 

 
FW stride length ≥ 

1.71 m. (n=24) 
29.51 ± 4.51 26.49 29.49 32.26 

FGA (score / 30) All (n=49) 26.14 ± 3.40 24.00 27.00 29.00  

 
FW stride length ≤ 

1.38 m. (n=25) 
23.96 ± 3.30 22.00 24.00 26.00 <.0001 
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Variables Groups Mean ± SD Q1 Median Q3 p-value 

 
FW stride length ≥ 

1.71 m. (n=24) 
28.42 ± 1.47 27.00 29.00 30.00 

SPPB (score / 12) All (n=49) 10.10 ± 1.84 9.00 10.00 12.00  

 
FW stride length ≤ 

1.38 m. (n=25) 
9.04 ± 1.88 8.00 9.00 10.00 

<.0001 

 
FW stride length ≥ 

1.71 m. (n=24) 
11.21 ± 0.93 10.50 11.50 12.00 

CW Gait speed (m/s) All (n=49) 1.26 ± 0.19 1.12 1.23 1.42  

 
FW stride length ≤ 

1.38 m. (n=25) 
1.13 ± 0.13 1.04 1.12 1.20 

<.0001 

 
FW stride length ≥ 

1.71 m. (n=24) 
1.41 ± 0.14 1.29 1.42 1.49 

FW Gait speed (m/s) All (n=49) 1.68 ± 0.29 1.43 1.70 1.91  

 
FW stride length ≤ 

1.38 m. (n=25) 
1.45 ± 0.18 1.33 1.43 1.52 

<.0001 

 
FW stride length ≥ 

1.71 m. (n=24) 
1.92 ± 0.16 1.83 1.91 2.02 

DTW Gait speed (m/s) All (n=49) 1.14 ± 0.23 0.98 1.11 1.31  

 
FW stride length ≤ 

1.38 m. (n=25) 
1.02 ± 0.17 0.91 1.02 1.11 

<.0001 

 
FW stride length ≥ 

1.71 m. (n=24) 
1.27 ± 0.21 1.12 1.26 1.35 

CW Stride length (m) All (n=49) 1.32 ± 0.19 1.16 1.29 1.51  

 
FW stride length ≤ 

1.38 m. (n=25) 
1.16 ± 0.10 1.12 1.16 1.23 

<.0001 

 
FW stride length ≥ 

1.71 m. (n=24) 
1.49 ± 0.09 1.41 1.52 1.55 

FW Stride length (m) All (n=49) 1.55 ± 0.32 1.29 1.38 1.76  

 
FW stride length ≤ 

1.38 m. (n=25) 
1.27 ± 0.09 1.24 1.29 1.33 

<.0001 

 
FW stride length ≥ 

1.71 m. (n=24) 
1.83 ± 0.21 1.74 1.77 1.85 

DTW Stride length (m) All (n=49) 1.30 ± 0.32 1.10 1.26 1.46  

 
FW stride length ≤ 

1.38 m. (n=25) 
1.12 ± 0.15 1.03 1.10 1.17 

<.0001 

 
FW stride length ≥ 

1.71 m. (n=24) 
1.48 ± 0.35 1.29 1.45 1.55 

FW Stride length 

improvement (m) 
All (n=49) 16.86 ± 16.39 9.32 15.32 20.91  

 
FW stride length ≤ 

1.38 m. (n=25) 
9.88 ± 6.37 5.38 9.73 14.29 

<.0001 

 
FW stride length ≥ 

1.71 m. (n=24) 
24.12 ± 20.26 16.50 20.53 24.03 
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Variables Groups Mean ± SD Q1 Median Q3 p-value 

CW Regularity 

(dimensionless) 
All (n=49) 295.76 ± 51.23 260.00 288.00 337.00  

 
FW stride length ≤ 

1.38 m. (n=25) 
271.40 ± 45.33 249.00 271.00 288.00 

0.0003 

 
FW stride length ≥ 

1.71 m. (n=24) 
321.13 ± 44.91 289.00 321.00 353.00 

DTW MIN MTC 

(mm) 
All (n=49) 13.81 ± 6.93 8.47 13.11 18.21  

 
FW stride length ≤ 

1.38 m. (n=23) 
10.47 ± 4.75 7.81 10.23 13.02 

0.0005 

 
FW stride length ≥ 

1.71 m. (n=22) 
17.49 ± 7.19 15.12 18.20 22.55 
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Appendix 8: Comparison of anamnestic, clinical and functional data including 

gait parameters according to the regularity FW improvement 

 
Variables Groups Mean ± SD Q1 Median Q3 P-value 

FW Regularity 

(dimensionless) 
All, n=96 307.15 ± 53.62 275.00 310.00 346.50  

 
Regularity FW 

improvement +, n=57 
326.93 ± 42.21 294.00 325.00 362.00 

<.0001 

 
Regularity FW 

improvement -, n=39 
278.23 ± 55.82 246.00 276.00 320.00 

DTW Min MTC 

(mm) 
All, n=84 13.97 ± 7.12 8.69 13.50 18.80  

 
Regularity FW 

improvement +, n=49 
12.54 ± 7.21 6.51 11.32 18.18 

0.028 

 
Regularity FW 

improvement -, n=35 
15.98 ± 6.59 9.96 16.59 20.29 

Min MTC 

FW improvement (%) 
All, n=87 -4.14 ± 77.69 -39.98 -17.47 6.44  

 
Regularity FW 

improvement +, n=51 
8.96 ± 96.18 -38.31 -10.19 17.33 

0.044 

 
Regularity FW 

improvement -, n=36 
-22.69 ± 31.82 -42.72 -24.02 -4.88 
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2. Poster format presentations 

 

GILLAIN S., Wojtasik V., Dardenne N., Croisier J-L., Brüls O., Bruyère O., Salmon E., Garraux G., 

Petermans J. PHYSICAL AND MENTAL DETERMINANTS RELATED TO THE FIRST FALL IN 

HEALTHY OLD PEOPLE. Poster format presented at European Union Geriatric Medicine Society 

(EUGMS) Congress, Nice, France, 2017. 

 

GILLAIN S., Boutaayamou M., Schwartz C., Demonceau M., Dardenne N., Croisier J-L., Brüls O., 

Bruyère O., Salmon E., Garraux G., Petermans J. THE GAIT PATTERN OF HEALTHY OLD PEOPLE 

FOR DUAL TASK WALKING, Poster format presentend at EUGMS Congress, Lisboa, Portugal, 2016. 

 

GILLAIN S., Wojtasik V. Depierreux F. , Schwartz C., Boutaayamou M., Demonceau M., Schmitz X., 

Dardenne N., Bruyère O., Garraux G., Petermans J. PHYSICAL AND MENTAL DETERMINANTS 

OF FALLS IN HEALTHY OLD PEOPLE: BASELINE DATE OF THE GABI STUDY. Poster format 

presented at European Union Geriatric Medicine Society (EUGMS) Congress, Oslo, Norway, 2015. 

GILLAIN S., Petermans J., Dardenne N., Beaudart C., Buckinx F., Garraux G., Reginster J.-Y., Bruyère 

O., Demonceau M., Wojtasik V., Schwartz, C. (2015). COMPARISON OF BODY COMPOSITION, 

MUSCLE FORCE AND PHYSICAL PERFORMANCES BETWEEN FALLER AND NON-FALLER 

PEOPLE INCLUDED IN A COHORT OF 100 COMMUNITY DWELLING VOLUNTEERS: THE 

GABI STUDY. Poster format presented at International Conference in Frailty and Sarcopenia Research 

(ICFSR), Boston, U.S.A., 2015.  

GILLAIN S., Schwartz C., Boutaayamou M., Demonceau, M., Croisier J.-L., Brüls O., Garraux G., 

Reginster J.-Y., Petermans J. VALIDATION DES PARAMÈTRES DE MARCHE PAR UN SYSTÈME 

ACCÉLÉROMÉTRIQUE À L'AIDE D'UN SYSTÈME OPTO-ÉLECTRONIQUE 3D. Poster session 

presented at francophone annual congress of the Belgian Society of Geriatric, Liège, Belgique, 2014. 

GILLAIN S., Dramé M., Ricour C., Lekeu F., Wojtasik V., Salmon E., Petermans J. GAIT ANALYSIS 

AND PREDICTION OF THE CONVERSION OF MILD COGNITIVE IMPAIRMENT SUBJECTS 

(MCI) INTO ALZHEIMER'S DISEASE (AD). Poster format presented at IX Congress of EUGMS, 

Venice, Italy, 2013. 

GILLAIN S, Lekeu F, Wojtasik V, Salmon E., Petermans J. ARE THE MCI THE MOST REGULAR 

WALKERS? Poster format presented at IX Congress of EUGMS, Brussels, Belgium, 2012. 

GILLAIN S, Warzee E, Lekeu F, Wojtasik V, Maquet D, Croisier J-L, Salmon E, Petermans J., 

INTEREST OF LOCOMETRIX TO ASSESS GAIT’S PROFILE IN SPECIFIC OLD POPULATIONS, 



440 
 

Poster format presented at International Association of Gerontology and Geriatrics Congress, Paris, 

France, 2009. 

GILLAIN S, Lekeu F, Wojtasik V, Gachet C,  Maquet D, Croisier J-L, Salmon E, Petermans J, IS 

THERE AN INTEREST TO DETERMINE THE GAIT’S PROFILE OF MCI SUBJECTS TO 

PREDICT THE RISK OF ALZHEIMER DISEASE? GaitRite Meeting, Basel, Swiss, 2009. 

 

 

 


