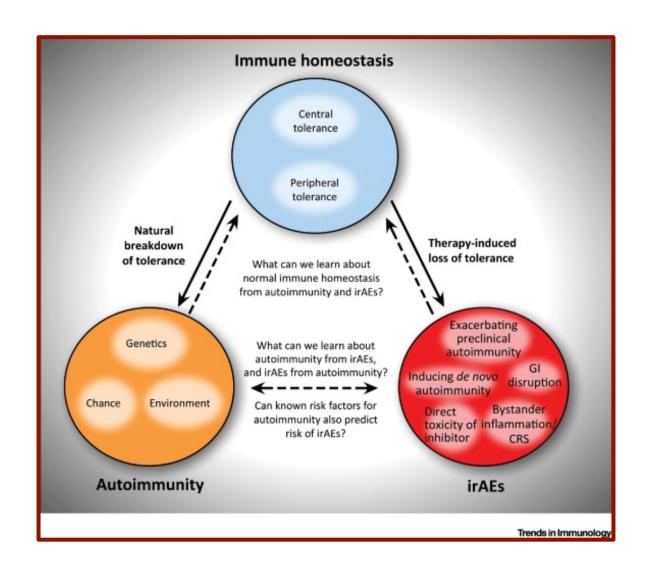


« Petits » inconvénients de l'immunothérapie anti-tumorale

« L'immunologie, c'est la science du Soi et du Non-Soi » Frank MacFarlane Burnet (1899-1985)


Facteurs génétiques

Environnement

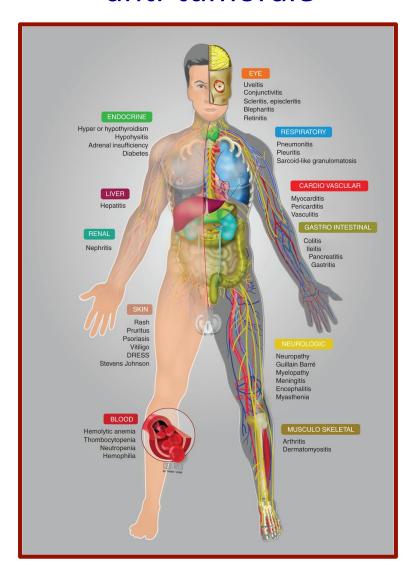
Dérégulation de la balance immunitaire

₹*5*

AUTO-IMMUNITE

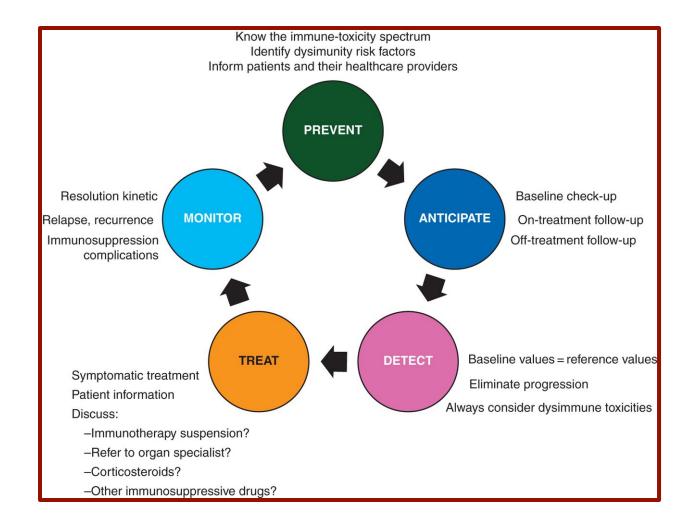
Plusieurs niveaux dans la tolérance immunitaire

Type de tolérance	Mécanisme	Site
Tolérance centrale	Délétion des clones « interdits »	Thymus (T) Moelle osseuse (B)
Cellules T régulatrices (Treg)	TGF β , IL-10, signaux intercellulaires	Tissus lymphoïdes secondaires, site d'Inflammation, tumeurs
Séquestration de l'antigène	Barrière physique	Œil, testicule, utérus (fœtus), cerveau (?)
Anergie périphérique	Absence de co-stimulus	Tissus lymphoïdes secondaires
Mort lymphocytaire induite par l'activation	Apoptose	Tissus lymphoïdes secondaires, sites d'inflammation


Maladies auto-immunes spécifiques d'organes

- Diabète de type 1 : Insuline, GAD65, chromogranine A, transporteur du zinc,...
- Sclérose en plaques : MBP, PLP, MOG
- Psoriasis: antigènes de la peau (?)
- Thyroïdites auto-immunes: TSH-R, TG, TPO
- Polyarthrite rhumatoïde : antigènes de la capsule synoviale (?)
- Myasthénie grave : récepteur de l'acétylcholine
- Vitiligo: enzymes de la synthèse de mélanine par les mélanocytes

Maladies auto-immunes systémiques


- Lupus : acides nucléiques
- Polymyosites : ?
- Sclérodermie:?

Maladies auto-immunes liées à l'immunothérapie anti-tumorale

Les 5 piliers de la gestion de l'auto-immunité 2aire à l'immunothérapie anti-tumorale

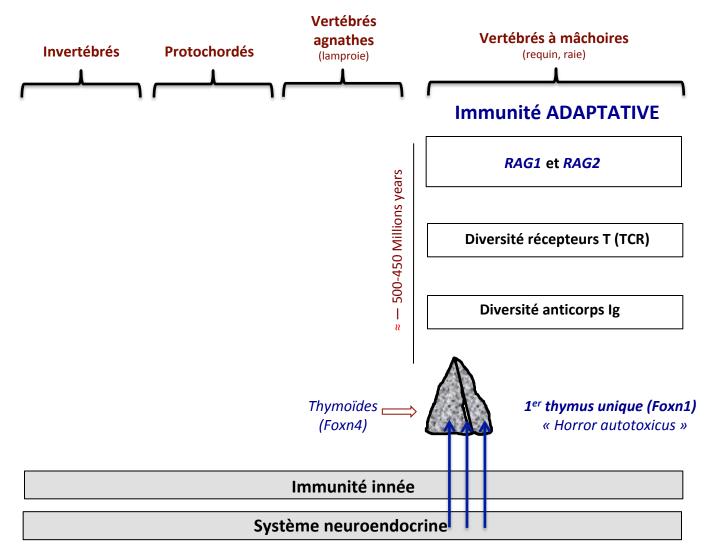
Un modèle théorique sur l'origine des cellules réactives au Soi

Réponse immunogène vs. Réponse tolérogène

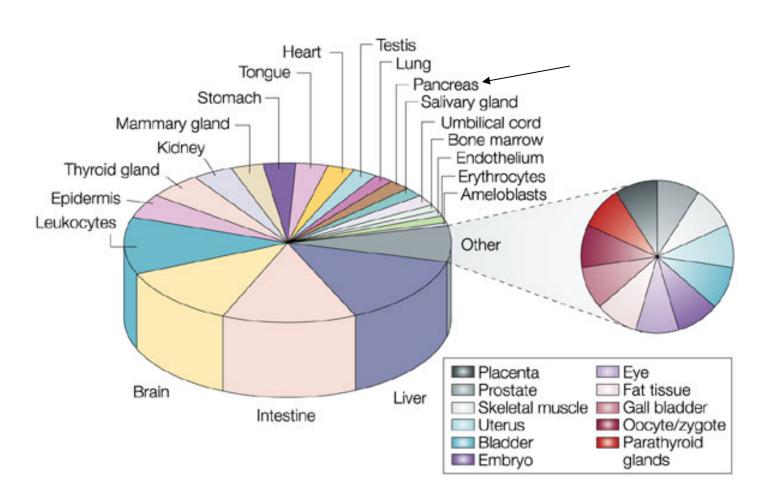
Le répertoire thymique des antigènes du *Soi* neuroendocrine

The galactogogue action of the thymus and corpus luteum
Ott I & Scott JC

Proc Soc Exp Biol Med (1910) 8:49-54


FAMILY	THYMIC SELF ANTIGENS
Neurohypophysial peptides	Oxytocin / OT (>> Vasopressin / VP)
Neurotensin/ Neuromedins	Neurotensin / NT
Tachykinins	Neurokinin A
Natriuretic peptides	ANP
Somatostatins	Cortistatin
Insulin family	IGF-2 (> IGF-1 > Insulin)

Biochimie du *Soi* neuroendocrine


- Gène dominant d'une famille neuroendocrine exprimée dans le thymus.
- Séquences hautement conservées au cours de l'évolution de cette famille.
- Importance pour la préservation des espèces ou l'ontogénie (OT > VP ; IGF2 > INS).
- Pas de sécrétion mais apprêtement en vue d'une présentation par le CMH.

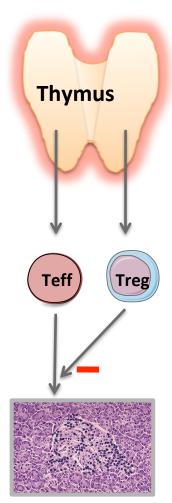
Beauté de l'évolution

Le thymus a permis une coévolution harmonieuse et intégrée entre les systèmes immunitaire adaptatif et neuroendocrine

Expression dans le thymus d'antigènes spécifiques de tissus (TRAs)

Un dysfonctionnement du thymus à la base de l'auto-immunité?

Physiologie du thymus


- Contrôle par AIRE (etFEZF2-) de la transcription de peptides du Soi et de TRAs dans le thymus.
- Délétion des cellules T avec haute affinité pour les complexes CMH/peptides du Soi et TRAs.
- Génération de Treg CD4+ CD25+ Foxp3+ spécifiques des complexes CMH/peptides du Soi et TRAs.

Physiopathologie du thymus

- Absence ou diminution de la présentation de peptides du Soi et de TRAs dans le thymus (APECED/APS-1, maladie de Basedow, syndrome de Down syndrome, rat BB, etc.)
- Enrichissement du répertoire T avec des clones "interdits" (Teff).
- Diminution de la génération de Treg spécifiques de peptides du Soi et de TRAs.

"Pont" entre les cellules Teff "interdites" et les antigènes cibles

Rôle de l'environnement (**virus**, immunothérapie anti-tumorale, nutrition, stéroïdes sexuels, microbiote intestinal, perturbateurs endocriniens, déficience en vitamine D, stress...)

Antigènes cibles

Merci pour votre attention!