Entfernte Partikel haben einen starken und schnellen Einfluss auf das Molekülverhalten

Andreas Pfennig
Products, Environment, and Processes (PEPs)
Department of Chemical Engineering
Université de Liège
www.chemeng.uliege.be/pfennig
andreas.pfennig@uliege.be

liquid water, 37°C, periodic boundaries
Lyapunov instability in liquid water at 37°C

randomization of motion

initial perturbation
consequences

- determinisitic chaos, Lyapunov time
- prediction every 0.23 ps further into the future requires one more decimal digit in start coordinates and calculations
- thus: cannot be predicted over intermediate times
- this is statement only about prediction, not about reality itself

thought experiment

- distant interacting molecule
- nearby observed molecule
- interaction
question:

- How long does it take until the interaction leads to an observable bifurcation?
- bifurcation = shift by molecular diameter

interaction of distant particle 1 for $\Delta t_{\text{interaction}}$

\[F = G \frac{m_1 m_2}{r_{1,2}^2} \]

\[F = m_2 a \]

\[a = \frac{\partial^2 s}{\partial t^2} \]

$\Delta t_{\text{interaction}} \Rightarrow \Delta s_0$

\[\Delta s = \Delta s_0 10^{\Delta t_{\text{scale}}} \]

$\Delta t_{\text{reaction}} = t_{\text{scale}} \left(\log_{10} \frac{2\Delta s}{Gm_1} + 2 \log_{10} r_{1,2} - 2 \log_{10} \Delta t_{\text{interaction}} \right)$
influence between two water molecules

interaction spheres at proceeding time

water molecule with van-der-Waals forces
water molecule with delta gravitation
water molecule with gravitation

reaction time in ps

distance in m

moon
sun
Andromeda galaxy
observable universe

interaction spheres

distant interacting particle

nearby observed molecule

x
y
z

observed molecule

PEPs

Liège université
cone of interaction

- particle at end of observable universe
- at $t = 0$: big bang

33 ps later: bifurcation

picture

- all particles send information
- travels with speed of light
- any particle experiences at every moment the sum of all interactions with all particles
- interactions superimpose linearly
- reacts to this interaction
- if any faraway particle would have been in a slightly different place, after at most 33 ps the observed particle would react differently at any multi-furcation
consequences

- all particles influence each other within 0 to 33 ps on universal scale (possibly much faster)
- but: speed of light
- this is about interaction in reality, not only about prediction
- randomizing effect
- even in a fully deterministic world view
- characterizes reality properly or model deficient
- state at big bang not only initial condition but all particles since then exert a current randomizing influence
- molecules behave random (strictly unpredictable) after few ps at most
- applies to all deterministically chaotic systems

Ernst Mach

There is no cause nor effect in nature; nature has but an individual existence; nature simply is.

A Critical and Historical Account of its Development.
Translated by Thomas J. McCormack.
The Open Court Publishing Co., Chicago, 1919.
Entfernte Partikel haben einen starken und schnellen Einfluss auf das Moleküverhalten

Andreas Pfennig
Products, Environment, and Processes (PEPs)
Department of Chemical Engineering
Université de Liège
www.chemeng.uliege.be/pfennig
andreas.pfennig@uliege.be