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Context

Structures with clustered natural frequencies & similar mode shapes

Labelleliégeoise, Liege, BELGIUM _
Design: Greisch, Construction: Poncin 3;;;;*.
Photo: Wikipedia 3%




Structures with clustered natural frequencies & similar mode shapes

Mode Fre?l_tljge]ncy Mass [tons]
1 0,390 114
2 0,661 97
3 0,826 162
4 1,055 75
5 1,103 57
6 1,338 21
7 1,343 95

| 8 1,411 79 |
9 1,555 33

10 1,644 39 |
11 1,656 19
12 1,663 15
13 1,673 35
14 1,896 91
15 2,138 15
16 2,324 31
17 2,394 73
18 2,453 44
19 2,572 49
20 0,728 31
o1 2,875 955
20 2,938 55

Mode 8 - Side view
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Structures with clustered natural frequencies & similar mode shapes

-

'Passerelle de Mantes-la-Jolie-Limay, FERANCE
Design: Terrell Group, Construction: Viry
Iﬂhoto: M. Fieschi, le Parisien




Context

Structures with clustered natural frequencies & similar mode shapes

Mode Freﬁ_tljge]ncy Mass [ton]
1 1,12 86
2 1,20 83
3 1,26 77
4 1,55 65
5 2,11 49
6 2,26 40
7 2,61 60

Mode 3 - Top view




llustrative problem

Structures with clustered natural frequencies & similar mode shapes

Equipped with several Tuned Mass Dampers (TMD)

(

1 Vertical mode

2 Horizontal modes

)




llustrative problem e

TMD 1
985 tue 0 o o Mode | ™®9UeNSY \\ass ftons]| TMD1 | TMD2
Ssseeanayagy sy oL I AR FRREAACayes os B, [Hz]
“ TR 1,12 86 1 (antinode)| 0,65
o Mode 1 - Top view s 3 1,26 77 .09 |1 (antinode)

Structural (inherent) damping: 0.4% (in each mode)
Generalized load: 750 N (in each mode)
TMD1: 1400 kg, TMD2: 1400 kg

Addition of 2 TMD

02 1 1 I l | 1 1 I
i | 1 Vod 3 _ Use 1-DOF design formula
' | l¢&— Und d
1 i neempeT e _ (e.g. den Hartog, Warburton)
I
Py
0.14 + | - .
R i.e. treat each mode separately

0.12 .
| ,, l\ " \ r Target acceleration |

' T
0.08 ,, \A’ \\ i

|
0.06 | II \\ \\ i
A \
0.04 |- / / \ N i
/ N o ™ <
0.02 |- a ~ = .
ﬁ/// —————————————————
Y : s ; s
Freq. [Hz]



llustrative problem

SRR RO R

0.2

TMD 1

pais. S
Mode 3 - Top view e

Mode 1 - Top view

TMD 2

0.18 |-

0.16 |-

0.14

012

0.1

0.08 |-

0.06

0.04

0.02

Mode 1
Mode 3

: With 2 TMDs
<

Without TMD interaction

1 1.5 2

Freq. [Hz]

2.5

Mode Fre‘[ﬁzncy Mass [tons]] TMD1 | TMD2
1 1,12 86 1 (antinode) 0,65
3 1,26 77 -0,9 1 (antinode)

Structural (inherent) damping: 0.4% (in each mode)
Generalized load: 750 N (in each mode)

Addition of 2 TMD

Use 1-DOF design formula
(e.g. den Hartog, Warburton)

TMD1: 1400 kg, TMD2: 1400 kg

l.e. treat each mode separately

This is how you believe the
structure will behave ...

But in fact, there is coupling ...



llustrative problem

¥

0.2

0.18 |-

0.16 |-

0.14

0.12

0.1

0.08

0.06

0.04

0.02

TSR -
bt | <G iy
Mode 3 - Top view
........ Mode 1
-------- Mode 3| |
With 2 TMDs
15 2.5

Freq. [Hz]

Mode Fre‘[ﬁzncy Mass [tons]] TMD1 | TMD2
1,12 86 1 (antinode) 0,65
3 1,26 77 -0,9 1 (antinode)

Structural (inherent) damping: 0.4% (in each mode)
Generalized load: 750 N (in each mode)

Addition of 2 TMD

Use 1-DOF design formula
(e.g. den Hartog, Warburton)

TMD1: 1400 kg, TMD2: 1400 kg

l.e. treat each mode separately

This is how you believe the
structure will behave ...

But in fact, there is coupling ...

Loss of accuracy of 25% !




llustrative problem

¥

Mode Fre‘[ﬁzncy Mass [tons]] TMD1 | TMD2
1,12 86 1 (antinode) 0,65
3 1,26 77 -0,9 1 (antinode)

Structural (inherent) damping: 0.4% (in each mode)
Pkl Generalized load: 750 N (in each mode)
REFes - TMD1: 1400 kg, TMD2: 1400 kg

Mode 3 - Top view

02 [ 1 | |

0.16 |- -
To use classical 1-DOF tuning formula
for close natural frequencies is inaccurate.

0.14 |- -
Lo With 2 TMDs
0.12

0.1
0.08

0.06

] Use 2 TMD for 2 modes
] How to design them ?

0.04

0.02

0.5 1 1.5 2 2.5
Freq. [Hz]
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llustrative problem

¥

L

Mode 1 - Top view i+,

0.2 I [ [

— — Mode 1
— — Mode 3

With 1 TMD
0.14

0.12

0.1

0.08

0.06

0.04

0.02

0.5 1 1.5 2 2.5
Freq. [Hz]

Mode Fre‘[ﬁzncy Mass [tons]] TMD1 | TMD2
1,12 86 1 (antinode) 0,65
3 1,26 77 -0,9 1 (antinode)

Structural (inherent) damping: 0.4% (in each mode)
Generalized load: 750 N (in each mode)
TMD1: 1400 kg, TMD2: 1400 kg

(Use just 1 TMD instead with 4000 kg)

Use 1 TMD for 2 modes
How to designit ?
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Given a structure with known mode shapes and natural frequencies,
Design a damping system with less devices (TMD, TID) than the number of modes

M; O
Modal matrices M = 0 M,
KO _
K = 0 K
o 0 _
C = 0 (O
¢1()
Mode shapes A N~ A A Mode
A — X ———A Mode 2

12



Considered Problem

Add damping device & find optimal parameters

Modal matrices

q1

LTMD

Coupled equations

My 0 O 0O 0 O
M = 0O My O |+ 0 0 O
0 0 0] |00
K1 0 0] 0T P12 —p1 |
K = 0 Ky O k1 o1p2 ¢35  —pg
00 0 ~p1 —pr 1
' C, 0 0 0l P12 —p1 |
C = 0 Cy 0 c|l vro2 @3 —po
0 0 0 | —p]  —9 I
A N A A Mode 1
A — X ———A Mode 2

T— Location of tuned device (TMD, TID)

13
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Given the augmented structural matrices, find TMD location and parameters such
that the Frequency Response Function

H(w) = (—Mw?® + iwC + K)_1

IS smalller than a target value, in a certain norm.

Option 1 : numerics
Option 2 : analytics
Option 3 : approximate analytical solution (perturbation method)

1. Compute new modal basis (K — A\*M)¢ = 0

2. Compute new modal matrices M* = ¢ 'M¢p : C* =¢'Codp ; K*=o¢p Ko
3. Notice that C* is not diagonal (non proportional damping)

4. Solve problem in new modal basis (coupled through damping only)

5. Return to original variables



Solution Methodology — Perturbation Method

Observe existence of small numbers :

m

: 2
e Massratio: u = —— =€
v p
: : w — W
e MIStuNINg : v = TMD L = eV
w1
o Struct./TMD displacement : ~ ¢
, wo — W
. close nat. frequencies: 3 = 2“1 _ 3,
1
. . Ch
o damping ratios : = = c&s1
ping & = garor =&
C
ETMD = =&
2MwWTMD
Without TMD
Re-write structural matrices : M = M, Vodiiestonsdueto THD

C = Cy # Cie + ord (¢7)
K=K+ Kje + ord (52)

¥

15



Perturbed Modal Basis

1. Compute new modal basis (K — AM) ¢ =0
Ko + Ky — (Mo + M) Mo ¢ = O(?)

Assume anstaz: A= \g+eA; + ord(€2)

Ord(EO) I(KQ — )\OMO)¢O — O,
ord(e!) :(K; — \iMyg) ¢, = 0.

Eigen values
1.4

)\0+€)\1

13l Mode 3

1.2

11} 1

1

09+F

0.8+ Exact

—— Perturbation - —

0.7

0 0.01 0.02 0.03 0.04

¢ = ¢y + ey + ord(e?)

(as if without TMD)
(correction, simple since Mgis diagonal)

Eigen modes

’ Mode 1 ’ Mode 2 ’ Mode 3
1
0.5 0.5 k— 0.5 1
TMD
1 TMD

-0.5 0.5 0.5
TMD 2

1 -1 -1

0 0.05 0 0.05 0 0.05
p p p

w1 = 1; po = —0.8; & = 0.4%

£ =1.112; v and &pyp = variable

(den Hartog on mode 1)
16



2. Compute new modal matrices M* = ¢ 'M¢p ; C* =¢'Cod : K*'= o Ko
at leading order : M, = ¢y Moo, , Ki; = ¢ Koy , ...

at second order : K* = ¢, K19, , ...

C*
Determine, for instan mping rati tl INg order): & =
ete e, for instance, damping ratios (at leading order): &; = 2\/M*K*
I'és + Emp . o1\ My P2
ii = with 1" = — -
S, I +1 AN ) gL\ =25,
Damping ratios £
0.09 : i
0.08 —— Exact
[ —— Perturbation, 1st O. Accurate for moderate values
0.07+ — — Perturbation, 2nd O.

of mass ratio

0.06

0.05 | Captures the right trend, even
0.047 at leading order

0.03 F

0.02 + = A .

0.01 / _ 01 =1; oo = —0.8; &5 = 0.4%

0 001 002 003 004 005 £ =1.112; v and &pyp = variable

f (den Hartog on mode 1)
17
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3. Notice that C* is not diagonal (non proportional damping)
4. Solve problem in new modal basis (coupled through damping only)

H* (w) = (—-M*w? + iwC* + K*)_1 does not take a simple analytical solution
H*(w) = [-Mjw? +iw (C§ +eC7) + (Ki +K75)|] =" ... even with series expansion
t t t t t
Diagonal Full Full Diagonal Diagonal

Split C™ into (large) diagonal elements and (small) out-of-diagonal elements

c = Cj

Neglect out-of-diagonal elements : Hj;,,(w) = [-Mjw® +iw (C§ 4 +eCt 4) + (K +eK7)|

oot
Partly consider the coupling: H . (w) ~ (I afangwHEiag(wbi{Tﬁggo @ ) ) Hipgl (wiponai

No matrix inversion l

18



Frequency

Response Function

¥

5. Return to original variables

15

| H1q)

10 ¢

Mode 1

1.5

15

| Hoo|

10 ¢

Mode 2

1.5

— H(w) = (—Mw2 + 1wC + K) -1

5 = 1.112; H = 3%, V = 0971, fTMD = 104%

01 = 1; po = —0.8; & = 0.4%

| H 33

15

TMD

10 ¢

05 1 15
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Frequency Response Function e

5. Return to original variables B =1.112; p = 3%;v = 0.971; {&rvp = 10.4%
o1 =1; p2 = —0.8; & = 0.4%

|H11] ; ‘HQQ‘ . ‘Hgg‘
| Mode 2 TMD

10} ] 10} /\ | ol

15

0.5 1 1.5 0.5 1 1.5 0.5 1 15

— H(w) (—Mw2 + 1wwC + K) ~1 (Exact)
H(w) = (—Mow? +iwCo + Ko) ~*

20



Frequency Response Function e

1 =1; oo = —0.8; & = 0.4%

5. Return to original variables

| H11 | | Hoo| ‘H33‘

15 . 15
Mode 1 Mode 2 TMD

15

10 b . 10} 10}

0.5 1 1.5 0.5 1 1.5 0.5 1 1.5

—— H(w) = (-Mw?” +iwC + K) ~" (Exact)
H(w) = (—Mow? +iwCo + Ko) ~*
— H(Ww) = [—M0w2 +iw (Cp +eC1) + (Ko + 5K1)} -

21



Response Function

Frequency

¥

5. Return to original variables B =1.112; p = 3%;v = 0.971; {rvp = 10.47%
01 =1; pg = —0.8; & = 0.4%

. H i | His|
Mode 1 | TMD |
| N | | T | | ) _

A N 7 e p - _ S

— H(w) = Mw2+iwC+K)_1(Exact)

H MOWZ +wCyp + KO) —1

MOW2 + 1w (C() + 601)

(-
(-
= [~
¢

+ (Ko +¢K1)] ~
o (I—iwH,, (w) (Cj, +eCi,)) Hziag(w)qbg ( Proposed )
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Results :"'

Response to broad-band excitation

. |
Mode 1 | + 00
| 5, = / H(w)S, (w) A" (w)dw
5| - Variance of the acceleration in structural mode shapes :
2 Sp,j‘z (Wz) TW;
s : 15 @ Mz'*z 2£z,z
w
5 b 5 ~ \gii:F€s+€TMD
’ I'+1
—— H(w) = (-Mw? + iwC + K) ~' (Exact)
H(w) = (—Mow? + iwCo + Ko) ~*

- H(C«.)) [ Mow + 1w (CO -+ 501) (KO + EKl)} N
- H(w) — qu (I o 1WHdiag( ) (CO,O + 5C>{,O)) HZiag(w)¢g ( Proposed )
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Results

¥

Response to broad-band excitation
Optimality plot (find optimum TMD parameters)

0.15

O.1¢

fTMD

0.05

0.15

O.1¢

gTMD

0.05

Exact

U1

0
0.8 0.9 1 1.1

Proposed
0.15 . '

:; y

0.15

O.1¢

0.05}

53

B

B=1.112; up= 3%

01 = 1; po = —0.8; & = 0.4%

Proposed method is
asymptotically accurate as
mistuning and damping
tend to zero

Proposed method is
based on a simple
analytical formula
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Exact analytical solutlon are heavy —>Ffﬁ%loﬂ' smallness of several small numbers

modes (not presented here)

Equivalent uncoupled system
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Thank you !
Questions ? Comments ?
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