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Abstract: This paper develops a simple mathematical model for the analysis of
a 2-dof modal model equipped with a tuned mass damper. The final aim of this
formulation is to develop a simple design procedure to assess the influence and
possibility of using a single tuned mass damper to mitigate the vibrations in
two structural modes having close natural frequencies and mode shapes. The
method is based on the coupled analysis of modal responses under stochastic
loading. Random processes are employed to represent the loading and the
acceleration in the structural mode shapes. After a proper rescaling offering
an appropriate distinguished limit, a perturbation method of the eigenvalue
problem is developed and the variances of these responses are expressed at
first order by accurate and simple analytical expressions.

1. Introduction

The discomfort occasioned by dynamic loads such as crowds or turbulent winds constitutes

a topic of growing concern in the conception of modern footbridges. The discomfort is

generally expressed in terms of acceleration. Guidelines such as that edited by the Sétra

[10] or the final report of the HIVoSS project [6] determine acceleration thresholds to not

exceed. When thresholds are exceeded it is usual to mitigate the vibrations with tuned mass

dampers (TMDs). Their design therefore targets the minimization of the response until it

meets the comfort criteria. In the case of SDOF structures, several formulations for the

optimum damper design exist [4], among which the famous Den Hartog’s formula [5], which

provides the optimal parameters for one TMD to damp vibrations in one structural mode.

For MDOF structures, a classical solution is to dedicate a damper for each mode which leads

to the repeated use of Den Hartog’s formula. This solution does not include the coupling

between the modal responses; each mode is indeed treated separately, i.e. considered like

a SDOF system. This could be detrimental to the optimal functioning of the dampers.

Also, in some cases of mode shapes with close natural frequencies and mode shapes, it

happens that a single TMD could be used to mitigate vibrations in both modes at the same

time. This work contributes to the development of simple design methods to account for the

existing coupling between several modes. More specifically, we develop the design formulae

to assess the efficiency of a single TMD to mitigate vibrations in two structural modes. This



conceptual solution has been made feasible thanks to the concept of Tuned Inerter Damper

[11] which allows to virtually reach high mass ratios [8].

2. The considered problem

Let us consider a structure represented by its modal mass matrix Ms, modal damping matrix

Cs and modal stiffness matrix Ks. It is assumed that the inherent damping is of classical

type [1], so that all three M×M matrices (with M the number of modes) are diagonal. These

matrices are associated with the M × 1 vector q(t) of modal coordinates of the structure

without TMD.

In this paper we study the influence of a single tuned-mass damper TMD on the struc-

tural response. The TMD is modeled by a mass m, a spring k, and a viscous damping c. It

is located at a position of the structure where the modal amplitudes are ϕ = [ϕ1, · · · , ϕM ]T .

Besides, the TMD brings a new degree of freedom to the system and the global system

{Structure + Damper} has (M+1) DOF. It is characterized by the following structural ma-

trices

M =

 Ms 0

0 m

 ; C =

 Cs 0

0 0

+ c

 ϕϕT −ϕ
−ϕT 1

 ; (1)

K =

 Ks 0

0 0

+ k

 ϕϕT −ϕ
−ϕT 1

 , (2)

and an augmented response vector y(t) =
[
qT , qTMD

]T
where qTMD corresponds to the

amplitude of the TMD. The new stiffness matrix K being fully populated, it might be

advantageous to compute the modal basis of the global system. It is obtained by solving(
K−Mω2

)
Φ = 0. In the new basis defined by the mode shapes Φ, the structural matrices

M∗ = ΦTMΦ and K∗ = ΦTKΦ are diagonal matrices, by construction, while it is certainly

not the case for C∗ = ΦTCΦ. In this new basis, the equation of motion reads

M∗z̈ + C∗ż + K∗z = p∗ (3)

where z(t), defined as y(t) = Φz(t), is the vector of generalized coordinates of the augmented

problem and p∗(t) = ΦTp(t) represents the modal (generalized) loads. It is obtained as a

function of the loads on the augmented problem, which read p(t) =
[
pTs (t), 0

]T
where ps

represents the modal loads on the structure (with the modal basis of the original structure).

The upper dot denotes derivatives with respect to time t.



The use of the stationary stochastic loading considered in the following developments

suggests the frequency domain formulation of (3),

Z(ω) = H∗(ω)P∗(ω) (4)

where

H∗ (ω) =
(
−M∗ω2 + iωC∗ + K∗

)−1
. (5)

The loading model can be described using one of these approaches : deterministic or stochas-

tic. With a deterministic approach, a precise description is provided for the loading. Not

all the phenomena can be described with such a model. For instance, wind and crowd loads

cannot be described with such certainty. As soon as environmental loads or loads resulting

from human activity are concerned, which is customary in civil engineering applications, the

treatment of such phenomena is done with the attribution of a certain randomness. Accord-

ingly, the loading is modeled as a random process characterized by statistical characteristics.

It is assumed that the loading is Gaussian and stationary, so that it is represented by its

Power Spectral Density (PSD). In order to provide a simple loading model, we have chosen

band-limited white noises for the loading, i.e a constant power spectral density S0 in the

range [−ωmax, ωmax]. This is not a limitation; any other more realistic power spectral density

could be considered.

3. Solution methodologies

Three solution methodologies are presented in the sequel. They are termed exact, uncoupled

and corrected (referring to the first correction of an asymptotic series). These three solutions

will be compared; they are established sequentially.

3.1. Solution 1 : Exact solution

The exact solution is the formal stochastic analysis (REF) and does not formulate any

assumption about the generalized damping matrix C∗, the transfer function H∗(ω) being

therefore obtained through a full matrix inversion as in (5).The PSD matrix of the response

(the displacement) is given by [1]

Sz = H∗Sp∗H
∗T
. (6)

The integral of the PSD matrix over the frequency space yields the covariance matrix Σz.

The diagonal components of Σz represent the variances of the augmented vector z(t) while

the off-diagonal components incarnate the interaction between the responses in the different



modes. Simple expressions of the variance and covariance of the modal accelerations are

derived by [9], based on a multiple timescale approach[2]. A white noise approximation is

employed, that consists in the replacement of the PSD of the modal forces by a white noise,

such that the intensity is considered at the level of the resonance frequency. All in all, the

variance and covariance of the modal responses read

σ2
z̈m =

Sp∗m,m

M∗2m
(2ωmax+

πωm
2ξ

); σ..
zm,n

=
Sp∗m,n

K∗mK∗n

(
2ωmaxω

2
mω

2
n+

1

4

(ωm + ωn
2

)4 π(ξ − iε)
2ε(ε2 + ξ2)

)
(7)

with ξ the damping ratio in the considered mode, ξ is the average damping ratio in the two

considered modes (please notice that a refined version with a longer expression is available

in [3]) and ε a parameter related to the relative distance between natural frequencies.

Following the definition y(t) = Φz(t), the variances of the structural response in the

original mode shapes σ2
q̈ are then computed using the modal decomposition. They are

expressed as a function of the quantities given in (7) :

σ2
q̈ =

M+1∑
m=1

φ2
mσ

2
z̈m + 2

M+1∑
m=1

M+1∑
n 6=m

φm φnσz̈m;n . (8)

It turns out that these analytical expressions involve parameters that are not defined

explicitly, such as the natural frequencies of the augmented system (ωm, ωn), or the corre-

sponding modal damping ratio ξ. The purpose of sections 4.2 and 4.3 is to derive analytical

formulations of these modal properties, in order to obtain the variance by means of (8).

The exact solution is accurate but requires heavy numerical developments and prohibits

therefore any clear understanding of the solution.

3.2. Solution 2 : Uncoupled/Diagonal solution

At the opposite, the uncoupled solution is obtained by eliminating the off-diagonal compo-

nents in the generalized damping matrix C∗d. Assuming a diagonal damping matrix C∗d, this

results in a diagonal transfer matrix H∗d, such that

H∗d(ω) = (−M∗ω2 + iωC∗d + K∗)−1. (9)

It presents the advantage to be interpretable and simple to compute. It is, nevertheless, not

accurate as the information contained in the off-diagonal components is lost.

3.3. Solution 3 : Corrected solution

According to the method developed by [12], the damping matrix C∗ can be seen as the

sum of an exclusively diagonal matrix C∗d and an off-diagonal matrix C∗0. Using the same



notations as in [12], the transfer function can be written

H∗(ω) = (I + J−1
d J0)−1J−1

d M∗−1 (10)

where Jd = −Iω2 + iωM∗−1C∗d + M∗−1K∗ and J0 = iωM∗−1C∗0. Whenever J−1
d J0 is one

order of magnitude less than I, it is permitted to write the following expansion [12]

(I + J−1
d J0)−1 ' (I− J−1

d J0) = (I−H∗dM
∗J0) = I− iωH∗dC

∗
0. (11)

An approximate expression of H∗ is therefore obtained, which avoids the full matrix

inversion. It is, as stated before, a sort of an intermediate approach. Indeed, its expression

contains the contribution of diagonal components through H∗d(ω), and off-diagonal compo-

nents through C∗0. This leads to the corrected transfer function defined as

H∗c(ω) = (I− iωH∗d(ω)C∗0) H∗d(ω). (12)

In a deterministic approach, the computation of the response Zc (ω) is obtained by replacing

H∗(ω) by H∗c(ω) in (4); this yields

Zc = H∗cP
∗ = Zd − iωH∗d(ω)C∗0Zd (13)

where Zd = H∗dP
∗ is the response of the uncoupled problem, see Solution 2. The re-

sponse Zd computed through the uncoupled approach, is completed by a residual term

∆Zc := −iωH∗d(ω)C∗0Zd, that is a function of Zd. The correction of the uncoupled approach

provides the corrected solution Zc. Consequently, the reintroduction of Zc as an input per-

mits the computation of a corrected and more accurate response. In an iterative manner,

this approach offers a recurrence scheme approaching the “exact” result.

4. Analysis of a 3-DOF model

Given a 2-DOF structure, the implementation of one TMD leads to a global system of 3

DOFs. The matrices of mass, damping and stiffness are thus of size 3x3.

M =


M1 0 0

0 M2 0

0 0 m

 ; K =


K1 0 0

0 K2 0

0 0 0

+ k


ϕ2

1 ϕ1ϕ2 −ϕ1

ϕ1ϕ2 ϕ2
2 −ϕ2

−ϕ1 −ϕ2 1



C =


C1 0 0

0 C2 0

0 0 0

+ c


ϕ2

1 ϕ1ϕ2 −ϕ1

ϕ1ϕ2 ϕ2
2 −ϕ2

−ϕ1 −ϕ2 1





4.1. Perturbation method

A perturbation method is employed for the mathematical developments. This method con-

sists in comparing the contributions of the problem parameters. The parameters that have

small effect are identified and repelled to a higher order, keeping the essence of the informa-

tion but with less complexity. In this way, a distinguished limit is constructed [7].

The method is built around a dimensionless parameter 0 < ε � 1 which symbolizes a

sort of a scale of the problem. Starting from assumptions about the orders of magnitude of

the physical parameters, the next step is to express each of them as a series expansion of ε.

The purpose of the method in the current context is to approximate the modal properties

such as the natural frequencies and the damping ratios of the damped system. Before that,

it is important to particularize the definition of the properties of the TMD (ωTMD =
√
k/m),

and make assumptions about their order of magnitude. A distinguished limit is obtained by

defining

m = µ M = (ε2µ1)M1 ; k = mω2
TMD = ε2µ1(1 + 2εν2)K1 ; ωTMD = (1 + εν2)Ω1. (14)

where µ1 and ν2 are of order 1. Two other dimensionless parameters introduced in order to

express the relative magnitudes of the modals masses and frequencies in the structural modes

: M2 = M2/M1 and β = Ω2/Ω1 =
√
K2/M2/

√
K1/M1 . The latter parameter measures the

distance between the natural frequencies and can be written as β = 1 + bε, with b = ord(1).

The range of study of β is limited to values close to the unity. The targeted range of β is

[1; 1.2], because for higher values the effect of the modal coupling is limited.

The quantities above are established as a function of the properties of the first mode

(M1,K1,Ω1). This is an arbitrary choice; it could as well have been possible to perform the

developments with respect to the second mode properties. For the sole purpose to lighten

the equations, M1 and K1 are taken equal to 1; this could be formalized by introducing a

dimensionless time. The resulting matrices are

M =


1 0 0

0 M2 0

0 0 ε2µ1



K =


1 0 0

0 β2M2 0

0 0 ε2µ1

+ ε2µ1(1 + 2εν2)


ϕ2

1 ϕ1ϕ2 −ϕ1

ϕ1ϕ2 ϕ2
2 −ϕ2

−ϕ1 −ϕ2 1

 (15)

The mode matrix Φ is a 3 × 3 matrix gathering the three mode shapes. Each of them

takes a form similar to φ =
[
φs,1 φs,2 φTMD

]T
where φs,j is the amplitude of the mode



(j = 1, 2) of the original structure, whereas φTMD is the amplitude of the response of the

TMD. The latter is one order of magnitude larger than the structural amplitudes. In order

to maintain the consistency of the dimensionless development, the re-scaled amplitude of the

TMD must be of the same order as the structural amplitude. For that purpose, a re-scaled

mode shape φ̃ is defined as

φ̃ =


1 0 0

0 1 0

0 0 1/ε

φ := A(ε)φ. (16)

This scaling leads to the establishment of the matrices M̃ and K̃ as power series expan-

sion of ε,

M̃ = ATMA = M0 and K̃ = ATKA = K0 + K1ε+ ord
(
ε2
)

(17)

where

M0 =


1 0 0

0 M2 0

0 0 µ1

 ; K0 =


1 0 0

0 M2 0

0 0 µ1

 ; K1 =


0 0 −µ1ϕ1

0 2bM2 −µ1ϕ2

−µ1ϕ1 −µ1ϕ2 2ν2

 .
Similarly the damping matrices associated with the structural damping on one hand,

and with the damping of the TMD, on the other hand can be written

C̃s = ATCsA = Cs,0+Cs,1ε+ord
(
ε2
)

and C̃d = ATCdA = Cd,0+Cd,1ε+ord
(
ε2
)

(18)

where

Cs,0 =


2ξs 0 0

0 2M2ξs 0

0 0 0

 ; Cs,1 =


0 0 0

0 2bM2ξs 0

0 0 0

 ;

Cd,0 =


0 0 0

0 0 0

0 0 2µ1ξTMD

 ; Cd,1 = 2µ1ξTMD


0 0 −ϕ1

0 0 −ϕ2

−ϕ1 −ϕ2 ν2

 .
In order to simplify the following notations, the tilde symbol is dropped.

4.2. Determination of the natural frequencies

The eigenvalues are the solutions of (K − λ2M)φ = 0 with λ = ω2/Ω2
1 . The eigen vectors

and eigen values are sought in the form of the following ansatz λ = λ0 + ελ1 + ord(ε2)



and φ = φ0 + εφ1 + ord(ε2). Application of standard perturbation methods yields, after

balancing the likewise powers of ε,

ord(ε0) : (K0 − λ0M0)φ0 = 0,

ord(ε1) : (K1 − λ1M0)φ0 = 0.
(19)

The solution of the problem at first order is readily obtained as λ0 = (1, 1, 1)T , while

the mode shapes φ0 cannot be computed as the matrix (K0−λ0M0) is nil. At second order,

the value of λ1 is seen to satisfy the following 3rd degree polynomial equation

λ3
1 − 2 (b+ ν2)λ2

1 +

(
4bν2 − µ1

(
ϕ2

1 +
ϕ2

2

M2

))
λ1 + 2µ1ϕ

2
1b = 0. (20)

The solution of this equation provides the three roots associated with the three different

natural frequencies of the coupled problem.

4.3. Determination of the equivalent damping ratios

Stepping back to the eigenvalue problem at order ε1. The eigenvectors φ0 are expressed

as a function of λ1 which is known from leading order, i.e. as one of the roots of (20). In

order to simplify the following notations, symbol λ1 is kept instead of its complete analytical

expression. With this, the ith eigen mode (i = 1, ...3), at leading order, is given by

φi0 =

(
−µ1ϕ1

λi1
,− µ1ϕ2

(λi1 − 2b)M2

, 1

)T
. (21)

This first order approximation of the mode shapes is used to determine the leading order

approximation of modal matrices,

M∗i,j = φiT0 M0 φ
j
0 =

µ2
1ϕ

2
1

λi1λ
j
1

+
1

M2

µ2
1ϕ

2
2

(λi1 − 2b)(λj1 − 2b)
+ µ1

K∗i,j = φiT0 K0 φ
j
0 =

µ2
1ϕ

2
1

λi1λ
j
1

+
β2

M2

µ2
1ϕ

2
2

(λi1 − 2b)(λj1 − 2b)
+ µ1.

Similarly, the generalized damping matrices are given by

C∗s,i,j = φiT0 Cs,0 φ
j
0 = 2

(µ2
1ϕ

2
1

λi1λ
j
1

+
1

M2

µ2
1ϕ

2
2

(λi1 − 2b)(λj1 − 2b)

)
ξs

C∗d,i,j = φiT0 Cd,0 φ
j
0 = 2µ1ξTMD.

A dimensionless viscosity quantifying the modal coupling (defined as an extension of the

damping ratio) is approximated, at first order, by

ξi,j =
C∗s,i,j + C∗d,i,j

2
√

M∗i,jK
∗
i,j

=
µ1(

ϕ2
1

λi
1λ

j
1

+ 1

M2

ϕ2
2

(λi
1−2b)(λ

j
1−2b)

)ξs + ξTMD

µ1(
ϕ2
1

λi
1λ

j
1

+ 1

M2

ϕ2
2

(λi
1−2b)(λ

j
1−2b)

) + 1
. (22)



As a particular case, when i = j, one recovers the modal damping ratios. After some

simplifications, they take the simple form

ξi,i =
Γ ξs + ξTMD

Γ + 1
, (23)

i.e. a weighted average of ξs and ξTMD, where Γ = Γ1 + Γ2 is the sum of two positive

quantities

Γ1 = µ1

(
ϕ1

λi1

)2

and Γ2 =
µ1

M2

(
ϕ2

λi1 − 2b

)2

. (24)

These dimensionless groups play a major role in the understanding of this problem. Indeed,

two different structures equipped with possibly different tuned mass dampers will exhibit

the same dynamical behavior (at leading order) as soon as they are characterized by these

two same dimensionless groups.

As a first limit case, the modal damping ratio tends towards ξs, when λ1 → 0 or

λ1 → 2b. In the first configuration, Γ1 is the dominant term, while it is Γ2 in the second. As

a second limit case, the damping ratio converges towards ξTMD when λ1 →∞ ; in this case

both Γ1 and Γ2 are small quantities. The intermediate case appears therefore as the most

interesting one. It corresponds to the case where Γ1 ∼ Γ2. This can drive the designer to

the determination of the optimal placement of a TMD, i.e. at a location that satisfies

ϕ1

ϕ2
= (1 +

2b

λi1 − 2b
)

1√
M2

. (25)

Equations (24) can provide a much wide outlook over this problem. For instance, they

show that, when the damping is governed by Γ2, the modal damping ratio is expressed as a

function of µ1ϕ
2
2/M2. This indicates that the optimal configuration should be such that ϕ2

is multiplied by
√
θ when M2 is multiplied by θ. Same observations apply for changes in µ1.

5. Validation

The method is inspired by the example of the footbridge of Mantes Limay in Paris (France).

This structure composed by 3 spans, is modeled by a 2-DOF structural system. The modal

characteristics are summarized in the following table. The structure is subjected to crowd ex-

citation, inducing lateral accelerations. The modal forms are idealized, they are represented

in the Figure 1 where the position of the TMD is indicated by a star.
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Figure 1. Modal characteristics of the 2DOF model

The PSD of the acceleration is displayed in the following figure. The corrected plot

converges better towards the exact result. The shape and the amplitude is well approximated,

comparing to the “diagonal” plot refering to the uncoupled approach.
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Figure 2. PSD - Different approaches

The natural frequencies and the modal damping ratios are well approximated with the

analytical expressions. The table below evaluates the relative error of the analytical expres-

sions with respect to the numerical computation, for a mass ratio of 5%. The errors are

smaller for smaller mass ratios.
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Figure 3. Approximation of the modal properties



Relative error Mode 1 Mode 2 Mode 3

Natural frequency ωi 1.3% 0.2% 3.5%

Damping ratio ξi,i 23% 16% 30%

Table 1. Relative error with respect to the numerical results

The loading being applied on the first DOF, the following figure displays the nodal

variance of the acceleration (equation 8) in the (α, ξTMD) space. The minimum variance is

identified by the cercle.
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Figure 4. Variance as a function of the parameters of the TMD

The brighter region containing the minimal values of the variance, is well reproduced by

the “Analytic” map. It matches the criteria on the optimum tuning α as well, but not the

criteria on the optimum ξTMD.

The method reproduces in a favorable way the dynamic behavior of the MDOF structure.

equations that are lighter and more explicit, favorable for direct interpretations of the

different phenomena involved.
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