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ABSTRACT
The interactions between Arabidopsis thaliana and Plutella xylostella have been considered as a model
system to unravel the responses of plants to herbivorous insects. Here, we use a 2-DE proteome
approach to detect protein expression changes in the leaves of Arabidopsis plants exposed to
P. xylostella larval infestation at 27°C within 8 h. Approximately 450 protein spots were reproducibly
detected on gels. Of these, comparing healthy and infested leaves, we identified 18 differentially
expressed protein spots. Thirteen proteins were successfully identified by MALDI-TOF/MS and LC-
ESI-MS/MS. Functional classification analysis indicated that the differentially identified proteins were
associated with amino acid, carbohydrate, energy, lipid metabolism, and photosynthesis. In
addition, their relative abundances were assessed according to larval pest feeding on Arabidopsis
leaves. These data provide valuable new insights for further works in plant-biotic and
environmental stress interaction.
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Introduction

Throughout the growing season, plants are often challenged
by voracious insects, which triggers a broad range of molecu-
lar defense mechanisms, including profound alterations in
gene/protein expression (Lippert et al. 2007; Atkinson and
Urwin 2012; Duceppe et al. 2012; Kilian et al. 2012; Louis
and Shah 2013; Chuang et al. 2014). It is well established
that the infestation of chewing insects leads to extensive
damage to plant cells, resulting in the upregulation or down-
regulation of gene/protein expression (Collins et al. 2010; Liu
et al. 2010; Ali and Agrawal 2012; Silva and Furlong 2012;
Pineda et al. 2017). Among the chewing insects, Plutella
xylostella (L.) (diamondback moth) specializes in the Brassi-
caceae family, including Arabidopsis thaliana, and induces
differential expression of host genes/proteins (Sarfraz et al.
2006; Barker et al. 2007; Ehlting et al. 2008; Collins et al.
2010; Liu et al. 2010; Silva and Furlong 2012).

The A. thaliana–insect interaction is a model system
used to demonstrate the defense resistance of plants to
leaf chewers, particularly the analysis of cellular changes
at gene/proteomic levels (Kliebenstein et al. 2002; Collins
et al. 2010; Truong et al. 2015; Kroes et al. 2017). Recently,
Kroes et al. (2017) observed the upregulation of various JA-
responsive genes in response to feeding by P. xylostella
caterpillar, by a microarray analysis. The protein expression
changes in A. thaliana leaves due to P. xylostella infestation
were identified by two-dimensional gel electrophoresis (2-
DE) coupled with mass spectrometry in several studies
(Collins et al. 2010; Liu et al. 2010). However, such studies
were only conducted at the optimum temperature for Ara-
bidopsis growth (22°C) (Herde et al. 2008; Antoun and
Ouellet 2013), even if changes in temperature in the

environment can lead to altered protein profiles in plants
(Amme et al. 2006; Loreto and Schnitzler 2010; Rocco
et al. 2013; ČErnÝ et al. 2014). Therefore, here we aimed
to detect changes in the proteins expressed in Arabidopsis
leaves infested by larvae at a temperature higher than 22°
C. To do this, we used a 2-DE approach coupled with
mass spectrometry (MALDI-TOF MS or LC-ESI-MS/MS).
P. xylostella larvae were placed on A. thaliana leaves at
27°C during 8 h. The gathered data provide valuable new
insights into the complex response of plants to chewing
insects at different temperatures.

Materials and methods

Plant material and growth condition

All of the experimental procedures were performed with 5-
week-old A. thaliana (L.) Heynh (Col-0). Seeds (Lehle Com-
pany, TX, USA) were individually sown in plastic pots (0.2 l)
with potting soil and were stored for three days at 4°C in the
dark before being transferred to a growth chamber (21.8 ±
0.5°C). After germination, the seedlings were grown at 21.8
± 0.5°C, 16L:8D (LED lighting: 43 µmol m−2 s−1 photo-
synthetically active radiation during the light period) and
66.2 ± 1.7% relative humidity (RH). The plants were watered
twice a week (tap water, 10–20 ml/pot) for 5 weeks.

Insect rearing

Diamondback moth, P. xylostella (L.) larvae (2nd–3rd instar)
were used in this study. Insects were kept in net cages in a
controlled temperature room at 22 ± 2°C under a 16 h light
regime and 50–70% RH. To maintain P. xylostella population,
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pupae were collected, transferred to a gauze cage, and pro-
vided with 15% sugar solution as a food source in a climate
room. Eggs laid by the adults obtained from the field were
grown on cabbage plants (Brassica oleracea L.) until hatching
into larvae.

Plant treatment

For feeding experiments, nine larvae (2nd–3rd instar) were
applied per Arabidopsis plant at 27°C within 8 h according
to Truong et al. (2014). Non-infested plants at 27°C were
used as controls. Infestation by 9 larvae on Arabidopsis
plant at 22°C over 8 h was also considered as controls. Larvae
were removed, and all plant leaves were carefully frozen in
liquid nitrogen and stored at −80°C until used. Three biologi-
cal replicates were used for the control and larval pest-
infested plants.

Protein extraction

Proteins were extracted according to the phenol-based extrac-
tion method for Arabidopsis plants of Huang et al. (2011),
with some modifications. Independent, frozen Arabidopsis
leaves (0.3–0.4 g fresh mass) were finely powdered in liquid
nitrogen using a pestle and mortar, and suspended in 2.5-
volumes of extraction buffer (0.9 M sucrose, 0.5 M Tris,
0.005 M EDTA, 0.1 M KCl, and 1% W/V DTT) by vortexing
until obtaining a thick paste. Prior to the addition of an equal
volume of Tris-saturated phenol, pH 8.0, the suspension was
sonicated in the ice-cold sonication bath (4°C) for 5 min two
times. The mixture was vortexed, agitated for 10 min at room
temperature in a Thermomixer (1000 RPM), and then centri-
fuged at 5000g for 10 min at 4°C. After removing the upper
phenol phase (dark-green phase), the mixture was extracted
again with the extraction buffer, vortexed, and centrifuged
in the same conditions. The proteins contained in the phenol
phase were precipitated by the addition of five volumes of
saturated ammonium acetate in methanol (0.1 M; precipi-
tation solution), and kept overnight at −80°C. Precipitated
proteins were centrifuged again at 5000g for 10 min at 4°C
and supernatants were discarded. The pellet was washed
with five volumes of precipitation solution, and then by five
volumes of ice-cold (4°C) 80% acetone, centrifuged at
5000g for 10 min at 4°C. Two replicates were conducted for
each step. The protein suspensions were stored at −80°C
until a 2-DE analysis.

Protein-cyanine dye labeling and 2-D gel
electrophoresis

The protein extracts were labeled with one of three Cydyes
(GE Healthcare) according to the standard DIGE protocol
(50 µg protein for each Cydye). Two samples corresponding
to two different groups (Arabidopsis plants were subjected
or not to larval pest feeding at 27°C within 8 h) labeled either
with Cy3 or Cy5 and were mixed with an internal reference
protein standard (pooled from equal aliquots from all of
the experimental samples) labeled with Cy2. A conventional
dye swap for DIGE was performed by labeling two replicates
from each treatment group with one dye (Cy3 or Cy5) and
the third replicate with the other of the two Cydyes. This
mix of labeled proteins was adjusted to a final volume of
250 µl and loaded onto a 24 cm, pH 3–10, IPG strips

(pH3–10NL, GE Healthcare, Little Chalfont, UK) for 12 h
at 20°C and a constant voltage of 50 V. Isoelectric focusing
(IEF) was carried out at 200 V for 200 Vh, 500 V for 5
00 Vh, 1000 V for 1000 Vh, and 8000 V for 60.000 Vh at
20°C and a maximum current setting of 50 mA/strip in an
IEF unit from GE Healthcare. Following IEF, the IPG strips
were equilibrated for 15 min in 375 mM Tris (pH 8.8) con-
taining 6 M urea, 20% (v/v) glycerol, 2% (w/v) SDS, and
130 mM DTT and then for a further 15 min in the same buf-
fer except that DTT was replaced with 135 mM iodoaceta-
mide. Active rehydration was carried out on the IPGphor
(GE Healthcare) under the following conditions: 30 V during
1 h, 300 V during 3 h, gradient to 1000 V in 6 h, gradient to
8000 V in 3 h, 8000 V until 100,000 Vh. The IEF was con-
ducted at 15°C. The 2-DE was performed at 20°C in Ettan
Dalt-six electrophoresis unit (GE Healthcare) at 25 W/gel
for 5 h.

Gel scanning, image analyses, and protein digestion

The 2-DE gel images were scanned with an Ettan DALT-six
System (GE Healthcare) at wavelengths corresponding to
each Cydye. Images were then analyzed with SameSpots soft-
ware version 3.2 (Nonlinear Ltd, Newcastle) according to the
manufacturer’s instructions. Protein spots were excised
(based on their significant expression changes among the
treatments) from the gel using an Ettan spot picker robot
(GE Healthcare).

Selected gel pieces were collected in 96-well plates
designed for the Proteineer dp automated Digester (Bruker,
Bremen, Germany). Briefly, gel pieces were washed with
three incubations in 100% of 50 mM ammonium bicarbon-
ate, and a mix of 50% acetonitrile plus 50% of 50 mM
ammonium bicarbonate. Two additional washes were per-
formed with 100% acetonitrile to dehydrate the gel. Freshly
activated trypsin (Roche, porcine, proteomics grade) was
used to rehydrate the gel pieces at 8 C for 30 min. Trypsin
digestions were performed for 3 h at 30°C. Peptide extrac-
tions were performed with 10 μl of 1% formic acid for
30 min at 20°C.

Protein identification by mass spectrometry

MALDI-TOF/MS
Protein digests (3 μl) were adsorbed for 3 min on pre-spotted
Anchorchips (R) using the Proteineer dp automaton. Spots
were washed on-target using 10 mM ammonium dihydrogen
phosphate in 0.1% TFA and MilliQ water (Millipore) to
remove salts. High throughput spectra were acquired using
an Ultraflex II MALDI mass spectrometer (Bruker) in posi-
tive reflectron mode with close calibration enabled. The
Smartbeam laser focus was set to medium, and the laser flu-
ency setting was 65–72% of the maximum. Delayed extrac-
tions were set to 30 ns. Spectra in the range of 860–3800 Da
were acquired at a 200 Hz laser shot frequency with auto-
mated evaluation of intensity, resolution, and mass range.
Six hundred successful spectra per sample were summed,
treated, and de-isotoped in line with an automated SNAP
algorithm using Flex Analysis 2.4 software (Bruker), and sub-
sequently submitted in batch mode to the Biotools 3.0 soft-
ware suite (Bruker) with an in-house hosted MASCOT
search engine (www.MatrixScience.com).
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Liquid chromatography-electrospray ionization-ion-
trap tandem mass spectrometry (LC-ESI-MS/MS)
Peptide separation by reversed-phase liquid chromatography
was performed on an Ultimate LC system (LC Packings)
complete with Famous autosampler and Switchos II micro-
column switching device for sample clean-up and pre-con-
centration. The sample (30 ml) was loaded at a flow rate of
200 nl/min on a micro-pre-column cartridge (300 mm
i.d. × 5 mm, packed with 5 mm C18 100A PepMap). After
5 min, the pre-column was connected with the separating
nano-column (75 mm i.d × 150 mm, packed with C18 Pep-
Map100, 3 mm, 100 Å) and the gradient started. Elution gra-
dient varied from 0% to 30% buffer B over 30 min, buffer A is
0.1% formic acid in acetonitrile/water 2:98 (vol/vol) and buf-
fer B is 0.1% formic acid in acetonitrile/water 20:80 (vol/vol).
The outlet of the LC system was directly connected to the
nanoelectrospray source of an Esquire HCT ion-trap mass
spectrometer (Bruker Daltonics, Germany). Mass data acqui-
sition was performed in the mass range of 50–1700 m/z using
the Standard-Enhanced mode (8100 m/z/s). For each mass
scan, a data-dependent scheme picked the four most intense
doubly or triply charged ions to be selectively isolated and
fragmented in the trap and the resulting fragments were
mass analyzed using the Ultra-Scan mode (50–3000 m/z at
26,000 m/z/s).

Identification
For identification, we used the public National Center for
Biotechnology Information (NCBI) non-redundant database
with parameters set for Viridiplants. A mass tolerance of
80 ppm with close calibration and one missing cleavage site
were allowed. Partial oxidation of methionine residues and
complete carbamoylation of cysteine residues were con-
sidered. The probability score calculated by the software
was used as one criterion for correct identification. In order

to confirm the identifications, experimental molecular
weights (MW) and pI were compared to the predicted values
resulting from the MASCOT analysis.

The significant interpretation was also correlated with the
identified organism (mainly A. thaliana) and protein nature
and function in the studied biological matrix. Proteins were
classified based on the literature and information available
in the Swiss-Prot/TrEMBL, Kegg pathways and Gene Ontol-
ogy databases.

Results

Diverse 2-D DIGE protein patterns of P. xylostella-
infested A. thaliana

A proteomic work was conducted by 2-DE to monitor the
global alterations in protein expression from two samples
types: healthy Arabidopsis leaves and Arabidopsis leaves
infected by pest larvae at 27°C within 8 h. Approximately
450 protein spots were reproducibly detected (Figure 1).
Comparing healthy and infested leaves, our statistical evalu-
ation of relative spot volumes identified 18 proteins differen-
tially expressed. Of these, only six proteins were upregulated
by insect attack (12 were downregulated). Thirteen of 18
picked spots were successfully identified by MALDI-TOF/
MS and LC-ESI-MS/MS. Nine positive identification results
were derived from MALDI-TOF/MS data, whereas six were
by LC-ESI-MS/MS. The list of identified protein species,
together with their quantitative alterations as a result of insect
infestation at high temperature, is presented in Table 1. Most
of the differentially regulated proteins appeared to be of
A. thaliana, and several other proteins appeared to be derived
from other plant species (i.e. Citrus sinensis [spot 392]; Vitis
vinifera [spot 655]; Cymbidium goeringii [spot 295]; Glycine
max [spot 495]; and Aegilops tauschii [spot 709]) (Table 1).

Figure 1. A 2D-PAGE gel separation from A. thaliana uninfested and infested by P. xylostella larvae at 27°C within 8 h. Numbered spots correspond to significantly
expressed proteins between uninfested and infested Arabidopsis leaves by larvae that picked to analyzed by MS. Data of protein identification for each particular spot
number are given in Table 1 when they are available.
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Five differentially regulated proteins were associated with
amino acid metabolism and transport (spots 244, 392, 522,
665, and 774). Among these, four proteins (hydroxymethyl-
transferase, alpha/beta hydrolase, glutathione S-transferase
L3, and metal-nicotianamine transporter YSL7) were down-
regulated in larvae-infested leaves, whereas glutathione S-
Transferase was upregulated. In contrast, all of the identified
proteins related to carbohydrate (i.e. sedoheptulose-1,7-
bisphosphatase [spot 243] and carbonic anhydrase, chloro-
plastic [spot 522]) and energy (i.e. ATP synthase subunit
beta, chloroplastic [spot 241] and ATP synthase beta subunit,
partial [chloroplast] [spot 295]) metabolism were downregu-
lated. Three proteins involved in photosynthesis (i.e. Ribulose
bisphosphate [RuBis] carboxylase large chain [spot 241], oxy-
gen-evolving enhancer protein 1–1, chloroplastic [spot 448],
and Rubis carboxylase [spot 646]) and another protein related
to lipid metabolism (Sn1-specific diacylglycerol lipase alpha
[spot 709]) was downregulated due to insect feeding. How-
ever, in these classes, oxygen-evolving enhancer protein 2–
1, chloroplastic (spot 548) and GDSL esterase/lipase (spot
495) expression were significantly increased in pest infested
leaves (Table 1; Figure 2).

Discussion

Here, by 2-DE coupled with MALDI-TOF/MS and LC-ESI-
MS/MS, we identified differentially expressed proteins of
A. thaliana leaves comparing non-infested leaves with leaves

infested with P. xylostella larval. Proteomic results suggested
that larval feeding on Arabidopsis leaves at 27°C within 8 h
had a significant effect on proteins related to different meta-
bolic pathways. In fact, 18 proteins were differentially regu-
lated by insect attacks at 27°C. This result was different in
comparison with Arabidopsis-infested larvae at 22°C over
8 h. In agreement with Liu et al. (2010), we observed that
38 protein spots show a significant different expression (p
< .05), among which 27 proteins were upregulated after the
infestation of larvae on Arabidopsis in comparison with unin-
fested plants (data not shown).

More than half of the differentially expressed proteins
obtained in the present study were those associated with
photosynthesis (four proteins) and amino acid metabolism
and transport (five proteins). The infestation of larval pests
on Arabidopsis leaves led to the downregulation of such pro-
teins, except for oxygen-evolving enhancer protein 2–1
(chloroplastic) and glutathione S-Transferase. Some of these
proteins are known as either insect or abiotic responsive pro-
teins (e.g. Rubisco, alpha/beta hydrolase, GST, and GST L3)
(Fakae et al. 2000; Giri et al. 2006; Liu et al. 2010; Chen
et al. 2011; Dubey et al. 2013).

Similar observations have been reported with herbivorous
insects or temperature stress in Arabidopsis plants (Collins
et al. 2010; Rocco et al. 2013). Photosynthesis-related proteins
(RuBis carboxylase large chain, oxygen-evolving enhancer
protein 1–1, chloroplastic, oxygen-evolving enhancer protein
2–1, chloroplastic, and RuBis carboxylase) were observed in

Table 1. List of identified proteins and related metabolic pathways in Arabidopsis leaves uninfested and infested by P. xylostella larvae at 27°C within 8 h.

Spot
number Protein description MW pI

Mowse
score Score

MS
coverage

Peptide
numbers

Accession
number Organism Identification

Amino acid metabolism and transport
244 Hydroxymethyl transferase 65,040 8.89 42 9 4 gi|21537165 Arabidopsis

thaliana
MALDI-TOF
MS

392 Alpha/beta hydrolase 30,590 9.13 52 13 4 gi|568857313 Citrus sinensis MALDI-TOF
MS

522 GSTL3_ARATH Glutathione S-
transferase L3

27,073 5.07 38 10 A. thaliana LC-ESI-MS/
MS

665 Metal-nicotianamine transporter
YSL7

78,711 8.75 46 6 4 gi|225423773 Vitis vinifera MALDI-TOF
MS

774 Glutathione S-Transferase 23,983 5.89 111 34 9 gi|2554769 A. thaliana MALDI-TOF
MS

Carbohydrate metabolism
243 Sedoheptulose-1,7-

bisphosphatase
42,787 6.21 41 12 4 gi|15228194 A. thaliana MALDI-TOF

MS
522 CAHC_ARATH Carbonic

anhydrase, chloroplastic
37,426 5.74 261 24 10 A. thaliana LC-ESI-MS/

MS
Energy metabolism
241 ATPB_ARATH ATP synthase

subunit beta, chloroplastic
53,900 5.38 458 35 17 A. thaliana LC-ESI-MS/

MS
295 ATP synthase beta subunit, partial

(chloroplast)
52,041 5.34 51 14 4 gi|499069773 Cymbidium

goeringii
MALDI-TOF
MS

Lipid metabolism
495 GDSL esterase/lipase 40,579 7.62 52 12 4 gi|356506014 Glycine max MALDI-TOF

MS
709 Sn1-specific diacylglycerol lipase

alpha
57,160 8.08 46 4 3 gi|475509755 Aegilops

tauschii
MALDI-TOF
MS

Photosynthesis-related
241 RBL_ARATH Ribulose

bisphosphate carboxylase large
chain

52,922 5.88 28 19 A. thaliana LC-ESI-MS/
MS

448 PSBO1_ARATH Oxygen-evolving
enhancer protein 1–1,
chloroplastic

35,121 5.55 268 43 16 A. thaliana LC-ESI-MS/
MS

548 PSBP1_ARATH Oxygen-evolving
enhancer protein 2–1,
chloroplastic

28,078 6.9 74 13 3 A. thaliana LC-ESI-MS/
MS

646 Ribulose bisphosphate
carboxylase

20,588 7.59 105 41 7 gi|16194 A. thaliana MALDI-TOF
MS

Note: MW, molecular weight; pI, isoelectric point; Score, Mowse score according to Mascot search; Coverage, percentage of the protein sequence identified; Peptide
number, number of peptide hits for each protein.
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this study. Existing data demonstrated that chewing insects
caused the reduction of photosynthesis in plants following
their infestation (Zangerl et al. 1997; Tang et al. 2009; Liu
et al. 2010; Halitschke et al. 2011; Nabity et al. 2013). The
downregulation of RuBis expression in insect-challenged
plant leaves was found in some previous studies (Hermsmeier
et al. 2001; Giri et al. 2006; Wei et al. 2009). Moreover, it is
indicated that heat stress causes downregulation of different
key enzymes of the Calvin cycle in rice, including RuBis car-
boxylase (Han et al. 2009). The expression of RuBis carboxy-
lase large chain was significantly downregulated in
Arabidopsis leaves due to heat treatment (Rocco et al.
2013). Zou et al. (2011) indicated that RuBis carboxylase
could be considered as a part of the plant adaptive response,
to maintain CO2 fixation under stress factors. Based on the
existing data, the downregulation of RuBis proteins observed
in the present study may be a result of larval feeding on Ara-
bidopsis leaves at high temperature (27°C compared to 22°C
of Arabidopsis growth temperature).

With respect to amino acid metabolism and transport, five
proteins from this class were identified in the present study
(hydroxymethyltransferase, alpha/beta hydrolase, glutathione
S-transferase, metal-nicotinamide transporter YSL7 and Glu-
tathione S-Transferase). The amino acid is well-addressed as
indicators of plants response to herbivorous insects’ attack on
the plant (Schmelz et al. 2012; Sempruch et al. 2012). It is
noted that glutathione plays a key role in detoxification of
activated oxygen and can be up-regulated by jasmonates
(JAs) (Sanchez-Sampedro et al. 2007; Chen, et al. 2011). In
addition, P. xylostella caterpillars induce JA-signaling in the

defense response of A. thaliana (Bidart-Bouzat and Klieben-
stein 2011; Savchenko et al. 2013; Zhang et al. 2013). There-
fore, a glutathione S-transferase was here observed to be more
abundant in the larvae-infested Arabidopsis leaves compared
to uninfested plant samples. That may be related to insect
behavior. This is in agreement with Collins et al. (2010),
who found the upregulation of this protein in Arabidopsis
leaves attacked by P. xylostella.

For carbohydrate and energy metabolism, herbivorous
insect and heat stress negatively influence the glycolytic path-
way and decrease energy production in Arabidopsis plants
(Liu et al. 2010; Rocco et al. 2013). In agreement with this
scenario, we obtained a down-representation of sedoheptu-
lose-1,7-bisphosphatase, carbonic anhydrase, chloroplastic,
ATP synthase subunit beta, chloroplastic, and ATP synthase
beta subunit, partial (chloroplast) in Arabidopsis leaves
attacked by larvae. Nabity et al. (2013) suggested that the
alterations of such proteins consequently led to a reduction
of photorespiration rate of plant leaves under invasive insects.
Hence, it was noted that plants must use their energy econ-
omically when challenging herbivorous insect infestation
(Liu et al. 2010).

In contrast to proteins related to carbohydrate and energy
metabolism, a strong increase in GDSL esterase/lipase
expression appeared in the proteome profile of larvae-
infested Arabidopsis leaves in comparison to healthy leaves
(14-fold change in its abundance). However, the expression
of another protein, Sn1-specific diacylglycerol lipase alpha,
was significantly downregulated due to larval infestation on
leaves of Arabidopsis leaves. It has been suggested that

Figure 2. Comparison of protein expression between A. thaliana leaves infested and uninfested by P. xylostella larvae at 27°C within 8 h. Data of protein identification
for each particular spot number are given in Table 1 when they are available. Black and gray bars represented proteins up-regulated and downregulated by the larval
attack, respectively. Labels on the right show the functional categories to which the proteins are assigned. *identified by MALDI-TOF/MS; **identified by LC-ESI-MS/
MS.
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GSDL esterase/lipase plays an important role in rice (Oryza
sativa L.) response to various environmental stress factors
(Jiang et al. 2012). GSDL esterase/lipase often appears in
plant response to environmental factors like cold, insect, or
bacteria stresses, and its expression can be induced through
JA-signaling (Chepyshko et al. 2012).

Conclusions

This paper reports the characterization of the global pro-
teome of A. thaliana leaves under larval pest infestation at
high temperature for 8 h (27°C compared to 22°C of Arabi-
dopsis growth temperature). By using 2-DE coupled with
MALDI-TOF MS or LC-ESI-TRAP MS/MS, 13 of 18 differ-
entially expressed protein spots were successfully identified.
These proteins participate in multiple physiological pro-
cesses. Functional classification analysis indicated that such
proteins were associated with amino acid (5), carbohydrate
(2), energy (2), and lipid (2) metabolism and photosynthesis
(4). In addition, their relative abundance was up-regulated or
downregulated according to larval pest feeding on Arabidop-
sis leaves. Our data demonstrate that combined temperature
and larvae stresses can alter the proteome in plant leaves.
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