Motion-aware temporal median filtering for robust background estimation

Benjamin Laugraud

PhD presentation

March 03, 2020

Montefiore Institute University of Liège Belgium

Introduction to background estimation

Definition

Given an input video sequence, depicting the same scene at different times, background estimation (BE) consists in generating a model of the scene background, free of the foreground elements occluding it.

BE

Example: Recovering a road without cars

Important note

In this work, the expected background model is actually a background image!

Static background

Composed of the background elements **remaining motionless** throughout the input video sequence.

Dynamic background

Composed of the background elements subject to small movements induced by **external factors** and/or containing **varying sub-elements**.

Examples

external factor: wind

sub-element: ads

Note: Any background is accepted as long as it remains consistent!

Objective

Generating, after each frame, an image that estimates the background of the frame.

Example: Recovering a road without cars

- Simplest and intuitive method \rightarrow **baseline**.
- **Strong assumption** \rightarrow background observable more than 50% in each position.

Given a grayscale video sequence $\gamma = F^1 F^2 \cdots F^T$ with $T \in \mathbb{N}^{>1}$:

$$B_{x,y} = \text{median}\left(\left\{\left\{l_{x,y}^{1}, l_{x,y}^{2}, \dots, l_{x,y}^{T}\right\}\right\}\right), \quad \forall (x,y) \in \Phi,$$

How to deal with colors?

Marginal median \rightarrow classical median per color component.

Symbols

- $B_{x,y}$ → background value at position (x, y)
- $I_{x,y}^t$ → pixel intensity at position (x, y) in frame F^t
- $\blacksquare \ \Phi \rightarrow \text{image domain}$
- $\{\{.\}\}$ → multiset notation (note that $\{\{40, 42, 42\}\} \neq \{40, 42, 42\} = \{40, 42\}$)

Three input frames

TMF fails X

Three input frames

TMF succeeds 🗸

■ Several applications → video surveillance, tracking, couting, compression, etc.

Computational photography

Input frame(s)

LaBGen output

- Not as easy as it looks → there are several challenges! (Jodoin et al. 2017)
 - Very short seq. → difficult with motion detection and/or long training.
 - Very long seq. → mix different challenges for testing versatility.

- Several pixels depict foreground elements more than 50% of the time.
- The background is not in the most redundant temporal information.

Input frame(s)

Expected output

Typical failure: ghosts

Challenge: Illumination changes

- Lighting conditions evolve over time.
- Several backgrounds are possible.

Input frame(s)

Typical failure: inconsistent

Expected output 1

Expected output 2

- **Foreground** elements **stopping** to move.
- **Background** elements **starting** to move.

- BE methods should be robust against small camera jitter.
- The background is also in motion \rightarrow compensate camera motion.

Input frame(s)

Expected output

Typical fail .: incons. & blur

Challenge: Background motion

- Difficult for BE methods with strong stationarity assumptions.
- When several backgrounds are possible → the final one must be consistent.
- Ghost free and consistent backgrounds can be **smoothed**.

Input frame(s)

Expected output

Typical failure: inconsistent

Input frame(s)

Expected output

Typical failure: smoothed

Performance evaluation (offline)

Performance metrics

Ground-truth background G

- Not a classification problem!
- IQA metrics.
- The ones used in BE have been suggested by Maddalena et al. 2015b.

$$E_{x,y} = \mathbb{1}_{\mathbb{N}^{>20}} \left(\left| B_{x,y} - G_{x,y} \right| \right). \qquad \text{pEPs (\%)} = \frac{100}{W \times H} \cdot \sum_{x=0}^{W-1} \sum_{y=0}^{H-1} E_{x,y}.$$

Background image B

Ground truth G

Error map E

... 14/14/1

Symbols

- $W / H \rightarrow$ width / height
- $B_{x,y} / G_{x,y} \rightarrow$ background / ground-truth intensity at position (x, y)

Observation

There are more rods (*i.e.*, light sensors) than cones (*i.e.*, color sensors) in the eye

Assumption

Scores should be determined on luminance Y and chrominance U & V components and combined according to the proportions of rods and cones (Yalman et al. 2013).

Per-component PSNRs weighted by the proportions of rods and cones:

$$\begin{split} \mathsf{PSNR} (\mathsf{dB}) &= 10 \cdot \mathsf{log}_{10} \left(\frac{255^2}{\mathsf{MSE}} \right), \\ \mathsf{CQM} (\mathsf{dB}) &= \left(0.9449 \cdot \mathsf{PSNR}_{\mathsf{Y}} \right) + 0.0551 \cdot \left(\frac{\mathsf{PSNR}_{\mathsf{U}} + \mathsf{PSNR}_{\mathsf{V}}}{2} \right). \end{split}$$

We apply metrics on public datasets (i.e., collections of video sequences with GT).

	SBI		SBMnet
	(Maddalena et al. 2015a)		(Jodoin et al. 2016)
×	14 video sequences	~	79 video sequences
×	1 GT image G for a sequence	~	Several GTs G ⁱ when needed
~	GT for all sequences	×	GT for 13 sequences
×	Imperfect GTs	×	Imperfect GTs
×	No categories	~	8 categories (1 per challenge)

Universal and category-specific scores

- Given metric *m* applied to a video sequence \rightarrow scene-specific score m^{γ} .
- Expected perf. on sequences captured in similar conditions.
- **Category-specific score** $m^c \rightarrow$ expected perf. on seq. with specific challenge.
- **Universal score** $m^{\mathfrak{U}} \rightarrow$ expected perf. on **any video sequence**.

- Comparing BE methods → compare scores as long as it is consistent...
- ...or use different rankings proposed by Jodoin et al. 2017.

Median-based background estimation methods leveraging motion detection

Idea 1: Median filtered by motion

Frame

Temporal median filter

Idea 2: Spatial motion aggregation

- Motion detection could be made by background subtraction (BGS) algorithms.
- In practice, they are not perfect.
- **Idea:** Aggregate motion classifications in spatial areas.

Our method called LaBGen is based on these two ideas!

Step 1: Augmentation step

- BGS algorithms can require a long training.
- In BE, the sequences can be short.
- Augment input video sequence in *P* passes.
- **Odd** passes \rightarrow forward & even passes \rightarrow backward (smooth transitions).

• Objective: Information to filter out foreground pixels from median buffers.

■ Motion detection made by **any BGS algorithm** A.

$$s_{x,y}^t = egin{cases} 1 & ext{if } p_{x,y}^t \in ext{foreground}, \ 0 & ext{if } p_{x,y}^t \in ext{background}. \end{cases}$$

Step 3: Estimation step

- Objective: Estimate a quantity of motion q^t_i per patch f^t_i.
- Domain Φ divided into \mathcal{E}^2 rectangular spatial areas Ψ_i of $\approx W/\mathcal{E} \times H/\mathcal{E}$ px.

$$q_i^t = \sum_{(x,y)\in\Psi_i} s_{x,y}^t$$

Step 4: Selection step

- **Objective:** Select in each Ψ_i the S patches f_i^t with the smallest QOMs q_i^t .
- Builds iteratively, for each Ψ_i , a submultiset of patches Ω_i :

$$\Omega_{i}^{t} = \begin{cases} \emptyset & \text{for } t = 1, \\ \Omega_{i}^{t-1} \uplus \left\{ \left\{ f_{i}^{t} \right\} \right\} & \text{for } t = 2, 3, \dots, \mathcal{S} + 1, \\ \Omega_{i}^{t-1} \uplus \left\{ \left\{ f_{i}^{t} \right\} \right\} \setminus \left\{ \left\{ f_{i}^{\beta} \right\} \right\} & \text{if } t > \mathcal{S} + 1 \ \land \ q_{i}^{t} \leq q_{i}^{\beta}, \\ \Omega_{i}^{t-1} & \text{otherwise,} \end{cases}$$

$$\beta = \min \mathop{\arg\max}_{\left\{t' \mid f_i^{t'} \in \Omega_i^{t-1}\right\}} q_i^{t'},$$

$$\mathbf{\Omega}_{i}=\mathbf{\Omega}_{i}^{T^{\alpha}}.$$

1,

Submultisets
$$\Omega_i$$
 ($\mathcal{S} = 2$)

Step 5: Generation step

- **Objective:** Generating the **background image B** (or background images B^{t}).
- **Combining the patches** selected in the different submultisets Ω_i .
- Combination performed with a **pixel-wise median filter**.

online:
$$B_{x,y}^{t} = \text{median}\left(\left\{\left\{I_{x,y}^{t'} \middle| \exists i : (x,y) \in \Psi_{i} \land f_{i}^{t'} \in \Omega_{i}^{t}\right\}\right\}\right),$$

offline: $B_{x,y} = \text{median}\left(\left\{\left\{I_{x,y}^{t} \middle| \exists i : (x,y) \in \Psi_{i} \land f_{i}^{t} \in \Omega_{i}\right\}\right\}\right).$

Background image B

Universal performance on SBI

- Minimizing universal pEPs w. r. t. 12 BGS A (Barnich et al. 2011; Elgammal et al. 2000; Goyat et al. 2006; Heikkilä et al. 2006; Hofmann et al. 2012; Maddalena et al. 2008; Manzanera et al. 2004; Stauffer et al. 1999; Wren et al. 1997; Zivkovic 2004; St-Charles et al. 2015).
- Regardless of $\mathcal{A} \rightarrow LaBGen$ outperforms the TMF.
- Surprise! The frame difference leads to the best universal performance.

Param	Universal			
\mathcal{A}	\mathcal{P}	E	S	pEPs↓
F. diff.	29	4	57	1.3972
GMM	17	2	41	2.4494
SuBSENSE	17	3	3	2.6674
PBAS	1	2	1	3.4566
VuMeter	1	2	27	3.9232
KDE	5	2	177	4.3616
AGMM	29	50	7	5.1848
LBP	1	1	39	5.2596
ViBe	23	~~~~	7	5.8089
Σ-Δ	3	2	7	6.1998
Pfinder	1	2	23	7.3764
SOBS	29	∞	9	9.4441
Temporal	14.0500			

Good visual results

CAVIAR2

HumanBody2

IBMtest2

Benjamin Laugraud (University of Liège)

- Minimizing scene-specific pEPs with all parameters free.
- **No consensus** on which BGS A is the best but **F. diff. chosen for 5 seq**.
- Good results with A = F. diff. and $(P, \mathcal{E}, \mathcal{S})$ free (mean Δ pEPs $\approx 0.03\%$).

	Parameter values				Scene-specific
Sequence	\mathcal{A}	\mathcal{P}	ε	S	pEPs↓
Board	KDE	1	5	99	0.3201
Candela_m1.10	Σ-Δ	1	4	1	0.0000
CAVIAR1	KDE	3	17	149	0.0661
CAVIAR2	F. diff.	1	13	5	0.0000
CaVignal	F. diff.	1	2	1	0.0147
Foliage	F. diff.	1	1	1	0.0000
Hall&Monitor	SOBS	1	15	111	0.0178
Highwayl	GMM	1	1	37	0.0612
HighwayII	AGMM	1	5	123	0.0143
HumanBody2	PBAS	23	5	51	0.0521
IBMtest2	Pfinder	3	5	71	0.0000
People&Foliage	F. diff.	1	3	1	0.0013
Snellen	F. diff.	1	1	1	0.0048
Toscana	SuBSENSE	3	13	7	0.4850

The frame difference provides the best BGS for LaBGen!

Universal vs. scene-specific (visual comparison)

Universal

Scene-specific

Enough degrees of freedom for correct backgrounds on a small dataset!

LaBGen-P: A pixel-level variant of LaBGen

Motivation

- LaBGen subject to the **patch effect** (*i.e.*, discontinuities between patches).
- The captain obvious' idea: Do not use patches, but...
- ...insufficient information at pixel level → quantities of motion.

LaBGen

LaBGen-P

Ground truth

Idea

Select pixels by taking into account the motion information available on the spatial neighborhood.

Positions considered in LaBGen

Positions considered in LaBGen-P

$$q_{\mathbf{x},\mathbf{y}}^{t} = \sum_{(\mathbf{x}',\mathbf{y}')\in\Psi_{\mathbf{x},\mathbf{y}}} m_{\mathbf{x}',\mathbf{y}'}^{t},$$

$$\Psi_{x,y} = \left\{ \begin{pmatrix} x', y' \end{pmatrix} \middle| \begin{array}{c} \max\left(x - \lfloor \mathcal{W}/2 \rfloor, 0\right) \le x' \le \min\left(x + \lfloor \mathcal{W}/2 \rfloor, W - 1\right) \land \\ \max\left(y - \lfloor \mathcal{W}/2 \rfloor, 0\right) \le y' \le \min\left(y + \lfloor \mathcal{W}/2 \rfloor, H - 1\right) \end{array} \right\}, \\ \mathcal{W} = 1 + 2 \cdot \left\lfloor \frac{\min(W, H)}{2\mathcal{E}} \right\rfloor.$$

Results on SBMnet with the frame difference

Method	Rank acrosscat. $R_{<}^{AR^{C}} \downarrow$			
MSCL	1			
SPMD	2			
BEWiS	3			
LaBGen	4			
LaBGen-P	5			
TMF	6			

30 methods in the rankings

Catagory	Cat. rank $R_{<}^{AR^{c}}\downarrow$			
Category	LaBGen-P	LaBGen		
Basic	7	8		
Intermittent Motion	5	10		
Clutter	13	15		
Jitter	5	7		
Illumination Changes	10	5		
Background Motion	13	13		
Very Long	19	10		
Very Short	11	9		

- Ranked after LaBGen
- Worse than LaBGen in 3 categories
- Illumination → No mechanisms
- Jitter → No mechanisms
- Intermittent → F. diff. unsuited
- Very Short → F. diff. unsuited

- LaBGen(-P) is state of the art
- FPS: 126 LaBGen-P & 1312 LaBGen
- Simpler and faster than competitors (*e.g.*, MSCL: 0.6 FPS)
- Improves LaBGen in 3 categories

We have **no explanations** for the bad ranks for Very Long!

Some visual improvements

LaBGen

∜

LaBGen-P

Although not perfect, we prefer LaBGen-P to LaBGen...
Subjective evaluation: Questions

1. Video for which we would like to define a background image

We had 35 volunteers.

One question for each of the 79 SBMnet video sequences.

Subjective evaluation: Answers & Results

2. Question

- Most people undecided for 38 sequences over 79.
- **LaBGen-P** preferred for **26 sequences** & **LaBGen** preferred for **15 sequences**.

LaBGen-P was preferred by the volunteers for more sequences!

On the importance of a temporally memoryless motion detection

Although it is the worst, the **frame difference is the most useful** in LaBGen.

- No (obvious) correlation between BGS perf. and LaBGen perf.
- It has an unshared property \rightarrow it is temporally memoryless.
- Temporal history ignored → never influenced by its past errors.

Hypothesis

The most relevant motion detection algorithms for LaBGen are temporally memoryless.

The exponential filter (EF)

$$\mathcal{B}_{x,y}^t = (1-\beta) \cdot I_{x,y}^t + \beta \cdot \mathcal{B}_{x,y}^{t-1},$$

$$= \sum_{i=1}^{t} w^{t}(i) \cdot I_{x,y}^{i}.$$

$$\mathbf{w}^{t}(i) = \begin{cases} \beta^{t-1} & \text{if } i = 1, \\ (1-\beta) \cdot \beta^{t-i} & \text{if } i > 1. \end{cases}$$

- Infinite memory.
- Oldest intensities have insignificant weights.
- The parameter $\beta \in [0, 1]$ enables to tune the amount of memory.
- $\ \ \, \beta = 0 \Leftrightarrow \text{frame difference (no memory)}.$

Measure the impact of temporal memory on the LaBGen universal performance.

Remove temporal memory!

Optical flow algorithms

- Other temporally memoryless algorithms!
- Determine a vector field v^t known as optical flow.
- **For each pixel** in F^t gives the **displacement vector** to F^{t+1} .

Image F^t

Optical flow \mathbf{v}^t

Modifying the motion step

$$s_{x,y}^{t} = \begin{cases} 1 \text{ (foreground)} & \text{ if } n_{2} \left(\mathbf{v}^{t} \left(x, y \right) \right) > \tau, \\ 0 \text{ (background)} & \text{ otherwise.} \end{cases} = \frac{\left\| \mathbf{v}^{t} \left(x, y \right) \right\|_{2}}{\max_{\left(x, y \right) \in \Phi} \left\| \mathbf{v}^{t} \left(x, y \right) \right\|_{2}} \end{cases}$$

Hard threshold on magnitudes τ.

■ $n_2(.)$ aims at reducing the **sensibility to video scaling** without changing τ .

Experiment: Motion detection with memory vs. without memory

- 6 optical flow algorithms (Bouguet 2001; Farnebäck 2003; Kroeger et al. 2016; Lucas et al. 1981; Tao et al. 2012; Weinzaepfel et al. 2013; Zach et al. 2007).
- Universal performance on SBI minimized with respect to A.
- The ones without memory vary around the ones of the frame difference.
- Any \mathcal{A} without memory is better than any \mathcal{A} with memory.

Results on SBMnet with DeepFlow

Method	Rank acrosscat. $R_{<}^{AR^{C}} \downarrow$
MSCL	1
LaBGen-OF	2
SPMD	3
BEWiS	4
LaBGen	5
LaBGen-P	6

30 methods in the rankings

Category	Cat. rank $R_{<}^{AB^{\circ}}\downarrow$		
Category	LaBGen-OF	LaBGen	
Basic	4	8	
Intermittent Motion	8	10	
Clutter	1	15	
Jitter	1	7	
Illumination Changes	12	5	
Background Motion	10	13	
Very Long	3	10	
Very Short	7	9	

- Illumination → Still no mechanisms
- Intermittent → Still no mechanisms
- Background Motion
- Very Short
- **FPS:** 1312 vs. 5 (CPU)

- Ranked #2
- Still simpler and faster than MSCL
- Better than LaBGen in 7/8 cat.
- Ranked #1 in Clutter
- Ranked #1 in Jitter

Some visual improvements

LaBGen

LaBGen-OF

Intra-frame motion detection leveraging semantic segmentation

Semantic segmentation algorithms

Input frame

Top-20 of the scores associated with the red cross

road grass

earth plant car fence

Semantic seg. map

Alpha blending

Motivation

Spatial features increase robustness against intermittent motion, background motion, and very short sequences.

Intra-frame motion detection algorithms

- Given a pixel $p \to \mathbf{s} = [s(1), s(2), \dots, s(N)]^{\top}$ vector of semantic scores.
- softmax(s) = $\mathbf{u} = [u(1), u(2), ..., u(N)]^{\top}$.
- In proba. $\rightarrow o_i$ is the real object class.

CV algorithm:
$$P(FG|\mathbf{s}) = \sum_{i=1}^{N} \underbrace{P(FG|o_i)}_{\text{estimators}} \cdot \underbrace{P(o_i|\mathbf{s})}_{\approx u(i)}.$$

- Scene-specific estimators on a sequence γ with M-GT or...
- ...universal estimators on a dataset Γ.
- Other method from the most probable object class $\hat{o} = o_j$: $\arg \max \mathbf{s}(j)$.
- Assumption: $P(FG|s) = P(FG|\hat{o})$.

MP algorithm: $P(FG|o_i)$.

Visual comparison

Frame

MP+U

MP+S

- Add a parameter V to choose between CV and MP.
- We use **PSPNet** (Zhao et al. 2017) that is trained to recognize **150 objects**.

$$m_{x,y}^{t} = \begin{cases} P(\mathsf{FG} \mid \mathbf{s}) & \text{if } \mathcal{V} = \mathsf{CV}, \\ P(\mathsf{FG} \mid o_{i}) & \text{if } \mathcal{V} = \mathsf{MP}. \end{cases}$$

- Comparisons on SBI \rightarrow we have **both M-GT and B-GT**.
- Maximizing **universal CQM** on SBI with respect to the different *V*.

	Best parameter values for a given ${\cal V}$ and universal CQM scores \uparrow			
Algorithm \mathcal{V}	CV+U	CV+S	MP+U	MP+S
	$(\mathcal{E},\mathcal{S}) = (43,94)$	$(\mathcal{E},\mathcal{S}) = (1,42)$	$(\mathcal{E},\mathcal{S}) = (1,48)$	$(\mathcal{E},\mathcal{S}) = (1,54)$
CV+U	34.1356	33.6932	33.8508	33.1893
CV+S	36.6552	36.9663	36.8952	36.5239
MP+U	32.9081	33.3753	33.5372	33.1257
MP+S	35.2960	36.3784	36.4490	36.4883

$CV+S \succ MP+S \succ CV+U \succ MP+U$

Some limitations: Unsuited universal estimations

Input sequence

Foliage: CV+U

Foliage: CV+S

- Could happen with scene-specific estimators on complex scenes.
- Probabilities $P(FG | o_i)$ are similar if an object moves or not.

The appropriate object class may have a high score without being first.

Lost with MP, but taken into account in CV!

Method	Rank acrosscat. $R^{AR^C} \downarrow$
MSCL	1
LaBGen-OF	2
SPMD	3
BEWiS	4
CV+U	5
LaBGen	6
MP+U	7
LaBGen-P	8

Cotogony	Cat. rank $R_{<}^{AB^{c}}\downarrow$		
Category	CV+U	MP+U	LaBGen-P
Basic	6	10	7
Intermittent M.	1	2	5
Clutter	5	6	13
Jitter	8	10	5
Illumination C.	23	28	10
Background M.	2	1	13
Very Long	27	23	19
Very Short	1	2	11

30 methods in the rankings

- Illumination → Still no mechanisms
- Still below LaBGen-OF → But metrics and rankings problems
- High running time

- Better than LaBGen-P in 5 cat.
- Ranked #1 in Intermittent Motion
- Ranked #1 in **Background M.** → But intrinsic smoothing limitation
- Ranked #1 in Very Short

Some visual improvements

Conclusion

1 New median-based BE methods leveraging motion detection.

- 2 Determination of the **best motion detection paradigms**.
- 3 New semantic-based intra-frame motion detection algorithms.
- **4** Not presented: Insights into performance evaluation of online methods.
- 5 Not presented: Detailed discussion on performance evaluation tools.
- **6** Not presented: Open-source **C++ implementations** (excluding semantic).

LaBGen

- LaBGen outperforms TMF → coupling motion detection to TMF is relevant.
- Frame difference is the most effective → LaBGen 4/30 on SBMnet and faster.

LaBGen-P

- Made to avoid the patch effect as much as possible.
- Selects pixels regarding the motion information in the spatial neighborhood.
- Although ranked after LaBGen, a subjective evaluation proved that it is better.

LaBGen-OF

- A simple memory model showed that temporal memory is undesired.
- Optical flow algorithms → LaBGen-OF.
- On SBI, LaBGen-OF with any OF \succ LaBGen with any \mathcal{A} with memory.
- With DeepFlow → LaBGen-OF 2/30 on SBMnet (and 1 in *Clutter* and *Jitter*).
- Let's go further \rightarrow intra-frame motion detection algorithms.

LaBGen-P-Semantic

- Better ranked than LaBGen-P on SBMnet but below LaBGen-OF.
- However, first in Background Motion, Intermittent Motion, and Very Short.
- Spatial features insensitive to perturbations induced by these challenges!
- Promising, but some limitations could be raised with a temporal information.

We believe that a temporally hybrid motion detection could be ideal!

Perspectives

- Develop the temporally hybrid paradigm.
- PhD focused on motion step \rightarrow improve the other steps.
- Considering **pre/post-processing** (*e.g.*, registration, intensity adjustments).
- Fast and embedded implementations.
- A combining approach:

Category	Best variant	$R_{<}^{AR^{c}}\downarrow$
Basic	LaBGen-OF	4
Intermittent Motion	LaBGen-P-Semantic (CV+U)	1
Clutter	LaBGen-OF	1
Jitter	LaBGen-OF	1
Illumination Changes	LaBGen	5
Background Motion	LaBGen-P-Semantic (MP+U)	1
Very Long	LaBGen-OF	3
Very Short	LaBGen-P-Semantic (CV+U)	1

Demonstration

Backup slides

- In the litterature (Bouwmans et al. 2017; Jodoin et al. 2017) → online methods are defined as **recursive methods**.
- **Too restrictive** according to us \rightarrow memory constraint vs. methodology.
- Our constraints:
 - **Compactness:** Must sufficiently summarize the input in its internals.
 - **2 Real time:** Must be computationally efficient and run in real time.

Important note

Applying an **offline BE method** on the frames 1 to *i* to estimate the background of frame *i* **does not transform** this method into an online method!

BE methods can be grouped into **categories** \rightarrow represent the **methodology**.

Temporal statistics (TS)

- Based on statistics (*e.g.*, mean, median) computed on **temporal information**.
- Statistics computed pixel-wise on the whole sequence or random frames.
- Note: Our methods are TS methods.

Subsequences of stable intensity (SSI)

- Strong assumption: The background has the longest stable intensity.
- Stable temporal subsequences are **located**, and the most reliable is **chosen**.
- **Unrealistic assumption** (*e.g.*, intermittent motion).

Categories of methods (2)

Optimal labeling (OL)

- Find a labeling $\mathscr{L}: \Phi \to \{1, 2, \dots, T\}$
- Determined over a MRF with a **spatio-temporal energy** function.

Input frames

Labeling \mathscr{L}

(Granados et al. 2008)

Generated background

Neural networks (NN)

- Learn automatically the background from the data.
- The learning can be supervised or unsupervised.

Categories of methods (3)

Iterative model completion (IMC)

- Highly reliable **spatial areas** are kept in a **partial background** image.
- Remaining areas completed according to spatial smoothness criteria.

Partial back.

Iterative completions of empty spatial areas

(Mseddi et al. 2019)

Missing data reconstruction (MDR)

- Foreground elements are first identified and removed.
- The missing parts are reconstructed through matrix/tensor completion.

Metric: Average gray-level error (AGE)

AGE =
$$\frac{1}{W \times H} \cdot \sum_{x=0}^{W-1} \sum_{y=0}^{H-1} |B_{x,y} - G_{x,y}|.$$

Background image B

Ground truth G

Gray-level errors

Metric: Percentage of clustered error pixels (pCEPs)

pCEPs (%) =
$$\frac{100}{W \times H} \cdot \sum_{x=0}^{W-1} \sum_{y=0}^{H-1} E'_{x,y}$$
.

$$E'_{x,y} = \bigwedge_{z=-1}^{1} \left(E_{x+z,y} \land E_{x,y+z} \right) = E \ominus \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$$

Error map E

Error map E'

Metric: Peak signal-to-noise ratio (PSNR)

$$\mathsf{PSNR} (\mathsf{dB}) = 10 \cdot \log_{10} \left(\frac{L^2}{\mathsf{MSE}} \right) = 20 \cdot \log_{10} \left(\frac{L}{\mathsf{RMSE}} \right).$$

$$\mathsf{MSE} = \frac{1}{W \times H} \cdot \sum_{x=0}^{W-1} \sum_{y=0}^{H-1} (B_{x,y} - G_{x,y})^2.$$

Background B

Ground truth G

Pixel RSEs

Pixel PSNRs
Metric: Structural similarity index (SSIM)

Assumptions

- HVS highly adapted to extract structural information (Wang et al. 2004a).
- Illumination and structural information are independent.
- Structural similarity should be a good approximation of the perceived quality.

 $SSIM = I \cdot c \cdot s$,

$$I = \frac{2 \cdot \mu_B \cdot \mu_G + C_1}{\mu_B^2 + \mu_G^2 + C_1}, \quad c = \frac{2 \cdot \sigma_B \cdot \sigma_G + C_2}{\sigma_B^2 + \sigma_G^2 + C_2}, \quad s = \frac{\Sigma_{B,G} + C_3}{\sigma_B \cdot \sigma_G + C_3}.$$

Symbols

- $\mu_B, \mu_G \rightarrow$ mean intensity in *B* and *G*
- $\sigma_B, \sigma_G \rightarrow$ standard deviation in *B* and *G*
- $\Sigma_{B,G} \rightarrow \text{covariance of } B \text{ and } G$
- $C_1, C_2, C_3 \rightarrow$ small constants to avoid divisions by zero

SSIM in practice

- Distortions are **not space-invariant**.
- Local SSIMs are computed using a 11 × 11 Gaussian sliding window.
- Let SSIM_{*i*} being the *i*-th local SSIM, then: SSIM = $\frac{1}{N} \sum_{i=1}^{N} SSIM_i$.

Background image B

Ground truth G

SSIM-map

I-map

s-map

Assumption

SSIM computed at a single scale but the right one **depends on viewing conditions** such as resolution, distance, etc (Wang et al. 2003a).

Problems related to these metrics

Statistical metrics do not consider any characteristic modeled from the HVS.

Original

Contrast stretching

Blurring

They can be more **meaningful** if they are **interpreted together**.

- **SSIM** seems to be related to MSE (Dosselmann et al. 2011).
- No consensus on which metric is the best!
- At least in BE, no methodology enables to choose one metric over another.

SBI+SBMnet-GT

- **Objective:** Build the largest dataset with GT (*e.g.*, to learn parameters).
- Composed of 26 video sequences (13 SBI + 13 SBMnet).
- Better but remains small...

Universal Training Dataset (UTD)

- Objective: Build the largest dataset with motion ground truth (M-GT).
- Composed of 60 video sequences.

- Average cat. rank $AR^c \rightarrow$ Aggregates m^c output by all metrics for a given c.
- Average rank across cat. $AR^{\mathcal{C}} \rightarrow Aggregates AR^{c}$ for all categories.
- Ordering by AR^c or AR^c gives the **actual ranks**.

		Cate	gory-sp	ecific sc	ores	Rankings			
Metric		$m_1^c\downarrow$		$m_2^c\downarrow$				ARC	
Category		<i>c</i> ₁	<i>c</i> ₂	<i>c</i> ₁	<i>c</i> ₂		AII - 4		
ethod	α	5.60	4.78	5.65	5.29	2	2.5	2.25	
	β	6.67	5.45	6.90	1.80	3	2	2.5	
Σ	δ	1.40	1.50	1.84	2.47	1	1.5	1.25	

• AR or $AR^{\mathcal{C}}$?

Unreliable (*e.g.*, a new method can modify a relative order).

Some metrics are **strongly correlated** according to SBMnet data, examples:

 $\begin{array}{rcl} \mbox{AGE and pEPs} & \rightarrow & \rho = 0.97 \\ \mbox{pEPs and pCEPs} & \rightarrow & \rho = 0.96 \\ \mbox{PSNR and CQM} & \rightarrow & \rho = 1! \end{array}$

Strong correlations between **universal scores and rankings**:

ρ	AGE	pEPs	pCEPs	PSNR	CQM	MS-SSIM
AR	0.98	0.96	0.88	0.95	0.95	0.92
AR^{C}	0.92	0.89	0.79	0.97	0.97	0.90

- Optimize AGE to optimize average rank.
- Optimize **PSNR** or CQM to optimize average rank across categories.

Example of a ranking instability

				Me	etric m			
		$\textbf{AGE}\downarrow$	$pEPs \downarrow$	$\textbf{pCEPs} \downarrow$	$\mathbf{PSNR}\uparrow$	CQM ↑	MS-SSIM ↑	An *
a	m ^u	6.7090	6.31	2.65	28.6396	29.4668	0.9266	1 50
ű	R ^{m^{si}}	1	1	2	1	1	3	1.00
в	m ^u	7.0738	7.06	3.19	28.4660	29.3196	0.9278	2.67
Р	R ^{m^{ss}}	3	3	3	3	3	1	2.07
8	m ^u	6.7778	6.71	2.27	27.9944	28.8810	0.9196	2.84
	R ^{m^{ss}}	2	2	1	4	4	4	2.04
e	m ^u	7.3890	7.61	3.57	28.5050	29.3829	0.9267	3.00
Ê	R ^{m¹¹}	4	4	4	2	2	2	5.00

				Me	etric m			
		$\textbf{AGE} \downarrow$	$pEPs \downarrow$	$\textbf{pCEPs} \downarrow$	PSNR ↑	CQM ↑	MS-SSIM ↑	Ал↓
a	m ^u	6.7090	6.31	2.65	28.6396	29.4668	0.9266	2.00
u	R ^{m¹¹}	1	1	2	2	2	4	2.00
в <i>т</i> ^ы		7.0738	7.06	3.19	28.4660	29.3196	0.9278	3.67
р	R ^{m¹¹}	4	4	4	4	4	2	3.07
8	m ^u	6.7778	6.71	2.27	27.9944	28.8810	0.9196	3.34
0	R ^{m^u}	2	2	1	5	5	5	0.04
6	m ^u	7.3890	7.61	3.57	28.5050	29.3829	0.9267	4.00
ε	R ^{m¹¹}	5	5	5	3	3	3	4.00
	m ^u	6.8514	6.89	2.69	28.9450	29.7995	0.9387	2.00
1	R ^{mⁱⁱ}	3	3	3	1	1	1	2.00

Benjamin Laugraud (University of Liège)

- Previous methodologies dedicated to offline methods.
- To date, there is no methodology to assess online BE methods!

Problem

- Consider a video sequence $\gamma = F^1 F^2 \cdots F^T$.
- Offline BE methods evaluated on the background image $B^T = B$.
- What about the background images generated for all the previous frames?

Our two proposals

- Aggregating IQA scores.
- **2** Using Full-Reference Video Quality Assessment (VQA) metrics.
- Note: They remain compatible with aggregations and rankings!

Proof of concept

Offline: More noise with $\beta \rightarrow | \alpha \succ \beta |$

• Online: Correct noisy estimations with β & strong ghosts with $\alpha \rightarrow |\beta \succ \alpha|$.

Aggregating IQA scores

- Averaging IQA scores applied after each frame.
- Yields the highest correlation with subjective scores (Netflix: Li et al. 2018).
- Suppose that the *K* first frames are used for **training**:

$$\begin{split} \mathsf{pEPs}_{\mathsf{online}} &= \quad \frac{1}{T-\mathcal{K}} \cdot \sum_{t=\mathcal{K}+1}^{T} \mathsf{pEPs}\left(\mathcal{F}^{t}, \mathcal{G}^{t}\right), \\ \mathsf{CQM}_{\mathsf{online}}\left(\mathsf{dB}\right) &= \quad 10 \cdot \log_{10}\left(\frac{1}{T-\mathcal{K}} \cdot \sum_{t=\mathcal{K}+1}^{T} 10^{\frac{\mathsf{CQM}\left(\mathcal{F}^{t}, \mathcal{G}^{t}\right)}{10}}\right). \end{split}$$

		Scene-sp	ecific scores			
		pEPs↓ CQM↑				
Method $\boldsymbol{\alpha}$	Offline	0.0000	48.3636			
(Snellen)	Online	58.5234	24.2629			
Method β	Offline	0.0000	36.5866			
(GT+ղ)	Online	0.0001	36.5855			

Spoiler alert

It also works with VQA metrics!

- VSSIM: Weighted average of SSIMs determined on Y, Cb, and Cr components (Wang et al. 2004b).
- VQM: Mainly designed for broadcasting. Linear combination of "parameters" measuring the perceptual effect of an impairment (Pinson et al. 2004).
- MOVIE: Spatio-spectrally localized multiscale evaluation based on a model of the visual cortex (Seshadrinathan et al. 2010).
- VMAF: Combine the strenghts of different metrics through SVM (Li et al. 2016).

Metric	Best Values		Method α (Snellen)	Method β (GT+η)
VSSIM	1	[-1,1]	0.6244	0.8907
VQM	\downarrow	[0,>1]	1.1306	0.0289
MOVIE	\downarrow	\mathbb{R}_+	0.0306	$2.7769 \cdot 10^{-5}$
VMAF	\uparrow	[0,100]	16.4222	94.7228

Frame 1

 $\mathcal{P}^1 (PWC = 2.29\%) \ \mathcal{P}^2 (PWC = 1.03\%) \ \mathcal{P}^3 (PWC = 0.41\%) \ \mathcal{P}^5 (PWC = 0.15\%)$

Unimodal BGS models vs. LaBGen results

Relationship between temporally memoryless algorithms and augmentation

t^{α} :	1	2	3	4	5	6	7	8	9	10	11	12	13
<i>t</i> :	1	2	3	4	3	2	1	2	3	4	3	2	1
$\mathcal{P}^{t^{\alpha}}$:	1	1	1	1	2	2	2	3	3	3	4	4	4
⇒:	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\leftarrow	\leftarrow	\leftarrow	\rightarrow	\rightarrow	\rightarrow	\leftarrow	\leftarrow	\leftarrow
$F\Delta$:	×	2-1	3-2	4-3	4-3	3-2	2-1	2-1	3-2	4-3	4-3	3-2	2-1

Given any submultiset Ω_i , increasing \mathcal{P} by keeping the same \mathcal{S} leads to:

If S patches with q_i^- in a pass $\rightarrow \Omega_i$ has the S last patches with q_i^- .

2 If $S > T \rightarrow \gamma$ entirely duplicated into Ω_i until the pass that totally populates Ω_i .

- **3** Let f_i^- be the multiset of patches with q_i^- in a forward and/or backward pass:
 - If $|f_i^-| < S \rightarrow f_i^-$ will be duplicated in Ω_i over time.
 - Depending on $|f_i^-|$, other patches with $q_i > q_i^-$ are ejected during the first passes.
 - When Ω_i is entirely populated with patches ∈ f_i⁻, it is composed of [S/|r_i⁻|] duplicates of f_i⁻ + a duplicate of the S mod |f_i⁻| most recently observed patches in f_i⁻.
 - If $(S \mod |f_i^-|) \neq 0$, the content of Ω_i depends on the direction of the last pass.

Comparison of LaBGen to other algorithms on SBI

						BE me	thods					1
		TMF (baseline)	BE-AAPSA	WS2006	RSL2011	Photomontage	LRGeomCG	TMac	BEWIS	LaBGen (default)	LaBGen (scene-s.)	Mean sequence pEPs
	Board	23.765	0.290	6.095	5.308	2.412	35.954	36.241	2.217	2.729	0.320	11.533
	Candela_m1.10	3.332	0.012	1.905	0.375	3.584	0.658	1.015	0.793	1.681	0.000	1.336
es	CAVIAR1	0.350	0.009	0.126	0.160	0.133	6.627	6.702	0.459	0.633	0.066	1.527
Ī	CAVIAR2	0.000	0.000	0.039	0.131	0.000	0.327	0.329	0.000	0.000	0.000	0.083
ŝ	CaVignal	10.485	4.810	1.500	0.015	11.221	6.412	6.507	0.015	0.015	0.015	4.100
l 🖞	Foliage	47.705	59.980	2.851	12.309	0.000	20.892	21.983	0.017	0.000	0.000	16.574
	Hall&Monitor	0.979	0.320	0.556	1.649	0.361	0.224	0.242	1.435	0.130	0.018	0.591
≝*	Highwayl	0.163	2.760	0.685	0.234	0.408	0.202	0.199	0.466	0.436	0.061	0.561
l N	Highwayll	0.332	0.280	0.488	0.513	0.589	0.356	0.376	0.414	0.303	0.014	0.367
S S	HumanBody2	0.327	0.080	0.639	0.310	13.005	4.650	4.729	1.501	0.263	0.052	2.556
l ä	IBMtest2	0.033	0.001	1.953	2.701	0.069	1.454	1.483	1.501	0.087	0.000	0.928
Sc	People&Foliage	36.009	31.000	3.572	9.402	0.004	57.781	57.189	13.018	0.003	0.001	20.798
	Snellen	62.235	76.080	23.167	14.429	33.497	50.434	51.997	5.276	6.337	0.005	32.346
	Toscana	10.985	0.103	5.894	27.379	0.452	11.857	12.016	6.888	6.944	0.485	8.300
Unive	rsal pEPs score \downarrow	14.050	12.552	3.534	5.351	4.695	14.131	14.358	2.429	1.397	0.074	
	Universal rank \downarrow	8	7	4	6	5	9	10	3	2	1	

- Ranked #2 in **universal** \rightarrow #1 for 3/14 sequences.
- Ranked #1 in scene-specific → #1 for 11/14 sequences (worst rank: #3).
- Significantly **above average** (even when it is high).
- Outperforms other methods (putting apart the very short Toscana).

LaBGen computational performance

- **1** Motion step / BGS: Applied to each pixel $\rightarrow O(\mathcal{P}TWH\mathcal{A})$.
- **2** Estimation step: Requires iterating each pixel $\rightarrow O(PTWH)$.
- **Selection step:** S comparisons per spatial area in the worst case and 1 in the best $\rightarrow O(PTSE^2)$ or $O(PTE^2)$.
- **Generation step** / **Pixel-wise median:** Using *Introselect* (Musser 1997) linear computation $\rightarrow \mathcal{O}(S)$ per pixel position (offline) or $\mathcal{O}(S)$ per pixel (online with $\mathcal{P} = 1) \rightarrow \mathcal{O}(WHS)$ (offline) or $\mathcal{O}(TWHS)$ (online).

LaBGen		Best case	Worst case
е	Offline	$\mathcal{O}\left(\mathcal{P}T\cdot\left(W\mathcal{H}\mathcal{A}+\mathcal{E}^{2}\right)+W\mathcal{H}\mathcal{S}\right)$	$\mathcal{O}\left(\mathcal{P}T\cdot\left(\mathcal{W}\mathcal{H}\mathcal{A}+\mathcal{E}^{2}\mathcal{S}\right)+\mathcal{W}\mathcal{H}\mathcal{S}\right)$
μ	Online	$\mathcal{O}\left(\mathcal{T}\cdot\left(\mathcal{WHA}+\mathcal{E}^{2}+\mathcal{WHS} ight) ight)$	$\mathcal{O}\left(\mathcal{T}\cdot\left(\mathcal{WHA}+\mathcal{E}^{2}\mathcal{S}+\mathcal{WHS} ight) ight)$
Space		$\mathcal{O}\left(\mathcal{S}\left(\mathcal{E}\right)\right)$	$^{2}+WH))$

- Mean pixel throughput $\approx 239 \cdot 10^6$ px/s.
- Requires to store SE^2 quantities of motion and patches (= SWH patches) $\rightarrow O(S(E^2 + WH)) \rightarrow S \cdot (32 \cdot E^2 + 24 \cdot WH)$ bits.
- With default parameter values: $800 \times 600 \sim 86$ Mo & $4K \sim 1.5$ Go.

			Time (ms)							
Comuonoo	Dimensions	Frames	Defeult	Default	Default	Default	Default	Default		
Sequence	$W \times H$	Т	Delault	$\mathcal{P} = 1$	$\mathcal{E} = 1$	S = 1	$\mathcal{E} = \infty$	S = 201		
Board	200 × 164	228	958	124	506	485	992,452	3,420		
Candela_m1.10	352 × 288	350	6,439	570	2,322	2,109	5,383,488	28,087		
CAVIAR1	384 imes 256	610	19,721	938	6,988	3,731	9,836,691	71,923		
CAVIAR2	384 imes 256	460	15,396	820	4,719	2,862	7,404,927	59,682		
CaVignal	200 × 136	258	1,806	89	1,003	548	918,378	11,143		
Foliage	200 × 144	394	1,008	126	707	706	1,077,841	2,719		
Hall&Monitor	352 imes 240	296	1,987	386	1,582	1,346	3,791,332	6,180		
Highwayl	320 × 240	440	3,013	376	2,010	1,844	4,202,820	9,262		
HighwayII	320 × 240	500	2,432	399	2,339	2,028	5,566,130	5,453		
HumanBody2	320 imes 240	740	7,836	530	3,219	3,258	8,590,112	30,218		
IBMtest2	320 × 240	90	624	222	613	366	999,054	2,550		
People&Foliage	320 × 240	341	2,181	317	1,660	1,425	3,282,700	6,702		
Snellen	144×144	321	718	83	449	462	641,250	2,023		
Toscana	800 × 600	6	1,220	66	1,142	135	264,243	3,235		

Important note

 ${\mathcal P}$ has a bigger impact than ${\mathcal E}$ that has a bigger impact that ${\mathcal S}.$

Influence of the parameters on the LaBGen universal performance

Important note

In general S has a bigger impact than \mathcal{E} that has a bigger impact that \mathcal{P} .

Benjamin Laugraud (University of Liège)

(Non-)correlation between BE and BGS performance

BGS performance on SBI (F_1)

- **Expectation:** BE perf. increases when BGS perf. increases.
- Best BGS algorithm (AGMM) → 7-th best BE...
- 2-nd worst BGS algorithm (F. diff.) → Best BE!
- Other metrics does not help...

Problematic visual results (LaBGen-P)

Illumination Changes

Intermittent Motion

Background Motion

Very Short

LaBGen-P computational performance

- **1** Motion step / Frame difference: Applied to each pixel $\rightarrow O(TWH)$.
- **2** Estimation step / Summed-area tables: Linear frame initialization and constant pixel estimation $\rightarrow O(TWH + TWH) = O(TWH)$.
- Selection step: S comparisons per pixel in the worst case and 1 in the best $\rightarrow O(TSWH)$ or O(TWH).
- Generation step / Pixel-wise median: Using *Introselect* (Musser 1997) linear computation $\rightarrow \mathcal{O}(S)$ per pixel position (offline) or $\mathcal{O}(S)$ per pixel (online) $\rightarrow \mathcal{O}(WHS)$ (offline) or $\mathcal{O}(TWHS)$ (online)

La	BGen-P	Best case	Worst case		
ле	Offline	$\mathcal{O}(WH \cdot (T + S))$	$\mathcal{O}(\textit{WHTS})$		
Tim	Online	$\mathcal{O}(WHTS)$	$\mathcal{O}(\textit{WHTS})$		
ę	Space	$\mathcal{O}(WHS)$	$\mathcal{O}(\textit{WHS})$		

- Mean pixel throughput $\approx 38 \cdot 10^6$ px/s.
- Requires at least 56 · WHS free bits for processing RGB sequences with a bit depth of 8 bits (assuming that the quantities of motion are encoded on 32 bits).
- Unlike LaBGen, the memory footprint cannot be reduced by tuning *E*.

					Time (ms)		
Comuonoo	Dimensions	Frames	Default	Default	Default	Default	Default
Sequence	$W \times H$	T Delaun		$\mathcal{E} = 1$	S = 1	$\mathcal{E} = \infty$	$\mathcal{S}=201$
Board	200 × 164	228	183	175	85	150	1,594
Candela_m1.10	352 × 288	350	1,007	982	472	1,003	8,166
CAVIAR1	384 × 256	610	1,562	1,523	788	1,510	12,423
CAVIAR2	384 imes 256	460	1,199	1,170	595	1,167	9,884
CaVignal	200 × 136	258	170	153	87	174	1,483
Foliage	200 × 144	394	247	241	126	183	2,383
Hall&Monitor	352 × 240	296	670	632	284	562	5,474
Highwayl	320 × 240	440	843	818	380	677	7,049
HighwayII	320 × 240	500	983	977	433	760	8,674
HumanBody2	320 × 240	740	1,368	1,366	644	1,246	11,937
IBMtest2	320 × 240	90	228	210	80	185	1,006
People&Foliage	320 × 240	341	667	653	294	575	5,913
Snellen	144 imes 144	321	152	147	75	116	1,420
Toscana	800 × 600	6	111	110	53	100	178

Important note

 \mathcal{S} has a bigger impact than \mathcal{E} .

Important note

Equivalent impact but ${\mathcal S}$ leaves the performance slightly more stable.

Optical flow vs. frame difference

- Better temporally memoryless algorithms on SBI!
- Good reason to try them!

Illumination Changes

Intermittent Motion

Background Motion

Very Short

Best parameter values with respect to each OF algorithm

- Maximizing universal CQM on SBI+SBMnet-GT.
- Maximization done with respect to each optical flow algorithm (\mathcal{A}) .
- The threshold value is considered in the maximization.

Rank	Para	Universal				
	\mathcal{A}	\mathcal{P}	\mathcal{E}	S	τ	CQM ↑
1	DeepFlow	3	8	119	0.04	33.7400
2	Lucas-Kanade	1	6	63	0.03	33.5150
3	DISFlow	1	3	57	0.02	32.9819
4	Farnebäck	3	3	83	0.05	32.8954
5	SimpleFlow	3	6	49	0.06	32.5169
6	Dual TV-L ¹	5	10	75	0.06	32.4793

Details of the CV algorithm

$$P(M = FG | \mathbf{S} = \mathbf{s}) = \sum_{i=1}^{N} P(M = FG, O = o_i | \mathbf{S} = \mathbf{s})$$

(product rule)
$$= \sum_{i=1}^{N} \underbrace{P(M = \operatorname{FG} | \mathbf{S} = \mathbf{s}, O = o_i)}_{\approx P(M = \operatorname{FG} | O = o_i)} \cdot P(O = o_i | \mathbf{S} = \mathbf{s})$$

(hypothesis)
$$= \sum_{i=1}^{N} P(M = \operatorname{FG} | O = o_i) \cdot P(O = o_i | \mathbf{S} = \mathbf{s})$$

(Bayes)
$$= \sum_{i=1}^{N} \frac{P(M = \text{FG}, O = o_i)}{P(O = o_i)} \cdot \underbrace{P(O = o_i | \mathbf{S} = \mathbf{s})}_{\approx u(i)}$$

(s.-s. or u. estimators)
$$\approx \sum_{i=1}^{N} \frac{\sum_{p \in \gamma} g \cdot u(i)}{\sum_{p \in \gamma} u(i)} \cdot u(i) \text{ OR } \sum_{i=1}^{N} \frac{\sum_{\gamma' \in \Gamma} \frac{1}{|\gamma'|} \cdot \sum_{p \in \gamma'} g \cdot u(i)}{\sum_{\gamma' \in \Gamma} \frac{1}{|\gamma'|} \cdot \sum_{p \in \gamma'} u(i)} \cdot u(i)$$

н

Characteristics	LaBGen	aBGen LaBGen-OF		LaBGen-P-Semantic		
Augmentation	\mathcal{P} passes are	e performed	×			
Motion detection	Any BGS algorithm \mathcal{A}	Any OF algorithm ${\cal A}$	Frame difference	CV or MP with PSPNet		
Motion temporality	Aware or memoryless	Memory	/less	Intra-frame		
Motion information	Crisp segment	ation maps <i>s^t</i>	Fuzzy motion maps <i>m^t</i>			
Quantity of motion	One q ^t _i pe	r patch f ^t	One $q_{x,y}^t$ per pixel $p_{x,y}^t$ w. r. t. $\Psi_{x,y}$			
Spatial aggregation	Sum of crisp motion	classifications in Ψ_i	Sum of fuzzy motion scores in $\Psi_{x,y}$			
Submultisets content Ω_i contains maximum S patches		$\Omega_{x,y}$ contains maximum S pixels				
Selection criterion	At least one element in the submultiset has a larger quantity of motion					
Cardinality control	Remove the oldest element with the largest quantity of motion					
Background generation	Pixel-wise median filter					
Operating mode	Offline or online with	h no augmentation	Offline or online			
Number of parameters 4 ($\mathcal{A}, \mathcal{P}, \mathcal{E}, \mathcal{S}$)		$(\mathcal{E}, \mathcal{S})$	2 (E, S)	$3(\mathcal{V},\mathcal{E},\mathcal{S})$		

All steps applied consecutively on each frame.

Quantities of motion simplification:

$$q_i^t < q_i^{t'} \iff \sum_{(x,y)\in \Psi_i} rac{s_{x,y}^t}{|\Psi_i|} < \sum_{(x,y)\in \Psi_i} rac{s_{x,y}^{t'}}{|\Psi_i|} \iff \sum_{(x,y)\in \Psi_i} s_{x,y}^t < \sum_{(x,y)\in \Psi_i} s_{x,y}^{t'}.$$

Submultisets as ordered lists:

Implementation tricks (2)

Median through selection algorithm:

Before selection

Selection of the 10-th element in orange

- Summed area-tables:
 - Initialization: $S_{x,y}^t = m_{x,y}^t + S_{x-1,y}^t + S_{x,y-1}^t S_{x-1,y-1}^t$.
 - Quantity of motion: $q_{x,y}^t = S_{xr,yb}^t S_{xl-1,yb}^t S_{xr,yt-1}^t + S_{xl-1,yt-1}^t$.

- [Bar+11] O. Barnich and M. Van Droogenbroeck. "ViBe: A universal background subtraction algorithm for video sequences." In: IEEE Transactions on Image Processing 20.6 (2011), pp. 1709–1724. DOI: 10.1109/TIP.2010.2101613.
- [Bou+17] T. Bouwmans, L. Maddalena, and A. Petrosino. "Scene Background Initialization: a Taxonomy." In: *Pattern Recognition Letters* 96 (2017), pp. 3–11. DOI: 10.1016/j.patrec.2016.12.024.
- [Bou01] J.-Y. Bouguet. "Pyramidal Implementation of the Lucas Kanade Feature Tracker - Description of the Algorithm." In: Intel Corporation 5.1-10 (2001), p. 4.
- [Dos+11] R. Dosselmann and X. D. Yang. "A comprehensive assessment of the structural similarity index." In: Signal, Image and Video Processing 5.1 (2011), pp. 81–91. DOI: 10.1007/s11760-009-0144-1.
- [Elg+00] A. Elgammal, D. Harwood, and L. Davis. "Non-parametric Model for Background Subtraction." In: European Conference on Computer Vision (ECCV). Vol. 1843. Lecture Notes in Computer Science. Springer, 2000, pp. 751–767. DOI: 10.1007/3-540-45053-X_48.

 [Far03] G. Farnebäck. "Two-Frame Motion Estimation Based on Polynomial Expansion." In: Scandinavian Conference on Image Analysis (SCIA). Vol. 2749. Lecture Notes in Computer Science. Springer, 2003, pp. 363–370. DOI: 10.1007/3-540-45103-X_50.

- [Goy+06] Y. Goyat et al. "Vehicle trajectories evaluation by static video sensors." In: International Conference on Intelligent Transportation Systems (ITSC). Toronto, Canada, 2006, pp. 864–869. DOI: 10.1109/ITSC.2006.1706852.
- [Gra+08] M. Granados, H.-P. Seidel, and H. Lensch. "Background Estimation from Non-time Sequence Images." In: *Graphics Interface*. Windsor, Ontario, Canada, 2008, pp. 33–40.
- [Hei+06] M. Heikkilä and M. Pietikäinen. "A Texture-Based Method for Modeling the Background and Detecting Moving Objects." In: IEEE Transactions on Pattern Analysis and Machine Intelligence 28.4 (2006), pp. 657–662. DOI: 10.1109/TPAMI.2006.68.

[Hof+12] M. Hofmann, P. Tiefenbacher, and G. Rigoll. "Background Segmentation with Feedback: The Pixel-Based Adaptive Segmenter." In: IEEE International Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Providence, Rhode Island, USA, 2012, pp. 38–43. DOI: 10.1109/CVPRW.2012.6238925.

[Jod+16] P.-M. Jodoin, L. Maddalena, and A. Petrosino. SceneBackgroundModeling.NET (SBMnet) Dataset and Web Platform. http://www.scenebackgroundmodeling.net. 2016.

[Jod+17] P.-M. Jodoin et al. "Extensive Benchmark and Survey of Modeling Methods for Scene Background Initialization." In: IEEE Transactions on Image Processing 26.11 (2017), pp. 5244–5256. DOI: 10.1109/TIP.2017.2728181.

[Kro+16] T. Kroeger et al. "Fast Optical Flow Using Dense Inverse Search." In: European Conference on Computer Vision (ECCV). Vol. 9908. Lecture Notes in Computer Science. Amsterdam, The Netherlands: Springer, 2016, pp. 471–488. DOI: 10.1007/978-3-319-46493-0_29.
- [Li+16] Z. Li et al. Toward A Practical Perceptual Video Quality Metric. https://medium.com/netflix-techblog/toward-a-practicalperceptual-video-quality-metric-653f208b9652. The Netflix Tech Blog. 2016.
- [Li+18] Z. Li et al. VMAF: The Journey Continues. https://medium.com/netflix-techblog/vmaf-the-journeycontinues-44b51ee9ed12. The Netflix Tech Blog. 2018.
- [Luc+81] B. D. Lucas and T. Kanade. "An Iterative Image Registration Technique with an Application to Stereo Vision." In: International Joint Conference on Artificial Intelligence (IJCAI). Vol. 2. Vancouver, Canada, 1981, pp. 674–679.
- [Mad+08] L. Maddalena and A. Petrosino. "A Self-Organizing Approach to Background Subtraction for Visual Surveillance Applications." In: IEEE Transactions on Image Processing 17.7 (2008), pp. 1168–1177. DOI: 10.1109/TIP.2008.924285.
- [Mad+15a] L. Maddalena and A. Petrosino. Scene Background Initialization (SBI) Dataset. http://sbmi2015.na.icar.cnr.it/SBIdataset.html. 2015.

- [Mad+15b] L. Maddalena and A. Petrosino. "Towards Benchmarking Scene Background Initialization." In: International Conference on Image Analysis and Processing Workshops (ICIAP Workshops). Vol. 9281. Lecture Notes in Computer Science. 2015, pp. 469–476. DOI: 10.1007/978-3-319-23222-5_57.
- [Man+04] A. Manzanera and J. Richefeu. "A robust and computationally efficient motion detection algorithm based on Sigma-Delta background estimation." In: Indian Conference on Computer Vision, Graphics and Image Processing. Kolkata, India, 2004, pp. 46–51.
- [Mse+19] W. S. Mseddi, M. Jmal, and R. Attia. "Real-time scene background initialization based on spatio-temporal neighborhood exploration." In: *Multimedia Tools and Applications* 78.6 (2019), pp. 7289–7319. DOI: 10.1007/s11042-018-6399-1.
- [Mus97] D. R. Musser. "Introspective Sorting and Selection Algorithms." In: *Software: Practice and Experience* 27.8 (1997), pp. 983–993. DOI: 10.1002/(SICI)1097-024X(199708)27:8<983::AID-SPE117>3.0.CO;2-\#.

- [Pin+04] M. H. Pinson and S. Wolf. "A New Standardized Method for Objectively Measuring Video Quality." In: IEEE Transactions on Broadcasting 50.3 (2004), pp. 312–322. DOI: 10.1109/TBC.2004.834028.
- [Ses+10] K. Seshadrinathan and A. C. Bovik. "Motion Tuned Spatio-Temporal Quality Assessment of Natural Videos." In: IEEE Transactions on Image Processing 19.2 (2010), pp. 335–350. DOI: 10.1109/TIP.2009.2034992.
- [Sob+17] A. Sobral and E.-H. Zahzah. "Matrix and tensor completion algorithms for background model initialization: A comparative evaluation." In: *Pattern Recognition Letters* 96 (2017), pp. 22–33. DOI: 10.1016/j.patrec.2016.12.019.
- [Sta+99] C. Stauffer and E. Grimson. "Adaptive background mixture models for real-time tracking." In: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR). Vol. 2. Fort Collins, Colorado, USA, 1999, pp. 246–252. DOI: 10.1109/CVPR.1999.784637.
- [Tao+12] M. W. Tao et al. "SimpleFlow: A Non-iterative, Sublinear Optical Flow Algorithm." In: Computer Graphics Forum (Eurographics 2012) 31.2 (2012), pp. 345–353. DOI: 10.1111/j.1467-8659.2012.03013.x.

- [Wan+03a] Z. Wang, E. P. Simoncelli, and A. C. Bovik. "Multiscale structural similarity for image quality assessment." In: Asilomar Conference on Signals, Systems and Computers. Vol. 2. Pacific Grove, California, USA, 2003, pp. 1398–1402. DOI: 10.1109/ACSSC.2003.1292216.
- [Wan+03b] Z. Wang, H. R. Sheikh, and A. C. Bovik. "Objective Video Quality Assessment." In: The Handbook of Video Databases: Design and Applications. CRC Press, 2003. Chap. 41, pp. 1041–1078.
- [Wan+04a] Z. Wang et al. "Image quality assessment: from error visibility to structural similarity." In: IEEE Transactions on Image Processing 13.4 (2004), pp. 600–612. DOI: 10.1109/TIP.2003.819861.
- [Wan+04b] Z. Wang, L. Lu, and A. C. Bovik. "Video quality assessment based on structural distortion measurement." In: Signal Processing: Image Communication 19.2 (2004), pp. 121–132. DOI: 10.1016/S0923-5965 (03) 00076-6.
- [Wan+06] H. Wang and D. Suter. "A Novel Robust Statistical Method for Background Initialization and Visual Surveillance." In: Asian Conference on Computer Vision (ACCV). Vol. 3851. Lecture Notes in Computer Science. Berlin, Heidelberg, 2006, pp. 328–337. DOI: 10.1007/11612032_34.

- [Wei+13] P. Weinzaepfel et al. "DeepFlow: Large displacement optical flow with deep matching." In: IEEE International Conference on Computer Vision (ICCV). Sydney, Australia, 2013, pp. 1385–1392. DOI: 10.1109/ICCV.2013.175.
- [Wre+97] C. Wren et al. "Pfinder: Real-Time Tracking of the Human Body." In: IEEE Transactions on Pattern Analysis and Machine Intelligence 19.7 (1997), pp. 780–785. DOI: 10.1109/34.598236.
- [Yal+13] Y. Yalman and I. Ertürk. "A new color image quality measure based on YUV transformation and PSNR for human vision system." In: *Turkish Journal of Electrical Engineering & Computer Sciences* 21.2 (2013), pp. 603–613. DOI: 10.3906/ELK-1111-11.
- [Zac+07] C. Zach, T. Pock, and H. Bischof. "A Duality Based Approach for Realtime TV-L¹ Optical Flow." In: *Joint Pattern Recognition Symposium* (*JPRS*). Vol. 4713. Lecture Notes in Computer Science. Springer, 2007, pp. 214–223. DOI: 10.1007/978-3-540-74936-3_22.
- [Zha+17] H. Zhao et al. "Pyramid Scene Parsing Network." In: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, Hawaii, USA, 2017, pp. 6230–6239. DOI: 10.1109/CVPR.2017.660.

[Ziv04] Z. Zivkovic. "Improved adaptive Gaussian mixture model for background subtraction." In: IEEE International Conference on Pattern Recognition (ICPR). Vol. 2. Cambridge, UK, 2004, pp. 28–31. DOI: 10.1109/ICPR.2004.1333992.

[St-+15] P.-L. St-Charles, G.-A. Bilodeau, and R. Bergevin. "SuBSENSE: A Universal Change Detection Method with Local Adaptive Sensitivity." In: *IEEE Transactions on Image Processing* 24.1 (2015), pp. 359–373. DOI: 10.1109/TIP.2014.2378053.