9th European Conference on Numerical Methods in Electromagnetics Topology Optimization for Impedance Mismatch Reduction of a 3D Planar Multilayer Busbar

E. Kuci^{1,2}, <u>J. Velasco</u>², F. Henrotte^{1,3}, P. Duysinx¹ & C. Geuzaine²

¹Department of Aerospace and Mechanical Engineering, LTAS University of Liège, Belgium

²Department of Electrical Engineering and Computer Science, Montefiore Institute University of Liège, Belgium

> ³Applied mechanics and mathematics, MEMA Catholic University of Louvain, Belgium

> > November 17th, 2017

Topology optimization of a busbar

• Linear time-harmonic magnetodynamic problem (Gmsh/GetDP)

Topology optimization of a busbar

• Linear time-harmonic magnetodynamic problem (Gmsh/GetDP)

Topology optimization: optimization parameters and objective

Topology Optimization with PDE constraints

Topology optimization \rightarrow material interpolation scheme

- Topology optimization acts on material fractions noted ho
 - ρ is represented by a discrete field (on a fixed region)
 - At each finite element $e
 ightarrow
 ho_e$ is the presence or not of copper

Topology optimization \rightarrow material interpolation scheme

- \bullet Topology optimization acts on material fractions noted ρ
 - ρ is represented by a discrete field (on a fixed region)
 - At each finite element $e
 ightarrow
 ho_e$ is the presence or not of copper
- Interpolation scheme of conductivity σ for intermediate ρ_e

- physical behavior strongly affected by the conductivity at $\rho_e = 1$
- ▶ logarithmic scale \rightarrow handle the span of several order of magnitudes E. Kuci NUMELEC2017 4 / 12

Current mismatch reduction \rightarrow optimization problem

- Set $||\Delta I(\rho, \mathbf{A}^{\dagger}, v^{\dagger})||_2^2$ of the mismatch $\Delta I = I_{\Sigma_1} I_{\Sigma_2}$ between the complex currents in the vertical vias as objective
- Set a constraint on the volume of material so as to fill at most a given volume fraction α of the available domain
- Design problem as a nonlinear PDE-constrained optimization

$$(P) \begin{cases} \min_{\rho} & f_0(\rho, \mathbf{A}^{\dagger}, \mathbf{v}^{\dagger}) \equiv ||\Delta I(\rho, \mathbf{A}^{\dagger}, \mathbf{v}^{\dagger})||_2^2 \\ s.t. & f_1(\rho, \mathbf{A}^{\dagger}, \mathbf{v}^{\dagger}) \equiv \int_{\Omega_C} \rho \, \mathrm{d}\Omega \leq \alpha \int_{\Omega_C} \mathrm{d}\Omega \\ & \rho_e^{\min} \equiv 0 \leq \rho_e \leq \rho_e^{\max} \equiv 1, \, e = 1, \dots, n \\ & r(\mathbf{A}^{\dagger}, \mathbf{v}^{\dagger}, \overline{\mathbf{A}}', \overline{\mathbf{v}}') = 0, \, \forall \overline{\mathbf{A}}' \in Z_A^0, \forall \overline{\mathbf{v}}' \in Z_V^1 \end{cases}$$

Time-harmonic magnetodynamics \rightarrow PDE constraint

• The complex valued PDE system in terms of the residual r(A, v, A', v')

$$\begin{cases} \int_{\Omega} \left(\nu \boldsymbol{B} \cdot \boldsymbol{B}' + i\omega \sigma \boldsymbol{A} \cdot \boldsymbol{A}' \right) \, \mathrm{d}\Omega + \int_{\Omega_{C}} \sigma \nabla v \cdot \boldsymbol{A}' \, \mathrm{d}\Omega = 0, \; \forall \boldsymbol{A}' \in Z_{A}^{0} \\ \int_{\Omega_{C}} \left(i\omega \sigma \boldsymbol{A} \cdot \nabla v' + \sigma \nabla v \cdot \nabla v' \right) \, \mathrm{d}\Omega - \int_{\Sigma_{I}} I_{s} \cdot v' \, \mathrm{d}\Omega = 0, \; \forall v' \in Z_{v}^{I} \end{cases}$$

with **A** the magnetic vector potential, $\mathbf{B} = \operatorname{curl} \mathbf{A}$ the magnetic flux density on Ω and v the electric potential

- All the state variables are complex-valued
- Time consuming f_j evaluation: FE resolution required as ρ changes
- Gradient (sensitivity)-based algorithms \rightarrow drastic reduction of f_j evaluations

Sensitivity in time-harmonic domain

Gradient based algo \rightarrow we need sensitivity

- Sensitivity aims (mainly) at obtaining $\frac{df_0}{d\rho} = \frac{d}{d\rho} ||\Delta I(\rho, \mathbf{A}^{\dagger}, v^{\dagger})||_2^2$
- Differentiation of f_0 w.r.t. ρ requires
 - differentiation of $\frac{\mathrm{d} I_{\Sigma_1}}{\mathrm{d} \rho}(\rho, \mathbf{A}^{\dagger}, v^{\dagger})$ and $\frac{\mathrm{d} I_{\Sigma_2}}{\mathrm{d} \rho}(\rho, \mathbf{A}^{\dagger}, v^{\dagger})$
 - ▶ and hence the differentiation of the solution $A^{\dagger} \rightarrow \frac{\mathrm{d}A^{\dagger}}{\mathrm{d}\rho}$ and $v^{\dagger} \rightarrow \frac{\mathrm{d}v^{\dagger}}{\mathrm{d}\rho}$

Gradient based algo \rightarrow we need sensitivity

- Sensitivity aims (mainly) at obtaining $\frac{df_0}{d\rho} = \frac{d}{d\rho} ||\Delta I(\rho, \mathbf{A}^{\dagger}, v^{\dagger})||_2^2$
- Differentiation of f_0 w.r.t. ρ requires
 - differentiation of $\frac{\mathrm{d} I_{\Sigma_1}}{\mathrm{d} \rho}(\rho, \mathbf{A}^{\dagger}, v^{\dagger})$ and $\frac{\mathrm{d} I_{\Sigma_2}}{\mathrm{d} \rho}(\rho, \mathbf{A}^{\dagger}, v^{\dagger})$
 - ▶ and hence the differentiation of the solution $A^{\dagger} \rightarrow \frac{\mathrm{d}A^{\dagger}}{\mathrm{d}\rho}$ and $v^{\dagger} \rightarrow \frac{\mathrm{d}v^{\dagger}}{\mathrm{d}\rho}$
- Providing an extension of (Kuci et al.) in time-harmonic domain
 - we differentiate under the integration sign of the residual
 - ▶ we obtain a unique linear formulation for scalar/vector fields in 3D
 - we avoid the simple but slow finite difference method

$rac{\mathrm{d} {f A}^\dagger}{\mathrm{d} ho}$ and $rac{\mathrm{d} {m v}^\dagger}{\mathrm{d} ho} o$ differentiation under the integration sign

• Let us differentiate the residual by applying the chain rule

$$\begin{cases} \int_{\Omega} \left(\nu \operatorname{\mathbf{curl}} \frac{\mathrm{d}\boldsymbol{A}^{\dagger}}{\mathrm{d}\rho} \cdot \operatorname{\mathbf{curl}} \boldsymbol{A}' + i\omega \frac{\mathrm{d}\sigma}{\mathrm{d}\rho} \boldsymbol{A}^{\dagger} \cdot \boldsymbol{A}' + i\omega \sigma \frac{\mathrm{d}\boldsymbol{A}^{\dagger}}{\mathrm{d}\rho} \cdot \boldsymbol{A}' \right) \, \mathrm{d}\Omega \\ + \int_{\Omega_{C}} \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\rho} \nabla \boldsymbol{v}^{\dagger} \cdot \boldsymbol{A}' + \sigma \nabla \frac{\mathrm{d}\boldsymbol{v}^{\dagger}}{\mathrm{d}\rho} \cdot \boldsymbol{A}' \right) \, \mathrm{d}\Omega = 0, \; \forall \boldsymbol{A}' \in Z_{A}^{0} \\ \int_{\Omega_{C}} \left(i\omega \frac{\mathrm{d}\sigma}{\mathrm{d}\rho} \boldsymbol{A}^{\dagger} \cdot \nabla \boldsymbol{v}' + i\omega \sigma \frac{\mathrm{d}\boldsymbol{A}^{\dagger}}{\mathrm{d}\rho} \cdot \nabla \boldsymbol{v}' \\ + \frac{\mathrm{d}\sigma}{\mathrm{d}\rho} \nabla \boldsymbol{v}^{\dagger} \cdot \nabla \bar{\boldsymbol{v}} + \sigma \nabla \frac{\mathrm{d}\boldsymbol{v}^{\dagger}}{\mathrm{d}\rho} \cdot \nabla \bar{\boldsymbol{v}} \right) \, \mathrm{d}\Omega = 0, \; \forall \bar{\boldsymbol{v}} \in Z_{v}^{I} \end{cases}$$

• We get

- a linear system for both $\frac{d\mathbf{A}}{d\rho}$ and $\frac{d\mathbf{v}}{d\rho}$
- \blacktriangleright same jacobian matrix as the PDE \rightarrow known factorization

• terms in
$$\frac{\mathrm{d}\sigma}{\mathrm{d}\rho}
ightarrow$$
 known as $\sigma(
ho)$ is explicit

► easy to implement → add few lines in existing FEM code E. Kuci

 NUMELEC2017
 9 / 12

Conclusions

Conclusions

- FEM based and Gradient based topology optimization
 - geometry of a busbar for impedance mismatch reduction
- Sensitivity analysis based on the Lie derivative
 - extended to the time-harmonic case with vector analysis notations
 - validated with finite difference (FD)
 - much more efficient then FD (NL PDE resolutions avoided for perturbed geometries)
 - implemented in Gmsh/GetDP

Thank you for your attention!

This work was supported in part by the Walloon Region of Belgium under grant RW-1217703 (WBGreen FEDO) and grant PIT7508 (ATAC-HP).

-	12	
H .	КП	CL
····		

NUMELEC2017 12 / 12