
Column generation algorithms for the
wafer-to-wafer integration problem

1, Trivikram Dokka∗1, Yves Crama†2, Guillerme Duvillié‡3, and
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Abstract

We consider the wafer-to-wafer integration problem that arises in the manufac-
turing of integrated circuits. We propose an exact, state-of-the-art branch-and-price
optimization algorithm for this problem, and we derive a price-and-branch heuristic
from this algorithm. We have implemented these two algorithms, as well as a simple
sequential heuristic algorithms, and we have conducted extensive experiments to
test their performance. The results allow us to establish the range of the size of the
instances that can be solved to optimality by our branch-and-price algorithm. We
also identify ranges of the different instance parameters for which the two heuristics
perform relatively well.

1 Introduction

Three-dimensional integration is an important innovation in the manufacturing of stacked
integrated circuits. Compared to traditional technology where transistors are connected
using only a single layer, three-dimensional integration allows multiple layers of tran-
sistors to be bonded. This shortens the length of the connections, thereby improving
performance in terms of inter-connect delays and efficiency. For a precise description of
the technological intricacies, and the advantages of three-dimensional integration tech-
nology, we refer to Garrou et al. [11] and Taouil [21].
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A key step in the production of three-dimensional integrated circuits is stacking. Ac-
cording to Reda et al. [15], there are three different ways of stacking: wafer-to-wafer,
die-to-wafer, and die-to-die. Of these approaches, wafer-to-wafer stacking offers the high-
est potential for maximizing throughput; moreover, for some applications, wafer-to-wafer
is in fact the only option (Reda et al. [15]). However, a serious drawback of wafer-to-
wafer stacking is its low production yield. The main motivation of this paper is to study
the computational performance of methods that maximize yield in the wafer-to-wafer
integration process.

Let us now give an informal description of this yield maximization problem in wafer-
to-wafer integration. An individual wafer consists of, say p, dies. As we assume that
the wafers are pre-tested before stacking, we know, for each wafer, which of its p dies
are functioning (i.e., good), and which are not functioning (i.e., bad). In other words,
each wafer can be represented by a binary string of length p, where 0’s indicate good
dies, and 1’s indicate bad dies. Further, we are given m batches of wafers, where each
batch consists of n wafers. The objective is to form n wafer stacks by integrating one
wafer from each batch in each stack, while maximizing the yield, i.e., while minimizing
the total number of bad dies in the resulting stacks. For this reason we call the above
problem the wafer-to-wafer integration problem, or WWI in short (see Section 2 for a
precise description).

Related literature

WWI has received much attention from various fields: engineering, computer science and
operations research. Reda et al. [15], Singh [17], Taouil and Hamdioui [22], Taouil et
al. [24], and Verbree et al. [25] propose and experimentally analyze so-called sequential
heuristics to optimize the yield. Given an ordering of the batches, these heuristics
repeatedly assign wafers from the next batch to the partial wafer stacks formed from
previous iterations. Dokka et al. [8] study the worst-case performance of these heuristics.
Bougeret et al. [3] focus on the complexity and approximability of WWI.

Reda et al. [15] already observed that WWI is a special case of a broader class of
problems, namely (axial) multi-dimensional assignment problems (see also Dokka [6],
Dokka et al. [8], Harzi et al [14], etc.). Sequential heuristics for general multi-dimensional
assignment problems have been studied by Bandelt et al. [1]. Surveys on this class of
problems can be found in Chapter 10 of Burkard et al. [4] and in Spieksma [19].

For the sake of completeness, let us mention that a number of variants of WWI have
also been investigated. For example, Singh [18] describes a variant where rotations of
wafers are allowed. Clearly, this gives more possibilities to minimize the number of bad
dies in the resulting wafer stacks. Another variant concerns a dynamic version of WWI,
where the available batches of wafers change over time (dynamic repositories). Taouil
et al. [23] investigate how to best maximize yield in a setting where the repositories are
replenished over time. In the sequel, we do not consider such variants and we concentrate
on the basic formulation of the WWI problem.

2



Our contribution

In this work, we analyze the performance of an exact, branch-and-price algorithm based
on a natural integer programming formulation of WWI. We use column generation to
solve the linear programs that arise, and we investigate the corresponding pricing prob-
lem. Based on this column generation algorithm, we further design a so-called price-
and-branch heuristic which only uses the variables that are present with a positive value
in the optimal solution of the linear programming relaxation of WWI. We also consider
a sequential heuristic that can be seen as the standard method for solving instances of
WWI in practice. All these algorithms are implemented, and we perform a computa-
tional study on different classes of randomly generated instances to assess how these
algorithms fare with respect to quality of the solution found and computation time
needed. By doing so, we are able to establish the boundaries of the size of the instances
that can be solved exactly by our state-of-the-art branch-and-price algorithm. In addi-
tion, we are able to assess the quality of the solutions found by the heuristic approaches,
by comparing them to the optimal value of the linear programming relaxation.

The paper is organized as follows. In Section 2, we give a precise definition of WWI
and we present its integer programming formulation. Section 3 describes the branch-
and-price algorithm in detail. Sections 4 and 5 introduce the price-and-branch heuristic
and the sequential heuristic. We provide details about the generation of the instances
in Section 6. The outcome of applying all algorithms on the generated instances is
extensively reported in Section 7. We conclude in Section 8.

2 The wafer-to-wafer integration problem

2.1 Problem statement

We now formally state the wafer-to-wafer integration problem. The input of the problem
is defined by m disjoint sets V1, . . . , Vm, where each set Vk (1 ≤ k ≤ m) contains the
same number n of p-dimensional binary vectors. Each binary vector models a wafer, and
each set Vk stands for a batch of wafers. All wafers in a batch are meant to be identical,
except for occasional (and unwanted) defects. We sometimes refer to components of
a binary vector as positions. The cost function c(·) : {0, 1}p → Z+ associates with
each p-dimensional vector the sum of its components (that is, its Hamming weight):
c(u) =

∑p
`=1 u`.

Let K = V1×. . .×Vm. A feasible m-tuple is an m-tuple of vectors (u1, u2, . . . , um) ∈ K
(representing a stack of m wafers), and a feasible assignment for K is a set A of n feasible
m-tuples such that each element of V1 ∪ . . . ∪ Vm appears in exactly one m-tuple of A.
We define the component-wise maximum operator ∨ as follows: for every pair of vectors
v, w ∈ {0, 1}p,

v ∨ w = (max(v1, w1),max(v2, w2), . . . ,max(vp, wp)).

Given a feasible m-tuple a = (u1, u2, . . . , um), we define the representative vector of a
as v(a) = u1 ∨ u2 ∨ · · · ∨ um.
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Figure 1: A WWI-3 instance with m = 3, n = p = 2

Now, the cost of a feasible m-tuple a = (u1, . . . , um) is defined as the cost of its
representative vector, i.e., with a slight abuse of notations, c(a) := c(v(a)) := c(u1 ∨
. . .∨um) (it represents the number of defective dies in the stack of wafers (u1, . . . , um)).
The cost of a feasible assignment A is the sum of the costs of its m-tuples: c(A) =∑

a∈A c(a) =
∑

(u1,...,um)∈A c(u
1 ∨ . . . ∨ um).

With this terminology, the wafer-to-wafer assignment problem (WWI) is to find a
feasible assignment for K with minimum cost.

Example 1. An instance of WWI with m = 3, n = p = 2 is displayed in Figure 1.
The optimal solution of the instance, of value equal to 2, is achieved by assigning the
first vector of V1, the second vector of V2, and the first vector of V3 to the same triple,
thus producing the representative vector (1, 0) with cost c(1, 0) = 1; the remaining three
vectors form a second triple with cost c(0, 1) = 1. The cost of this optimal assignment
is 2.

2.2 Integer programming formulation

As previously stated, WWI can be viewed as a multi-dimensional axial assignment prob-
lem [19]. This leads to a straightforward set covering formulation of WWI, described as
follows.

For each feasible m-tuple a ∈ K and u ∈ Vk (k ∈ {1, . . . ,m}), we write u ∈ a if u is the
projection of a on Vk, that is, if a contains the vector u from Vk. We define the decision
variables xa, for all a ∈ K, where xa = 1 if m-tuple a is selected in the assignment, and
xa = 0 otherwise. The set covering formulation (AIP) of WWI is now:

(AIP) min
∑
a∈K

c(a)xa (1)

subject to
∑
a:u∈a

xa ≥ 1 ∀u ∈
m⋃
k=1

Vk (2)

xa ∈ {0, 1} ∀a ∈ K. (3)

The set covering constraints (2) ensure that each vector u is in at least one m-tuple. In
view of the objective (1) and of the structure of the problem, each vector will actually
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be covered exactly once in some optimal solution of AIP. (We could alternatively set up
a set partitioning formulation, where (2) are replaced by equality constraints. But the
continuous relaxation of the set covering formulation has a better numerical behavior [2].)

The number of variables and number of constraints of AIP are nm and mn, respec-
tively. As we will see in Section 7, the linear relaxation of AIP is rather tight, but the
exponential size of the formulation prevents the solution of large scale instances, due
in particular to heavy memory requirements. Several compact, polynomial-size integer
programming formulations of WWI have been proposed to address this drawback, either
for the general case (see, e.g., [6–8]) or for the case of fixed dimension p (see, e.g., [3,8,9]).
However, preliminary experiments revealed that these formulations are weak and do not
form the basis of competitive algorithms, even when m = 3. These observations moti-
vate the study of more efficient approaches based on formulation AIP, to be developed
in subsequent sections.

3 An exact branch-and-price algorithm

In this section we propose an exact branch-and-price (B&P) algorithm for the solution of
AIP. B&P is a variant of branch-and-bound: branching on binary variables produces an
enumeration tree where each node is associated with a restriction of the original problem,
and a column generation algorithm is used in order to solve the linear relaxation of the
restricted problem associated with each node (see, e.g., [2]). We discuss next the main
ingredients of our implementation.

3.1 Branching

We rely on a well-known branching strategy proposed by Ryan and Foster [2,16]. Suppose
that the solution of the LP-relaxation of AIP is fractional. The classical branching rule
that forces a fractional variable xa to take value either 1 or 0 (and thus forces the
corresponding m-tuple to be respectively part of, or excluded from, the solution) leads
to a very unbalanced enumeration tree. On the other hand, when the optimal solution
is fractional, it can be shown that there exists a pair (u, v), u ∈ Vi, v ∈ Vj , i 6= j such
that

0 <
∑

a:u∈a,v∈a
xa < 1.

Then, the Ryan-Foster branching rule forces, in one branch, u ∈ Vi and v ∈ Vj to be part
of the same m-tuple (branch 1), and, in the other branch, u ∈ Vi and v ∈ Vj to be part of
two different m-tuples (branch 2). To fix our notations, let us generically denote by F the
set of pairs of vectors that are forbidden to be part of the same m-tuple in a given node of
the tree, i.e., F = {(w,w′)| w,w′ ∈

⋃m
k=1 Vk, and w,w′ cannot be in a same m-tuple}.

(Initially, F only contains those pairs (w,w′) such that w and w′ are in a same set Vk.)
Then, to deal with branch 1, we set F := F ∪ {(w, v) : w ∈ Vi \ {u}} ∪ {(u,w′) : w′ ∈
Vj \{v}}: this guarantees that any generated m-tuple which contains u must also contain
v, and vice versa. In branch 2, we set F := F ∪ {(u, v)}, thereby prohibiting vectors u
and v to be in a same m-tuple.
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Thus, in any node of the tree, we are actually solving a modified version of AIP, to
be denoted rAIP in the sequel, where the set of feasible assignments is restricted to a
subset K ⊆ K, with K = {a ∈ K : for all u, v ∈ a, (u, v) 6∈ F}. A general formulation
of rAIP is

(rAIP) min
∑
a∈K

c(a)xa (4)

∑
a:u∈a

xa ≥ 1 ∀u ∈
m⋃
k=1

Vk (5)

xa ∈ {0, 1} ∀a ∈ K. (6)

3.2 Column generation

In the branch-and-price framework, the linear relaxation of rAIP is solved by column
generation at each node of the enumeration tree. An arbitrary iteration of the column
generation algorithm starts with a master problem (MP) of the form

(MP) min
∑
a∈S

c(a)xa (7)

∑
a:u∈a

xa ≥ 1 ∀u ∈
m⋃
k=1

Vk (8)

0 ≤ xa ≤ 1 ∀a ∈ S, (9)

where S ⊆ K is the subset of m-tuples indexing the variables (columns) currently in-
cluded in MP. Let us denote by λu, u ∈

⋃m
k=1 Vk, the dual variables associated with

inequalities (8). Given an optimal solution of MP, the pricing problem consists in de-
ciding whether there exists a variable xa (a ∈ K) with negative reduced cost, that is,
whether there exists an m-tuple a ∈ K such that∑

u∈a
λu − c(a) > 0. (10)

This pricing problem can be formulated as an integer program. We introduce binary
variables su, indicating whether vector u ∈

⋃m
k=1 Vk is selected in the m-tuple a, and

binary variables q` indicating whether at least one of the vectors selected in the m-tuple
has a 1 in position ` (1 ≤ ` ≤ p). We then obtain the following integer programming
formulation of the pricing problem:

(PPIP) max

m∑
k=1

∑
u∈Vk

λusu −
p∑

`=1

q` (11)

∑
u∈Vk

su = 1 ∀k = 1, . . . ,m (12)

∑
u∈Vk

u`su ≤ q` ∀` = 1, . . . , p, k = 1, . . . ,m (13)
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su + sv ≤ 1 ∀(u, v) ∈ F (14)

su, q` ∈ {0, 1} ∀u ∈
m⋃
k=1

Vk, ` = 1, . . . , p. (15)

The optimal value of PPIP is positive if and only if the answer to the pricing question
is yes.

Clearly, the pricing problem (and hence, PPIP) can be solved by a straightforward
enumerative algorithm with complexity O(pnm) (simply generate each feasible m-tuple).
On the other hand, it is unlikely that the pricing problem can be solved by an exact
algorithm with complexity polynomial in m, n and p. To see this, consider the special
case of PPIP that arises when (i) F = ∅ (hence, constraints (14) disappear), and (ii)
λu = 0 for all u. The resulting problem is to find an m-tuple a with minimum cost c(a).
The decision version of this problem was shown in [3,10] to be NP-complete.

3.3 Implementation

We have used the SCIP 5.0.1 framework to implement a branch-and-price algorithm
for WWI [12, 13]. Even though SCIP is single-threaded when driving the branch-and-
price process, if offers great modularity in several stages of the process. In particular, it
allowed us to implement a multithreaded algorithm to solve the pricing problem, as we
now explain.

In a first attempt, the pricing problem was solved by simply passing the PPIP for-
mulation to the CPLEX ILP solver. It turned out that the large amount of variables in
PPIP (in particular, for large values of p) leads to poor performance of the ILP solvers
and thus to prohibitive running times for the branch-and-price algorithm. The choice
has therefore been made to solve the pricing problem by exhaustive enumeration: that is,
we successively generate all feasible m-tuples a and, for each of them, we verify whether
the inequality (10) is satisfied. While this naive algorithm obviously has exponential
O(pnm) complexity, it nevertheless offers interesting opportunities:

• it can be easily parallelized and optimized,

• it offers great adaptability, no matter the adopted branching rule,

• it remains tractable for reasonably small values of m.

We take advantage of the enumeration order to parallelize and optimize the pricing
process. Without going into all details of the implementation, note that an m-tuple can
be encoded as a word of length m on an alphabet with n symbols: if each of z1, . . . , zm is a
symbol in {1, . . . , n}, then the word (z1, . . . , zm) encodes the feasible m-tuple containing
the zi-th vector in set Vi (where each set Vi is arbitrarily ordered).

Example 2. For an instance of WWI with m = 3, n = 7, the word (5, 2, 6) encodes the
triple consisting of the fifth vector of V1, the second vector of V2, and the sixth vector of
V3.
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The m-tuples can then be enumerated according to the lexicographic order <L:

(z1, . . . , zm) <L (z′1, . . . , z
′
m) if and only if, for some index i,

z1 = z′1, z2 = z′2, . . . , zi−1 = z′i−1, and zi < z′i.

To take advantage of parallelization, the enumeration of the nm m-tuples is split into
n enumerations of nm−1 (m − 1)-tuples, one for each vector of the set V1 (that is, for
each possible value of z1). These n jobs are dispatched among the different threads of
the pool.

Moreover, the representative vector v(a) of each m-tuple a is computed dynamically
during the enumeration process, in order to reduce the memory requirements. Indeed,
due to the lexicographic enumeration order, all the m-tuples z sharing the same initial
prefix (z1, . . . , zm−1) are successively generated. It is therefore possible to compute the
representative vector of the (m−1)-tuple associated with this prefix only once for all m-
tuples sharing the prefix. Such a representative vector is kept temporarily into memory
during the enumeration of these m-tuples. All these “tricks” considerably reduce both
memory consumption and computation.

In the initial iterations of the column generation process, it may happen that very
many columns with negative reduced cost are identified. In an attempt to limit the size
of the master problem, therefore, the number of columns each thread can add to the
restricted master problem is limited by an empirically defined threshold (namely, 100
columns in our experiments). Furthermore, we prioritize and we add first those columns
with the most negative reduced costs, that is, with the largest possible value of the
left-hand side of inequality (10).

Finally, let us remark that the parallelization of the enumeration process aims at
reducing the clock wall time of the branch-and-price algorithm, but does not reduce the
number of generated m-tuples. On the other hand, parallelization requires additional
overhead (CPU time) to manage the job pool, to thread dedicated memory, and even to
add columns to the formulation. For these reasons, both the total CPU time (including
overhead) and the clock wall time of the solution process will be mentioned, whenever
relevant, in our discussion of computational results in Section 7.

4 A price-and-branch heuristic

Even though a branch-and-price algorithm can reduce the memory requirements imposed
by the AIP formulation, our computational experiments show that its capability to solve
large instances to optimality remains limited. In this section, we propose a heuristic
price-and-branch (P&B) algorithm to address this limitation.

4.1 Principle

The basic principle of the price-and-branch algorithm has been used by many authors and
appears to be part of the “folklore” of column generation approaches. It consists, first, in
relying on the pricing strategy of branch-and-price to solve the linear relaxation of AIP to
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optimality or, in some variants, to near-optimality. When the column generation process
stops, it has produced a specific instance of the master problem (7)-(9) (associated with
a subset of columns S), that we call MP*. Now, it is intuitively tempting to assume
that MP* is a tight approximation of AIP, meaning that it contains many columns
(i.e., m-tuples) that could be used in an optimal solution of AIP (i.e., in an optimal
assignment). Reinstating the constraints xa ∈ {0, 1} for all a ∈ S in MP* leads to an
integer programming problem that we call IMP*. Solving IMP* is a heuristic strategy
which cannot guarantee optimality, but which is likely to lead to a good solution of WWI.

The difficulty of solving the IMP* depends, among other factors, on the number of
columns generated in the pricing phase. Adding many columns typically improves the
quality of the model, but may result in large running times during the branching phase
due to the size of the linear programs to be solved. On the other hand, adding too few
columns increases the likelihood to miss the optimal solution of AIP. To deal with these
issues we adopt the following strategy:

• Initial columns: We start with n tuples which form a feasible assignment. Several
possibilities offer themselves for this initial set. A natural choice is to define the
i-th m-tuple to include the i-th vector from each set, for i = 1, . . . , n. Another
possible choice is to include in the initial formulation the m-tuples produced by a
heuristic solution of WWI, such as the SHH solution described in Section 5. In our
computational experiments, this choice did not significantly affect the performance
of the algorithm. (We report on the results obtained with the first alternative here
above.)

• Pricing phase: As in the branch-and-price algorithm, the pricing problem is
solved by enumeration over all m-tuples, that is, we check for each m−tuple
whether inequality (10) is satisfied. In each round of pricing we only add a prespec-
ified number of columns (300 columns in our experiment). This pricing strategy
allows us to solve the LP relaxation of AIP without massive increase of the running
time. This phase ends with a formulation MP* of the master problem.

• Branching phase: In this phase, we solve the IP restriction of MP*, that is,
IMP*. For this purpose, we first implemented a branching algorithm based on the
Ryan-Foster rule, as in the branch-and-price algorithm. However, it turned out
that simply launching the branch-and-cut IP solver of CPLEX on IMP* leads to
the same result in much shorter time. Hence, in Section 7, we only report the
results obtained by using the CPLEX IP solver in the P&B solving phase.

5 Sequential heavy heuristic

We present here a simple sequential matching heuristic which provides a baseline for the
estimation of our algorithmic results. This class of heuristics has been investigated in
[1,5] for related multi-dimensional assignment problems, and has been more specifically
proposed in [15] for the WWI problem. Its worst-case performance has been analyzed
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in [9]. The idea of sequential matching heuristics is to extend a partial solution, obtained
by solving the bipartite matching problem between any two sets Vi, Vj , by solving again
a bipartite matching problem between the set of vectors corresponding to the partial
solution and another set Vk. This process is repeated until all sets have been matched.
Let us define the weight of a set Vi as the total number of 1’s of the vectors contained in
the set, that is: weight(Vi) =

∑
u∈Vi

c(u). It was observed by [17] that the performance of
sequential heuristics is improved when the sets Vi are ordered by non-increasing weight.
Following [9], we call this variant sequential heavy heuristic (SHH). We describe it more
formally in Algorithm 1.

Algorithm 1 Sequential heavy heuristic (SHH)

reorder V1, . . . , Vm so that weight(Vi) ≥ weight(Vj) when i < j;
let H1 := V1;
for i = 2 to m do

solve a bipartite matching problem between Hi−1 and Vi based on the costs c(u1 ∨
. . . ∨ ui−1 ∨ v), for all (u1, . . . , ui−1) ∈ Hi−1 and v ∈ Vi; let Hi be the resulting
assignment for V1 × V2 × . . .× Vi;

end for
output Hm.

6 Instances

Let us now describe the instances on which the experimental study is based. We consider
two classes of instances (uniform and negative binomial), with the first one having three
subclasses of different sparsity (percentage of 1’s).

Uniform: There are three subclasses of instances in this class: sparse (US), very
sparse (UVS), and ultra-sparse (UUS). Each of these subclasses contains random
instances generated using a Bernoulli distribution, where the probability of an
element being one (failure probability of a die) is given as pUS = 0.10 for the
instances in US, pUV S = 0.05 for UVS, and pUUS = 0.01 for UUS, respectively.
The state of each die is independent of the state of the other dies.

Negative Binomial (NB): The classical negative binomial distribution is frequently
used in the literature (see [15, 20]) to generate defect wafer maps. The main idea
here is to reproduce the clustering of defects that is often observed in practice.
Many authors argued that this effect is best captured by the negative binomial
model. Inspired by these arguments, our instance generation procedure for this
class of instances is as follows:

• Consider each vector (wafer) as a rectangular block, as in Figure 2a. For
example, when p = 100, the vector can be arranged as a 10× 10 rectangular
block.
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• Divide this block into sub-blocks of identical size sb. For example, a 10× 10
block may be divided into four 5 × 5 sub-blocks, each containing sb = 25
elements (dies).

• Choose a sparsity parameter β, which represents the maximum number of
defects to be generated in each sub-block. In our instances we used β = 7,
meaning that each block contains at most 7 elements equal to 1. As an
illustration, in Figures 2a and 2b, we compare a vector (wafer) generated
with β = 7 and β = 14, respectively.

• Let b(i) be the number of defects to be placed in sub-block i, where b(i) is
uniformly generated between 0 and β.

• In order to generate b(i) defects (1’s) in block i, we draw b(i) integers, say
k1, k2, . . . , kb(i) in the interval [0, sb− 1], from the negative binomial distribu-
tion with success probability pNB; that is, each kj is the number of failures
before a success in a sequence of Bernoulli draws with probability pNB (values
of kj larger than or equal to sb are discarded). In our experiments, we used
pNB = 0.152.

• The integers k1+1, k2+1, . . . , kb(i)+1 indicate the positions where the defects
are placed in sub-block i.

We observed empirically that the choice of parameters β = 7 and pNB = 0.152
leads to instances where the probability of an element being one (failure probability
of a die) is roughly 0.15.

For each combination of parameters m ∈ {3, 5, 7}, n ∈ {15, 25, 35} and p ∈ {100, 200,
400, 800}, we generate 10 instances in each subclass US, UVS, UUS, and NB. We thus
have a total of at most 1440 instances (as we will see in the next section, not all com-
binations of parameters have been considered in the experiments). Hereafter, we use
the notation US(m,n, p) (resp., UVS(m,n, p), UUS(m,n, p), NB(m,n, p)) for the set of
US (resp., UVS, UUS, NB) instances with parameters m,n, p. We also use the wild-
card character ∗ to consider broader sets of instances where one or more parameters are
not fixed. For instance, the set NB(∗, j, ∗) includes all negative binomial instances with
m ∈ {3, 5, 7}, n = j, and p ∈ {100, 200, 400, 800}.

7 Computational results

7.1 Branch-and-price algorithm

In this section, we focus on the computational performance of the branch-and-price exact
algorithm described in Section 3. The experiments have been conducted on an Intel(R)
Xeon(R) CPU E5-2630 v3 2.40GHz with 16 cores. We have set a time limit of 60000
seconds of CPU time. Both the actual CPU time and the corresponding wall clock time
are mentioned in the result tables.
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(b) Wafer map with β = 14

The memory limit has been set to 20 Gigabytes and SCIP version 5.0.1 has been used
to run the branch-and-price algorithm, while the branch-and-cut (B&C) algorithm of
ILOG CPLEX (version 12.7.1) has been used to provide a point of comparison.

The discussion of our results is divided into two parts. Among all instances, a set
of 640 instances are small enough to be solved to optimality by giving the full AIP
formulation (1)-(3) to CPLEX B&C. We refer to them as easy instances. They include
all the instances with m = 3, as well as all instances with m = 5 and n = 15. The
remaining instances define the set of hard instances.

7.1.1 Easy instances

Table 1 summarizes the performance of CPLEX branch-and-cut algorithm (B&C) and
of the branch-and-price algorithm (B&P) on each subclass of easy instances. It contains
the average CPU and wall clock running times (both in seconds), the average number
of nodes in the branching tree, and the average integrality int gap between the optimal
value (OPT) and the rounded-up optimal value of the linear relaxation of AIP (dLP e):

int gap =
OPT− dLP e
dLP e

× 100%. (16)

All averages are computed over 10 instances in each subclass.
Let us first remark that the AIP formulation is extremely tight, as witnessed by the

small value of the integrality gap. (In fact, the lower bound dLP e is equal to the optimal
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CPU (s) Wall Clock (s) # nodes int gap

p B&C B&P B&C B&P B&C B&P

NB

100 0.215 0.066 0.079 0.096 0.0 3.1 0.0000%
200 0.251 0.071 0.086 0.092 0.0 2.8 0.0116%
400 0.253 0.085 0.095 0.090 0.0 4.1 0.0109%
800 0.196 0.070 0.073 0.084 0.0 2.9 0.0000%

US

100 0.228 0.079 0.075 0.094 0.0 3.3 0.0000%
200 0.215 0.069 0.072 0.088 0.0 3.0 0.0140%
400 0.213 0.080 0.072 0.087 0.0 4.0 0.0000%
800 0.235 0.079 0.076 0.087 0.0 3.3 0.0064%

UVS

100 0.223 0.077 0.081 0.102 0.0 3.0 0.0000%
200 0.233 0.077 0.081 0.086 0.0 3.3 0.0000%
400 0.199 0.075 0.066 0.084 0.0 3.0 0.0000%
800 0.233 0.090 0.079 0.096 0.0 3.3 0.0000%

UUS

100 0.239 0.077 0.084 0.107 0.0 4.4 0.0000%
200 0.242 0.085 0.087 0.103 0.0 4.0 0.0000%
400 0.227 0.085 0.073 0.098 0.0 4.0 0.0000%
800 0.222 0.076 0.076 0.093 0.0 3.0 0.0000%

(a) m = 3, n = 15

CPU (s) Wall Clock (s) # nodes int gap

p B&C B&P B&C B&P B&C B&P

NB

100 0.993 0.301 0.318 0.262 0.0 6.2 0.0595%
200 1.157 0.332 0.366 0.251 0.0 8.5 0.0208%
400 1.463 0.479 0.422 0.352 0.0 12.7 0.0302%
800 1.135 0.579 0.336 0.390 0.0 17.2 0.0163%

US

100 1.001 0.282 0.310 0.255 0.0 5.7 0.0157%
200 0.933 0.274 0.292 0.240 0.0 4.8 0.0083%
400 0.963 0.361 0.336 0.267 0.0 9.8 0.0039%
800 0.956 0.469 0.322 0.321 0.0 12.4 0.0137%

UVS

100 0.937 0.215 0.286 0.200 0.0 3.3 0.0000%
200 1.064 0.235 0.326 0.217 0.0 3.8 0.0000%
400 1.045 0.313 0.350 0.258 0.0 6.0 0.0076%
800 1.012 0.35 0.348 0.292 0.0 5.5 0.0073%

UUS

100 1.051 0.165 0.332 0.164 0.0 4.4 0.0000%
200 0.942 0.209 0.284 0.203 0.0 3.7 0.0000%
400 1.116 0.201 0.411 0.192 0.0 3.0 0.0000%
800 1.026 0.267 0.335 0.230 0.0 3.9 0.0000%

(b) m = 3, n = 25
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CPU (s) Wall Clock (s) # nodes int gap

p B&C B&P B&C B&P B&C B&P

NB

100 3.768 0.792 1.057 0.546 0.0 9.0 0.0210%
200 3.773 1.181 1.078 0.708 0.0 14.8 0.0297%
400 3.401 1.028 0.919 0.617 0.0 12.4 0.0096%
800 3.193 1.661 0.902 0.856 0.0 21.9 0.0175%

US

100 3.660 0.700 1.013 0.480 0.0 8.5 0.0379%
200 3.728 1.091 1.018 0.649 0.0 15.1 0.0237%
400 3.191 0.892 0.866 0.555 0.0 10.6 0.0085%
800 3.219 1.567 0.901 0.808 0.0 19.2 0.0153%

UVS

100 3.456 0.527 0.945 0.427 0.0 3.8 0.0000%
200 3.310 0.677 0.849 0.491 0.0 5.3 0.0235%
400 3.612 0.938 0.924 0.609 0.0 9.8 0.0109%
800 3.176 0.967 0.916 0.623 0.0 8.0 0.0053%

UUS

100 3.120 0.413 0.874 0.343 0.0 4.7 0.0000%
200 2.997 0.421 0.809 0.338 0.0 4.6 0.0000%
400 3.819 0.479 1.312 0.385 0.0 3.0 0.0000%
800 3.176 0.698 0.777 0.491 0.0 4.7 0.0000%

(c) m = 3, n = 35

CPU (s) Wall Clock (s) # nodes int gap

p B&C B&P B&C B&P B&C B&P

NB

100 122.869 22.890 33.755 4.052 35.3 104.9 0.2407%
200 108.049 95.598 29.837 12.550 58.3 217.1 0.1906%
400 151.122 347.423 39.398 48.923 436.1 906.6 0.1788%
800 141.250 254.766 37.645 34.535 446.9 560.4 0.1141%

US

100 104.360 32.702 28.608 5.678 21.5 157.4 0.2537%
200 113.738 105.287 31.423 12.932 82.0 250.9 0.2270%
400 111.369 91.006 31.265 11.980 42.2 201.0 0.1428%
800 115.120 78.440 31.394 10.508 58.7 143.1 0.0940%

UVS

100 97.881 15.728 27.115 2.890 0.0 65.8 0.1857%
200 100.444 43.951 27.36 5.698 34.5 110.7 0.1741%
400 108.470 41.940 29.108 5.308 26.0 88.0 0.1150%
800 116.235 67.598 31.306 8.998 21.4 124.5 0.0755%

UUS

100 105.482 1.979 30.262 0.671 0.0 5.5 0.0000%
200 93.671 3.258 25.606 0.658 0.0 7.5 0.0000%
400 88.100 2.537 21.435 0.486 0.0 3.7 0.0000%
800 85.971 5.903 19.84 0.907 0.0 7.1 0.0369%

(d) m = 5, n = 15

Table 1: Branch-and-cut vs. branch-and-price performance (average CPU time, wall
clock time, number of nodes in the branching tree, integrality gap) on easy
instances
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value for 451 out of these 640 easy instances.)
As a consequence, for all instances with m = 3 and for all instances in UUS(5, 15, ∗),

B&C never enters the branching process: it finds the optimal solution after preprocessing
and root node solving. However, despite the smaller size of its branching tree, branch-
and-cut is slower than branch-and-price on almost all easy instances, with the exception
of the instances in NB(5, 15, 400) and NB(5, 15, 800) for CPU time, and of the instances
in NB(5, 15, 400) for clock wall time.

Next, we can observe that the integrality gap increases with m and n, as does the
running time of both branch-and-cut and branch-and-price. This behavior is clearly
expected, as the number of variables in AIP increases with these two parameters. More-
over, for branch-and-price, larger values of m and n also lead to a more difficult pricing
problem, since the number of m-tuples to enumerate is equal to nm.

In fact, the running time of branch-and-cut on easy instances appears to be mostly
determined by m and n (it is roughly constant for fixed values of these parameters),
whereas the performance of branch-and-price appears to be affected by other factors as
well, in particular, by the value of p (i.e., the size of the wafers) and by the number of
nodes in the branching tree.

The impact of p on the running time of branch-and-price is partially due to a (slight)
increase of the integrality gap, but also to the fact that, in order to avoid memory
issues, the cost of each m-tuple is dynamically computed in the pricing problem (see
Section 3.3), rather than stored in memory. Code profiling shows indeed that an average
25% of computation time is spent on counting the number of components equal to
one in the m-tuples. As an illustration of the influence of parameter p, observe for
example that the branch-and-price algorithm takes more time to solve the instances in
US(5, 15, 800) than those in US(5, 15, 100), even though the branching tree has fewer
nodes in the former case. The influence of p is way less noticeable when solving the full
model by branch-and-cut, since in this case, the cost of each m-tuple is precomputed and
hard-coded in the objective function coefficients of the model. (The dependence of the
branch-and-price algorithm on the vector size p could perhaps be alleviated by storing
all m-tuples costs in memory, but this creates memory problems for larger instances.)

In general, however, the main factor affecting the performance of branch-and-price
appears to be the size of the branching tree. For the instances in NB(5, 15, ∗), for
example, the correlation between the (CPU or wall clock) running time and the number
of nodes is almost perfect (equal to 0.99). Once again, this trend is less noticeable with
branch-and-cut: even when it must resort to branching, the bulk of the running time of
B&C goes into the preprocessing work performed at the root node.

The quality of the lower bound, the number of nodes (and, by way of consequence, the
running time) of branch-and-price is directly impacted by the sparsity of the instances.
This is quite apparent when comparing US, UVS and UUS instances with the same
parameters m and n.
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m = 5, n = 25 m = 5, n = 35

p NB US UVS UUS NB US UVS UUS

100 9 9 10 10 0 0 2 10
200 6 4 10 10 0 0 0 10
400 1 4 9 10 0 0 0 9
800 1 6 9 10 0 0 0 5

Total 17 23 38 40 - - 2 34

Table 2: Branch-and-price algorithm: Number of instances solved to optimality

7.1.2 Hard instances

In this section we consider instances for which CPLEX B&C does not return any solution
due to the heavy memory consumption of the full AIP formulation. Thus we only discuss
the results returned by the branch-and-price algorithm. As a first indication, Table 2
provides a synthetic overview of the number of instances solved to optimality within
60000 seconds of CPU time for m = 5 and n ∈ {25, 35}. (Remember that there are 10
instances in each class.)

Table 3 gives more details about the performance of the branch-and-price algorithm on
the instances solved to optimality within the time limit. The algorithm solves 118 among
the 160 instances with m = 5 and n = 25, and 36 among the 160 instances with m = 5
and n = 35. These are mostly sparse instances with a small number of components
per vector. These results confirm the sensitivity of the branch-and-price algorithm to
the values of n, p, and to the sparsity of the instances, as already observed for easy
instances in the previous section. One can actually notice in a more pronounced fashion
the influence of sparsity on the quality of the lower bound (the integrality gap given by
Equation (16) increases with p), on the number of nodes in the branching tree and on
the running time of the algorithm: the wall clock solving time ranges from a few seconds
for ultra-sparse (UUS) instances to several thousand seconds for the densest instances.
(The integrality gap is zero for 55 of the 154 hard instances solved to optimality, all of
them of the UUS type.)

Let us now turn to the instances that could not be solved to optimality within the time
limit. Table 4 shows the performance of the branch-and-price algorithm when restricted
to these instances. Beside the number of instances in each subclass and the average
number of nodes in the branching tree, the table displays two measures of the (average)
optimality gap for each subclass of instances, namely, diff and gap: if ub denotes the
best value of a feasible solution obtained by branch-and-price, and if lb denotes the best
lower bound computed on the optimal value of an instance, then we define the absolute
difference diff = ub− dlbe, and the relative gap

gap =
ub− dlbe
dlbe

× 100%. (17)

The majority of the instances in Table 4 are those with m = 5 and n = 35. Indeed,
because exhaustive enumeration with complexity O(nm) is used for pricing, even a small
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p # inst CPU (s) Wall Clock (s) # nodes int gap

NB

100 9 21823.310 3240.590 14784.3 0.4110%
200 6 25746.407 2318.499 7797.7 0.2555%
400 1 33650.790 2952.017 9464.0 0.1793%
800 1 45496.160 4059.979 12222.0 0.1358%

US

100 9 9774.341 1271.886 6421.2 0.4042%
200 4 24816.468 2269.256 7815.2 0.2603%
400 4 18374.928 1560.585 5158.5 0.1715%
800 6 32250.569 2922.909 8786.8 0.1188%

UVS

100 10 2505.699 261.169 1500.3 0.3710%
200 10 4274.250 366.582 1088.1 0.2060%
400 9 13588.724 1169.891 3723.1 0.1688%
800 9 27070.183 2400.674 7287.8 0.1318%

UUS

100 10 26.658 5.106 15.4 0.0000%
200 10 49.316 5.563 12.8 0.0345%
400 10 102.810 9.768 21.8 0.0727%
800 10 407.384 37.367 70.4 0.0813%

(a) m = 5, n = 25

p # inst CPU (s) Wall Clock (s) # nodes int gap

UVS 100 2 1880.822 2309.616 2712.5 0.4451%

UUS

100 10 633.143 79.192 77.8 0.0000%
200 10 411.365 36.397 22.7 0.0000%
400 9 11507.609 889.296 486.556 0.0994%
800 5 17249.189 1325.007 672.0 0.1020%

(b) m = 5, n = 35

Table 3: Branch-and-price algorithm: average performance on instances solved to opti-
mality (computed over the number of instances reported in column ’# inst’)
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p # inst gap diff # nodes

NB

100 1 0.232 % 2.000 36960.0
200 4 0.173 % 3.250 18869.7
400 9 0.119 % 4.667 17115.1
800 9 0.090 % 7.334 16108.4

US

100 1 0.249 % 2.000 38572.0
200 6 0.175 % 3.000 17997.3
400 6 0.129 % 4.667 17502.3
800 4 0.070 % 5.250 16231.7

UVS
400 1 0.098 % 2.000 19516.0
800 1 0.048 % 2.000 16534.0

(a) m = 5, n = 25

p # inst gap diff # nodes

NB

100 10 1.844 % 21.800 6699.100
200 10 1.818 % 47.100 2900.800
400 10 1.391 % 75.400 2482.400
800 10 1.125 % 127.000 2465.500

US

100 10 1.816 % 19.700 6798.700
200 10 1.012 % 24.000 2812.100
400 10 1.046 % 52.700 2395.900
800 10 0.588 % 61.700 2271.400

UVS

100 8 0.742 % 4.250 6912.500
200 10 0.401 % 5.100 2786.900
400 10 0.370 % 10.100 2318.000
800 10 0.570 % 32.700 2343.900

UUS
400 1 0.174 % 1.000 3135.000
800 5 0.147 % 1.800 2518.000

(b) m = 5, n = 35

Table 4: Branch-and-price algorithm: average performance on instances reaching the
time limit (computed over the number of instances reported in column ’# inst’)
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increase of either m or n badly worsens the overall performance. This is highlighted by
the low number of nodes explored in the branching process when n = 35 (between 2700
and 7000 nodes, depending mostly on p, the number of dies per wafer) as compared with
the case when n = 25 (between 16000 and 40000 nodes, depending again on p).

Even when it runs out of time, the branch-and-price algorithm is able to produce
solutions and lower bounds of high quality for the instances in Table 4: the average gap
between the best integral solution and the best lower bound is very small and never
exceeds 1.85%. It is even smaller for instances with n = 25, where it never exceeds
0.25%: the enumeration being more efficient on instances with n = 25, a higher number
of nodes is explored before the time limit, and this potentially allows the algorithm
to improve both the lower bound and the best known solution. (This phenomenon is
even more evident on the absolute difference diff, which increases significantly when the
number of wafers goes from n = 25 to n = 35.)

Interestingly, for given values of m and n and for a fixed sparsity class, the gap tends
to decrease when p increases, while diff simultaneously increases. This is due to the
fact that the number of defective dies grows with p, which leads to larger values of the
objective function and hence, to larger absolute differences between upper and lower
bounds.

In conclusion, the branch-and-price algorithm is able to handle larger instances with-
out facing the memory issues that arise when trying to solve the complete AIP formu-
lation by branch-and-cut. It allows us to solve some of these instances to optimality
(especially when m = 5 and n = 25) and yields good quality solutions for others. This
confirms, in particular, that the AIP formulation is quite tight, as we already observed
when we examined the case of easier instances in Section 7.1.1.

However, the computation time of branch-and-price remains high, which could make
this algorithm unsuitable for solving larger instances and for industrial purposes. There-
fore, in the next section, we take a look at the performance of the price-and-branch
heuristic introduced in Section 4.

7.2 Price-and-branch algorithm

In this section we examine the performance of the price-and-branch heuristic P&B. The
experiments have been conducted on an Intel Core i7-7700HQ CPU 2.80GHz, 4 Cores
with 16 Gigabytes of RAM. As in earlier sections, ILOG CPLEX version 12.7.1 has been
used to solve the linear and integer programming problems (with the default settings
and a maximum of two solver threads).

We first focus on the quality of the solution returned by P&B as compared with the
optimal solution when the latter is known. Next, we consider the improvement brought
by P&B over the simple heuristic SHH.

7.2.1 Easy instances

The subset of easy instances is the same as described in Section 7.1.1. Recall that both
branch-and-cut (CPLEX) and branch-and-price were able to solve these instances to
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NB(m,n, ∗) Uniform(m,n, ∗)
3 3 3 5 3 3 3 5
15 25 35 15 15 25 35 15

ub = OPT 40 37 34 17 119 118 118 95
ub = OPT+1 0 3 6 15 1 2 2 20
ub = OPT+2 0 0 0 5 0 0 0 5
ub = OPT+3 0 0 0 2 0 0 0 0
ub = OPT+4 0 0 0 1 0 0 0 0

Table 5: Price-and-branch algorithm: Number of easy instances with ub = OPT + ∆,
for ∆ = 0, . . . , 4

optimality, so that we know their optimal value, say OPT. The running time of price-
and-branch for these instances is approximately 0.8 second for the instances with m = 3,
and 1 second for m = 5, n = 15, after which P&B returns a feasible assignment with
value ub. As shown in Table 5, the optimal value is obtained by P&B for 90% of these
instances (ub = OPT for 578 out of 640 instances). For the remaining 62 instances, the
solution delivered by P&B is almost optimal: ub lies most of the time within 1 unit of the
optimal value, and never exceeds OPT+4. The difference between ub and the optimal
value tends to increase with the problem size, but remains very small in all cases.

7.2.2 Hard instances

We now turn to hard instances which could not be solved by the CPLEX branch-and-
cut solver due to insufficient memory (as in Section 7.1.2), or which could not even be
solved by branch-and-price: these are all 120 instances with (m,n) = (5, 25), (5,35),
and (7,15). Table 6 presents the results obtained by the price-and-branch algorithm on
this set of instances. In all cases, a time limit of 1200 seconds is set for the branching
phase where the IP version of MP* (i.e., IMP*) is solved by CPLEX (see Section 4.1;
we do not set any time limit for the pricing phase). In many cases, IMP* cannot be
solved to optimality within the time limit, and the best integer solution obtained upon
termination is then reported. We denote again by ub the value of this heuristic solution,
and we define gap as

gap =
ub− dLP e
dLP e

× 100%. (18)

Table 6 displays the average value of the gap as well as the average running time of
P&B. As we can see, for all the instances considered here, the gap remains extremely
small (at most 1.5%), and it tends to decrease when either p or the sparsity increases.
P&B actually finds an optimal solution for 40 UUS instances (gap = 0%). This is
consistent with previous observations, and demonstrates the excellent quality of the
heuristic solution and of the lower bound delivered by P&B. The running time of the
algorithm is relatively short, except in some cases (e.g., UUS(7,15,100)) where the pricing
phase lasts very long, which explains that the reported time exceeds the limit of 1200
seconds.
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p gap CPU (s) SHH gap SHH impr.

NB

100 0.58% 72.49 3.80% 84.22%
200 0.39% 106.17 2.68% 84.97%
400 0.29% 287.73 1.90% 84.47%
800 0.21% 213.99 1.34% 83.67%

US

100 0.59% 41.69 3.93% 85.20%
200 0.38% 56.09 2.60% 85.14%
400 0.28% 64.44 1.71% 82.99%
800 0.16% 39.11 1.13% 85.91%

UVS

100 0.40% 18.03 4.53% 91.06%
200 0.40% 28.33 3.06% 86.30%
400 0.24% 25.71 1.85% 86.85%
800 0.19% 35.54 1.38% 86.22%

UUS

100 0.00% 212.86 3.28% 100.00%
200 0.00% 75.06 4.26% 100.00%
400 0.07% 28.79 3.42% 98.04%
800 0.09% 18.35 1.91% 94.89%

(a) m = 5, n = 25

p gap CPU (s) SHH gap SHH impr.

NB

100 1.05% 610.92 4.07% 73.91%
200 0.76% 641.35 2.87% 73.32%
400 0.56% 644.48 2.06% 72.70%
800 0.46% 645.45 1.47% 67.78%

US

100 647.14 0.88% 4.19% 77.80%
200 645.65 0.67% 2.94% 76.15%
400 645.84 0.49% 1.96% 73.32%
800 643.45 0.37% 1.31% 71.71%

UVS

100 0.62% 248.96 4.87% 86.66%
200 0.46% 408.50 3.21% 84.98%
400 0.33% 536.80 2.06% 83.97%
800 0.27% 491.76 1.42% 80.64%

UUS

100 0.00% 1380.74 4.02% 100.00%
200 0.04% 257.78 5.24% 99.33%
400 0.14% 81.82 3.69% 96.12%
800 0.17% 100.08 2.23% 92.35%

(b) m = 5, n = 35

Table 6: Price-and-branch and sequential heavy heuristic results
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p gap CPU (s) SHH gap SHH impr.

NB

100 1.49% 900.21 4.98% 67.43%
200 1.01% 1127.14 3.58% 70.33%
400 1.00% 1261.02 2.47% 58.05%
800 1.20% 1273.44 1.81% 43.04%

US

100 1.25% 749.66 4.99% 74.72%
200 0.99% 911.35 3.69% 72.19%
400 0.86% 1070.97 2.41% 63.11%
800 0.67% 989.41 1.80% 62.23%

UVS

100 1.05% 149.42 6.65% 84.04%
200 0.99% 911.35 3.69% 72.19%
400 0.56% 361.10 2.94% 80.40%
800 0.40% 520.42 1.99% 79.53%

UUS

100 0.00% 3333.87 3.25% 100.00%
200 0.07% 768.51 5.26% 98.75%
400 0.03% 256.03 3.96% 99.38%
800 0.16% 132.20 2.48% 92.89%

(c) m = 7, n = 15

Table 6: Price-and-branch and sequential heavy heuristic results

Since P&B is a heuristic, we find it interesting to compare its quality with the fast
and simple SHH procedure (see Section 5). We observed that P&B always improves
upon SHH, except for two instances out of 120. The columns labeled “SHH gap” and
“SHH impr.” in Table 6 display the (average) gap associated with SHH solutions, and
the (average) percentage of the gap between the SHH upper bound and the lower bound
that is closed by P&B, respectively. We can see that P&B almost completely closes
the SHH gap in ultra-sparse instances, and closes 70%–90% of the gap, on average, for
most of the other instances. Of course, this improvement comes with a clear trade-off in
running time, but nevertheless demonstrates the potential benefit of using P&B as an
alternative heuristic procedure.

8 Conclusion

In this paper, we have presented several exact and heuristic approaches for the solution
of the wafer-to-wafer integration problem. Little work has been previously published
concerning the exact solution of this difficult problem, and efficient algorithms could
potentially improve the quality of the proposed wafer stacks.

Our results confirm that the AIP formulation is tight. But its size grows quickly with
m (the number of batches) and n (the number of wafers per batch), and this leads to
memory overflows when we feed this formulation to an ILP solver, even for relatively
small instances. Column generation techniques are able to partially alleviate the memory
issues and yield more efficient algorithms. While exact resolution by branch-and-price
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can be used to tackle instances of moderate size, it fails to scale very well for larger sizes.
Our price-and-branch heuristic algorithm, on the other hand, turns out to produce very
high quality solutions without requiring too much computation time, even for large
instances involving 5 batches and 35 wafers per batch, or 7 batches and 15 wafers per
batch.

Both branch-and-price and price-and-branch require the solution of a hard pricing
problem, which amounts to selecting an optimal m-tuple (or stack) of wafers according
to some appropriately defined objective function. In our implementation, this pricing
problem is solved by an exhaustive enumeration procedure. While the efficiency of
this procedure can be considerably improved by taking advantage of parallelization, it
still remains the main bottleneck of our approaches. Streamlining the enumeration, or
developing more efficient optimization algorithms for the pricing problem would open
new perspectives for the solution of the wafer-to-wafer integration problem.

References

[1] H. Bandelt, Y. Crama, and F. Spieksma. Approximation algorithms for multi-
dimensional assignment problems with decomposable costs. Discrete Applied Math-
ematics, 49:25–50, 1994.

[2] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H.
Vance. Branch-and-price: Column generation for solving huge integer programs.
Operations Research, 46:316–329, 1998.

[3] M. Bougeret, V. Boudet, T. Dokka, G. Duvillié, and R. Giroudeau. On the com-
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Daniel Rehfeldt, Franziska Schlösser, Felipe Serrano, Yuji Shinano, Jan Merlin Vier-
nickel, Stefan Vigerske, Dieter Weninger, Jonas T. Witt, and Jakob Witzig. The
SCIP Optimization Suite 5.0. ZIB-Report 17-61, Zuse Institute Berlin, December
2017.

[14] M. Harzi, H. Abusenenh, and S. Krichen. Solving the yield optimization problem
for wafer to wafer 3D integration process. Procedia - Social and Behavioral Sciences,
195:1905–1914, 2015.

[15] S. Reda, L. Smith, and G. Smith. Maximizing the functional yield of wafer-to-wafer
integration. IEEE Transactions on VLSI Systems, 17:1357–1362, 2009.

[16] D.M. Ryan and B.A. Foster. An integer programming approach to scheduling. In
A. Wren, editor, Computer Scheduling of Public Transport, pages 269–280. North-
Holland Publishing Company, 1981.

[17] E. Singh. Wafer ordering heuristic for iterative wafer matching in W2W 3D-SICs
with diverse die yields. In 3D-TEST, First IEEE International Workshop on Testing
Three-Dimensional Stacked Integrated Circuits. IEEE, 2010. Extended summary.

[18] E. Singh. Exploiting rotational symmetries for improved stacked yields in W2W
3D-SICs. In Proceedings of the 29th IEEE VLSI Test Symposium (VTS’11), pages
32–37. IEEE, 2011.

[19] F. Spieksma. Multi-index assignment problems: complexity, approximation, appli-
cations. In P.M. Pardalos and L. Pitsoulis, editors, Nonlinear Assignment Problems:
Algorithms and Applications, pages 1–12. Kluwer Academic Publisher, 2000.

24



[20] C. H. Stapper. Small-area fault clusters and fault tolerance in vlsi circuits. IBM
Journal of Research and Development, 33:174–177, 1989.

[21] M. Taouil. Yield and cost analysis for 3D stacked ICs. PhD thesis, TU Delft, The
Netherlands, 2014.

[22] M. Taouil and S. Hamdioui. Layer redundancy based yield improvement for 3D
wafer-to-wafer stacked memories. IEEE European Test Symposium, pages 45–50,
2011.

[23] M. Taouil, S. Hamdioui, and E. Marinissen. Yield improvement for 3D wafer-to-
wafer stacked ICs using wafer matching. ACM Transactions on Design Automation
of Electronic Systems,, page DOI: http://dx.doi.org/10.1145/2699832, 2015.

[24] M. Taouil, S. Hamdioui, J. Verbree, and E. Marinissen. On maximizing the com-
pound yield for 3D wafer-to-wafer stacked ICs. In IEEE, editor, IEEE International
Test Conference, pages 183–192, 2010.

[25] J. Verbree, E. Marinissen, P. Roussel, and D. Velenis. On the cost-effectiveness
of matching repositories of pre-tested wafers for wafer-to-wafer 3D chip stacking.
IEEE European Test Symposium, pages 36–41, 2010.

25


