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SYNGPSIS

It has been demonstrated that use of polymeric emulsifiers under usual processing conditions
in the melt state is a powerful technique for preparing polymer alloys. Digitized represen-
tation of optical micrographs of thin sections of blends of a low-density polyethylene and
polystyrene (20 wt % PE-80 wt % PS) containing 2 and 6 wt % of two hydrogenated
polybutadiene-polystyrene block copolymers exhibit different degrees of homogeneity as
well as different morphological structures which can be studied by a multifractal analysis,
We show how these diferences are refiected in the f(a)} spectrum of singularities which
can be obtained by a box counting method in the canonical approximation. We have found
a correlation between the f («) curves and the mechanical properties of the corresponding
samples: the samples which area the less multifractals have the best mechanical properties,
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INTRODUCTION

Fayt et al.'"® have clearly demonstrated that mod-
erate amounts of poly (hydrogenated hutadiens-b-
styrene) diblock copolymers (HPRB-b-PS) signifi-
cantly increase both tensile strength and elongation
at break of blends of polystyrene (PS) with various
types of polyethylene (PE). Block copolymers act
as emulsifiers; in other words, each sequence is se-
lectively miscible with its own polymer phase and
is supposed to be located preferentially at the in-
terface. The resulting morphology depends on the
interfacial activity of the copolymer as well as the
microrheology of the emulsified blends.

On a purely economic basis, the fabrication of
these polymer blends is of interest only if a minimum

quantity of block copolymer can be used, Indeed, it -

has been observed that only small amounts {1-2%)
of copolymer are sufficient to obtain a stable dis-
persion of the phases and that the blend morphology
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still changes progressively when the block copolymer
percentage increases up to about 5% (i.e., & per-
centage for which the ultimate mechanical proper-
ties have asymptotically reached their optimum
value). In their studies, Fayt et al, considered the
effect of two types of low-molecular weight copoly-
mers: “tapered” and “pure” diblock polymers. They
found that the former confers the highest tensile
strength, ultimate strength, elongation at break, and
energy to break. It thus appears plausible that the
type of morphology stabilized by these copolymers
has some bearing on the improved physical prop-
erties, Obviously any such correlation hetween the
morphology and the physical properties is of con-
siderable practical importance.

The morphology exhibited by micrographs of the
multicomponent polymer system is reminiscent of
many systems resulting from nonlinear growth or
complex turbulent processes which exhibit scale-
dependent properties. The concept of noninteger or
fractal dimensions” has been found to be usefut for
the characterization of this type of disordered struc-
ture. Recently, however, it has been realized that in
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many cases a more detailed characterization can be
obtained using the formalism of multifractals intro-
duced first in the theory of turbulence® and chaotic
motions in general In this case, the structure is
described by a continuum of generalized dimensions
D, or alternatively by a spectrum of scaling indices
«.)° This method has been recently applied to a va-
riety of heterogeneous materials such as sedimentary
rocks."

In the system considered, pieces of immiscible
polymers are fractionated into smaller units by a
mixing process and stabilized in a co-continuous
structure by a copolymer. Although the two systems
considered, blends with “tapered” and “‘pure” co-
polymers, appear as well dispersed, the complexity
of the interlocked structure suggests that their mor-
phology may exhibit different self-similar properties
in different parts of the sample and that the mul-
tifractal analysis is a relevant method to investigate
their morphological differences from an image anal-
ysis of the micrographs,

The aim of this report is to demonstrate that the
values of a small set of these generalized dimensions
determined in a limited length-scale range, which
will be specified later, can be considered as a sig-
nature characterizing the blend morphologies pro-
duced by various concentrations of the two copol-
ymers,

IMAGE ANALYSIS

For this study, we used blends of a low-density poly-
ethylene and polystyrene (20 wt % PE-80 wt % PS)
containing 2 and & wt % of two hydrogenated poly-
butadiene-polystyrene block copolymers (SE-4: ta-
pered diblock, 33% PS, M, = 80,000; SE-5: pure
diblock, 50% PS, M, = 80,000). Details concerning
the hehavior of these copolymer in PE/PS blends
are given in refs, 1-6,

In order to perform image analysis, thin sections
(1 pra thick) were prepared by ultramicrotomy, This
is the maximum thickness which does not produce
an overlap of images. Thoy were observed with a
transmission optical microscope and digitized with
the Noesis software on a Microvax I In both cases,
from a concentration of 2% copolymer a co-contin-
uous two-phase morphology is observed. The images
corresponding to these two-dimensional sections
have been digitized in 256 levels of gray in a matrix
of 512 X 512 pixels, We assume that the system is
isofropic and that images obtained from different

section planes have statistically the same morpho-
logical properties.

Figure 1 shows digitized images corresponding to
PS/PE blends (80/20) with 2% {(up) and 5%
{down) of tapered (SE-4) (left) and pure diblock
(8E-85) (right} copolymer added. The morphological
differences of these polymer blends have been de-
scribed qualitatively in ref, 8. Here we introduce a
quantitative method to characterize these differ-
ences and relate them to their different mechanical
properties. After image digitization, it was necessary
first to perform a careful thresholding transforma-
tion. This operation allows one to extract the se-
lected phase on the basis of its grey level, The result
is that actual images are converted into binary ones.
Before the thresholding transformation Laplacian
filtering was performed to enhance the contrast be-
tween the two phases. To he sure that the thresh-
olding transformation does not produce systematic
errorg and losses of information giving rise to a
modification of the morphological structure, we var-
ied the level of thresholding over a small interval
compatible with the constituent concentrations and
observed that this does not affect the results dis-
cussed in later sections,

Figure 2 shows the binary representation of Fig-
ure 1. In order to account for the statistical fluctu-
ations between different samples and between lo-
cations within each thin section, various positions
were chosen at random. A total of 10 images for
each type of blend were digitized, filtered and bin-
arized by the same method,

THE MULTIFRACTAL FORMALISM

The multifractal formalism relies on the fact that
the highly nonuniform probability distribution aris-
ing from the nonuniformity of the system often pos-
sesses rich scaling and self-similarity properties
which vary from point to point. The statistical
properties of a measure (in our case, local density)
can be expressed in terms of the interwoven sets of
dimensions D,° or alternatively the f(a) spectrum
of singularities,1® -

Consider a 2-D cut of the intertwined polymers.
Let the 2-D plane be digitized with black and white
pixels corresponding to the two homopolymers. Here
the black pixels will represent the minor phase. Fur-
ther divide the 2-D plane into N boxes of linear
length (/L) where L is the total image extent. In
that way the number of the boxes is N = L?/8%in
the grid. Let p; denote the proportion of the total
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Figure 1. Digitized images corresponding to PS/PE blends (80/20) with added 2% (up)
and 6% (down) of tapered (SE-4) {left) and pure (SE-5) (right) diblock copolymers. The
length of the image corresponds to 50 u.

mass of the image inside the i-th box determined by
counting the number of black or white pixels in the
box, Then let us introduce the partition function

N
Z({g) = X pi(3) (1)

=1

where N o¢ 1/8% is the number of boxes in the grid.
The so-called order-q generalized dimensions are
obtained from an assumed power-law behavior of

the partition function in the limit § = 0 (N = w0}

Zq oc §la-HDe (2)
Then,
N(8)
1in( 2 pf)
D,,=li3;—q:—‘i‘i°i-ﬁ-«5- g=0,1,2,.. (3)

For q = 0, we obtain the similarity dimension

In N(3)
( Iné )

(4)

Dy = — lim
$+0

which is the usual box-counting fractal dimension
defined by Mandelbrot,” which describes the scaling
of the density.

For g = 1, we have

D, = —lim S(8) (5)
=0 Ind
where
NQ)
S() =~ 2 plnp; (8)
i=0

By analogy with statistical mechanics, we can re-
late each p; to a microstate and the structure of the
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Figure 2. Binary representation of Figure 1.

alloy to a macrostate. Then, §(4) is the information
entropy of structure, i.e., the information gained by
the knowledge of each p; with accuracy 8. I, is called
the information dimension and tell us how the in-
formation on the morphology increases as § — 0.
For ¢ = 2, we have

D, = lim (939-2) (7
=0\ Iné
where
N(s)
C:(8)= 2 pf (8)
i=0

This quantity is the probability that two image
points lie within the box 89, i.e., the probability that
two points are separated by a distance smaller than
&. D, is called the correlation dimension,

For g = 3, 4 » + + an infinite set of generalized
dimensions D, Dy, + + + associated with higher order

correlations between triplets, quadruplets - <+ of
points on each box can be defined. From eq. (2), for
homogeneous fractals when all p; are the same, all
dimensions D, have the same value; in general D,
> Dy for any ¢’ > ¢. Then, the difference between
Dy, and the other dimensions Dy, g =1,2 «+- isa
measure of the nonuniformity of the structure,

An alternative and equivalent way to study the
scaling properties of complicated fractal objects is
by considering their spectrum of singularities.’® We
assume that in each box the measure p; increases
with the size 5 as p; «¢ 6*, and in this case we say
that there is a singularity of type i. The meaning of
the index o; becomes obvious if we consider the den-
sity in a box of size 8: p; /87 ¢ §%79 for a d-dimen-
sional space. Whenever o; < d, the density increases
indefinitely as the box-size shrinks, and represents
spikes (singular regions) in the distribution of den-
sity, smaller values of a; represent larger spikes. On
the other hand, «; values greater than d represent
smooth (or regular) distributions. The index &



therefore characterizes ‘singularities’ of different
strengths. Now, corresponding to each «;, one can
identify a fractal dimension f («) if one assumes that
the number N;(«) of boxes of size § covering the
iso-a set varies as Ny(a) ¢« 6-f(a).

In this picture, local singularities of different
strengths are distributed on interwoven sets of frac-
tal dimensions f{a). A curve of f versus « is there-
fore an intuitive and mathematically precise method
of disentangling and characterizing the multifractal
measure in terms of these sets, The generalized di-
mensions D, and the singularity spectrum f{«) are
equivalent, Using an analogy with the formalism of
equilibrium statistical mechanics it is possible to
show, using the partition functions (1), that the ca-
nonical average {a(g)) and {f(q)) are related by
a Legendre transformation®

{alq)) = d/dg((qg — 1)D,); {f(alg)))
= g(a(q)) - (g~ 1)D, (9)

In that case it is possible to determine f(«) di-
rectly using the following expressions

Z ”i(q; 5)111 ”i(q: 5)

{flq)) = lim ' 3 (10)
and
2 pwilg, 8)In py(8)
(alq)) = lim — (11)

where y;(¢) are normalized probabilities for boxes
of &

(pi(81)¢
=t 12
ni(g, ) S (0 (5))° (12)
7

Varying ¢ is a trick for exploring the different
regions of a, For large and positive g, we are looking
for small values of o i.e., parts of the object in which
the measure is highly concentrated (high values of
pi). For large and negative g, we study parts of the
object for which the measure (density) is very small
(small values of p;) and corresponds to the larger
values of o, At g = 0, f = 2 is simply the usual fractal
dimension, This turns out to be the maximum pos-
sible value of f. In the case of a homogeneous fractal,
the f () spectrum is concentrated on a single point
o = Dy = D,, In contrast multifractal measures
which are characterized by a monotonic decreasing
dependence of D, versus ¢ have a distribution of
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values of & in a finite range  amin — Amex) While £ (a)
turns out to be a single peaked function with D, as
its maximum,

Since its introduction a few years ago, the concept
of multifractals has undergone many refinements,
and warnings have been formulated concerning its
applicability to real systems, Contrary to mathe-
matical objects where the limit 8§ — 0 can be defined
rigorously, in real systems, power law scaling is lim-
ited to a range a <€ § <€ L where a is the “particle”
size and L is an upper limit which is system depen-
dent. For mass muitifractals one should be aware of
the possibility of transient corrections to the
asymptotic behavior which may yield transient de-
viations of Dy from Dy and thus apparently by non-
trivial curve of f{a) which should disappear when
L® §» a.The behavior of f (&) for large « depends
critically on the size dependence of rare measures,
which does not necessarily obey a power law and
therefore should be interpreted with great care. As
|l increases, the white noise in the images reduces
the scaling region and finally washes out the man-
ifestation of any deterministic noise.

Fortunately, in practice one needs only a very
limited subset of dimensions D, or f (o) in order to
describe the important physical consequences of
particular density distributions. Aharony!® has de-
rived the bounds D, should obey to be physically
meaningful. The results we have obtained lie within
these bounds.

INVESTIGATION OF THE MORPHOLOGY
OF POLYMER BLENDS PRODUCED BY
PURE AND TAPERED COPOLYMERS

As mentioned earlier, it has been observed'® that
only a small amount of copolymer is required to ob-
tain a seemingly homogeneous and stable dispersion
of the phases, Furthermore, the blend morphology
seems to change when the block copolymer content
increases up to about 5%,; i.e., a percentage for which
the ultimate mechanical properties have reached
their optimum value,

To perform the multifractal analysis, we first cal-
culated the normalized probabilities u;(q, §) [Eq.
(11)] on each binary image using a box-counting
method. The analysis is made with boxes having
linear dimensions ranging from § = 10 to 512 pixels,
This corresponds in real images to size between 1
to 50 p. According to egs. (10) and (11) the plots
of Z; uilq, 8)In p; versus —In § and Z; u;{q, §)In
pi{qg, 8) versus —In § have slopes equal to f(g) and
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Figure 4. (a) f(«) spectra for samples with 2% and
6% of SE-b. (b) f{a) spectra for samples with 2% and
5% of SE-4,

a(q), respectively. Figure 3 shows some examples
of these plots. Each point corresponds to the average
value obtained from ten samples of each type, The
g values were varied between —10 and 10.

We can see that the length of the scaling region
(where the slope in the In — In plot is linear) strongly
depends on g. For small g}, this region extends
over all the range considered. For large | g}, the self-
similar range decreases as discussed in the preceding
section.

Figure 4a, b shows the f () versus «a relations for
the four samples. To build these curves we have
chosen the smallest self-similar range compatible
with the curves of Figure 3 (i.e,, the scaling region
20 < § < 512), We can see that the increase of co-
polymer concentration decreases the quantity cmex
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— @nin and therefore the multifractal character of
the blends. The 5% SE-4 samples has the smallest
distribution of ¢, around o = 2 and a distribution
of f{«) between 1.4 and 2,

The morphological differences between the four
structures we analyze are clearly reflected by their
spectrum of exponents « and their corresponding
dimensions f (o). We can see that the increase of
copolymer concentration decreases the quantity o/,
— tmin and therefore the multifractal character of
the blends. The 5% SE-4 samples has the smallest
distribution of @, around o = 2. In the three other
samples the copolymer has not reached its optimum
effect and there are still large local heterogensities
around the average density: the broad distribution
of & indicates that high local-density regions (o < 2)
are compensated by low-density hairy or thinly con-
nected features (o > 2). It is assumed that these
thin regions cannot support stresses and conse-
quently reduce the mechanical properties of the
samples. In contrast 5% SE4 samples exhibit more
or less uniform connected ribbonlike structures of
the phase, and hence have better mechanical prop-
erties (Table I}.

Similar conclusions can be reached by examining
the values of the generalized dimensions., Table I
shows results obtained for Dy, 0 < g < 3, calculated
in the range 10 < § < 512 pixels for both tapered
and pure systems together with their strength at
break.

A first observation indicates that in all cases the
Hausorff dimension Dy is very close to 2. This means
that the density is practically independent on 8 on
scales larger than a few times the smallest homo-
geneity. Moreover, the first-order correlation func-
tions scale with a D, very close to the Euclidean
dimension 2, This confirms the experimental finding
that only a small quantity of diblock copolymer is
needed to obtain a good dispersion of the phases.
However, Table I shows that the method is precise
enough to quantify the small difference in the mor-
phology responsible for their different mechanical
properties,

Table I, Values of D, and Tensile Strength for a 80 PS/20 PE Blend Modifled with SE-4 or SE-5

Strength at Break
80 PS/20 PE Do D1 D2 D3 (MPa)
2% SE-4 (tapered) 1.98 1.97 1.95 1.01 36
6% SE-4 (tapered) 1.98 1.98 1.97 1.96 40
2% SE-5 (pure) 1.97 1.96 1,94 1.89 34
5% SE-5 (pure) 1,98 1.97 1,96 1.93 36
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CONCLUSIONS

We have established the applicability of multifractal
analysis to heterophase polymers blends by showing
that the f () curves are different for varicus con-
centrations of two different copolymers, The mul-
tifractal curve can accordingly be considered as a
signature of the morphology of the network.

It is well known in the theory of composites that
.the mechanical properties are optimized when the
reinforcement fibers form an ordered continuous
network, It is therefore not surprising that the sam-
ple which is the less multifractal has the best me-
chanical properties since its microgeometry best
fulfils these conditions as compared with the other
three samples. We have found that if the scale range
is correctly chosen we can find a correlation between
the f(«a) curves and the mechanical properties of
the corresponding samples, These encouraging re-
sults prompt us to apply the same type of approach
to a number of important heterophase situations,
the results of which will be reported in future arti-
cles.
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