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 26 

Abstract 27 

Pituitary adenomas are frequently occurring neoplasms that produce clinically significant disease in 28 

1:1000 of the general population. The pathogenesis of pituitary tumors has been a matter of interest as 29 

it could help to improve diagnosis and treatment. Until recently, however, disruptions in relatively few 30 

genes had been shown to predispose to pituitary tumor formation. In the last decade several more genes 31 

and pathways have been described. Germline pathogenic variants in the aryl hydrocarbon receptor- 32 

interacting protein (AIP) gene were found in familial or sporadic pituitary adenomas, usually with an 33 

aggressive clinical course. Cyclin-dependent kinase inhibitor 1B (CDKN1B) pathogenic variants lead to 34 

multiple endocrine neoplasia type 4 (MEN4) syndrome, in which pituitary adenomas can occur. Xq26.3 35 

duplications involving the gene GPR101 cause X-linked acrogigantism. The pheochomocytoma and/or 36 

paraganglioma with pituitary adenoma association (3PAs) syndrome suggest that pathogenic variants in 37 

the genes of the succinate dehydrogenase complex or MYC-associated factor X (MAX) might be 38 

involved in pituitary tumorigenesis. New recurrent somatic alterations were also discovered in pituitary 39 

adenomas, such as, ubiquitin specific protease 8 (USP8) and USP48 pathogenic variants in 40 

corticotropinomas. The aim of the present review is to provide an overview on the genetic 41 

pathophysiology of pituitary adenomas and their clinical relevance. 42 

 43 

  44 
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Introduction 45 

Pituitary adenomas are benign neoplasms that are found in up to 20% of pituitaries on MRI or autopsy 46 
1, while clinically relevant pituitary adenomas have a prevalence of approximately 1:1000 people 2.  47 

Usually they are monoclonal in origin, expanding from molecular genetic abnormalities in a single 48 

somatic cell 3. However, there is evidence demonstrating that pituitary adenomas could be polyclonal, 49 

especially recurrent tumors4. Tumorigenesis involves differential expression of tumor suppressors or 50 

oncogenes, hormones and growth factors and their receptors, adhesion molecules and microRNAs that 51 

lead to disruption of the cell cycle and abnormalities in various signal transduction pathways 5-9. Often, 52 

however, the initial trigger of the tumorigenic cascade remains largely unknown. In the last decade 53 

significant progress has been made with the discovery of several genetic defects implicated in pituitary 54 

tumor pathogenesis in previously recognized or new clinical conditions.  Among these newer genetic 55 

discoveries are germline pathogenic variants in the aryl hydrocarbon receptor- interacting protein (AIP) 56 

gene that were found in familial and sporadic pituitary adenomas 10, 11.  Cyclin-dependent kinase 57 

inhibitor 1B (CDKN1B) pathogenic variants were ascribed to a MEN1-like condition, known as MEN4 58 

syndrome 12. Xq26.3 duplications involving the gene GPR101 have been demonstrated in X-linked 59 

acrogigantism (X-LAG)13. The 3P (pheochromocytoma and/or paraganglioma, and pituitary adenoma) 60 

association (3PAs) is related to pathogenic variants of the succinate dehydrogenase complex genes, 61 

among others, and suggests that pheochromocytoma/paraganglioma related genes might rarely cause 62 

pituitary adenomas 14, 15. Many adenomas arising in the context of germline pathogenic variants or 63 

syndromic conditions have an aggressive clinical behavior and poor responses to standard treatments. 64 

However, the prevalence of known germline pathogenic variants in the pool of unselected sporadic 65 

adenomas is still low 9, 11. Regarding somatic pathogenic variants, until recently, only stimulatory 66 

guanine nucleotide (GTP)-binding protein alpha (GNAS) pathogenic variants were known to be causally 67 

related to somatotropinoma pathogenesis in a sizeable proportion of cases 16, 17. Current genomic 68 

techniques allowed the identification of other frequently recurrent somatic genetic alterations  - 69 

phosphatidylinositol 3 kinase alpha subunit (PIK3AC) gene in various types of pituitary adenomas 18, 19 70 

and  ubiquitin specific protease 8 (USP8) 20, 21and USP48 gene pathogenic variants in corticotropinomas 71 
22.   72 

 73 

Somatic mutations in pituitary adenomas 74 

 75 

GNAS mutations 76 

The deregulation of the cyclic AMP (cAMP)-Protein kinase A (PKA) signaling pathway is strongly 77 

implicated in pituitary tumor pathogenesis through different PKA-dependent and -independent 78 

mechanisms, which together lead to hormonal hypersecretion and cell cycle disruption 6, 23, 24. One of 79 

the most common somatic disruptions seen are activating GNAS gene (OMIM *139320) pathogenic 80 

variants, found in about 40% (up to 63% some series) of growth hormone (GH)-producing adenomas 81 
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and rarely in other pituitary adenoma types 16, 17, 25 . GNAS encodes the gsp oncogene – the stimulatory 82 

G-protein subunit alfa (Gsα). The most frequent alterations result in amino acid substitution of the highly 83 

conserved Arg201, and to a lesser extent Gln227, with subsequent constitutive activation of the mutated 84 

Gsα subunit, increased adenylate cyclase activity, cAMP production and downstream signaling with 85 

abnormal GH transcriptional activation and somatotrope proliferation 26.  86 

GNAS mutation positive adenomas have been considered to have a favorable clinical profile, including 87 

an older age at diagnosis, smaller tumor size, less invasive features and densely granulated microscopic 88 

tumor appearance in comparison to their non-mutated counterparts, however, this is not confirmed in all 89 

studies 27-35. With respect to treatment, and particularly GNAS status in relation to somatostatin 90 

responsiveness, the literature is inconsistent. Some studies show a favorable effect of GNAS mutational 91 

status 29, 34, while others show no effect 25, 28, 33, 35, 36. A recent meta-analysis evaluating GH suppressive 92 

responses after an acute octreotide test showed significantly higher GH reduction in the GNAS mutated 93 

pituitary adenomas 17.  The influence of GNAS pathogenic variants on the long-term SSA response is 94 

also debatable – a better response by measuring GH is reported by some 30, 37 but no higher percentage 95 

of IGF-1 normalization has been shown by others 28, 31, 37. Thus, the presence of a GNAS pathogenic 96 

variant is one of many factors that influence the response to SSA treatment 38.  97 

 98 

USP8 mutations 99 

Resistance to the negative glucocorticoid feedback is typical for corticotropinomas. However, somatic 100 

pathogenic variants in the nuclear receptor subfamily 3 group C member 1 NR3C1 (OMIM *138040) 101 

encoding the glucocorticoid receptor are quite rare 21, 22, 39-41  102 

In 2014 next generation sequencing techniques allowed the identification of recurrent somatic 103 

pathogenic variants of the USP8 gene (OMIM *603158) in significant number of corticotropinomas. 104 

USP8 is a deubiquitinase that inhibits lysosomal degradation of the epidermal growth factor receptor 105 

(EGFR). Hotspot pathogenic variants in exon 14 affect the binding motif of the protein that regulates its 106 

activity, leading to gain-of-function.  USP8 is cleaved, which enhances its catalytic activity, resulting in 107 

subsequently impaired down-regulation of EGFR and sustained EGF signaling 20, 21. In USP8-mutated 108 

corticotropinomas, enhanced transcription of proopiomelanocortin (POMC) was observed 21, 42. Higher 109 

ACTH levels have been demonstrated in USP8 mutated adenomas 20, 43, 44. In another study no absolute 110 

difference in ACTH secretion between UPS8 mutated vs. non-mutated tumors was noted, but the smaller 111 

size of the mutated adenomas suggested that they had relatively high ACTH production 21. USP8 112 

pathogenic variants have not been found in other pituitary tumor types to date 21, 40, 45-51.  113 

The overall prevalence of USP8 somatic pathogenic variants is 21-62% in corticotropinomas 20, 21, 42, 43, 114 
52-54. Females predominate over males in some 21, 42, 43, 53 but not other studies 54, 55. In a large cohort of 115 

120 corticotropinomas, smaller tumor size and a lower rate of parasellar expansion was reported in USP8 116 

mutated tumors 21. No such correlation was found in other studies 53, 55. There is inconsistency regarding  117 

differences in basal hormonal values between USP8 mutated and wild-type adenomas 20, 21, 42-44, 52, 53, 55. 118 
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In pediatric series, female predominance and an older age at diagnosis of USP8 mutated vs. wild-type 119 

adenomas was noted 52. In regard to treatment, there is high discrepancy in the cure rates after 120 

transsphenoidal adenomectomy – higher remission rates in  USP8 mutated adenomas in some studies 42, 121 
53, but not in others 21, 43, 55. Higher postoperative free urinary cortisol and ACTH levels were 122 

demonstrated in UPS8 mutated patients 43, 44, 52. Up to 5-year recurrence rates were similar with regard 123 

to USP8 mutational status 21, 53, although a higher 10-year recurrence rate in USP8  mutated adenomas 124 

(58% vs. 18%) was reported recently 55. In pediatric series, higher recurrence rates were also observed 125 

in USP8 mutated adenomas 52.  126 

In respect to medical treatment, an enhanced effect of pasireotide might occur due to increased transcript 127 

levels of SST5R in USP8 mutated adenomas 42. Another potentially useful therapy could be the EGFR 128 

inhibitor gefitinib which reduces ACTH secretion in USP8 mutated adenomas in vitro 21.  129 

 130 

USP48 and BRAF mutations 131 

A recent study described two other recurrently mutated genes in USP8 wild-type adenomas – BRAF 132 

(OMIM *164757) and USP48 (OMIM *716445) in 23 and 16.4% of USP8 wild-type corticotropinomas, 133 

respectively 22. There was no clinical difference with wild type BRAF/USP8 patients, except for the 134 

higher midnight ACTH and midnight serum cortisol levels in BRAF V600E-variant-harbouring patients. 135 

However, as previous studies failed to identify a role of BRAF pathogenic variants in pituitary 136 

tumorigenesis39 56, 57, these results need further independent confirmation. 137 

 138 

PIK3CA 139 

Phosphatidylinositol 3-kinase is part of the PI3K/Akt signaling pathway which is implicated in the cell 140 

survival, proliferation, adhesion, motility and spread 58. It phosphorylates phosphatidylinositol 4, 5-141 

bisphosphate to phosphatidylinositol 3,4,5-triphosphate, which is essential for the phosphorylation of 142 

AKT 59. Pathogenic variants in hotspots, located on exons 9 and 20 and amplifications of the PIK3CA 143 

gene (OMIM *171834) are found in various tumor types and lead to increased PI3K activity, and 144 

subsequent phosphorylation and activation of AKT 18, 58. 145 

Frequent genetic alterations in the PIK3CA gene have been found in various types of pituitary adenomas 146 
18, 19. In a Chinese series of 353 pituitary adenomas, 2.3 % harboured somatic PIK3CA pathogenic 147 

variants.  All of the mutated adenomas were invasive and they constituted 8.8% (8/91) of the invasive 148 

tumors in that series (1 corticotropinoma, 2 prolactinomas, 4 non-functioning adenomas and 1 149 

plurihormonal adenoma). Furthermore, gene amplifications (defined by copy number of PIK3CA ≥ 4) 150 

were found in 32.9% (30/91) of invasive and in 26.3% (69/262) of non-invasive pituitary adenomas, 151 

with similar distribution among different tumor types 18. In a Brazilian cohort, PIK3CA gene mutations 152 

were present in 12% of adenomas (4/33; non–invasive corticotropinoma and 3 invasive non-functioning 153 

adenomas), while genomic amplifications were found in 21.2% (7/33) 19. No pathogenic variants in the 154 

PIK3CA gene were found in a cohort of GH-secreting adenomas 45. 155 
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As PI3K could be a downstream effector of RAS, screening for RAS pathogenic variants has been 156 

performed by Lin et al. 18, 59, 60. HRAS (OMIM *190020) pathogenic variants were found in 6.6% (6/91) 157 

of the invasive pituitary adenomas, one of which had a co-existent PIK3CA mutation 18. Individual cases 158 

of HRAS pathogenic variants were reported by other groups 61-63.  Regarding the clinical presentation of 159 

PIK3CA mutated adenomas, a higher degree of recurrence after surgery has been observed in mutated 160 

vs. wild-type adenomas 63% vs. 25% respectively 18.  161 

 162 

Whole-exome/genome sequencing 163 

After the breakthrough discovery of USP8 pathogenic variants in corticotropinomas, several study 164 

groups reported results from whole-exome/genome sequencing in other pituitary tumor types, 165 

confirming the relatively silent somatic landscape 40, 45-47, 49-51. However, in two series of GH-secreting 166 

adenomas, despite the absence of recurrent somatic pathogenic variants (except GNAS), abnormalities 167 

of several different genes involved in Ca2+ 45, 46 and cAMP signaling 45 were noted. These studies suggest 168 

that disruption of calcium signaling could contribute to somatotropinoma formation. On the basis of 169 

data from other human tumor types it was speculated that the trigger event could be different in the 170 

various tumor types but by targeting the same molecular pathway these could contribute to 171 

tumorigenesis 46, 64. A recent study identified variants (in two pituitary adenomas each) in several genes 172 

(KIF5A, GRB10, LARS, SP100, TRIP12) whose role remains to be further elucidated 40.  173 

 174 

Copy number variations 175 

Frequent copy number variations (CNV) have also been reported 40, 46, 47, 50. Chromosomal losses are 176 

particularly interesting in the context of the two-hit model inactivation of tumor suppressor genes 46. In 177 

the absence of subsequent somatic mutation, tumorigenesis might be driven by the coexistence of 178 

somatic deletion and epigenetic silencing leading in biallelic inactivation of tumor suppressor genes 46. 179 

In respect to clinical relevance of CNVs, it has been demonstrated that highly genomically disrupted 180 

adenomas are more frequently hormonally functional and pathologically atypical, while tumors with 181 

rare CNVs are principally non-functional 50. Frequent gains in regions encoding cohesin complex genes 182 

have been found, however without an apparent influence of clinical characteristics of the disrupted 183 

adenomas 40. A recent study, focusing on CNVs in pediatric patients with Cushing’s disease, showed 184 

that 18.5% (5/27 samples) had a high degree of chromosomal instability (>22% of the genome). There 185 

were no differences with respect to clinical characteristics but the adenomas with large genomic 186 

aberrations were significantly larger and had higher rates of invasion of the cavernous sinus 65.  187 

A new approach is that of targeting circulating tumor DNA in the plasma. Using a next-generation 188 

sequencing approach, Megnis et al. for the first time detected gene variants in circulating free DNA that 189 

were also present in the pituitary adenoma tissue of the same patients 66. 190 

 191 

Germline mutations in familial and sporadic pituitary adenomas 192 
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Small proportion of pituitary adenomas, approximately 5%, could arise as part of a heritable syndrome. 193 

Such adenomas carry significant clinical burden as they are usually more aggressive, occurring at an 194 

early age, having larger tumor size, increased invasiveness, and resistance to standard treatment 67, 68. 195 

These features determine the need for efficient screening and early recognition.  196 

 197 

Familial isolated pituitary adenomas (FIPA) 198 

Familial pituitary adenomas can be either part of multiple endocrine syndromes or may arise as isolated 199 

pituitary adenomas in a familial setting. Over the period 1999-2006 we identified and described familial 200 

isolated pituitary adenomas (FIPA) (OMIM #605555) as a novel condition associated with pituitary 201 

adenomas (without the presence of other endocrine neoplasia syndromes) in two or more related 202 

members of the same kindred. 69 70. FIPA represents around 2% of all pituitary tumors 70. All types of 203 

secreting and non-secreting adenomas are described in FIPA, with a predominance of prolactinomas, 204 

somatotropinomas, and non-functioning pituitary adenomas.  Kindreds can all share the same pituitary 205 

adenoma subtype in affected members (homogeneous FIPA) or different pituitary adenoma subtypes 206 

can occur within the same family (heterogeneous FIPA) 70.  Notably, pituitary adenomas in the setting 207 

of FIPA have some clinical characteristics that distinguish them from sporadic adenomas. In FIPA 208 

kindreds, prolactinomas, although most prevalent, have lower frequency in comparison with non-FIPA 209 

cases – around 38%. It could be partly explained by the higher frequency of somatotropinomas (35%) 210 

as compared with the general population. FIPA patients usually have earlier disease onset 211 

(approximately 4 years) vs. non-FIPA cases.  In homogenous acromegaly kindreds, the disease onset is 212 

early and somatotropinomas are usually large and invasive. Similarly, non-functioning adenomas and 213 

prolactinomas in the FIPA setting are larger and more invasive than their non-FIPA counterparts 11, 67, 71 214 

 215 

AIP mutations in FIPA and sporadic pituitary adenomas 216 

In 2006 Vierimaa et al. reported that pathogenic variants of the AIP gene (OMIM *605555) were 217 

associated with pituitary tumorigenesis in large kindreds in Finland and elsewhere 10.  AIP is a tumor 218 

suppressor gene located on chromosome 11q13 10. The gene encodes a 330-amino acid cytoplasmic 219 

protein - the aryl hydrocarbon receptor (AHR) interacting protein. Different types of pathogenic variants 220 

have been described leading to truncated protein in many cases 11, 71. Besides AHR, AIP has multiple 221 

other partners, including chaperones, phosphodiesterases, Gαi proteins, survivin, RET, nuclear 222 

receptors, such as thyroid hormone receptor β1, estrogen receptor-α, peroxisome proliferator-activated 223 

receptor-α, viral proteins and others 11, 72, 73.  224 

The cAMP-PKA signaling pathway is strongly implicated in pituitary tumorigenesis and the loss of AIP 225 

in mutated adenomas has been related to increased cAMP signaling through defective inhibitory Gα 226 

protein signaling. Furthermore, the loss of AIP has been associated with reduction in Gαi -2 protein  227 

expression in mutated somatotropinomas 74, 75. Loss of this inhibitory G protein signal may be permissive 228 

for cellular proliferation and tumor growth.  A strongly positive correlation between AIP and Gαi -2 229 
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protein expression has also been confirmed in sporadic somatotropinomas 73. The complex interplay 230 

between AIP and PKA signaling is further supported by the evidence that AIP interacts physically with 231 

both the regulatory (R1α) and the catalytic (Cα) subunits of PKA separately, as well as in complex 76. 232 

AIP overexpression led to a decrease in nuclear Cα expression and total PKA activity. Silencing of AIP 233 

resulted in PKA pathway activation, and furthermore, the activation was disproportionately elevated 234 

under PDE4-specific inhibition, suggesting additional functional interaction.  Of note, the mutant AIP 235 

p.R304* interacted to a lesser degree with both PKA subunits 76. Disrupted mutant AIP-PDE4A5 236 

interaction has also been previously reported 77. 237 

Although the role of AHR (the dioxin receptor) in the xenobiotic response has been widely studied, its 238 

potential role in the pathogenesis of pituitary adenomas has been recently described 78. Acromegaly was 239 

observed with increased incidence in a highly polluted industrial region in Italy (Messina, Sicily) 79. The 240 

current prevalence of acromegaly there is thought to be 330 cases per million inhabitants and the relative 241 

risk of developing the disease was estimated to be 8-fold higher in comparison with non-polluted area 242 

in the same province 79, 80. In a subsequent study it was found that 9/23 (39%) patients from different 243 

highly polluted areas in Italy bore a genetic variant of AHR or AIP, as compared with 25.3% (44/187) 244 

of patients from non-polluted regions. Notably, genetically variant adenomas in polluted areas had a 245 

more severe course of acromegaly, characterized by higher IGF-1 values and larger tumor size and 246 

worse response to first-line SSAs in comparison with the other groups. 80It is known that AIP forms a 247 

complex with AHR, stabilizing it in the cytoplasm together with a dimer of heat-shock proteins 90 and 248 

the co-chaperone p23 and AIP protein expression could influence AHR expression 78, 81, 82. On the other 249 

hand, AHR nuclear translocation can be cAMP-dependent83, which is the main signaling pathway 250 

disruption in AIP silencing. However, the exact mechanisms of the link between AHR and AIP in terms 251 

of tumorigenesis in the pituitary remains to be further elucidated. 252 

Large populations of FIPA kindreds, as well as sporadic adenoma patients have been screened for 253 

germline pathogenic variants of AIP.  AIP mutation positive carriers, irrespective of the familial status, 254 

had some distinct clinical characteristics in comparison with their mutation negative counterparts: 255 

predominance of somatotropinomas, younger age at diagnosis (about 24.6 yrs), larger and more invasive 256 

adenomas 11, 84. In the FIPA setting, AIP pathogenic variants are demonstrated in about 20% of families, 257 

while in cohorts of unselected apparently sporadic pituitary adenomas AIP pathogenic variants are rarely 258 

found – in less than 4% 11, 84. However, in young adults (diagnosed<30 yr of age) with apparently 259 

sporadic adenomas (mostly macroadenomas), the prevalence of AIP pathogenic variants was higher, 260 

ranging between 1.6-13%85-93. Further decreasing the age of diagnosis (pediatric/adolescent patients <18 261 

yr/old) increases the frequency of AIP pathogenic variants – 11-25% 85, 87, 94-98. In our large international 262 

cohort of giantism patients, the overall frequency of AIP pathogenic variants was 29% 99.  Another 263 

feature related more commonly to AIP mutated adenomas is pituitary apoplexy 89, 100-102, especially in 264 

pediatric population 89. 265 
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Tumoral AIP protein expression may be low in some somatotropinomas even without AIP pathogenic 266 

variants and these tumors can have higher invasive rates 103. Decreased AIP protein staining could 267 

potentially serve as a marker of invasive potential, along with more traditional markers such as, Ki-67 268 

index and p53 positivity 104.  269 

Apart from the unfavorable clinical characteristics, such as young age and macroadenoma at 270 

presentation, AIP-mutated adenomas are difficult to treat.  In a multicenter collaborative study we 271 

demonstrated that although the overall rates of disease control were comparable (70.4% vs. 80.5% for 272 

AIP mutated somatotropinomas and controls respectively), AIP mutated somatotropinomas (n=75) 273 

required significantly more neurosurgical interventions than their non-mutated acromegaly counterparts 274 

(n=232) - 22 vs.6%, respectively 105.    275 

AIP-mutated somatotropinomas appear to be more resistant to first generation somatostatin analogues, 276 

having significantly lower decreases of GH and IGF-1 and less tumor shrinkage 77, 85, 105-107. Pretreatment 277 

with octreotide increases AIP protein expression 108, 109, while the role of AIP expression level for SSA 278 

responsiveness is debatable 68, 103, 104, 108-110. Overexpression of wild-type AIP increases ZAC1 279 

expression, while AIP knockdown leads to ZAC1 silencing108; ZAC1 is known to correlate with IGF-1 280 

reduction and tumor shrinkage under octreotide/lanreotide treatment in acromegaly111, 112. Another 281 

causal link was suggested recently through reduced expression of Gαi-2 which mediates somatostatin 282 

signaling via the SSTRs 73, 113, 114. Unlike first-generation SSA, similar SSTR5 expression and similar 283 

responsiveness to pasireotide irrespective of the AIP expression levels was observed in patients with 284 

sporadic acromegaly 107.  285 

Given the well documented hormonal and tumoral resistance of AIP-mutated somatotropinomas to first 286 

generation SSAs, treatment with growth hormone receptor antagonist is an alternative option 115. Such 287 

adenomas can also be good candidates for pasireotide treatment.  Recently, clinical evidence for long-288 

term pasireotide efficiency in first generation SSA-resistant AIP mutated adenomas has been reported 289 
116. Ten-year treatment with pasireotide LAR in one patient led to hormonal control and significant 290 

tumor remnant reduction, which allowed discontinuation of the medication with continuous hormonal 291 

control (off therapy) for more than a year. Similarly, in a second patient hormonal and tumoral control 292 

was observed but this hormonal control was lost after switching to octreotide. AIP protein and SST2 293 

expression was lost, while SST5 staining was positive on immunohistochemistry in that case 116.  294 

Similarly to somatotropinomas, treatment in AIP mutated prolactinomas is also challenging. Only 40% 295 

(5/12) were controlled by dopamine agonists in our multicenter study and 4/7 uncontrolled patients 296 

required multiple neurosurgeries 105. The explanation behind the lower responsiveness to DA remains 297 

to be further elucidated.  298 

Given the aggressive features of AIP mutated adenomas, questions about genetic screening for index 299 

cases and relatives are raised. Based on the more prominent characteristics of AIP mutation positive 300 

adenomas, experts’ opinion on the screening referral includes pediatric/adolescence disease onset, 301 

pituitary gigantism, FIPA kindreds, macroadenomas (particularly somatotropinomas), occurring ≤30 302 
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years of age 117-119. Some of the FIPA families (8.3-9.5%), negative for AIP pathogenic variants by direct 303 

sequencing, could have large genomic deletions, which warrants for the use of multiplex ligation-304 

dependent probe amplification (MLPA) when genetic testing is considered appropriate 98, 100. Recently 305 

a clinical risk category system for AIP gene variant screening in pituitary adenomas was proposed, 306 

confirming the role of young age at onset (including gigantism), FIPA, macroadenomas and GH excess 307 

as independent risk factors.  The highest risk (76%) was produced combining homogeneous FIPA 308 

somatotropinomas families presenting with a macroadenoma at early age (<18 years) and the risk fell 309 

significantly when either of the factors (FIPA, macroadenoma or age>18 years) was absent120.  However, 310 

there is little data on the real-life validity of these recommendations. A recent single tertiary centre 311 

retrospective study reports results on AIP and MEN1 pathogenic variants/deletions applying many of 312 

the known characteristics of AIP mutated tumors, in addition to novel factors such as SSA resistance in 313 

somatotropinomas, or DA resistance in prolactinomas  68. None of the patients had pathogenic 314 

variants/deletion in AIP or MEN1 genes.  In the series most of the pediatric onset patients had Cushing’s 315 

disease, which reinforces the concept that AIP and MEN1 rarely cause pediatric Cushing’s disease.  316 

Furthermore, only one patient with gigantism was identified, who did not carry an AIP/MEN1 317 

pathogenic variant. Having in mind that the genetic causes are unknown in 50% of gigantism cases, this 318 

result is perhaps not very surprising. The results of that recent study suggest that criteria should be 319 

carefully interpreted and applied. The age at onset used to trigger screening for AIP-related pituitary 320 

adenomas in sporadic patients could be revised downward to below 30 years, and should focus primarily 321 

on extensive and/or invasive sporadic macroadenomas 68.  322 

Identifying a germline AIP pathogenic variant raises the need to consider familial genetic screening. 323 

Pituitary adenomas in AIP pathogenic variant carriers in this setting has low penetrance  - 20-23% 71, 105, 324 
121, 122. The decision is guided by the possibility of diagnosing the disease before manifestation as an 325 

invasive macroadenoma, which could bring potential treatment benefits 71, 105. Genetic screening should 326 

be particularly targeted at young (pediatric-adolescent) family members who are at higher risk of 327 

developing aggressive adenomas.  In pathogenic variant carriers, regular clinical observation is 328 

warranted 11, 120, 123. The screening could start early in life as a patient as young as six years of age with 329 

preceding clinical symptoms has been diagnosed with an AIP pathogenic variant and pituitary 330 

macroadenoma 124.   331 

 332 

X-linked acrogigantism syndrome. 333 

The X-LAG syndrome (OMIM #300942) was described for the first time in 2014 when a syndrome of 334 

early infant-onset pituitary gigantism was linked to microduplications of Xq26.3 region, encompassing 335 

the GPR101 gene (OMIM *300393) 13. It is a rare condition and less than forty cases have been described 336 

so far 13, 125-131. Historically, some of the tallest humans bear clinical features suggestive of X-LAG 132. 337 

For example, a recent paleogenetic study found increased copy number of the GPR101 gene in an 338 

historic giant (2m 59 cm) from the early 20th century 133.  339 
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In X-LAG the common duplicated region on chromosome Xq26.3 usually encompasses several genes, 340 

among which only GPR101 is differentially overexpressed in the affected pituitary adenoma 13. Indeed, 341 

in one X-LAG patient a duplication was identified in which only the GPR101 gene was duplicated 127. 342 

Duplications were germline in females and somatic in sporadic males with variable level of mosaicism 343 

in the latter 126, 127, 130. In three families the duplication was transmitted from mother to son and all carriers 344 

of the duplication had gigantism 131. The GPR101 gene encodes an orphan G protein-coupled receptor 345 
13, 131. The exact mechanisms of tumorigenesis remain to be fully clarified, but there is some evidence 346 

that cAMP-PKA dependent signaling pathway and increased GHRH secretion could be involved 129, 131, 347 
134. 348 

X-LAG syndrome is characterized by some clinical features that discriminate it from other forms of 349 

pituitary gigantism. It is a pediatric condition and most of the patients are born with normal height and 350 

weight. However, during the first months of their life, as early as 6-12 months, they start to grow 351 

excessively and the diagnosis is almost invariably made before the age of 5 years, when their median 352 

height standard deviation score (SDS) is about +4-5 SDS, as well as weight +4.4 SDS. Females prevail 353 

over males (2/3 of the cases).  Patients have acromegalic features (facial coarsening, including broad 354 

nasal bridge, prominent mandible, increased interdental space, and enlarged extremities) and about a 355 

third have an increased appetite 125, 126. Most of the patients harbor macroadenomas at diagnosis, 356 

generally mixed GH – and PRL-secreting tumors, while a minority have hyperplasia alone. A pattern of 357 

multiple microadenomatous foci against hyperplasia background has also been described. The 358 

proliferation index of such adenomas is generally low (Ki-67 LI below 3%) 125, 126, 128 but if the condition 359 

is left untreated it eventually ends with aggressive adenoma progression 128.  GH and IGF-1 are markedly 360 

elevated at diagnosis, with concomitant hyperprolactinemia in more than 80% of the patients. Increased 361 

levels of GHRH have been detected in some patients, however not in the extent typical for the ectopic 362 

GHRH secretion 13, 125, 129. With respect to treatment, it is complex and a multimodal approach is 363 

necessary.  Surgery alone can lead to cure but even if GH control is achieved, hypopituitarism remains 364 

a life-long burden in many cases. None of the patients responded to first-line somatostatin analogs even 365 

at doses typical for adults. The reason for this phenomenon needs to be further clarified as studied tissues 366 

from pituitary adenomas of X-LAG patients show preserved SST2 and AIP expression 125. Pegvisomant, 367 

alone or in combination, is able to induce IGF-1 normalization 123, 125, 126. Radiotherapy has been applied 368 

in a few of patients with unconvincing effects on hormonal hypersecretion 125, 126.   369 

When compared with gigantism in the setting of AIP pathogenic variants or genetically negative cases, 370 

X-LAG syndrome could be distinguished by the early childhood or infant onset of disease symptoms, 371 

female predominance, presence of acromegalic features in such early age, increased appetite, marked 372 

hormonal hypersecretion, histologically presence of mixed GH-PRL-secreting adenomas and/or 373 

hyperplasia; a poor response to SSAs occurs in both AIP mutated and X-LAG related gigantism 99, 126. 374 

In patients with sporadic acromegaly a missense variant has been observed (p.E308D), affecting the 375 

intracellular loop 3 of GPR101. It is relatively rare and its role in pituitary pathogenesis is unknown 13, 376 
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126, 135-137. Other missense variants have been detected in prolactinomas and corticotropinomas with 377 

unknown impact on tumorigenesis 137, 138.  378 

Recently the first prenatally diagnosed case of X-LAG was described, offering a unique prospective 379 

observation of the natural course of the disease. The mother had a distant history of acrogigantism 380 

starting at 4 months of age with complete cure after the resection of the pituitary adenoma at 24 months. 381 

She had typical characteristics of X-LAG and the Xq26.3 microduplication was found at preconception 382 

testing. The same genetic abnormality was found in her son on a chorionic villus sample, who grew 383 

rapidly and had tumor extirpation at the age of 15 months. The immunohistochemical analysis of both 384 

adenomas (mother’s and son’s) revealed elevated Ki-67 proliferation index, multiple lineage specific 385 

transcription factors and stem cell markers 139. 386 

 387 

Multiple endocrine neoplasia 1 (MEN1) 388 

MEN1(OMIM #131100) is a multiorgan disorder including endocrine and non-endocrine tumors. 389 

Clinically it is characterized by the occurrence in a patient of at least two of the three following disorders: 390 

hyperparathyroidism, pituitary adenoma, and pancreatic neuroendocrine tumors (NET). Among the 391 

other tumor presentations are facial angiofibroma, collagenomas, lipomas, adrenocortical tumors and 392 

carcinoid tumors 140. The MEN1 gene (OMIM *613733) is located on chromosome 11q13 and encodes 393 

menin, which is a 610 amino-acid nuclear protein 141, 142. Menin interacts with various proteins involved 394 

in transcriptional regulation, genome stability, cell division and proliferation 143. The disorder has 395 

autosomal dominant inheritance with high penetrance and in about 10% may arise from de novo  396 

pathogenic variants 144. Pituitary adenomas occur in about 15-50% of MEN1 patients 144-151.  397 

The most prevalent pituitary subtypes are prolactinomas (60-80% of the cases), followed by non-398 

functioning pituitary adenomas (in more recent series – up to 42%), or somatotropinomas (in older series 399 

– up to 25%) and corticotropinomas (<5%)144, 146-149. In rare cases GH hypersecretion could be caused 400 

by ectopic GHRH secretion from NETs 152. A distinctive but uncommon feature of MEN1 pituitary 401 

adenomas is the plurihormonal profile (especially prolactin-ACTH and/or GH positive tumors on 402 

immunohistochemistry), as well as the presence of multiple pituitary adenomas 152-155. In about 15-30% 403 

of patients a pituitary adenoma is the first presentation of MEN1 syndrome 140, 147-149. Among sporadic 404 

pituitary adenomas the occurrence of MEN1 is quite rare- less than 3% 152, 156, 157. However, in the 405 

pediatric population, similarly to the AIP mutations, the frequency of MEN1 may be higher - up to 6.5% 406 
96, 97 and pituitary adenomas can occur as early as 5 years of age 158. Gigantism due to MEN1 occurs in 407 

less than 1% of all pituitary gigantism cases 99. In the setting of MEN1 with pituitary adenomas, females 408 

prevail over males (approximately two thirds of the cohorts), partly due to the higher prevalence of 409 

females with prolactinomas 148-151. Interestingly, when pituitary adenoma was the first presentation of 410 

the syndrome, MEN1 was more frequently diagnosed in males than females (67.3% vs. 44.2% 411 

respectively), explained by the smaller of initial pituitary lesions in women, or the higher prevalence of 412 

sporadic pituitary adenomas in females, leading to delayed diagnosis by clinicians 149 In series including 413 
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patients before the introduction of routine screening programs MEN1 pituitary adenomas were 414 

predominantly macroadenomas (approximately 80%) and more invasive than their sporadic counterparts 415 
146, 152. A recent nationwide Dutch study on MEN1 pituitary adenomas shows higher frequency of 416 

microadenomas – in approximately two thirds of the cases. Notably, approximately half of the adenomas 417 

diagnosed in asymptomatic patients by MRI screening were microadenomas.  In the absence of tissue 418 

confirmation these could represent incidentalomas, which are commonly seen in the general population 419 

and could be a source of bias. In that study pituitary adenomas diagnosed clinically prior to the genetic 420 

diagnosis of MEN1 were more frequently macroadenomas versus screening-detected pituitary tumors 421 

(81.2% vs. 46.3%, p<0.001) and more often functional (70.2% vs. 47.0%, p=0.009)148. In the French-422 

Belgium cohort, a poor response to treatment was reported, with normalization of prolactin in only 44% 423 

of the patients 146, while in the Dutch series more that 90% of the prolactinomas responded to dopamine 424 

agonists 148. According to the last guidelines the treatment approach towards MEN1 pituitary adenomas 425 

should be identical to non-MEN1 adenomas 144 426 

However, moving beyond the MEN1 guidelines, due to the high penetrance of the syndrome, the first 427 

presentation with pituitary adenoma in up to a third of the patients, and a higher frequency in young 428 

patients with aggressive macroadenomas96, 144, 146, 159, genetic screening for MEN1 (and AIP), could be 429 

considered in patients with young onset, invasive macroadenomas.  430 

 431 

MEN4 432 

On genetic testing about 10% of patients with familial and possibly more sporadic MEN1 cases do not 433 

harbor MEN1 pathogenic variants 143. MEN4 (OMIM #610755) emerged as a new condition in 2006, 434 

when pathogenic variants in CDKN1B gene (OMIM *600778) was described in a family with a MEN1-435 

like phenotype, including acromegaly, primary hyperparathyroidism and other tumors 12. CDKN1B is 436 

located on chromosome 12p13 160 and encodes p27, a cyclin dependent kinase inhibitor implicated in 437 

the regulation of cell cycle progression and arrest 161, 162. Up to the present, approximately 20 cases 438 

harboring CDKN1B germline pathogenic variants have been published, explaining 1.5-3.7% of MEN1 439 

pathogenic variant negative patients with the corresponding phenotype 163-166. In the setting of MEN4, 440 

pituitary adenomas arose in about 37% of reported cases including somatotropinoma, corticotropinoma, 441 

non-functioning pituitary adenoma and prolactinomas, with an age range at onset of 30-79 years 163. In 442 

as study of 21 pitutiary adenomas (20 corticotropinomas) no somatic CDKN1B alterations were present 443 
167. No germline CDKN1B pathogenic variants have been found in a series of 88 sporadic or familial 444 

pediatric pituitary adenomas 97 and in the FIPA setting it was a very rare and questionable finding 168. 445 

Genetic screening for this condition should be probably performed only in MEN1 negative kindreds or 446 

individuals and routine screening of patients with isolated pituitary adenomas is unlikely to identify 447 

CDKN1B mutation carriers. 448 

 449 

Carney complex (CNC) 450 



 EJE-19-0602.R1 (https://doi.org/10.1530/EJE-19-0602) 

 

 14 

Carney complex (OMIM #160980) is a rare autosomal dominant disease that is characterized by the 451 

presence of myxomas, spotty skin pigmentation (lentigines) and endocrine hyperactivity 169, 170. Some 452 

of the most common endocrine abnormalities are primary pigmented nodular adrenocortical disease 453 

(PPNAD), pituitary adenomas, thyroid nodules, testicular tumors and ovarian cysts. More than 750 cases 454 

have been described to date 171 and most cases have PRKAR1A (OMIM *1888830) pathogenic variants 455 
172, 173. Another locus associated with the disease is located on chromosome 2p16 174 and lately copy 456 

number gain at the PRKACB gene locus (OMIM *176892) was described in a patient with abnormal 457 

skin pigmentation, myxomas and acromegaly 175. PRKAR1A pathogenic variants lead to loss of function 458 

of the protein kinase A 1α regulatory subunit resulting in increased cAMP-dependent PKA activity 171. 459 

In the setting of Carney complex the presentation of pituitary adenomas is generally in the third or fourth 460 

decade and it is usually preceded by other syndromic feature 171.  Approximately 75% of the patients 461 

have high but asymptomatic levels of GH, IGF-1 and prolactin with abnormal responses to dynamic 462 

testing, however only up to 12% develop overt acromegaly, while prolactinomas are rare176. CNC 463 

contributes less than 1% of gigantism cases. In sporadic pituitary adenoma cohorts pathogenic variants 464 

of PRKAR1A or in other subunits of PKA do not play frequent role in tumorigenesis 97, 177-179. In cases 465 

with single adenomas surgery could be potentially curative. However, similar to X-LAG, in the setting 466 

of CNC, multiple adenomas with surrounding hyperplasia is a known finding 180, 181 and clinical 467 

management could require partial or total hypophysectomy 181. Medical treatment with somatostatin 468 

analogues or a GH receptor antagonist could also be considered 171. 469 

 470 

McCune-Albright syndrome 471 

MAS (OMIM #174800) is a well established syndromic condition predisposing to acrogigantism and 472 

includes the classic triad of precocious puberty (endocrine hyperactivity), fibrous dysplasia and café-473 

au-lait macules 182, 183. It is caused by a post-zygotic, mosaic, gain-of function mutation in GNAS and 474 

the clinical manifestation is determined by the number of affected tissues, and possibly the timing of the 475 

mutation’s occurence 184, 185. In the context of MAS, 10-25% of the patients could have GH 476 

hypersecretion leading to gigantism or acromegaly, often accompanied by hyperprolactinemia. MAS 477 

account for about 5% of gigantism cases 99. Similarly to CNC and X-LAG, pituitary hyperplasia or a 478 

distinct pituitary adenoma could be found in the gland 186-189. Treatment in these patients is challenging 479 

due to various factors: difficult surgical access due to bone thickening, presence of diffuse pituitary 480 

hyperplasia, partial response to somatostatin analogues, risk of sarcoma transformation of affected bone, 481 

following radiotherapy. Treatment with pegvisomant could be useful in such cases 123, 187-191 482 

  483 

Pheochromocytoma/Paraganglioma and Pituitary adenomas Association (3PAs) 484 

The coexistence of these tumors, termed 3PAs 15, is quite rare, although it had been described historically 485 
192. The interrelation between the tumors has been strengthened recently by the finding of a germline 486 

SDHD (OMIM *602690) pathogenic variant in a patient with pheochromocytoma, paragangliomas and 487 
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acromegaly, strengthening a pathogenetic role of the mutation by loss of heterozygosity for SDHD and 488 

down-regulation of the corresponding protein in the pituitary adenoma tissue 14. Approximately 80 cases 489 

with this association have been described in literature and genetics studies in recent cases revealed 490 

genetic defects in approximately one third of cases 193-198. Most of the patients had mutations in one of 491 

the four genes encoding SDH subunits that are previously known to predispose to 492 

pheochromocytoma/paraganglioma 193. 493 

The succinate dehydrogenase complex forms the mitochondrial complex II on the inner mitochondrial 494 

membrane and consists of four subunits (A, B, C and D) and an associated assembly factor (SDHAF2). 495 

It is responsible for electron transfer in the respiratory chain and converts succinate to fumarate 199. An 496 

impaired SDH complex mimics hypoxia, and oncogenesis is likely to be mediated by hypoxia-inducible 497 

factor-1 α (HIF-1α) related pathways 200.  498 

Clinically, the potentially SDHx-mutated pituitary adenomas can be prolactinomas, somatotropinomas 499 

or non-functional adenomas. Most are macroadenomas with an aggressive clinical course – requiring 500 

surgery and with poor response to somatostatin analogues 193. One carcinoma has been described 196. A 501 

distinctive pathologic feature of SDHx-mutated pituitary adenomas is an extensive vacuolization of the 502 

cytoplasm 201. 503 

Recently, the 3PA syndrome was associated with germline MYC-associated factor X (MAX) (OMIM 504 

*154950) pathogenic variants or intragenic deletions in five patients (three prolactinomas and two 505 

somatotropinomas) 194, 195, 202. Single cases of 3PAs have also been described in the setting of MEN1, 506 

MEN2 or von Hippel-Lindau disease 193  Screening for SDHx mutations in the pool of sporadic pituitary 507 

adenomas without personal or familial syndromic history is not warranted as they are quite rare 15, 201, 508 
203, 204. Of note intragenic deletions such as those seen in MAX require MLPA analysis as they are not 509 

detectable on Sanger sequencing 195.  510 

 511 

Other germline conditions 512 

Growth hormone excess causing acromegaly or gigantism can rarely be part of neurofibromatosis type 513 

1 (NF1) (OMIM #162200), characterized by neurofibromas, café-au-lait macules, intertriginous 514 

freckling, osseous lesions, Lisch nodules and optic pathway gliomas 205, 206. GH hypersecretion with an 515 

increase in growth velocity has been observed in about 10% of children with optic pathway gliomas, 516 

which is more frequent than previously thought 207. In accordance with other data in the literature 517 

affected children have an optic chiasm tumor but not a pituitary adenoma 207. In such cases the 518 

pathogenesis of GH excess has been considered to be either due to loss of somatostatingergic inhibition, 519 

or presence of overactive GHRH secretion in the optic pathway tumor 207, 208. In a series of 10 patients 520 

with overgrowth and NF1 in the National Institure of Health, including children and adults, a link 521 

between pituitary tumorigenesis, NF1 and GH excess has been confirmed. Of note, similarly to MAS 522 

and CNC, pituitary hyperplasia has been described in some cases. Given the probability of increased 523 
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oncological risk, or worsening neurofibromas, pain, or endocrinopathies, it is strongly advisable to 524 

investigate NF1 patients for GH excess, including appropriate sellar region and optic tract imaging 208. 525 

Pituitary blastomas (pituitary tumor with embryonic origin) are very rare and could arise in the setting 526 

of DICER1 syndrome (OMIM #601200), known also as pleuropulmonary blastoma- familial tumor. 527 

DICER1 (OMIM *606241) encodes a protein responsible for microRNA maturation. Clinically it 528 

presents in early infancy with Cushing’s syndrome with high mortality 9, 209-211. 529 

 Recently, another potential pituitary adenoma predisposition gene has been described - CABLES1 530 

(CDK5 and ABL1 enzyme substrate 1) (OMIM *609194) 212. CABLES1 protein is implicated in the 531 

negative cell cycle regulation in corticotropes in response to glucocorticoids. Usually the physiologic 532 

adrenal-pituitary negative feedback is disrupted in corticotropinomas and CABLES1 protein expression 533 

is often lost 213.  Given this background, germline and/or tumor DNA samples from an international 534 

cohort of 146 pediatric and 35 adult patients was studied for CABLES1 gene variants or copy number 535 

variations 212. Four heterozygous missense variants were found in two pediatric and two young adult 536 

Cushing’s disease patients. Functionally these variants appeared to interfere with the normal inhibition 537 

of cell growth by CABLES1 in vitro. The possible tumorigenic mechanism could be linked to increased 538 

CDKN1B degradation as all mutated samples showed markedly reduced nuclear CDKN1B staining and 539 

preserved, although weaker, CABLES1 immunohistochemical expression. Clinically, all four 540 

corticotropinomas were macroadenomas with high Ki-67 index, three of them had extrasellar extension 541 

and three required second transsphenoidal surgery 212. Isolated cases of corticotropinomas in the setting 542 

of congenital adrenal hyperplasia (OMIM #201910) with pathogenic variants in the 21-hydroxylase 543 

enzyme gene (CYP21A2) (OMIM *613815) and in the setting of X-linked congenital adrenal hypoplasia 544 

(OMIM #300200) with pathogenic variant in the NR0B1 (nuclear receptor subfamily 0 group B member 545 

1) (OMIM *300473) gene have been reported 214-216. 546 

 547 

Discussion and Conclusions 548 

Scientific progress has led to the discovery of numerous new genetic and genomic disruptions in patients 549 

with pituitary tumors.  The most frequent genetic causes are summarized in Table 1.  While for somatic 550 

pathogenic variants discriminative clinical features can be quite subtle, most germline pathogenic 551 

variants, though rare, present with particular clinical features. To help prompt diagnosis and treatment, 552 

integrated screening could be offered for germline variants (Figure 1).  Pediatric patients (up to 18 years) 553 

with isolated pituitary adenomas and young adults (<30 years) with isolated aggressive or large pituitary 554 

macroadenomas should be screened for AIP and MEN1 gene variants or deletions.  Very early onset 555 

cases of somatotropinomas in children should be screened for GPR101 duplications via array 556 

comparative genome hybridization, and droplet digital PCR can be used for confirmatory purposes.  557 

Patients with FIPA should undergo genetic screening for AIP variants/deletions (AIP-negative FIPA 558 

families with gigantism cases should be considered for X-LAG screening).  Patients or kindreds with 559 

MEN1 phenotype without MEN1 pathogenic variants could be screened for CDKN1B gene variants; 560 
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CDKN1B pathogenic variants rarely lead to isolated pituitary adenomas. Genetic screening for Carney 561 

complex tends to be guided more by the presence of typical syndromic features rather than any specific 562 

characteristics of the pituitary adenomas that occur in Carney complex.  The combination of 563 

pheochromocytoma and/or paraganglioma and pituitary adenoma could be indicative of SDHx or MAX 564 

genetic alterations, including pathogenic variants and deletions.  As the availability of multi-gene panels 565 

is increasing, a more straightforward approach is to use multigene panels in next generation sequencing 566 

platforms: GNAS, PRKAR1A, MEN1, CDKN1B, SDHx, MAX in patients with extra-pituitary pathology, 567 

and AIP, MEN1 and GPR101 in patients with familial history of pituitary adenomas or young patients 568 

with aggressive adenomas. The relatives of index cases could be offered genetic counseling or screening, 569 

or close clinical and radiological surveillance according to the genetic disruption. Prospectively 570 

diagnosed mutation carriers are managed according to the current guidelines or clinical 571 

recommendations for each condition, where they exist.  572 

Apart from clarifying their pathogenesis, new genetic findings provide insight into the clinical 573 

characteristics and behaviors of mutated adenomas that could discriminate them from the whole pool 574 

and possibly serve as a basis for targeted molecular and individualized treatment approach.  Overall the 575 

genetic causes of sporadic and hereditary pituitary adenomas are unknown in most cases, which argues 576 

for collaborative research studies to identify novel molecular genetic mechanisms.  577 

  578 
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Legends 579 

 580 

Figure 1. Screening for genetic causes of pituitary adenomas. 581 

MAS – McCune Albright syndrome; GNAS - guanine nucleotide (GTP)-binding protein alpha 582 

stimulating; CNC – Carney complex; PRKAR1A – protein kinase type I-alpha regulatory subunit gene; 583 

PRKACB - Protein Kinase cAMP-Activated Catalytic Subunit Beta; PA/PGL/PHEO – pituitary 584 

adenoma/paraganlioma/pheochromocytoma; SHDx – succinate dehydrogenase complex genes; 585 

SDHAF2 – succinate dehydrogenase assembly factor 2 gene; MAX – MYC-associated factor X; MEN1 586 

– multiple endocrine neoplasia type 1 gene; PHPT – primary hyperparathyroidism; CDKN1B – Cyclin-587 

dependent kinase inhibitor 1B; MEN4 – multiple endocrine neoplasia type 4; FIPA – familial isolated 588 

pituitary adenoma; AIP – aryl hydrocarbon receptor-interacting protein gene; GPR101 – G protein-589 

coupled receptor 101 gene; X-LAG – X-linked acrogigantism.  The figure is adapted by the authors 590 

from Rostomyan L and Beckers A. Screening for genetic causes of growth hormone hypersecretion. 591 

Growth Hormone & IGF Research 30-31 (2016) 52-57 with permission. 592 

  593 
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