
Graphical Loop Invariant programming in CS1
Simon Liénardy

Université de Liège, Montefiore
Institute – Belgium

simon.lienardy@uliege.be

Lev Malcev
Université de Liège, Montefiore

Institute – Belgium
l.malcev@student.uliege.be

Benoit Donnet
Université de Liège, Montefiore

Institute – Belgium
benoit.donnet@uliege.be

ABSTRACT

This paper introduces the use of Graphical Loop Invariant as
a programming methodology in a CS1 course, in which the Loop
Invariant is determined prior to writing the code and is meant as
a help to find the loop instructions. This paper also introduces
two learning tools: GLI, an application helping students to draw
Loop Invariant and Café, an on-line platform designed to assess
and deliver automatic feedback and feedforward information to
students, in particular on their Loop Invariants and the pieces of
code based upon them. The paper reports preliminary evaluation
on Café usage.

CCS CONCEPTS

•Theory of computation→Algorithmdesign techniques;
• Social and professional topic→ CS1.

KEYWORDS

Café, Graphical Loop Invariant, feedback, CS1, Assessment for
Learning

1 INTRODUCTION

In Belgium, the access to the Higher Education curriculum in
Computer Science is non-selective. Hence, we cannot make any
kind of assumptions about first year students’ background. Many
of them enter the program with excitement (unfortunately due to
a biased vision of the Computer Science field), but without being
clearly aware of actual requirements. This contributes to a high
failure rate, as well as a high withdrawal ratio throughout the
year [5, 6, 28].

Typically, a CS1 course teaches students how to write a sequence
of instructions that must be repeated a certain number of times.
This is usually known as a program loop. The methodology we
proposed in our CS1 course is based on an informal version of
the Loop Invariant (a property of a program loop that is verified
at each iteration – i.e., at each evaluation of the Loop Condition)
introduced by Hoare [15, 16]. Our methodology consists in deter-
mining a strategy (i.e., the Loop Invariant) to solve a problem prior
to any code writing and, next, rely on the strategy to build the
code, as initially proposed by Dijkstra [12] and extended later by
Back [2]. The methodology also implies to verify the loop ends. This
is achieved, in our methodology, by measuring the progress made
by each loop iteration through the definition of a Loop Variant (i.e.,
a function that measures the progress made by the loop towards
the termination). As such, the Loop Invariant and the Loop Variant
can be seen as the corner stone of code writing. The problem with
such a methodology is that it is a quite abstract reflection phase
that might confuse students who may not have the desired abstract
background, specially if the Loop Invariant is expressed as a logical

assertion. However, if practiced on a regular basis [17, 22] with
increasing difficulties problems [24], students can, little by little,
master this programming methodology.

In this paper, we propose two tools designed to help student to
understand how to determine an Loop Invariant and how use it
to derive code instructions. The first one, called Gli, is an on-line
application allowing to draw Graphical Loop Invariant. One of the
main key aspect of Gli is its ability to provide students with quick
feedback and feedforward (i.e., how to correct it) on the Graphical
Loop Invariant. The obtained Loop Invariant can then be used to
write the corresponding piece of code. The coding processed is also
eased by Gli.

The second tool is the result of a reflection that was carried out on
a teaching activity that could fulfill the need of regular exercises and
that could come in addition to classic exercises sessions (12 sessions
of exercises and 5 labs in front of computers in our CS1 course).
Limited by multiple constraints (a single Teaching Assistant, time,
room availability, etc.), those exercises have to be done at home,
with an automatic correction and feedback provided to students.

The main issue of such an automatic system lies in the fact that
it is very difficult to, simultaneously, assess the program output
and the cognitive process inherent to the program construction. In
particular, as the course puts the emphasis on the Graphical Loop
Invariant and the Loop Variant, it quickly appeared as desirable
to include them in the automatic correction of the student’s work.
Furthermore, not doing so would have resulted in a dissonance
between theoretical lessons and practical sessions.

This is exactly what we propose with our second tool: an on-
line platform, called Café (“Correction Automatique et Feedback
des Étudiants”) for automatically assessing students’ programming
exercises. In addition, this platform is inspired by assessment for
learning1 (AfL) [24, 29].

In a nutshell, Café proposes to students several programming
Challenges (roughly one Challenge every two weeks) spread over
the CS1 semester. It encourages students to work on a regular basis
on increasing difficulties problems. In addition, those Challenges
could help students to better understand the course learning out-
comes [27] as well as to increase their self-efficacy [3]. Further,
for each Challenge, Café allows students to submit up to three
times [18] their solution, thus closing the feedback loop [8]. For each
submission, Café automatically provides a high quality feedback
and feedforward information thought based on the literature [19],
maximizing so student auto-regulation.

The remainder of this paper is organized as follows: Sec. 2 dis-
cusses and illustrates the programming approach we propose in our
CS1 course; Sec. 3 presents the two tools we propose, Gli and Café;
Sec. 4 discusses a preliminary evaluation of Café usage; Sec. 5
1Assessment for Learning is defined as informing learners of their progress to empower
them to take the necessary action to improve their performance [17].



GDD’19, Namur, Belgium,
Liénardy et al.

Excerpt 1: Binary search code with zones delimited by the

Loop Invariant.

1 int bsearch(int *A, int N){
2 int l = 0, u = N-1;
3
4 //Invariant
5 while(l < u){
6 //Invariant ∧ Loop Condition
7 int m = (l + u) / 2;
8 if(A[m] < X)
9 l = m + 1;
10 else if(A[m] > X)
11 u = m - 1;
12 else
13 u = l = m;
14 }
15
16 //Invariant ∧ ¬Loop Condition
17 if (A[u] == X)
18 return u;
19 else
20 return -1;
21 }

positions this work with respect to the state of the art; finally, Sec. 6
concludes this paper by summarizing its main achievements.

2 PROGRAMMING METHODOLOGY

A Loop Invariant [15, 16] is a property of a program loop that is
verified (i.e., true) at each iteration (i.e., at each evaluation of the
Loop Condition). The Loop Invariant purpose is to express, in a
generic and formal way through a logical assertion, what has been
calculated up to now by the loop. Historically, Loop Invariant has
been used for proving code correctness (see, e.g., Cormen et al. [10]
and Bradley et al. [9] for automatic code verification). As such, the
Loop Invariant is used “a posteriori” (i.e., after code writing).

In our CS1 course, we envision a different perspective in which
the code is built upon the Loop Invariant that must be thus ex-
pressed before coding (“a priori” usage), as suggested by Dijk-
stra [12] and pushed further by Back [2]. This allows us to divide
the code in three main zones, as illustrated in Listing 1, each zone
being constructed thanks to the Loop Invariant. Zone 1 refers to
the code segment prior to the loop, typically used for initializing
variables. At the end of Zone 1, the Loop Condition is evaluated,
meaning that the Loop Invariant must be verified. Based on this
statement, the Loop Invariant can be used to determine the required
variables as well as their initial values. Zone 2 refers to the Loop
Body itself. As the Loop Condition has been verified, before execut-
ing any instruction of the Loop Body, the Loop Invariant is true and
the Loop Condition is true. At the end of the Loop Body, the Loop
Condition is evaluated again, meaning the Loop Invariant must be
restored. Based on those two situations, one can derive the Loop
Body instructions. Zone 3 refers to the piece of code after the loop,
when the Loop Condition has been invalidated. This zone contains
instructions that should allow the program to finally solve the ini-
tial problem. Given that the Loop Condition has been evaluated,
the Loop Invariant is true but the Loop Condition is false. Based on
this situation, it is possible to derive the final instructions.

zone 1

zone 2

zone 3

While Dijkstra expressed Loop Invariants as logical assertions,
we believe this could be counter-productive in the context of a
CS1 course, in which students may not have the required level of
abstraction. Instead, we build our methodological approach on an

informal version of Dijkstra’s process by proposing an informal
Graphical Loop Invariant.

The Graphical Loop Invariant is supposed to contain key infor-
mation that will eventually be used to actually write the code. As
such, the Graphical Loop Invariant represents a strategy to solve the
problem and is used to support thoughts on the code. Although be-
ing informal, this drawing must at least detail variables, constant(s),
and data structures manipulated by the program; the constrains on
them; the relationships they may share, and that are conserved all
over the iterations. It should also express, in a general way, what
has been already computed by the program after a certain number
of loop iterations. With this method, we clearly shift the difficulty
not anymore in writing the code itself but in the reflection phase
that is prior to the code. This step requires thus training and expe-
rience. But, once mastered, it becomes possible to efficiently solve
complex problem.

In the remainder of this section, we illustrate this process (from
drawing the Graphical Loop Invariant to writing the code) with a
well-known problem: the binary search in a sorted (in the increasing
order) array A of length N, A being indexed from 0 to N-1. The
function implementing the binary search will return the index of
the researched value X, or a special value -1 if X does not belong to
A.

The basic idea of the binary search is to divide, at each step, the
search zone based on the ordered property of A and the value of X.
Generally speaking, one can thus divide A in three zones: (i) array
elements < X , (ii) array elements > X , and (iii) array portion in
which the search must be performed.

Those considerations are depicted in Fig. 1a where we delimit
the · < X zone with a variable l (for lower indices) and the · > X
zone with variable u (for upper indices). As can be seen in Fig. 1a,
we carefully depict the array as a rectangle labeled with the array
name and the indices written above it. Labeling a data structure
with its name is, at first, useful for the understanding and becomes
mandatory when multiple structures come into the game. It is also
the first required step for making the Loop Invariant coherent with
the code when it will be written. It should be noted that, in our
Figure, the · < X zone is formally comprised between indices 0
and l − 1, which is represented by the letter l written at the right
of the vertical bar determining this zone. We call such a vertical
bar dividing line (it appears thicker in Fig. 1a). This accuracy in
the drawing is of the highest importance to easily determine l
initial value . The same remark applies for u. This Graphical Loop
Invariant also makes easier the discovery of a Loop Variant (i.e., a
function that measures the progress made by the loop towards the
termination). It is, simply, the length of the “to investigate” zone,
i.e., u − l + 1 in Fig. 1a.

As explained earlier in this section, the Graphical Loop Invariant
can be used to divide the code in three zones and to write the
code of those zones. In particular, Fig. 1b illustrates, graphically,
the situation in the first zone. This is obtained by stretching the
two dividing lines to their minimum (for l) and maximum (for u)
values. At start, we cannot ensure that any values in A is less than
X , neither we can ensure that any values in A is greater than X .
Hence, the corresponding zones in the array A at the initialization
are empty, as shown in Fig. 1b. From this drawing, we see that in
this situation, l (resp. u) corresponds to index 0 (resp. N −1) and we



Graphical Loop Invariant programming in CS1
GDD’19, Namur, Belgium,

(a) Graphical Loop Invariant for binary search. (b) Initial state for binary search. (c) Final state for binary search.

Figure 1: Graphical Loop Invariant and particular cases for binary search. The figures were obtained thanks to the tool de-

scribed in Sec. 3.1

conclude that we must initialize l and u to these respective values,
as done in Line 2 of Listing 1.

Similarly, we can modify Fig. 1a to depict the loop final situation
(see Fig. 1c). The zone to be checked in A (i.e., the zone A[l. . .u]) has
now the minimal size, leading to a case where l == u. In such a case,
the loop must be stopped and one can derive the Loop Condition
(i.e., l , u). Pedagogically speaking, we can use a lighter condition,
l < u that has the advantage to better represent the relationship
between those indices.

Zone 2 (i.e., Loop Body) consists in making the loop progressing
toward the final objective: finding X and returning its position in
A. To do so, we must investigate the unknown zone (labeled “to
investigate” in Fig. 1a) and make growing one of the two other
zones, thus moving the associated dividing line. The binary search
consists in looking the middle of that zone, at index m = l+u

2 (line 7
in Listing 1). If it appears that A[m] < X, one concludes that X does
not belong in the left part of A and that the left dividing line must
be translated to the right (line 9 of Listing 1) by taking the value
m + 1 (+1, since we know that A[m] < X). A similar reasoning can be
made for the A[m] > X case. Finally, otherwise, the loop must end
(i.e., A[m] == X). This is achieved by forcing the final situation, as
illustrated in Fig. 1c (see line 13 in Listing 1).

Finally, zone 3 is reached once one leaves the loop, i.e., when
l== u, as explained by Fig. 1c. In such a case, the zone “to investi-
gate” contains a single element.We thus only have to check whether
this element is X or not (lines 17→ 20 in Listing 1).

To sum up, here are the guidelines a student should follow when
searching for a good Graphical Loop Invariant, according of the
methodology:

(1) The drawing corresponds to the problem;
(2) The boundaries of the problem are provided;
(3) One (or more) dividing line(s) is (are) provided;
(4) Each dividing line is properly labeled (e.g., with a variable);
(5) The drawing is labeled for explainingwhat has been achieved

so far (this often introduces new variables);
(6) The drawing is labeled to indicate what should still be done;
(7) All the named structures and variables are present in the

code.

These focus points can also be used to evaluate students’ per-
formance. The typical mistakes can be sorted into three main cate-
gories: (i) syntax (i.e., the Graphical Loop Invariant is poorly drawn
or the items are misplaced or absent – guileine 1→ 4), (ii) semantic
(i.e., what was drawn does not represent an Loop Invariant or the
labels explaining what has been achieved so far does not make sens

Figure 2: Gli screenshot. Missing items or errors are men-

tioned in red. More details about the problem and how it

can be solved is provided by a tooltip.

Figure 3: Pattern available in Gli to draw Graphical Loop

Invariants. The text zone is here used to depict a polynomial

thanks to subscripts and superscripts

– guideline 1 and 5 → 7), and (iii) code matching (i.e., the program
does not correspond to what has been drawn).

3 LEARNING TOOLS

This section introduces two tools that were developed to help
students grasping the methodology presented in Sec. 2: the first
one enables to draw easily Graphical Loop Invariant (Sec. 3.1),
the second one is an on-line platform for automatically assessing
students’ programming exercises (Sec. 3.2).

3.1 Gli Tool

The Graphical Loop Invariant (Gli) tool is an application written
in javascript using the FabricJS HTML5 canvas library [30]. It en-
ables students to easily draw Graphical Loop Invariants that respect
the guidelines mentioned in the Sec. 2.

The GUI of this application is quite simple, as can be seen in
Fig.2. There are five buttons:

Piece of Invariant enables to select the piece of Invariant to
add in the drawing. Three kinds of pattern are implemented: a
graduated line (e.g., to represent a range of integers), a 1-dimension



GDD’19, Namur, Belgium,
Liénardy et al.

array, and a text zone that allows to represent a large number of
problem. Fig. 3 illustrates these patterns.
Add actually draws the selected pattern in the canvas.
Define a zone enables to draw a colored zone in order to define
what was already computed and what should still be done. The
legend of the zone must be provided in the box of the same color.
Validate launches several tests checking whether the Loop In-
variant respects the guidelines (See Sec. 2). More details are pro-
vided in Sec. 3.1.1.
Delete enables to delete an item from the canvas.

The user can also click on a drawn piece of invariant to add a
dividing bar and label it. Two bars can be linked with a colored
bar, defining so a zone. An example of fully labeled Graphical Loop
Invariant is provided in the Fig. 1a.

3.1.1 Graphical Loop Invariant Validation. The application can
perform several checks ensuring the methodological guidelines are
respected: all the drawings must be named (guidelines 5 and 6), each
dividing line and the boundaries of the problem must be labeled
with a variable or a constant (guideline 2 and 4), there should be
at least one zone that indicates what was previously computed
and one zone that designates what should be done (guidelines 3
and 5, 6). If one of the tests fails, an error is reported in red in the
canvas and a tooltip appears when the mouse hovers the red zone,
as cdepicted in Fig. 2. It is worth noting that these tests can only
challenge the syntactical part of the guidelines (e.g., the presence
of a particular item) and not their semantics (e.g., the soundness
of a particular drawing with respect to the problem actually being
tackled). Nevertheless, the tool was designed to give students quick
feedback on the form of their Graphical Loop Invariant and serve
as a reminder in case of missing items.

3.1.2 Writing the Code with Gli. Once the validation step is passed
without error, the Gli tool can be used to write the associatd piece of
code, as explained in the Sec. 2. The dividing lines can be displaced
to transform the Loop Invariant into the initial step (Zone 1) and
the final step (Zone 3). From the initial steps, the initial values of
the variables can be deduced, Gli can even highlights the matching
of two overlapping bars, as illustrated in Fig. 1b. The final state
illustrates the Loop Condition, as shown in Fig. 1c.

3.2 Café

This section introduces Café (“Correction Automatique et Feed-
back des Étudiants”), our on-line platform for automatically as-
sessing students’ programming exercises. We use Café through
six assignments called Challenges distributed throughout the first
semester approximately every two weeks. Challenges account for
10% of the final grade, each Challenge having the same weight. Each
Challenge consists in a small –yet not too easy– programming/al-
gorithmic task in C.2 The first Challenge (called “Challenge 0”)
helps students in grasping how Café works and does not account
in the final mark. It is worth to notice that we allow students to not
submit one of the five Challenges (concept of Joker). In that case,
the Challenge does not account in the final mark.

2Café has been designed to be programming language independent, meaning that it
can be used with other programming languages (e.g., Python).

Figure 4: Challenges timeline over the semester.

The Challenges are of increasing complexity (from a simple loop
to write – Challenge 1 – to a modular program solving a reasonably
complex problem – Challenge 4), referring thus to assessment for
learning (AfL) [22, 24]. The last Challenge is dedicated to pointers
and dynamic allocation, as we noticed those particular topics appear
to be difficult for students. The Challenges timeline is illustrated in
Fig. 4 (Challenge 0 not shown).

3.2.1 Students Interactions with Café. AChallenge lasts three days.
The first day, the subject is made available for download on the
course blackboard. In addition to the subject, students must down-
load a template to fill in with their answers. The correct way to
format the answer in the template is provided in the Challenge
subject as well as in the template itself.

Once ready, the student answer can be uploaded to Café via a
web platform. Café immediately corrects it and produces a feedback
and a feedforward that are directly made available to the student.
She can then consider these feedback and feedforward to improve
her answer and submit it again [14]. Students benefit up to two
retries (for a total of three submissions [18] – this way, we avoid the
traditional trial and error approach) over the Challenge duration.
This process enables the students to learn from their errors by
actually taking into account the feedback and feedforward and by
submitting an improved solution, closing so the feedback loop [8].
Doing so prevents also the student from being bogged down. At
the end, only the last submission accounts for the mark.

Loop Invariant in Challenges. As most of the Challenges consist
in writing loops and as the course requires to write loops based on
Graphical Loop Invariant (see Sec. 2), the Challenges must embed
Loop Invariants so that students can train themselves. At first, it
may appear difficult to combine automatic correction and graphical
representation. We solve this by asking students to fill in a blank
Graphical Loop Invariant. Such a blank drawing depicts only the
general shape that should follow a correct and rigorous Loop In-
variant (i.e., guideline 1). Students must then annotate properly
the figure so that the drawing becomes their Loop Invariant for
their solution to the particular problem to be solved. An example of
blank Graphical Loop Invariant– for a Challenge whose goal is to
compute the intersection of two sorted arrays, A and B, and to place
the result in a third one, C – is provided in Fig. 5. The instructions
state that the green boxes 1. to 15. should be replaced by variables
or constants names or left blank. The box 16. has to be replaced by
a number corresponding to the multiple choice: 1: different from;
2: common to; etc. (some inconsistent possible answers are added).
Finally, the boxes 17. to 19. must be replaced by a number corre-
sponding to one of the part written in red in Fig. 5. A mock example
of such a replacement is always added in the instructions. The way



Graphical Loop Invariant programming in CS1
GDD’19, Namur, Belgium,

1. 2. 3. 4. 5.

A: Part A1 Part A2

6. 7. 8. 9. 10.

B: Part B1 Part B2

11. 12. 13. 14. 15.

C: Part C1 Part C2

And the values 16. to the 17. and to the 18. are in the 19.

Figure 5: Example of a blank Loop Invariant given in a Chal-

lenge consisting in computing in C the intersection of two

sorted arrays A and B.

to encode the Graphical Loop Invariant in the Challenge template is
also clarified in the instructions, with an example, to be the as clear
as possible. It is expected students make use of Gli for building the
Challenge Graphical Loop Invariant.

3.2.2 Automatic Correction and Loop Invariant. Café is written
in Python 2.7 and easily extensible for new features. The Python
script is run in a dedicated sandbox (for avoiding any security
issue), on a submission platform, each time a student submits a
Challenge. Currently, correcting and grading a Challenge is done in
three main steps: (i) the preprocessing (i.e., splitting the submitted
Challenge into several answers, (ii) the correction per se (i.e., each
answer is corrected, graded, and commented, and (iii) feedback
generation (i.e., the various grades are combined and comments
are concatenated to form the feedback to be provided to students).
It is worth noticing that the steps are independent from each other:
one can easily modify the correction step as soon as it handles the
answers from the preprocessing and generates data that can be
transformed into feedback at the next step.

As long as the code is concerned, the correction step is in charge
of comparing the output of the preprocessing step with the expected
result(s).

The correction step is able to check whether syntactic constraints
are met by the code (e.g., using a while loop instead of a for one).
In addition, by modifying student’s code before the compilation,
Café can also count the number of loop iterations to verify whether
the code is compliant with complexity constraints and ensure that
all the array accesses are within the array bounds.

Regarding the Loop Invariant, the correction step verifies that
what has been proposed as replacement of the boxes (see Sec. ??
and Fig. 5) is relevant. Most of the time, several answers are possible
and are considered by Café.

Finally, there is always the risk a student will submit her Chal-
lengewith the Loop Invariant produced after the code (which clearly
violates the methodology we propose). To limit this risk, Café
checks if variables used in the Loop Invariant are consistent with
the one in the code and if they are initialized accordingly (Guide-
line 7). The matching between the Loop Condition and the Loop
Invariant is checked by verifying that the Loop Condition makes
used of the proper variables and leads to the correct number of iter-
ations. The Loop Body is not checked against the Loop Invariant as
it would be too time consuming to design a system that would cover
all the code alternatives. If both the Loop Invariant seems correct
and the code produces the expected results, we “a priori” believe
the student has followed the methodology. Anyway, a student that
would write the code first and later the Loop Invariant would, first,
work twice and, second, just lie to herself.

0.0 0.2 0.4 0.6 0.8 1.0

Proportion

C0

C1

C2

C3

C4

C5

C
ha

lle
ng

es

Abs. Joker 1 2 3

Figure 6: Distribution of students’ involvement in Chal-

lenges over the semester. 1, 2 and 3 refer to the number of

submissions, “Joker” to Students not submitting for the first

time, and “Abs.” to Students not submitting at least for the

second time.

4 PRELIMINARY EVALUATION

The platform on which we deploy Café allows us to collect vari-
ous data on students involvement and performance in Challenges.
In addition, we conducted a survey, during Academic Year 2018–
2019, between February 2019 and March 2019, after the course and
the Final Exam. The survey was anonymous, to let the students
express freely their opinions. We received 22 answers over the 30
students who still continued their curriculum during the second
semester. This section investigates the data collected in 2018–2019
and discusses lessons learned from Café usage.

One key point with Café is to ensure students involvement in
the course and to ensure a minimum amount of regular practice
over the course duration. Fig. 6 shows the distribution of students’
involvement in Challenges over the semester. It is worth reminding
that students can play a Joker during the semester (see Sec. 3.2).
After this Joker has been played, any non-submission is accounted
as an “Absence”.

Students’ involvement in Café is pretty good in the beginning of
the Semester (above 60% until Challenge 2). A drop is observed start-
ing Challenge 3 (that follows the Mid-Term Exam organized during
All Saints week). It seems that the Mid-Term plays an important
role regarding students’ involvement. In 2018–2019, the participa-
tion rate decreases over the semester until reaching a low 28% of
the students participating to Challenge 5. This is aligned with the
attrition rate observed during the final Exam (61% of Participation).

The survey conducted shows that the majority of respondents
(18/22, 81.8%) acknowledges Café and Challenges for forcing them
to work on a regular basis over the semester.

Café allows students to submit a solution to a given Challenge
up to three times, with feedback and feedforward sent back to
students after each submission. Fig. 6 also shows how students
manage multiple submissions. Multiple submissions (i.e., 2 or 3) are
common, suggesting so that feedback and feedforward provided
by Café are useful for students for improving their solution. It is
confirmed by the survey results, as it appears that, for 59.1% of the
students, the feedback provided by 3 Challenges or more enabled
them to better understand the course (31.8% of them if we reduce to 1
or 2 Challenges). Also, 45.5% of the students admit that the feedback
helped them to realize they had a learning gap regarding the subject
tackled by 3 Challenges or more (36.4% of them if we reduce to 1



GDD’19, Namur, Belgium,
Liénardy et al.

or 2 Challenges). Finally, after receiving the feedback, 59.1% of the
students admit they went back, for 3 Challenges or more, to the
theoretical course to reread the corresponding theoretical notions
(13.7% of them if we reduce to 1 or 2 Challenges).

From the surveys, some students mentioned that the Challenges
were too easy compared to the Mid-Term and the Final Exam, high-
lighting so a constructive alignment issue [7]. This perceived dif-
ference is mainly due to the fact that the overall Loop Invariant
structure is provided with the Challenge but not for the formal
evaluations. However, a large part of students (67.9% in 2017–2018,
77.3% in 2018–2019) agreed that the Challenges enabled them to un-
derstand the Loop Invariant determination and few of them (2/22)
acknowledged, in open comments, that the concept of Loop Invari-
ant was understood “thanks to the given blank Loop Invariant”.
This tends to confirm the bootstrap effect of the blank Loop In-
variant and suggests to focus the classroom sessions on graphical
methods to find and master the Loop Invariant since it is not fully
tackled by the Challenges

5 RELATEDWORK

While there is an abundant literature on Loop Invariants for
code correctness and on automatic generation of Loop Invariants
(e.g., [10]), their usage for building the code has attracted little
attention from the research community. Tam [26] proposed incom-
plete and informal Loop Invariants written in natural language.
Astrachan [1] is probably the closest to our approach as he pro-
posed Graphical Loop Invariants. Finally, Back [2] proposed nested
diagrams (a kind of state charts) representing, at the same time, the
Loop Invariant and the code. None of these approaches come with
an automatic system that is able to assess the code construction
and the Loop Invariant.

Many automated system for providing feedback to program-
ming exercices were already proposed (e.g., [4, 11, 13, 20, 21, 23]).
Most of them apply test-based feedback, i.e., student’s code is cor-
rected through unit testing testing (except UNLOCK [4] that tackles
the problem solving skills in general, not just coding skills). Web-
CAT [13] even makes students write their own tests too. Kumar’s
Problets [20] enables step by step code execution as part of feedback.
More advanced automatic feedback has been proposed by Singh et
al. [25] by providing, to students, a numerical value (the number
of required changes) and the suggestion(s) on how to correct the
mistake(s).

6 CONCLUSION

This paper introduces a methodology for programming based
upon Graphical Loop Invariant we use in a CS1 course. In order to
ease students’ learning, two tools were proposed: Gli, an applica-
tion for drawing Graphical Loop Invariants and Café, an online
platform to assess small programming Challenges, including the
Loop Invariants used to write the code.

Café has been used, in the context of a CS1 course using the C
programming language but could be very easily adapted to Java or
Python. Café enables to make the students work and improve their
solution according to feedback and feedforward information, three
times within three days and at least five times during the semester.
This would be unfeasible without an automatic assessment.

The preliminary evaluation provided in this paper does not allow
to conclude on Café’s effect on students’ performance. However, a
longer use of Café will enable to collect information about how
it impacts students’ understanding of the course and the program-
ming methodology and how it improves their programming capabil-
ities. Gli’s impact will be studied in the same way. The evaluation
of both the methodology and the two tools is an ongoing work.

REFERENCES

[1] O. Astrachan. 1991. Pictures as Invariants. In Proc. Technical Symposium on
Computer Science Education (SGICSE).

[2] R-J. Back, J. Eriksson, and L. Mannila. 2007. Teaching the Construction of Correct
Programs using Invariant Based Programming. In Proc. 3rd South-East European
Workshop on Formal Methods.

[3] A. Bandura. 1993. Perceived self-efficacy in cognitive development and function-
ing. Educational psychologist 28, 2 (1993), 117–148.

[4] T. Beaubouef, R. Lucas, and J. Howatt. 2001. The UNLOCK System: Enhancing
Problem Solving Skills in CS-1 Students. ACM SIGCSE Bulletin 33, 2 (June 2001),
43–46.

[5] T. Beaubouef and J. Mason. 2005. Why the High Attrition Rate for Computer
Science Students: Some Thoughts and Observations. ACM SIGCSE Bulletin 37, 2
(June 2005), 103–106.

[6] J. Bennedse and M. E. Caspersen. 2007. Failure Rates in Introductory Program-
ming. ACM SIGCSE Bulletin 39, 2 (2007 2007), 32–36.

[7] J. Biggs and C. Tang. 2011. Teaching for Quality Learning at University (4th ed.).
Open University Press.

[8] D. Boud. 2000. Sustainable Assessment: Rethinking Assessment for the Learning
Society. Studies in Continuing Education 22, 2 (August 2000), 151–167.

[9] A. R. Bradley and Z. Manna. 2007. The Calculus of Computation: Decision Proce-
dures with Applications to Verification. Springer.

[10] T. H Cormen, C. E Leiserson, R. L. Rivest, and C. Stein. 2009. Introduction to
Algorithms. MIT press.

[11] G. Derval, A. Gego, P. Reinbold, B. Frantzen, and P. Van Roy. 2015. Automatic
Grading of Programming Exercises in a MOOC Using the INGInious Platform. In
Proc. European MIIC Stakeholder Summit (EMOOC).

[12] E. W. Dijkstra. 1976. A Discipline of Programming. Prentice-Hall, Inc.
[13] S. H. Edwards and M. A. Perez-Quinones. 2008. Web-CAT: Automatically Grad-

ing Programming Assignments. In Proc. Annual Conference on Innovation and
Technology in Computer Science Education (ITiCSE).

[14] N. Falkner, R. Vivian, D. Piper, and K. Falkner. 2014. Increasing the Effectivement
of Automated Assessment by IncreasingMarking Granularity and Feedback Units.
In Proc. ACM Technical Symposium on Computer Science Education (SIGCSE).

[15] R. W. Floyd. 1967. Assigning Meanings to Programs. In Proc. Symposium on
Applied Mathematics.

[16] C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun.
ACM 12, 10 (1969), 576–580.

[17] C.A. Jones. 2005. Assessment for learning. Learning and Skills Development
Agency.

[18] V. Karavirta, A. Korhonen, and L. Malmi. 2006. On the Use of Resubmissions in
Automatic Assessment Systems. Computer Science Education 16, 3 (September
2006), 229–240.

[19] H. Keuning, J. Jeuring, and B. Heeren. 2019. A Systematic Literature Review of
Automated Feedback Generation for Programming Exercices. ACM Transactions
on Computing Education (TOCE) 19, 1 (January 2019).

[20] A. N. Kumar. 2013. Using Problets for Problem-Solving Exercises in Introductory
C++/Java/C# Courses. In Proc. IEEE Frontiers in Educatoin Conference (FIE).

[21] R. Lobb and J. Harlow. 2016. Coderunner: a Tool for Assessing Computer Pro-
gramming Skills. ACM Inroads 7, 1 (March 2016), 47–51.

[22] D. Nicol. 2009. Quality Enhancement Themes: The First Year Experience: Trans-
forming Assessment and Feedback: Enhancing Integration and Empowerment in
the First Year. The Quality Assurance Agency for Higher Education.

[23] N. Parlante. 2011. CodingBat: Code Practice. https://codingbat.com [Online;
accessed: 30 March 2019].

[24] K. Sambell, L. McDowell, and C. Montgomery. 2013. Assessment for Learning in
Higher Education. Routledge.

[25] R. Singh, S. Gulwani, and A. Solar-Lezama. 2013. Automated Feedback Generation
for Introductory Programming Assignments. In Proc. ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI).

[26] W. C. Tam. 1992. Teaching Loop Invariants to Beginners by Examples. In Proc.
Technical Symposium on Computer Science Education (SIGCSE).

[27] V. Tinto. 1999. Taking Retention Seriously: Rethinking the First Year of College.
NACADA Journal 19, 2 (Fall 1999), 5–9.

[28] C.Watson and F.W. Li. 2014. Failure Rates in Introductory Programming Revisited.
In Proc. Conference on Innovation & Technology in Computer Science Education
(ITiCSE).

https://codingbat.com


Graphical Loop Invariant programming in CS1
GDD’19, Namur, Belgium,

[29] D. Wiliam. 2011. What Is Assessment for Learning? Studies in Educational
Evaluation 37, 1 (March 2011), 3–14.

[30] J. Zaytsev, S. Kienzle, and A. Bogazzi. 2008. Fabric.js, a powerful and simple
Javascript HTML5 canvas library. http://fabricjs.com [Online; accessed: 24
October 2019].

http://fabricjs.com

	Abstract
	1 Introduction
	2 Programming Methodology
	3 Learning Tools
	3.1 Gli Tool
	3.2 Café

	4 Preliminary Evaluation
	5 Related Work
	6 Conclusion
	References

