

Essential oil encapsulation for pesticide with controlled release

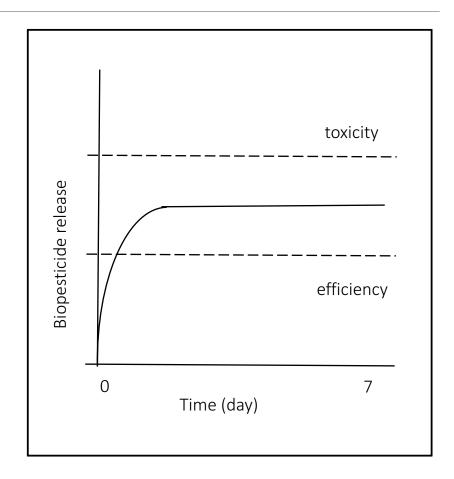
Chloé Maes Workshop EOs 18/10/2019

Context

Lot of toxic and polutant pesitcide

Glyphosate HO HO OH

Bruggen, V., & Jr, J. (2017) Science of the Total Environment, 616617, 255–268.


Need to preserve agricultural yield

ightarrow Alternatives to synthetic pesiticides

Introduction

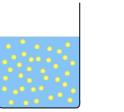
- Essential oil
 - volatile products
 - various extractions methods
 - composition's variation
 - hatural biological activities
- Controlled release
 - control volatility
 - depend on application
 - pesticide case

EOs encapsulation techniques

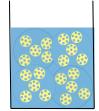
Emulsification

- Coarcevation
- Spray drying
- Complexation
- Ionic gelation
- Nanoprecipitation
- Film hydration method
- Active film

Micro- $(1 - 1000 \,\mu\text{m})$ or Nano (< 1 μ m)


	Particles: matrix where EOs are dispersed
	Capsules: a membrane
	surrounds a core where are the
	EOs.
A.	Complexes: spatial disposition
	into an open structure
	Droplets: fine bubbles of the
	products dispersed in the
	solvent

- 1) Emulsification
- Simple (O/W): stirring of an organic and aqueous phase with emulsifier
 - → Liquid (droplets) Matrices used: vegetal oil

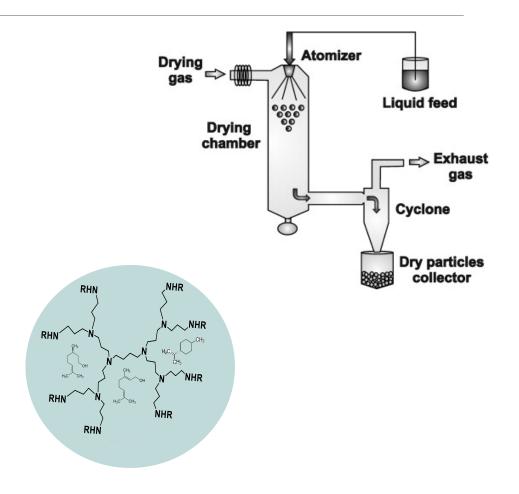

Multiple (W/O/W): two successive emulsions : water in oil then in water → Capsules Matrices used: alginate

- 2) Coarcervation
- Simple: addition of a polar phase in a polymer solution
 - → Capsules (coacervates) Matrices used: alcohol and gelatin solution
- Complexe: disperse and stirre two polymers solution and terminate by a reticulation with an agent EO
 - \rightarrow Capsules

Matrices used: gelatin, arabic gum and sodium tri-polyphosphate

W/O

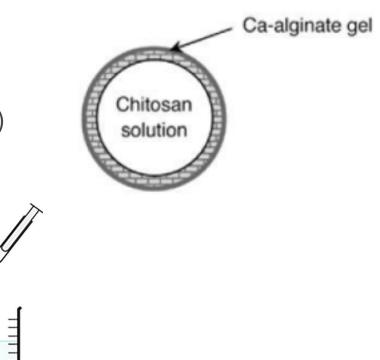
W/O/W


3) Spray drying

Emulsion O/W is atomized by hot air steam in a spray dryer
 Particles
 Matrices used: arabic gum, inulin, chitosan,

4) Complexation

• Spontaneous


- Co-precipitation: stirring, cooling and filtering
- Freeze-drying: assemble and freeze-drying
 → Complex
 Matrices used: β-cyclodextrins, dendrimers

5) Ionic gelation

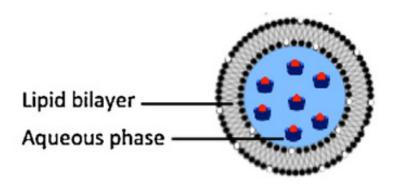
 \odot Emulsion O/W followed by crosslinking

→ Particles
 Matrices used: alginate, chitosan
 Crosslinkers: calcium chloride, pantasodium tripolyphosphate (TPP)
 and sodium hexametaphosphate (HMP)

6) Nanoprecipitation
 ○ Addition of aqueous phase in alcohol phase
 → Particles
 Matrices used: Chitosan

7) Film hydration method

Prepare liposome by stirring EO with phospholipids and cholesterol followed by trapping method with divalent cation


 → Cochleates, vesicules
 Matrices used: lipids and calcium chloride

8) Active film

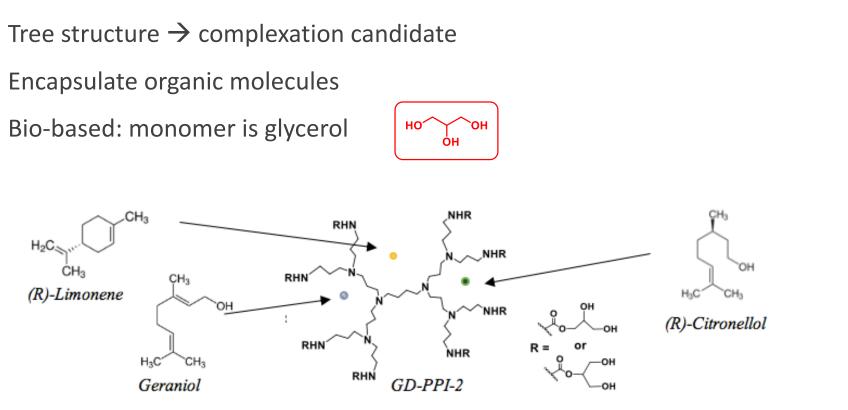
• Emulsion, ionic gelation and add of a plasticizer

→ film

Matrices used: alginate, calcium carbonate and sorbitol

Particular candidates to encapsulate EOs in order to facilitate a controlled release

Release study : - target bioactivity (in vitro or in situ) - quantitative method (GC-MS)


Alginate	Chitosan	Cyclodextrins
 multiple emulsion ionic gelation ("egg-box" structure) : → burst effect and steady state (24h) active film spray drying → constant release (50h) 	 nanogel mediated → 78% released after one week ionic gelation → burst effect and steady state (105h) nanoprecipitation Spray drying → 10 days 	 Complexation: Kneading Freeze-drying → constant release (20 days) In solution → exponential asymptote

Particular candidates to encapsulate EOs in order to facilitate a controlled release

m

 \sim

Dendrimers

Conclusion

Methods

Matrices

Way to study controlled release

How it works

Influencing factors

Improve following application

Thank you for your attention

More information:

Maes, C.; Bouquillon, S.; Fauconnier, M.-L. Encapsulation of Essential Oils for the Development of Biosourced Pesticides with Controlled Release: A Review. *Molecules* **2019**, *24*, 2539.

Chloe.maes@uliege.be