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Why is multiscale so popular? The example of coal



Coal is a naturally fractured rock (with a regular pattern).

4mm

4mm

Tomography imaging [Jing et al., 2016]

[Laubach et al., 1998]
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Matrix and fractures behave differently.
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Direct modelling:

Matrix: simple isotropic elastic law (e.g. Em and νm)

Fractures: hyperbolic normal stiffness evolution with the aperture
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Direct modelling:

Matrix: simple isotropic elastic law (e.g. Em and νm)

Fractures: hyperbolic normal stiffness evolution with the aperture

Loading the sample...
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It leads to a global non-linear behaviour of the material.
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Direct modelling:

Matrix: simple isotropic elastic law (e.g. Em and νm)

Fractures: hyperbolic normal stiffness evolution with the aperture

Loading the sample...

Numerical modelling

Experimental data
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It fits the experimental data with well-chosen parameters.
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But direct modelling of the whole microstructure is not possible for large-scale modelling!

Macroscopic scale

Microscopic scale

We have a microscale constitutive model but we want to perform macroscale modelling

→ Multiscale scheme
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Mind the gap! A brief history of homogenization



First approach is the homogenization of the laws.
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Constitutive laws homogenization
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Loading

[AM ] {δUM}= {δΣM}

Macroscale stiffness matrix
based on macroscopic laws

{δUM} : Nodal displacement components

{δΣM} : Nodal force components

Exploitation of the microstructure potential is very limited.
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Second approach

ResponseMultiscale model
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Localization Homogenization

Loading Response
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Macroscale stiffness matrix
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{δUM} : Nodal displacement components

{δΣM} : Nodal force components

Multi-scale computation
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Second approach is the homogenization of the REV response.

ResponseMultiscale model
Loading

Localization Homogenization

Loading Response
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Microscale model

[AM ] {δUM}= {δΣM}

Macroscale stiffness matrix
obtained by assigning a REV to each macro IP

{δUM} : Nodal displacement components

{δΣM} : Nodal force components

Multi-scale computation
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Second approach is the homogenization of the REV response.

ResponseMultiscale model
Loading

Localization Homogenization

Loading Response

w

h

Em

Kn

w

Microscale model

There are 4 main steps:
1 Localization of the macroscale

deformations on the microscale
2 Resolution of the boundary value problem

(BVP) on the microscale
3 Homogenization of the microscale

stresses to compute the macroscopic
quantity

4 Resolution of the boundary value problem
on the macroscale

Multi-scale computation
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1 Localization (macro to micro) is performed through the boundary conditions (BC).
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2 The mechanical microscale problem is solved considering the equilibrium:

∂σm
ij

∂xj
= 0

Applying the principle of virtual power, the weak form of this local momentum balance equation
is ∫

Ω
σ

m
ij
∂v∗mi

∂xj
dΩ=

∫
Γint,+

T+
i v∗mi dΓ+

∫
Γint,− T−i v∗mi dΓ

where Γint are internal boundaries since the REV is constituted of blocks and interfaces, Ti are the global components of

the interface forces and v∗mi is an admissible virtual velocity field.

Solved using a Newton-Raphson iterative scheme
by a linearization of the problem after a spatial discretization with finite elements.

The global (assembling matrix and interface) mechanical stiffness matrix [Kmm] yields the
incremental relation between the nodal displacement {δu} and the nodal force {δf}:

[Kmm]{δu}= {δf} (valid for a given distribution of the fluid pressures)
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2 The hydraulic problem is solved for a given mechanical configuration.

Hydraulic network:
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Macroscopic pressure:

pk = pM

The microscale problem is solved under steady-state conditions.
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How is the hydraulic problem established?

ji-1

i+1
i

Mass balance on node j :

ω
i−1 +ω

i +ω
i+1 = 0

with ωi = φi (pj −pj−1)

φ≡ Channel flow model
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D
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E.g. solve the linear system:

well-posed

The water pressure system is first solved (independent from micro gas pressures)
and then the gas pressure system (dependent from micro water pressures due to dissolved gas).
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3 Microscale variables are finally homogenized to be sent to the macroscale.

The micro-to-macro transition is derived from the Hill-Mandel macro-homogeneity condition:

Average microscale work = macroscale work

[Hill, 1965] & [Mandel, 1972]

1) It is satisfied with:
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σ
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3 Microscale variables are finally homogenized to be sent to the macroscale.

1) Stresses

σ
M
ij =

1
Ω

∫
Ω

σ
m
ij dΩ

2) Fluid fluxes

f M
i =

1
Ω

∫
Γ

qm xi dΓ

3) The macroscopic fluid contents are the total amounts of fluid in the REV:

MM
w =

1
Ω

∫
Ωint

w

ρw dΩ= ρw Sr φf

MM
g = Mg

g,f +Md
g,f = ρg (1−Sr ) φf +ρ

d
g Sr φf

Finally, the fluid mass storage terms are

ṀM,t ≈ MM,t −MM,t−∆t

∆t
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4 The macroscale problem is also solved using finite elements→ FE2

The macroscale computations are governed by


[K M

mm](4x4) [K M
mw ](4x3) [K M

mg](4x3)

[K M
wm](3x4) [K M

ww ](3x3) [K M
wg](3x3)

[K M
gm](3x4) [K M

gw ](3x3) [K M
gg](3x3)





{δεM}(4)δ∇pM
w

δpM
w


(3)δ∇pM

g

δpM
g


(3)


=



{δσM}(4) δf M
w

δṀM
w


(3) δf M

g

δṀM
g


(3)


which can be summarized as

[AM ](10x10){δUM}(10) = {δΣM}(10)

where [AM ] is the macroscale stiffness matrix, {δUM} contains the infinitesimal variations of the macroscale variables

and {δΣM} is their responses.

This stiffness matrix [AM ] is obtained by numerical perturbations.
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Summary of the FE2 algorithm

1. discretised by finite elementsMacroscopic structure

4. : apply appropriate

from the macroscopic deformation gradient tensor

Localization displacements to the REV

3. assigned at each macroscopic IPREV

5. :

stress and deformation distributions in the REV

Microscale FE computation

2. c from the estimation

of the macroscopic nodal displacements relative to the external load

Macroscopic deformation gradient tensor omputed for each IP
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f) Check convergence
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Summary of the FE2 algorithm

1. discretised by finite elementsMacroscopic structure

7. Macroscopic internal nodal forces

8. Macroscopic stiffness matrix

9. between external load and internal load?Balance

Next time step

increment evaluated

+ -
Updated estimation displacementsof the nodal required

(via macroscopic stiffness matrix)

4. : apply appropriate

from the macroscopic deformation gradient tensor

Localization displacements to the REV

3. assigned at each macroscopic IPREV

5. :

stress and deformation distributions in the REV

Microscale FE computation

6. : REV
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Macroscopic deformation gradient tensor omputed for each IP

I. Initial configuration
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III. Newton-Raphson iterative loop
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Lagamine in action



Statement of the problem

Coalbed
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REV with few blocks in staggered rows
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Statement of the problem: Boundary conditions
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Statement of the problem: Representative Elementary Volume

Coalbed
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A reference set of parameters is chosen and gives the following production curves.
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The reservoir first desaturates and then gas production peaks.
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The total production tends to the quantity of gas initially stored (fortunately!).
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Conclusions



In summary,

Microscale model (fracture-scale) [Bertrand et al., 2019]
It is highly accurate but computationally expensive (impossible for the reservoir scale).

Macroscale model (homogenized laws) [Bertrand et al., 2017]
It is suitable for reservoir modelling but less flexible.

Multiscale model (FE2) [Paper in preparation]
It is the compromise solution for reservoir modelling.
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Developments in the Lagamine code:

Multiscale model
A complete reorganization of the input file.
A new degree of freedom for gas with ad hoc unsaturated laws.
The consideration of an adsorbed gas with the resulting couplings.
The implementation of a new mechanical law for the interface (Bandis type).
The possibility to change the REV size.
The definition of initial stresses.
The plane strain implementation for the REV (instead of true 2D) combined with axisymmetric
conditions for the reservoir scale.
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