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Abstract: The low-frequency response of type II superconductors to electromagnetic
excitations is the result of two contributions: the Meissner currents and the dynam-
ics of quantum units of magnetic flux, known as vortices. These vortices are three-
dimensional elastic entities, interacting repulsively, and typically immersed in an en-
vironment of randomly distributed pinning centers. Despite the continuous progress
made during the last decades, our current understanding of the complex dynamic
behavior of vortex ensembles relies on observables involving a statistical average
over a large number of vortices. Global measurements, such as the widespread ac-
susceptibility technique, rely on introducing certain assumptions concerning the
average vortex motion thus losing the details of individuals. Recently, scanning sus-
ceptibility microscopy (SSM) has emerged as a promising technique to unveil the
magnetic field dynamics at local scales. This chapter is aimed at presenting a peda-
gogical and rather intuitive introduction to the SSM technique for uninitiated readers,
including concrete illustrations of current applications and possible extensions.

2.1 General introduction to ac susceptibility

The hallmark of type II superconductors submitted to sufficiently strong magnetic
fields is the presence of quantized magnetic flux lines encircled by a rotating conden-
sate of paired electrons. The motion of these fluxons produces heat which destroys
the perfect conductivity of the system. Consequently, in a world where energy dis-
sipation has become a top priority problem, properly mastering the motion of flux-
ons will certainly boost the technologically desirable properties of superconductors.
Hence, understanding, improving and optimizing the mechanisms to prevent the mo-
tion of fluxons has been regarded, throughout the years, as a timely and relevant re-
search problem for fundamental science and applications. A proven successful way
to achieve this goal consists of introducing a rich diversity of pinning centers and to
develop new methods to evaluate their efficiency.

The ac-susceptibility technique, uses a small alternating magnetic field to shake
the flux line lattice back and forth while recording the superconductor’s in-phase and
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62 | 2 Probing vortex dynamics on a single vortex level by SSM

out-of-phasemagnetic response. It remains among themost popular, inexpensive and
powerful experimental methods used to determine the efficiency of pinning sites [1].
The disadvantage of such an experimental method can be attributed to the fact that
the recorded signal represents an average over millions of flux lines each of which is
trapped in different pinning potentials and subjected to different environments. As
a consequence, this global technique is not suited to provide information about the
local pinning potential that each flux line might experience. It can merely provide
ensemble-averaged information indirectly deduced from the measured integrated ac
magnetic response by invoking the numerous theoretical studies on vortex dynamics
available today.

The above-stated limitations of the conventional ac-susceptibility technique,
namely its inability to resolve the ac response of a single vortex and the indirect rela-
tion between the vortex dynamics and the integrated response, has provided a drive to
develop alternative methods aiming to directly probe the ac properties of a supercon-
ductor with single vortex resolution. In this chapter we discuss a recently introduced
scanning probe technique, scanning ac-susceptibility microscopy (SSM), which re-
veals, with unprecedented resolution, the motion and dissipation of individual units
of flux quanta driven by an applied ac magnetic field or current [2]. The local dissi-
pation can be inferred from the phase lag between the vortex motion and the driving
force induced by an oscillatory magnetic field, whereas the amplitude of the oscilla-
tory vortex motion provides us with information about the shape of the local potential
that each fluxon experiences. This method has permitted us to reveal the contribution
of pinning-driven (thermally activated) dissipative vortex motion [3], to demonstrate
the nondissipative nature of the Meissner as well as the dissipative vortex state at
microscopic scale [3] and finally, to obtain a detailed cartography of the distribution
and intensity of the pinning landscape [2, 4]. This technique not only shed new light
on unraveling the basic mechanisms of vortex dissipation with unmatched resolu-
tion, but it permitted one to validate the theoretical models introduced to explain
the measured integrated ac vortex responses in ac-susceptibility experiments [5]. We
show that the technique can be readily implemented in a scanning Hall probe mi-
croscopy set-up suited for low magnetic field experiments [2–5] and also extended to
a scanning tunneling microscopy [6] or a scanning SQUID microscopy apparatus [7]
thus achieving the utmost resolution.

2.1.1 AC response of a damped harmonic oscillator

In general, whenever a dissipative system is subjected to a periodic excitation, e.g., a
crystal exposed to electromagnetic radiation or a driven damped harmonic oscillator,
the periodic force will perform work to drive the system through subsequent dissipa-
tive cycles. The dissipative or frictional component of the system, related to a non-
conservative force, will induce a phase shift between the response and the external
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2.1 General introduction to ac susceptibility | 63

drive, giving rise to hysteresis. For example, the imaginary part of the relative per-
mittivity is closely related to the absorption coefficient of a material [8] or similarly,
a phase lag appears in the motion of a damped harmonic oscillator [9]. This close
connection between dissipation of energy and the out-of-phase component of the sys-
tem’s response is used in spectroscopicmeasurements to gain information concerning
the nature and efficiency of the dissipation processes. Likewise, we will use this spec-
troscopic approach to investigate the response of a superconductor to an applied ac
magnetic field.

We start with the description of the linear response of a classical system, a driven
damped harmonic oscillator, in order to illustrate the above-mentioned connection
between dissipation and the appearance of a phase lag between the drive and the
response. This simple classical system has its merit not only because of its pedagog-
ical aspect, but also since it can be used to describe the linear response of a variety
of physical systems in nature. For instance, we can consider the absorption of light
as the interaction of the electromagnetic field with an oscillating dipole. Finally, the
response of vortices and screening currents in a type II superconductor to an ac mag-
netic field excitation can be mapped onto this simple classical system. This motivates
us to briefly review some of the basic properties of this system. Using Newton’s equa-
tion for a forced damped harmonic oscillator (Figure 2.1) the following general force
balance equation of motion can be obtained:

ẍ(t) + 2ζω0 ẋ(t) + ω2
0x(t) = F(t)/m (2.1)

Here x(t) is the displacement of the oscillator from equilibrium and ω0 = √k/m is
the natural frequency of the oscillator, with spring constant k, mass m and ζ is the
damping ratio. The latter determines the behavior of the system and is given by:

ζ = c/2√mk (2.2)

Fig. 2.1: Schematic presentation describing the linear response of a driven damped harmonic os-
cillator. The (small) periodic driving force, F(t), provides the excitation mechanism of a system con-
sisting of a mass-spring system and a damping pot with c the viscous damping coefficient. The re-
sponse (the displacement), x(t), is also a periodic function in time. In general a phase lag, θ exists
between the drive and the response.
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64 | 2 Probing vortex dynamics on a single vortex level by SSM

with c the viscous damping coefficient. For a monochromatic oscillating driving
source:

F(t) = F0 cos(ωt) (2.3)

the general solution of the differential Equation (2.1), consists of the sum of the ho-
mogeneous solution and a particular solution. However, the homogeneous solution is
transient, whereas the particular one describes the steady state solution. The steady
state solution depends only on the driving amplitude F0, the driving frequency ω and
the dynamical properties of the system. In the case of a linear system the response,
x(t), is completely described by the complex transfer function, χ(ω) = χ(ω) + iχ(ω)
and the excitation. For the driven damped harmonic oscillator the explicit form of this
transfer function is:

χ(ω) = 1
1 − ω2

ω2
0
+ 2iζ ω

ω0

(2.4)

and the exact steady state solution is given by:

x(t) = F0
k |χ(ω)| cos(ωt + θ(ω)) with (2.5)

|χ(ω)| = 1

√(1 − ω2

ω2
0
)2 + 4ζ 2 ω2

ω2
0

and tan θ(ω) = arg(χ(ω)) = −2ζωω0(ω2
0 − ω2) (2.6)

This solution to the equation of motion shows that the driven oscillator has an
oscillation period dictated by the driving frequency ω. The phase and amplitude rela-
tive to the drive are determined by the detuning from the natural resonance frequency,
as shown in Figure 2.2a. It is clear that the amplitude of x(t) reaches a maximum for
driving frequencies in the vicinity of the natural frequency ω0 of the oscillator. Fur-
thermore, the phase shift θ between x(t) and the drive is always negative, meaning
that x(t) lags behind the drive and passes through −π/2 at precisely ω0.

Fig. 2.2: Lineshapes of a driven damped harmonic oscillator for the case ζ = 0.1. (a) The frequency
dependence of the normalized modulus of the transfer function and the phase lag. (b) The frequency
dependence of the normalized in-phase and out-of-phase components of the transfer function.
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For later purposes we rewrite the solution in yet another way, as having an in-
phase component and an out-of-phase component,

x(t) = F0
k

(χ(ω) cos(ωt) − χ(ω) sin(ωt)) (2.7)

χ = (ω2
0 − ω2)

ω2
0 [(1 − ω2

ω2
0
)2 + 4ζ 2 ω2

ω2
0
] and χ = −2ζωω0

ω2
0 [(1 − ω2

ω2
0
)2 + 4ζ 2 ω2

ω2
0
] (2.8)

where the in-phase and out-of-phase component are proportional to χ(ω) and χ(ω).
In order to understand the physical meaning of these components, let us consider the
Q-factor of the system, which is defined as 2π times the mean energy stored in the
system, divided by the work done per cycle [9],

Q = 2π Energy stored
Energy dissipated

= [− (ω2
0 + ω2)

2(ω2
0 − ω2)] χ

χ
(2.9)

Apart from the frequency-dependent prefactor between square brackets, it is clear that
the rate of energy dissipation is proportional to the out-of-phase component χ(ω),
whereas the stored energy in the system is proportional to the in-phase component
χ(ω). This becomes more evident when calculating the rate at which the external
drive performs work, i.e., the power that is eventually dissipated as heat in the vis-
cous fluid:

dW
dt = F(t) ̇x(t) (2.10)

Since in steady state, both the drive F(t) and the velocity ẋ(t) are periodic functions of
time with the same period, it is convenient to define the average power dissipated in
one period,

Wq = T∫
0

dtF(t) ̇x(t) = −πF20χ(ω) (2.11)

thus making a clear connection between the rate of energy dissipation and the out-of-
phase component χ(ω). The in-phase response is related to the mean stored energy
in the system, which is given by the sum of the average kinetic and potential energy
in the system,

⟨E⟩ = 1
2m ⟨(dx/dt)2⟩ + 1

2mω2 ⟨x2⟩ = [ (ω2
0 + ω2)

2(ω2
0 − ω2)] F20

2 χ(ω) (2.12)

confirming the relation between the in-phase response and the stored energy. More-
over, both response functions, χ(ω) and χ(ω) are mathematically connected via the
Kramers–Kronig relations. However, in order to obtain one component from the other,
it is necessary to know the whole frequency dependence of the latter. In the following
we will see that the above results, describing the linear response of a driven damped
harmonic oscillator, can bemapped to a superconducting system driven by a weak ac
magnetic field.
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2.1.2 AC response of a superconductor

In order to obtain the ac response of a type II superconductor, we need to follow a sim-
ilar approach as that for the damped harmonic oscillator with the objective to deduce
the transfer function corresponding to the superconducting system.

2.1.2.1 Basic ingredients determining the ac response of a superconductor
We can already anticipate that the transfer function will involve two distinct but in-
tertwined mechanisms, namely the screening currents and the vortex lattice. In the
present case, the excitation is given by an external ac magnetic field whereas the re-
sponse function characterizes the diffusion of this field into the superconducting ma-
terial. In normal metals, in first approximation, this magnetic diffusivity is inversely
proportional to the electrical conductivity of thematerial. Similar to Drude’s approach
to determine the conductivity of a normal metal, we can derive an expression for the
conductivity of a superconductor from microscopic arguments. This is achieved by
describing the response of the entities reacting to the electromagnetic field excitation
(the Cooper pairs and the vortices).

Screening current. Let us start by describing the contribution of the screen-
ing currents to the conductivity. In a first approximation one can use the simplified
model introduced by the London brothers. Inspired by the two fluid model of super-
fluid 4He, they assumed that free electrons in a superconductor can be divided into
two groups: superconducting electrons (i.e., participating in Cooper pairs) flowing
without losses and with density, ns, and normal electrons (i.e., quasiparticles) with
density, nn, which are able to scatter and then to contribute with finite resistivity. The
relative amount of these two types of carriers depends on the temperature. With the
total density of free electrons conserved, n = ns + nn, ns = 0 and nn = n for T > Tc,
while at T = 0, ns = n and nn = 0. The normal electrons have a finite scattering
time, τn, whereas the superconducting electrons would move without dissipation,
corresponding to τs = ∞. Following Drude’s approach, it can be shown that the real
and imaginary components of the ac conductivity for both groups of carriers are given
by,

ℜe(σ(ω)) = πnse2

2m
δ(ω) + nne2τn

m
(2.13)

ℑm(σ(ω)) = nse2

mω (2.14)

with δ(ω) the Dirac delta function. Here we assumed that the frequencies are low
enough so thatωτn ≪ 1,which is a good approximation as this derivation is only valid
for frequencies below the superconducting energy gap. It is clear that the normal elec-
tron fluid always provides a finite dissipation for all nonzero frequencies. However,
this contribution becomes only appreciable for frequencies approaching the super-
conducting gap ∼ 100GHz for Pb, above which the ac response of a superconductor
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2.1 General introduction to ac susceptibility | 67

equals the one of a normal metal. For the low-frequency range, neglecting the vortex
contribution, the screening current contribution can be considered purely inductive
and, as such, dissipationless. This implies that the current is always out-of-phasewith
the applied or induced electric field¹. Moreover, in this case the magnetic field can
penetrate the superconductor only over a characteristic distance corresponding to the
frequency-independent London penetration depth, λL (Figure 2.3):

λL = √ 2m
μ0nse2

(2.15)

Vortex response. As anticipated, also the vortices contribute to the conductivity
of the superconductor and, as such, it will have an impact on the screening efficiency
of a time-varyingmagnetic field. This effect can be derived by describing the response
of a vortex in a type II superconductor to an induced or applied current. However, be-
forewedig into the equation ofmotion for a vortex, let us pose the questionwhy vortex
motion contributes to the conductivity of a type II superconductor? A pioneering ex-
periment by Giaever [10], provided solid evidence that a voltage drop arises along a
type II superconductor as a direct consequence of the motion of Abrikosov vortices. If
a vortex moves with velocity v, with a direction of motion perpendicular to a current
drive, it induces an electric field of magnitude,

E = B × v (2.16)

parallel to the current drive. As such, in the presence of moving vortices, an electric
field appears at the core of the vortices and acts over the quasiparticles leading to a
resistive contribution. In the simplest approximation one can consider a vortex as a
rigid entity and describe the dynamics using a particle-like equation of motion [11],

FI = FVV + FL + Fdrag + FP + FM + FTh (2.17)

Let us discuss the different terms appearing in this phenomenological force-balance
equation.

The inertial term is equal to FI = m∗ ̈ri, where m∗ is the mass of a vortex per unit
length, which is only effective in nature as a vortex cannot exist outside a supercon-
ductor. The displacement field of the i-th vortex is denoted by ri. There are several
mechanismsproposed to contribute to the effective vortexmass per unit length [12, 13].
In general, it is accepted that the vortex mass amounts to several thousands of elec-
tron masses and represents only a small contribution, which can be neglected for the
frequencies used in SSM.

1 Here the current corresponds to velocity and its in-phase component (proportional to the real part
of ac conductivity) is related to dissipation, while its out-of-phase component (proportional to the
imaginary part of ac conductivity) is related to the stored energy.
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68 | 2 Probing vortex dynamics on a single vortex level by SSM

The vortex–vortex interaction denoted by FVV, describes the interaction with
neighboring vortices through the potential energy U. The strength of the repulsive
force between two vortices is given by:

fij(rij) = −∂Uij(rij)
∂rij

= ϕ2
0

2πμ0λ3
K1 ( rijλ ) (2.18)

With K1 the modified bessel function of the second kind and rij = ri − rj. From the
expression for the supercurrent density, one can write the force exerted by the i-th
vortex on the j-th vortex as:

fij = Ji(rj) × ϕ0j (2.19)

where ϕ0j is a vector of absolute value equal to the flux quantum and with a direction
parallel to the flux density of the vortex j. This expression resembles the structure
of a ‘Lorentz’ force density and corresponds to a repulsive (attractive) interaction in
the case where both vortices have the same (opposite) polarity. The interaction en-
ergy of the i-th vortex with the rest of the vortices is additive and can be calculated as
FiVV = −∑N

j ̸=i fij. Note that for a thin film the interaction is of long range whereas in
bulk superconductors the vortex–vortex interaction is short range.

We can generalize the above result for the force on the i-th vortex due to screening
or transport currents as,

fi = J(ri) × ϕ0j (2.20)

where J is the total supercurrent density at the location of the core of the vortex under
consideration. Note that both forces, FL and FVV , are not a ‘Lorentz force’ in the usual
sense, i.e., qv × B, and therefore the name is somewhat confusing².

The viscous damping force can be written as Fdrag = −η ̇ri, where η describes
the viscosity experienced by the vortex when moving through the superconducting
medium. The ultimate mechanism for the damping coefficient η is still a contro-
versial issue. The most popular explanation is the model proposed by Bardeen and
Stephen [15] where η is related to ordinary resistive processes in the core of a vortex
due to the electric field needed to maintain a cycloidal motion of electrons during
vortex motion [15]. Other mechanisms have been suggested even before the Bardeen–
Stephen theory, for instance Tinkham has shown that dissipation comparable to that
observed in experiments could be explained if the order parameter could adjust to the
time-varying field configurations induced by a moving vortex only in a finite relax-
ation time [16]. Another approach has been proposed by Clem and is associated with
the local temperature gradients in the vicinity of the normal-like regions produced
due to a difference in entropy between the leading edge and the trailing edge when

2 Indeed if youwould just translate qv and B into J and ϕ0 respectively, one will find that J×ϕ0 is the
force acting on the current, and therefore, the driving force on the vortex should be ϕ0 × J, which has
the opposite direction. A more detailed discussion can be found in Reference [14], where the driving
force is derived from kinetic energy considerations.
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2.1 General introduction to ac susceptibility | 69

a vortex is moving [17]. As stated by Tinkham [18], it is not entirely clear to what ex-
tent all these various mechanisms are additive contributions or they simply represent
alternative views of the same physics. As pointed out by Suhl [12], the ratio η/m∗,
which in the case of free flux flow describes the initial time necessary to reach steady
state motion, is of the order of picoseconds. Therefore, the dynamics of vortices at low
enough frequencies can be safely described by neglecting the vortex mass.

The pinning force FP takes into account the fact that the motion of vortices can be
reduced or eliminated by providing pinning centers that trap the vortex by exerting a
pinning force per unit length on the vortices. The pinning centers can be grouped into
two types. On the one hand, we find intrinsic pinning, caused by impurities, naturally
occurring crystal defects such as lattice imperfections, grain- and twin boundaries,
typically distributed randomly and whose strength is controlled by the growing con-
ditions of the superconducting material. On the other hand, we have artificially man-
ufactured pinning centers resulting from the technological possibility to introduce
deliberately pinning centers with required shape, size, and distribution by means of
lithographical techniques. These artificial pinning centers such as holes, blind holes
or magnetic dots with magnetic moment in- and out-of-plane have received a lot of
attention lately, both theoretically and experimentally [19].

The Magnus force is a hydrodynamic action experienced by a vortex moving in a
fluid, FM = αϕ0 × ̇ri, where α is the Magnus force coefficient. This force results in a
component of the vortex velocity parallel to the drive current, whichwill lead to a Hall
voltage. Inmost cases and for small vortex velocities, this force canbe ignored asmost
experimental data indicate that the Hall angle is very small.

Thermal fluctuations, relevant at high temperatures or low frequencies, allows
vortices to diffuse out of their pinning potential well and wander some distance
around. To model this effect one supplements the equation of motion with a random
force which is assumed to be Gaussian white noise with zero mean, in analogy to an
earlier work by Fulde [20].

2.1.2.2 Impact of vortex motion on the penetration depth
In a next step, let us look to a concrete example inwhichwe can calculate the response
of the vortex lattice to an oscillatory excitation and explore its impact on the penetra-
tion depth of the superconductor. Analytical solutions for the equation ofmotion (2.17)
exist for certain limiting cases [21–23]. For example, let us assume that the vortices are
all driven by an identical weak periodic force due to an induced or applied ac current,
Fac(t) = F0 cos(ωt) while neglecting thermal excitations, inertial and Magnus effects.
In this case the, one-dimensional, equation of motion reduces to:

0 = FVV + FL + Fdrag + FP (2.21)

Sincewe consider onlyweak excitations, the local potential that each vortex expe-
riences due to a combination of randomdisorder, neighboring vortices or boundaries,
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70 | 2 Probing vortex dynamics on a single vortex level by SSM

can be approximated by a harmonic potential with spring constant ⟨αL⟩. As such,
FP + FVV = − ⟨αL⟩ x (2.22)

⟨αL⟩ which is known as the Labusch constant representing a statistical average over
all restoring forces the vortex ensemble experiences. In the case of artificial pinning
arrays, after a field-cooling exactly at the first matching field where there is one vortex
per pinning site, all restoring forces are supposed to be similar and ⟨αL⟩ can be taken
as a constant. However, in these artificial pinning arrays for a zero-field-cooling condi-
tion or for a small detuning from the matching field a coexistence of different types of
vortices, each experiencing a different ⟨αL⟩, will take place. For example, pinned vor-
tices by an antidot lattice will experience a completely different restoring force than
interstitial vortices caged by the pinned ones [24]. In the linear response regime, the
steady state solution of this, simplified, equation of motion is given by:

x(t) = |χ(ω)| cos(ωt + ϕ(ω)) (2.23)

with χ(ω) = ϕ0J−iηω + ⟨αL⟩ and ϕ(ω) = − tan−1 ( ωη⟨αL⟩) (2.24)

For low frequencies, ω ≪ ωL ≡ ⟨αL⟩/η, the restoring force dominates the mo-
tion over the viscous drag force which can then be neglected. Here we introduced the
pinning frequency ωL, which is typically of the order of 10MHz [25]. In this case, only
the elastic interaction with the pinning centers has to be considered and the motion
consists of a reversible harmonic motion perfectly in phase with the driving force,

χ(ω) = ϕ0J⟨αL⟩ (2.25)

This is the so-called Campbell regime [26]. Using the relation E = ẋ(t) × B, where we
use B = nϕ tomake the step from a single particlemodel to the whole sample’ average
response, this leads to an imaginary contribution to the ac resistivity due to ac vortex
dynamics:

ρC = nϕ0ω⟨αL⟩ (2.26)

Together with the screening current contribution, Equation (2.13), we obtain a
purely imaginary conductivity,

σC(ω) = (ωμ0λ2L + ωμ0λ2C)−1 i , with λC = √ ϕ0B⟨αL⟩ μ0 (2.27)

where we have defined the Campbell penetration depth, λC, as a real and frequency
independent parameter. As such, in this low-frequency regime, the ac vortex dynam-
ics alters effectively the inductive properties of the superconductor as compared to the
ideal case where only the screening currents contribute. In general, the ac vortex dy-
namics can also change the resistive properties of the superconductor, as we will see
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2.1 General introduction to ac susceptibility | 71

later. The total ac penetration depth is given by:

λ2ac = λ2L + λ2C (2.28)

where λac is the skin depth or effective ac-penetration depth, which is larger than the
London penetration depth. The response is still purely inductive which resembles the
ideal Meissner response. For weak pinning and considering the applied ac and dc
magnetic fields perpendicular to the sample surface, the Campbell penetration depth
can be written as λC = (c11/⟨αL⟩)1/2, where c11 is the compressional modulus of the
vortex lattice. By this, it is clear that the ac field penetration is carried by reversible
vortex oscillations near the equilibrium positions. For very strong pinning, i.e., when⟨αL⟩ → ∞, the vortices are immobile under external field changes and the supercon-
ductor behaves as if it were in the Meissner state, in this case the ac penetration depth
reduces to the London one (see Figure 2.3).

In the opposite limit of high frequencies ω ≫ ωL, the viscous drag force domi-
nates the response and we can neglect the restoring force all together. The motion is
just like in a normal metal, i.e. a motion damped by a viscous force,

χ(ω) = ϕ0J
η

i
ω (2.29)

Thismotion is completely out-of-phase with respect to the driving force. The resulting
ac resistivity contribution due to the ac vortex dynamics is identical to the so-called
flux flow (FF) resistivity, frequency independent but dependent on the field:

ρac(ω) = Bϕ0
η = ρFF = σ−1FF (2.30)

Fig. 2.3: Schematic representation of the low-frequency ac penetration depth, λac compared to the
well-known London penetration of a dc magnetic field, λL. If the vortex contribution is neglected, the
ac penetration length λac ∼ λL. In the Campbell regime, incorporating an in-phase motion of vortices
due to the elastic interaction between vortices and pinning centers, two different limits of the ac
penetration length can be found: (i) For rigidly pinned vortices λac ∼ λL, whereas for weak pinning
λac = √λ2

L + λ2
C. Here, λC = (c11/⟨αL⟩)1/2, where c11 is the compressional modulus of the vortex

lattice and ⟨αL⟩ is the Labusch constant representing a statistical average over all restoring forces
the vortex ensemble experiences.
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72 | 2 Probing vortex dynamics on a single vortex level by SSM

It is clear that in this regime the ac vortex dynamics alters the conductivity of the su-
perconductor by a pure resistive contribution. For the ac magnetic field penetration,
the superconductor will behave identically to a normal metal with a field-dependent
and frequency-dependent skin depth.

Amore complete description of the vortex’ linear response has been discussed by
Coffey and Clem, who derived an expression for the ac resistivity by solving the equa-
tion of motion (2.17) taking into account, in addition to the previous dynamic modes,
also vortexmotion due to thermal fluctuations [21].Within the linear response approx-
imation, the motion due to thermal fluctuations can be described by the following
equation of motion,

ẋ ∼ exp(−U/kBT) (2.31)

meaning the vortices move with a linear average vortex velocity proportional to a
Boltzmann factor, where U describes an effective activation energy related to the
strength of the intrinsic pinning landscape. Because of the activated nature of this
type of flux motion, one speaks of thermally assisted flux flow (TAFF). The resulting
ac resistivity contribution due to TAFF is similar to the case of FF, purely resistive,

ρ(ω) = ρTAFF ∼ exp(−U/kBT) = σ−1TAFF (2.32)

Rigourously, for the whole superconductor containing vortices and screening cur-
rents one has to add all the different contributions. A general solution to the equation
of motion taking into account all the above-described contributions is given by Equa-
tion (2.23) [21, 22], with

χ(ω) = − [ − ⟨αL(r)⟩
1 − i/ωτ1 + iωη]−1 and ϕ(ω) = arg χ(ω) (2.33)

here τ1 = ( η⟨αL(r)⟩) I20 [ U
2kBT

]
where I0(x) is the modified Bessel function, which closely resembles an exponential
for large argument x and I0(0) = 1. The time scale τ1 is a characteristic relaxation
time below which thermally activated hopping of vortices becomes important. For
conventional superconductors the associated characteristic frequency is of the order
of 1/τ1 < 10Hz and is proportional to the ratio of the effective activation energy char-
acterizing the intrinsic pinning, U and the thermal energy, kBT. For high-Tc supercon-
ductors the effect of TAFF can be very pronounced. This resulting motion, describing
the linear response of a vortex to an ac drive, is a combination of in-phase (reversible
motion) andout-of-phase (dissipativemotion) components andwill beprobeddirectly
with scanning susceptibility microscopy. At low temperatures, thermal fluctuations
canbe neglected, meaning thatU ≫ kBT andhence τ1 diverges. Under this condition,
the equation of motion reduces to the previous discussed cases in both limits of high
and low frequencies. Moreover for high temperatures and low frequencies, f < 1/τ1,
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the TAFF regime is recovered. This description of the vortex response, taking into ac-
count all the above mechanisms, results, in general, in a complex ac resistivity.

As a last remark we would like to note that the simplified model used here to de-
scribe the ac dynamics, considering a vortex as a particle-like object has of course its
limitations, as it ignores the internal structure of the vortices and their elastic nature.
It is expected to fail for high vortex velocities where more realistic approaches such as
time-dependent Ginzburg–Landau theory become necessary. Moreover, in the above
we considered only the linear response, which is valid for small disturbances from
equilibrium. Once the applied ac-field amplitude becomes sufficiently high, it is able
to introduce vortex displacements much larger than the pinning site size and the sys-
tem will be in a regime of strong nonlinear response. In this regime Ohm’s law will no
longer be valid and, in general, the conductivitywill become a function of the induced
or applied current.

2.1.2.3 Macroscopic response of a superconductor
We are now in a position to discuss the integrated magnetic response of a supercon-
ductor upon the application of an external alternating magnetic field

hac(t) = hac cos(ωt) (2.34)

known as global ac-susceptibility measurements [1].
When a type II superconductor is excited by an alternating external magnetic

field, hac(t), it is then expected that the average sample response³, the magnetic in-
duction averaged over the sample volume, ⟨B⟩(t), is also periodic, with the same pe-
riod as the appliedmagnetic field T = 2π/ω (see Figure 2.4). Here the average denoted
by ⟨. . .⟩ is taken over the whole sample volume. The distorted periodic wave form can
be expressed as a Fourier series expansion.

⟨B⟩(ω, t) = μ0hac
∞∑
n=1

[⟨μn⟩ cos(nωt) + ⟨μn ⟩ sin(nωt)] (2.35)

Here ⟨μn⟩ and ⟨μn ⟩ are the real and imaginary part of the n-th Fourier component
and μ0 is the permeability of vacuum. In a first approximation, assuming an ac drive
sufficiently small, we obtain the linear response,

⟨B⟩ ≈ μ0hac[⟨μ1⟩ cos(ωt) + ⟨μ1 ⟩ sin(ωt)] (2.36)

In this regime, the response is fully determined by the Fourier components ⟨μ1⟩ and
3 In principle, the response of the sample alone is the magnetization, ⟨M⟩(t), related to the magnetic
induction, ⟨B⟩(t), and the applied field, ⟨ha⟩(t) as, ⟨M⟩(t) = ⟨B⟩(t)

μ0 −⟨ha⟩(t). As such, themagnetization
doesnot include the contributionof thedrive, ⟨ha⟩(t). As in our experimentsweprobedirectly the local
induction rather than the magnetization, we will describe the response in these terms.
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Fig. 2.4: Schematic presentation of a superconductor excited by a small monochromatic oscillatory
magnetic field, hac(t). The periodic drive, hac(t), provides the excitation mechanism of a type II su-
perconductor. The sample response, ⟨B⟩(t), will also vary periodically in time, however a phase lag,
θ may exist between the drive and the response.

⟨μ1 ⟩which can be considered as the real and imaginary part of the so-called complex
relative permeability⁴, ⟨μ1⟩ = ⟨μ1⟩ + i⟨μ1 ⟩. The real part describes the in-phase re-
sponse of the magnetic induction to the external magnetic ac field and is related to
the macroscopic shielding abilities or the inductive properties. On order to see this,
we calculate the time average of the magnetic energy supplied by an alternating field
per unit volume into the sample [1],

Wa = 1
T

T∫
0

hac(t)⟨B⟩(ω, t)dt = ⟨μ1⟩B2a
2μ0

(2.37)

where Ba = μ0hac. When no sample is present, the magnetic field energy stored is
equal toW0 = B2

a
2μ0 . The difference,

δW = Wa − W0 = (⟨μ1⟩ − 1) B2a2μ0
(2.38)

reflects the ac response of the sample. As such, ⟨μ1⟩ describes whether the material
increases or decreases the amount of stored energy per unit volume. A diamagnetic
behavior of the investigated sample, 0 < ⟨μ1⟩ < 1, leads to a reduction of themagnetic
energy stored per unit volume as compared to a situation when no sample is present,
this is reflected in a negative value of δW. Thus, in the case of a ideal superconductor
in theMeissner state, we expect ⟨μ1⟩ = 0. A paramagnetic response, ⟨μ1⟩ > 1, leads to
an increase of the magnetic field energy as compared to the situation when no sample
is present.

4 As ⟨M⟩(t) = ⟨B⟩(t)
μ0 − ⟨hac⟩(t), the first term in a Fourier series expansion of ⟨M⟩(t), will have Fourier

component ⟨χ1⟩ = ⟨μ1⟩ − 1 and ⟨χ1 ⟩ = ⟨μ1 ⟩, which can be considered as the real and imaginary part
of the complex ac susceptibility ⟨χ⟩ = ⟨χ1⟩+ i⟨χ1 ⟩, respectively. In terms of themagnetization, ⟨M⟩(t),
the response of the sample alone is considered.
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The imaginary part describes the out-of-phase response of the magnetic induc-
tion, arising, as in the case of a driven damped harmonic oscillator, necessarily from
dissipative ac losses within the superconductor. To see this connection, we calculate
the energy converted into heat during one cycle of the applied ac magnetic field [1]:

Wq = 1
μ0

T∫
0

(hac(t)d⟨B⟩(ω, t)dt ) dt

= T∫
0

(hac(t)d⟨M⟩(ω, t)) = π 1
μ20

B2a⟨μ1 ⟩ (2.39)

and a direct relation exists between the dissipated energy and the complex part of
the permeability ⟨μ1 ⟩. Notice that the second equality in Equation (2.39), is just the
area of a magnetization hysteresis loop. AsWq is always positive, ⟨μ1 ⟩ > 0. In general
terms one can say that ⟨μ1 ⟩measures magnetic irreversibility or the resistive reaction
to ac fields, whereas ⟨μ1⟩ is related to the inductive properties of the sample. Note
that all of the above considerations are in one-to-one correspondence with the case
of a harmonic oscillator, where the displacement plays the role of the magnetization
and the driving force plays the role of the applied ac magnetic field.

In standard ac-susceptibility measurements, one excites the sample with an ac
magnetic field, hac, and detects the macroscopic response, ⟨B⟩(t), inductively by a
pick-up coil. Using a phase-locked technique one can obtain directly ⟨μ1⟩ and ⟨μ1 ⟩
or higher Fourier components [1]. The dependencies of these two response functions
upon changing the thermodynamic variables or the ac excitation parameters, provide
very valuable information concerning the pinning efficiency and reveal the finger-
prints of the particular ac dynamic phases the vortex lattice exhibits [27–29]. Since
the recorded signal represents an average over all present flux lines and screening
currents in the sample, the link with the microscopic ac response is indirect. Pioneer-
ing theoretical works [22, 23, 26] contributed substantially to link this global response
to the microscopic vortex dynamics and/or the ac field penetration.

2.1.2.4 Microscopic response of a superconductor
The above-described variation of the average response, ⟨B⟩(t), of a type II supercon-
ductor is produced at the microscopic level by the vortices, the induced screening cur-
rents and/or the external field itself. In Figure 2.5 the reaction at the end of a 500 μm
long superconducting Pb ribbon to a magnetic field variation is probed by making
snapshots of the z-component of the local induction, Bz(x, y), as measured at ev-
ery pixel (x, y) by scanning Hall probe microscopy. The Pb ribbon is 9 μm wide and
50nm thick and the magnetic history consists of a field cooling procedure in a field of
hdc = 0.13mT at T = 7K (see Figure 2.5b). The prepared state contains two vortices
whose positions are indicated by red dots. In addition, a clear enhancement of the lo-
cal field is observed at the border of the Pb ribbon due to demagnetizing effects. Two
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76 | 2 Probing vortex dynamics on a single vortex level by SSM

Fig. 2.5: The reaction at the end of a 9 μm wide superconducting Pb ribbon to a magnetic field vari-
ation is shown by making snapshots of the z-component of the local induction, Bz(x, y), as mea-
sured by SHPM. The borders of the Pb ribbon are indicated by the dashed white line. The Pb ribbon
is prepared by a field cooling procedure in a field of hdc = 0.13 mT to T = 7 K (b). Two snapshots
of Bz(x, y) are shown at hdc = 0.23 mT (c) and hdc = 0.03 mT (a) obtained upon increasing and
decreasing the field with 0.1 mT after preparing the ribbon as described. In (d), the average cross
section is shown for the different field configurations, as obtained by averaging the cross sections
in the rectangular area indicated by the black dashed line in (b).

snapshots of Bz(x, y) are shown at hdc = 0.23mT (Figure 2.5c) and hdc = 0.03mT (Fig-
ure 2.5a), obtained upon increasing and decreasing the magnetic field by 0.1mT. The
following observations can be made when the Pb ribbon undergoes a field variation
of 0.1mT:
– When we increase or decrease the field by 0.1mT, additional screening currents

will be induced in the superconducting Pb ribbon as indicated by the long black
arrows in Figure 2.5a and c. The magnetic field they generate will contribute to
the local induction, Bz(x, y), at the edge of the ribbon. This explains the observed
field enhancement and reduction at the edge of the Pb ribbon, respectively. This
field enhancement is also observed in the prepared state (see Figure 2.5b) and is
determined by a geometrical demagnetizing factor, identical for every magnetic
field amplitude as long as the penetration depth remains constant.
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– The induced screening currentswill producea Lorentz forceon thevortices,which
will displace them from their initial equilibrium position in the prepared state.
The initial vortex position at hdc = 0.13mT is indicated by the red dots in every
snapshot. The short black arrows in Figure 2.5a and c show a displacement of the
vortices as compared to the positions of the vortices in the prepared state. Both ob-
servations are clearly visible in the derived average cross sections for every field
amplitude (shown in Figure 2.5d). In this particular sample the dynamics of a vor-
tex is a combination of (i) the local driving force due to the screening currents and
(ii) the presence of random disorder in the material. Nevertheless, it is impossible
to obtain the exact shape of the potential below the resolution of SHPM. In order
to do so we have to use scanning probe microscopy tools with higher resolution
(e.g., scanning tunneling microscopy [6] or SQUID on a tip [7]).

The point wewant to make clear with the above ‘snapshot movie’, is that the variation
of the magnetic induction, Bz(x, y, t), at the microscopic scale or at every pixel of our
scan area, appears to be a reproducible back and forth motion with the same period
as the applied magnetic field, whether one looks at the variation of the field due to
vortices deep in the sample volume or due to the screening currents at the edge. This is
not surprising as the average response, ⟨B⟩(t), is just a superposition of the individual
microscopic contributions. Once again, Bz(x, y, t) can be expressed as a Fourier series
expansion and if we consider only the linear response we obtain,

Bz(x, y, t) ≈ μ0hac [μ1(x, y) cos(ωt) + μ1 (x, y) sin(ωt)] (2.40)

Similar as in the macroscopic case, the observation and the study of these response
functions or Fourier components and their dependencies upon variations of tempera-
ture, driving parameters, etc., will provide us with information concerning the vortex
dynamics. As discussed before, it is possible to track the integrated response over the
whole sample volume bymacroscopic ac-susceptibility experiments. In that case, the
connection between themeasured response, ⟨μ1⟩ and ⟨μ1 ⟩ and themicroscopicmod-
els is indirect. In contrast to that, a measurement of μ1(x, y) and μ1 (x, y), completely
characterizing the linear variation of the local induction, will provide us with direct
information about the microscopic response, without the need to invoke theoretical
models to explain the measured responses.

2.2 Scanning susceptibility measurements

2.2.1 Scanning ac-susceptibility microscopy

Scanning ac-susceptibilitymicroscopy (SSM), schematically presented in Figure 2.6, is
a phase-sensitive variant of the scanning Hall probemicroscopy technique. It enables
us to measure directly, with single vortex resolution, the two Fourier components,
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78 | 2 Probing vortex dynamics on a single vortex level by SSM

μ1(x, y) and μ1 (x, y) and, in principle, all higher harmonics. In SSM, the sample is ex-
citedwith anexternal acmagnetic field, hac(t) = hac cos(ωt), appliedperpendicular to
the sample surface by a copper coil. The Hall voltage, VH(x, y, t), measured locally by
a Hall microprobe is picked up by a lock-in amplifier. The excitation signal for the ex-
ternal applied ac field, feeds a phase-locked loop that extracts the in-phase, V

1(x, y),
and out-of-phase components, V

1 (x, y), of VH(x, y, t). In the first approximation these
are, respectively, proportional to the in-phase, B

z(x, y) and out-of-phase, B
z (x, y), ac

components of the local magnetic induction, Bz(x, y, t), coarse grained by the size of
the cross, which are directly related to the real and imaginary part of the local relative
permeability, μ1(x, y) = μ1(x, y) − iμ1 (x, y), through the definition [30]:

μ1(x, y) = B
z(x, y)
μ0hac

μ1 (x, y) = B
z (x, y)
μ0hac

(2.41)

As a result, SSM provides a tool to spatially map these two Fourier components. The
mapping of Bz(x, y, t) was obtained using a modified low-temperature SHPM from
Nanomagnetics Instruments. As the SHPM technique used to map Bz(x, y, t) has sin-
gle vortex resolution, SSM likewise allows one to probe the ac response of a supercon-
ductor at this scale. In all the experiments, the collinear dc and ac external magnetic
fields are always applied perpendicular to the sample surface. Just as in the global
ac-susceptibility technique, one can again relate, by making a similar analysis, the

Fig. 2.6: (a) Schematic overview of the scanning susceptibility microscopy setup. A superconduct-
ing sample is placed in a dc magnetic field, H, generated by a superconducting coil surrounding a
collinear copper coil generating an ac field hac(t). The time-averaged magnetic field profile due to
the present vortices and the screening currents is schematically shown by the black lines. The mag-
nifying glass provides a closer look at the induced ac vortex motion. When the drive is small, the ac
magnetic field induces a periodic force on the vortices, shaking them back and forth. A Hall sensor
picks up locally the associated time-dependent Hall voltage, VHall. (b) A lock-in amplifier, provided
with both hac(t) as a reference and VHall, allows one to extract both the in-phase, B

z(x, y), and the
out-of-phase, B

z (x, y), components of the local magnetic response.
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in-phase component, μ1(x, y), to the local inductive response, while the out-of-phase
component, μ1 (x, y), is related to microscopic ac losses.

2.2.2 SSM on a superconducting strip, response of individual vortices

In the following section, we will, as a proof of concept, use SSM to analyze the ac re-
sponse of the Pb ribbon discussed before. The interpretation of the measured local
response functions μ1(x, y) and μ1 (x, y) and the analysis of their dependencies upon
varying thermodynamic variables (temperature, dcmagnetic field) or the drive ampli-
tude will be discussed. As the signal picked up by the Hall probe contains different
contributions, arising from the screening currents, the vortex signals and the external
field itself, the measured local linear ac response is also determined by all contribut-
ing factors. This particular sample design allows us to map the spatial dependence
of the linear response to hac(t), covering the whole width of the sample in a single
scanning area, including the Meissner response at the sample border and the vortex
motion deeper into the ribbon volume.

2.2.2.1 Temperature dependence of the macroscopic ac response
Before we discuss in detail the response in the whole scan area, let us first discuss
the temperature variation of μ1(x, y) and μ1 (x, y) picked up by the Hall cross located∼ 1 μm above the center of a zero-field cooled (ZFC) 7 μm wide Pb ribbon, see Fig-
ure 2.7. An ac amplitude of 0.1mT and a frequency of f = 77.123Hz are used for this
measurement. This dependence is identical to the temperature dependence observed
in macroscopic ac-susceptibility experiments. It is clear that the Pb ribbon exhibits a
superconducting transition at Tc = 7.20K. For temperatures below Tc a diamagnetic
response is observed, 0 < μ1(x, y) < 1, meaning the ribbon screens out the applied
field. Above Tc, μ1(x, y) ≈ 1, meaning the ac magnetic field penetrates completely
as expected for this low frequency for a normal metal. μ1 (x, y) is initially zero, goes
through a maximum, and reduces to a zero value near Tc.

Figure 2.8a shows an SHPM image of a vortex distribution prepared by a field cool
(FC) in H = 0.13mT and at T = 6.7K. After preparing the state, a SHPM image is ob-
tained while an external field with hac = 0.1mT and f = 77.123Hz, is continuously
applied. The scan speed is chosenproperly, 1 μm/s, to ensure that the integration time
at every pixel (125ms) is much larger than the period of the applied ac field (13ms).
As one image has 128 by 128 pixels, the time for a single scan takes 73 minutes. The
resulting vortex distribution obtained by performing a FC experiment, corresponds to
a frozen vortex structure nucleated close to Tc [31]. The FC process forces vortices to
nucleate at the strongest pinning sites and results in a nonsymmetrical vortex distri-
bution. The external ac field shows up as an additional monochromatic noise in the
SHPM images getting more pronounced for temperatures close to Tc. However, for all
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Fig. 2.7: In-phase (χ’) and out-of-phase (χ”) ac signal picked up by the Hall cross located at the cen-
ter of a 7 μm stripe, using an ac amplitude of 0.1 mT and a frequency of f = 77.5 Hz.

investigated temperatures the average vortex positions do not change, indicating that
for hac = 0.1mT the resulting average vortex response is limited to displacements
below the experimental spatial resolution.

2.2.2.2 Probing the ac response with single vortex resolution
Figure 2.8b shows a representative set of simultaneously acquired SSM images of
μ1(x, y) (left column) and μ1 (x, y) (right column), respectively describing the induc-
tive and dissipative response, when the temperature is decreased progressively from
T = 6.7K to T = 7K.

Local inductive response.A first straightforward observation is that at the edges
of the scan area, meaning relatively far away from the Pb ribbon, the local induction
is equal to the applied acmagnetic field hac(t) as μ1 (x, y) = 0 and μ1(x, y) = 1. A clear
paramagnetic response, μ1(x, y) > 1, is visible at the edge of the Pb ribbon, where
the response is dominated by the induced screening currents. This enhancement of
the external ac field is caused by a strong demagnetizing effect resulting from the thin
film sample geometry [32]. Upon entering the volume of the ribbon, we observe an
increasing diamagnetic response as hac(t) gets shielded by the screening currents. At
the center of the Pb ribbon, a maximum diamagnetic response due to the screening
current of μ1(x, y) = 0.27 at T = 6.7K is reached, indicating an incomplete field
expulsion.

Brought to you by | Université de Liège
Authenticated

Download Date | 10/27/19 9:46 AM



2.2 Scanning susceptibility measurements | 81

Fig. 2.8: (a) Scanning Hall probe microscopy image of the local induction, Bz(x, y), acquired dur-
ing shaking with an external applied ac field of amplitude, hac = 0.1 mT, and with frequency,
f = 77.123 Hz at a temperature of T = 6.7 K. The initial vortex distribution is obtained by performing
a field cool in an external applied dc magnetic field, H = 0.13 mT. The white dashed line indicates
the border of the Pb ribbon.(b) Simultaneously acquired maps of the real part of the relative per-
meability, μ

1(left column) and the imaginary part of the relative permeability, μ
1 (right column), for

different temperatures:(top to bottom) T = 6.7 K, 6.9 K and 7.0 K.

Within the ribbon volume the induced screening currents, j(t), will periodically
shake the vortices, with a force: fL(t) = j(t) ×ϕ0. The ac dynamics of the vortices will
crucially depend on the thermodynamic parameters of the superconducting system
and the properties of the drive. As shown in Figure 2.8b, the fingerprint of their mo-
tion in the SSM images, consists of two distinct unidirectional spots of opposite polar-
ity surrounding the equilibrium vortex position. The inductive response can be easily
interpreted. An area exhibiting a signal exceeding the ac response of the screening
currents, μ1(x, y) > μ1(x, y)s , corresponds to a vortex, carrying an intrinsic positive
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local induction, moving in-phase with hac(t) within this area. A region exhibiting a
signal lower than the ac response of the screening currents, μ1(x, y) < μ1(x, y)s, in
some cases resulting even in a local negative permeability, μ1(x, y) < 0, indicates that
bz(x, y, t) increases (decreases) upon decreasing (increasing) instantaneous hac(t),
corresponding to a vortex moving in anti-phase with hac(t) within this area. A simi-
lar unique local negative μ1(x, y) response, but on a substantially larger spatial scale,
has been observed in the ac dynamics of flux droplets in the presence of a geometrical
barrier [30].

From general considerations, neglecting the demagnetizing field, an overall in-
tegrated response between zero and one is expected for ⟨μ1⟩. Note however, that the
meaningof the complexpermeability as amacroscopic thermodynamic variable is lost
in this local limit. Upon integrating the local signal over the whole scan area the ex-
pectednon-negative response for ⟨μ1⟩and ⟨μ1 ⟩ is recovered. This connectionbetween⟨μ1⟩ as the integrand of the ‘local’ permeability, μ1(x, y), which is directly related to
the microscopic vortex dynamics, is used in theoretical models to explain the finger-
prints of different dynamical vortex lattice regimes in measurements of the global ac-
susceptibility and can be studied now directly by SSM. Furthermore, the particular
depth and shape of the local pinning potential that each vortex experiences has a pro-
found effect on the ac dynamics, i.e., at T = 6.9K only one of the two vortices present
in our scan area is shaking.

Local dissipative response. An important observation in Figure 2.8b is that the
shielding currents do not show any contributing signal in μ1 (x, y) for all tempera-
tures, indicating that they are, within our experimental resolution, perfectly in-phase
with the ac excitation and therefore they are nondissipative. In sharp contrast to the
screening currents’ response, the vortices do leave a fingerprint in μ1 (x, y) for suf-
ficiently high temperatures. As such, the oscillating magnetic stray field produced
by an harmonic motion of the vortices exhibits an out-of-phase component. The out-
of-phase response disappears for T < 6.8K, here the ac response of the vortices is
weak and, within the experimental resolution, perfectly in-phase. An illustration of
all forces working on a single vortex inside the Pb ribbon is shown in Figure 2.9. In
this case the parabolic caging potential is the result of the interplay between the vor-
tex and the screening currents, while the additional roughness is induced by sample
inhomogeneity. The presence of thesemodulations at length scalesmuch smaller than
the distance traveled in this experiment (≈ 500nm) has been observed in later exper-
iments using different high-resolution scanning probe techniques [6, 7]. The solution
of the resulting equation of motion is given by Equation (2.33) and directly shows that
the out-of-phase component in the linear response can be induced by two different
dissipative mechanisms: viscous damping or thermal fluctuations.

This viscous damping process has a typical short characteristic time of the order
of τp = η/αL ≤ 0.1 μs [25]. For the applied low driving frequency, f = 77.123Hz, the
restoring force dominates over the viscous drag force, as ω ≪ 1/τp and this term can
be neglected. The term i/ωτ1 in Equation (2.33) is related to thermally activated vortex
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Fig. 2.9: Schematic representation of the forces working on a single vortex in the Pb ribbon at time
t1 as described by Equation (2.17). In this picture αL determines the potential well of a single vor-
tex, no longer a statistical average, and is the result of the interplay between the vortex and the
screening current. Urough is an additional finer structure in the effective potential induced by sam-
ple inhomogeneity. In case thermal excitations (FTh ) are comparable to Urough , thermal relaxation
following the classical idea of Anderson and Kim [35], becomes important.

hopping across an effective activation barrier, following the classic ideas of Anderson
and Kim [35] and results from thermal excitations. This activated hopping process is
typically associated with longer characteristic time scales [36]. Under certain condi-
tions it is expected to contribute substantially in our low-frequency SSM experiment.

It is interesting to make here a small parenthesis to discuss the linear response of
this vortex system. If we neglect the viscous damping force at low driving frequency,
we can rewrite Equation (2.33) in the following way,

x(t) = F0|χ(ω)| cos(ωt + θ(ω)) with χ(ω) = ( 1
αL

− i
ωτ1αL

) (2.42)

Here x(t) is the vortex position and the complex number χ(ω) describes the response
of the vortex system. As in Section 2.1.1, we can parameterize the solution by the am-
plitude and the phase of χ(ω) as:

|χ(ω)| = 1
αL

√1 + 1(ωτ1)2 and tan θ(ω) = 1
ωτ1

(2.43)

In both expressions for the amplitude and the phase lag, the term ωτ1 appears explic-
itly. For a fixed characteristic time τ1 the deviation from pure reversible motion arises
when ωτ1 approaches 1. It implies that the driving frequency approaches the charac-
teristic time for thermally activated motion and the vortex motion will be dominated
by this process. As a result, a phase lag appears between drive and vortex displace-
ment. When the driving frequency is much larger, ωτ1 ≫ 1, but still small enough
to neglect viscous damping, ωτp ≪ 1, the motion reduces to Campbell’s reversible
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84 | 2 Probing vortex dynamics on a single vortex level by SSM

vortex motion. In this frequency regime thermally activated motion will contribute
negligibly to the motion properties of a vortex. The situation where ωτ1 < 1 can not
be described within a linear response, as in this case, the response is strongly non-
linear [22] and the above equations do not apply. In the reversible Campbell regime
a one-to-one correspondence exists between a vortex and a driven damped harmonic
oscillator as discussed in Section 2.1.1, within the limits ω ≪ ω0 and ω ≪ (k/η).

Before we continue with the interpretation of the measured temperature depen-
dence of the vortex response, we show explicitly that the measured phase with SSM
corresponds to the phase-lag in Equation (2.43). We denote by Bv

z(xi , yi , t) the mag-
netic induction carried by a single vortex, shaking back and forth around its equilib-
rium position, ri0. We assume that the vortex is driven by a small ac excitation in a
way that ri = (xi , yi) oscillates about ri0. In this situation, we can expand Bv

z(xi , yi , t)
in a Taylor series around ri0. Without loss of generality, we can choose the x-axis par-
allel to the applied drive. We further assume that the vortex displacement is parallel
to the force, which is valid for a linear response in isotropic media. In this case, vortex
motion is restricted to the x-direction and the expansion can be performed in powers
of δxi = xi − xi0:

Bv
z(x − xi(t)) = ∞∑

p=0

1
p!

∂pBv
z

∂xpi
|xi0δxpi (2.44)

= Bv−dc
z (x) − ∂Bv−dc

z
∂x

δxi + 1
2
∂2Bv−dc

z
∂x2

δx2i + O (δx3i ) (2.45)

With Bv−dc
z (x) the magnetic field distribution of the vortex without being excited. No-

tice that the change of sign of the odd terms of the expansion due to changing xi by
x in the derivatives. If we assume that the vortex displacement can be expressed as
δxi = |χ(ω)| cos(ωt + θ(ω)), as in Equation (2.42), we obtain for the in-phase and out-
of-phase response,

B
z
v = 1

T ∫ dt cos(ωt)Bz(x, y, t) = −|χ(ω)|∂Bv−dc
z
∂x cos(θ(ω)) (2.46)

B
z
v = 1

T ∫ dt sin(ωt)Bz(x, y, t) = |χ(ω)|∂Bv−dc
z
∂x

sin(θ(ω)) (2.47)

Note that in the case of a diluted vortex distribution, Bv−dc
z expands over distances

of the order of the penetration depth. This scale exceeds, in the linear regime, typical
vortex displacements andhence one can safely keep the leading order terms. These re-

sults lead to the conclusion that themeasuredmodulus SSM signal,√(B
z
v)2 + (B

z
v)2,

is directly related to the amplitude of vortex motion, with a proportionality constant
given by the gradient of Bv−dc

z in the direction of the driving force. Furthermore, the
measured phase angle corresponds directly to the phase lag between the vortex mo-
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tion and the Lorentz drive.

|χ(ω)| = (∂Bv−dc
z
∂x )−1 √(B

z
v)2 + (B

z
v)2 (2.48)

tan(θ(ω)) = −B
z
v

B
z
v (2.49)

With these parameters the dependence on the probe position cancel out and should
be homogeneous, apart from the places where ∂Bv−dc

z /∂x = 0.
Let us use the above considerations to interpret the temperature dependence of

the out-of-phase component of the vortex response. At low temperatures, when U(j) ≫
kBT and thermally activated flux motion can be neglected, τ1 diverges exponentially
and the ac response, x(t) = αLfL(t), is a pure reversible harmonicmotion as described
by Campbell and Evetts [26]. This behavior explains the absence of a response in the
SSM images of μr (x, y) for T < 6.8K, while a response is still visible in μr(x, y). As the
temperature rises, the thermal activation energy decreases and 1/ωτ1 becomes ap-
preciable, meaning thermally activated vortex jumps betweenmetastable states come
into play and contribute substantially to the vortexmotion. This explains the observed
out-of-phase component for T > 6.8K. Figure 2.10 shows a zoom-in of the ac response
of a single vortex for T = 6.9K and the corresponding spatial dependence of the
calculated phase, where we use a cutoff for | μr(x, y) |< 0.15 to limit the divergence
of the arctangent function and we subtracted the contribution of the screening cur-
rents in μr(x, y). As shown in Figure 2.10c, the obtained phase shift is θ = −0.5 rad.
From Equation (2.43), the phase shift between the response and the drive is given by
θ = − arctan(1/τ1ω). As τp ≤ 0.1 μs, we obtain a lower limit for the effective activation
barrier height of U(j) ≥ 8.50 × 10−3 eV ∼ 14.3kBT, similar to typical average effective
barrier heights found in the literature by macroscopic measurements [37].

Fig. 2.10: (a) Scanning susceptibility microscopy image of the real part of the relative permeability,
μ

r for a single vortex upon shaking with an external ac magnetic field of amplitude, hac = 0.1 mT,
and frequency f = 77.123 Hz at a temperature of T = 6.9 K. The initial vortex distribution is obtained
by performing a field cool in an external applied dc magnetic field, H = 0.13 mT. (b) Simultaneously
acquired map of the imaginary part of the relative permeability, μ

r . (c) Calculated spatial depen-
dence of the negative phase angle.
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86 | 2 Probing vortex dynamics on a single vortex level by SSM

The temperature dependence of the phase shift shows a maximum at T = 6.85K.
Optimal energy dissipation is expected when the driving frequency matches the char-
acteristic frequency of our vortex system, i.e., when the resonant absorption condi-
tion, ωτ1 = 1, is fulfilled. As the driving frequency is fixed, we approach or detune
from the resonant absorption condition by changing τ1 with temperature. The non-
monotonic temperature dependence of the phase shift reflects the nontrivial temper-
ature dependencies of the different factors contributing in τ1.

2.2.3 Examples of application of the SSM technique

In the previous sections we have shown concrete examples illustrating the power of
the SSM technique for tracking the motion of individual vortices and to understand
the dissipative mechanism involved during their displacement. Now we will present,
in a rather conciseway, further applications of the technique to a variety of interesting
superconducting materials.

2.2.3.1 Imaging the dynamics of vortices and antivortices induced
by magnetic microdisks

The microscopic static and dynamic behavior of vortex–antivortex pairs sponta-
neously induced by Co/Pt micromagnets with out-of-planemagnetic moment in close
proximity to a superconducting Pb film has been investigated via SSM by Kramer and
co-workers in Reference [38]. Images of the obtained results are shown in Figure 2.11.
Panel (a) corresponds to the static image obtained at zero field and with the disks
fully magnetized (red spots). The presence of seven antivortices, three at the center
and four at the rims of the scanning area can be distinguished as dark blue spots.
This vortex configuration is then excited with a small ac field (hac = 0.02mT) and the
oscillation of each individual vortex is recorded by the SSM as shown in panel (b). It
can be seen that two of the central antivortices strongly oscillate whereas no motion
is detected for any vortex sitting on top of the magnetic disks. In panel (c) the two
panels, (a) and (b), have been superimposed to better identify those vortices able to
move. It is worth emphasizing that the SSM technique is able to detect only periodic
motion between two points and therefore, the lack of signal associated with the rest
of the antivortices can be either because they remain pinned or due to a nonperiodic
trajectory during the ac excitation. By increasing the amplitude of the ac excitation
(hac = 0.06mT) eventually it is possible to shake the much more strongly pinned vor-
tices on top of the disks. This is shown in panels (d) to (f), corresponding to a lower
magnetic moment with only one antivortex present at the left side of the scanning
area. In this case SSM has permitted us, for the first time, to unveil the difference in
mobility between both vortex species.
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Fig. 2.11: Probing the mobility of vortex–antivortex pairs. Panels (a) and (d) show scanning Hall mi-
croscopy images at H = 0 mT and T = 6.9 K for two different magnetic moments of the disks. The
dashed circles highlight the position of the induced antivortices. Panels (b) and (e) show SSM im-
ages for an excitation field hac = 0.02 mT and hac = 0.06 mT, respectively, and a frequency of 77 Hz.
Panels (c) and (f) show a superposition of panels (a) and (b), and (d) and (e), respectively, in order to
identify the vortices susceptible to the excitation.

2.2.3.2 Closer look at the low-frequency ac flux penetration in superconductors
with periodic pinning array

Two vortex species are not limited to superconductor/ferromagnet systems as in the
example above. This dichotomy of vortex families is also found in superconductors
with periodic arrays of holes (antidots) where vortices pinned by the holes experience
amuch stronger cagingpotential than interstitial vortices sitting inbetweenholes [39].
In a recent work, Souza Silva and co-workers used the SSM technique to investigate
the response of a nanostructured Pb superconductor having a square lattice of anti-
dots [5]. Figure 2.12 shows the ac response obtained on these nanostructures at a dc
magnetic field of 1.5H1, with H1 being the magnetic field value at which the density
of vortices and holes coincides. As a guide to the eye the antidot position is marked
by a white dot whereas the white line represents the sample edge. Pinned and inter-
stitial vortices (marked by dashed circles) can be observed in the dc flux distribution
(as shown in Figure 2.12a). The in-phase component shown in Figure 2.12b and c re-
veals the enhancedmobility of these interstitial vortices with single vortex resolution.
Moreover, the authors showed that pinning by material defects in this sample, as well
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Fig. 2.12: SSM images showing the ac response (mapped in a region near the sample edge) to an
excitation with amplitude hac = 0.016 mT at T = 6.7 K. Panel (a) shows the dc (time-average) flux
distributions. The in-phase and out-of-phase components of the total ac response are mapped in
panel (b). The in-phase vortex response, defined as the difference between the in-phase and the
Meissner responses, is shown in panel (c). In all images, the white dots and the white line show
schematically the position of the square antidots and the sample edge, respectively. The dashed
circles highlight the position of selected interstitial vortices.

as thermal activation processes, dominate the low-frequency linear response even at
temperatures very close to Tc, where quenched disorder is typically neglected.

2.2.3.3 Imaging the dynamical ordering in NbSe2
Raes and co-workers used SSM to investigate the vortex dynamic in NbSe2, one of the
most extensively studied type II superconductors [4]. In that work, the authors ex-
plored the local ac dynamics of a disordered vortex state and provided direct evidence
of dynamical healingof topological defects as theac excitationamplitude is increased.
Figure 2.13a reveals a highly disordered vortex lattice via a SHPM image of the local in-
duction at 6.8K and a dcmagnetic field of 1.0Oe. Panels (b) and (c) are acquiredmaps
of the in-phase response, bv(x, y), with increasing amplitude of the ac drive. Interest-
ingly, these SSM images revealed two very different behaviors of the individual vortex
response: uncorrelateddynamics (Figure 2.13b)where vortices shakeatdifferentdirec-
tions with different amplitudes, and correlated dynamics (Figure 2.13c), where, upon
the healing of defects, the directions of motion of all vortices align and they respond
almost in unison. The authors confronted the observedmicroscopic dynamicswith the
extensively used phenomenological microscopicmodels of vortex motion proposed to
explain the macroscopic response and show that the approximations made in these
mean-field models, which furnishes information about the microscopic parameters
averaged over the whole vortex ensemble, represent a simplified picture of the much
richer ac dynamics.
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Fig. 2.13: Panel (a) shows a SHPM image of the local induction, bz(x, y), acquired at T = 6.8 K and a
dc magnetic field H = 1.0 Oe while shaking with an amplitude hac = 0.3 Oe. Acquired maps of the
in-phase, b

v(x, y) response with increasing amplitude hac = of 0.6 (b) and 2 (c) Oe, which indicates
the ac-driven ordering of the vortex lattice and its dynamics. To unify the color map scale, b

v(x, y) is
normalized by 1 ×10−3hac (in Gaussian units).

2.3 Conclusion and outlook

Most of the emphasis of this chapter has been devoted to present a rather simple and
intuitivepicturedescribing the local ac-susceptibility responseof type II superconduc-
tors at spatial scales of a few times the magnetic penetration depth. We have shown
that the SSM is an emerging powerful technique allowing us to build up a cartogra-
phy of individual vortex motion which in turn can be used to deduce the local pinning
landscape or the inhomogeneous current distribution. The out-of-phase component
of themagnetic response teaches us about the dissipativemechanism involved during
vortex motion and remains zero in the case of a reversible response, as that produced
by Meissner currents.

Although we have presented the technique as an extension of a scanning Hall mi-
croscopy set up, it has been recently shown that it can be used to resolve the magnetic
field at smaller scales by using a SQUID on a tip device [7]. Furthermore, the SSM can
be adapted into a scanning tunneling microscope in order to analyze the oscillation
of individual vortices at scales of the coherence length [6]. Examples of application
beyond type II superconductors are the motion of normal domains in a type I super-
conductor by Ge and co-workers [40] and the shaking of bubble domains in a ferro-
magnetic garnet by De Feo and Marchevsky [41].

Among the interesting aspects that could be further explored in the future to ren-
der the technique still more powerful we identify the possibility to shake vortices with
an applied current or shake magnetic domain with an oscillatory spin-polarized cur-
rent, rather than with an external ac magnetic field. In addition, the generation of
higher harmonics or the excitation with asymmetric wave forms may appear as ap-
pealing research lines to undertake. It is also possible to envisage combining excita-
tion and sensing on the same probe head, or separate them in two heads to measure
the propagation of local excitations or as away to investigate the conductivity ofmate-
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90 | 2 Probing vortex dynamics on a single vortex level by SSM

rials in a contactlessway. In any case,we are convinced that SSMas a dynamic sensing
tool has a bright future ahead, a fact that will be judged by the scientific community
and the parallel progress of alternative techniques.
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