

EAGE

ASSOCIATION OF GEOSCIENTISTS & ENGINEERS

> 1st Conference on Geophysics for Geothermal-Energy Utilization and Renewable-Energy Storage

THE HAGUE, THE NETHERLANDS

8-12 September 2019

WWW.NSG2019.ORG

#NSG2019

10 years of temperature monitoring experiments using electrical resistivity tomography:

What have we learned?

Thomas Hermans, Frédéric Nguyen, Guillaume De Schepper, Nolwenn Lesparre, & Tanguy Robert*

Tanguy.Robert@uliege.be

Paper 25, 11/09/2019

*University of Liège & Fonds National de la Recherche (FNRS), Brussels, Belgium

Ramirez et al. 1993, WRR, 29(1), 73-87

Ramirez et al. 1995, JEEG, 0(1), 39-55

Robert et al. 2019, Geosciences Special Issue Subsurface thermography ...

https://www.mdpi.com/journal/geosciences/special_issues/Subsurface_Thermography

Hermans et al. 2015, Geothermics, 53, 14-26

Petrophysics

Noise in the data

Survey design

Imaging

Petrophysics

Noise in the data

Survey design

Imaging

Figure 2. Histogram of extracted slopes from the analysis of the *Scott and Kay* [1988] study. This distribution has a mean of 0.021 and a standard deviation of 0.03.

They are applied to retrieve T

Hermans et al. 2014, Energies, 7(8), 5083-5118

But strong assumptions remain

—

Robert et al. 2013, NSG2013, Tu S2a 10, Bochum, Germany

e.g. Hayley et al. 2007

$$\frac{\sigma_{fluid}^{T}}{\sigma_{fluid}^{T_{ref}}} = m_f \left(T - Tref\right) + 1$$

1° absence of chemical reactions

Archie's law

$$\sigma_{bulk} = \frac{\sigma_{fluid}}{F}$$

 $2^{\circ} \sigma_{surface}$ neglected

Ratio of Archie's law

$$\frac{\sigma_{bulk;ti}}{\sigma_{bulk;t_0}} = F = \frac{\sigma_{fluid;t_0}}{\sigma_{fluid;ti}}$$

3° F remains constant

But strong assumptions remain

Robert et al. 2013, NSG2013, Tu S2a 10, Bochum, Germany

1° absence of chemical reactions

Petrophysics

Noise in the data

Survey design

Imaging

Authors use reciprocals to estimate noise

Slater et al. 2000, JAG, 44(2), 85-102 Static error model

Authors use reciprocals to estimate noise Lesparre et al. 2017, Geophysics, 82(6), E325-E333 Time-lapse error model

$$|\Delta \log R_N - \Delta \log R_R| = \frac{a}{R} + b$$

Noise estimation is crucial

Robert 2012 (unpublished PhD thesis, Liège, Belgium)

Let the data speak...

Robert 2012 (unpublished PhD thesis, Liège, Belgium)

... but pay attention not to model noise

Robert 2012 (unpublished PhD thesis, Liège, Belgium)

Distance (m)

Petrophysics

Noise in the data

Survey design

Imaging

Surface vs. cross-hole

Hermans et al. 2012, Geophysics, 77(1), B11-B21

Surface vs. cross-hole

Hermans et al. 2015, Geothermics, 53, 14-26

Obviously, better sensitivity (resolution) with cross-hole ERT But (at least) 2 boreholes are needed DOI depends on the depth of boreholes

2D vs. 3D

Robert et al. 2019, Geosciences

3D is a powerful visual tool

e.g. to estimate the thermal affected zone (TAZ) Robert et al. 2019, Lesparre et

Geosciences

Lesparre et al. 2019, Geothermics, 77, 368-382

Petrophysics

Noise in the data

Survey design

Imaging

First, check if your data contains information about temperature variations

```
Hermans et al. 2012,
Geophysics, 77(1), B11-B21
```

Robert et al. 2019, Geosciences

Choose an appropriate technique

Standalone inversion, data-difference inversion, active time-constrained inversion (Karaoulis et al. 2011, JAG, 73, 25-34), BEL, and many more... xz slice (Y = 12 m) of image 6

and eventually use filters

Petrophysics

Noise in the data

Survey design

Imaging

Applications in real-world studies

Borehole thermal energy storage BTES

Monitoring TAZ

Comina et al. 2019, Geosciences

Borehole thermal energy storage BTES Cultrera et al. 2018, HJ, 26(3), 837-851

Hydrogeol J (2018) 26:837-851

Fig. 11 Heat transfer due to the groundwater flow advection and the conduction processes after 5 days of heat power running

Aquifer thermal energy storage ATES

De Schepper et al. 2019, Applied Energy, 242, 534-546

Table 4

Energy recovery rate values (η , in %) for the 77 DSM simulated scenarios (7 storage periods Δt , 11 temperature differences induced ΔT).

η [%]		ΔT [K]										
		-4	3	6	11	35	40	45	50	55	60	65
Δt [h]	0.25	87	87	87	87	71	71	70	68	67	66	65
	1	87	87	87	87	71	71	69	68	67	66	65
	6	87	87	87	87	71	71	70	68	67	66	65
	12	86	87	87	87	71	70	69	68	66	65	64
	24	84	84	84	83	67	67	65	64	63	61	61
	48	84	83	83	84	67	66	65	63	62	60	59
	72	78	78	78	78	62	60	58	57	55	54	53

Aquifer thermal energy storage ATES

Robert et al. In preparation

For LT-ATES ($\Delta T = 6K$), this strategy works

Heat is stored during off-peak periods and recovered during peak periods (of heat demand) Heat is then either stored or recovered for heating applications

The key message is to focus on the survey design and the collection of a good data set

From then, anything is possible