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Abstract

Bayesian methods for flexible time-to-event models usually rely on the theory of Markov chain Monte
Carlo (MCMC) to sample from posterior distributions and perform statistical inference. These techniques
are often plagued by several potential issues such as high posterior correlation between parameters, slow
chain convergence and foremost a strong computational cost. A novel methodology is proposed to overcome
the inconvenient facets intrinsic to MCMC sampling with the major advantage that posterior distributions
of latent variables can rapidly be approximated with a high level of accuracy. This can be achieved by
exploiting the synergy between Laplace’s method for posterior approximations and P-splines, a flexible tool
for nonparametric modeling. The methodology is developed in the class of cure survival models, a useful
extension of standard time-to-event models where it is assumed that an unknown proportion of unidentified
(cured) units will never experience the monitored event. An attractive feature of this new approach is that
point estimators and credible intervals can be straightforwardly constructed even for complex functionals
of latent model variables. The properties of the proposed methodology are evaluated using simulations
and illustrated on two real datasets. The fast computational speed and accurate results suggest that the
combination of P-splines and Laplace approximations can be considered as a serious competitor of MCMC
to make inference in semi-parametric models, as illustrated on survival models with a cure fraction.

Keywords: Promotion time cure model, P-splines, Survival Analysis, Laplace Approximation,
Approximate Bayesian Inference

1. Introduction

There is a growing interest for cure rate models in survival analysis as witnessed by the number of
recently published papers on that topic in statistical journals. These models have gained in popularity
as they intrinsically account for long-term survivors that will never experience the event of interest even
when followed-up for an extended time period. The promotion time (cure) model introduced by Yakovlev
et al. (1996) is motivated by cancer tumor kinetics, the biological mechanism underlying the proliferation
and growth of carcinogenic cells. In particular, let N ∼ Poisson

(
φ(x)

)
be the number of carcinogenic

cells affecting a given subject with mean φ(x) = exp(β0 + xTβ). To the ith cell is associated a latent
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event time Ti ≥ 0 representing the duration necessary for the cell to grow to a detectable tumor mass.
Latent event times {T1, . . . ,TN} are assumed to be independently and identically distributed with common
cumulative distribution function F(t) and the observed survival time is defined as T = min{T1, . . . ,TN}.
When a Cox proportional hazards model Cox (1972) is used to model the N conditional latent distributions
F(ti|z) = 1 − S 0(ti)exp(zTγ), i = 1, . . . ,N one can show that the resulting survival function of T is given by
(Tsodikov 1998; Chen et al. 1999)

S p(t|x, z) = exp
(
− φ(x)F(t|z)

)
= exp

(
− exp(β0 + xTβ)

(
1 − S 0(t)exp(zTγ))). (1)

In this model, a subject is cured when N = 0, an event arising with a probability given by P(N = 0 |x, z) =

limt→∞S p(t|x, z) = exp(−φ(x)). Alternative specifications are proposed in the literature to model the distri-
bution of latent event times F(ti), for example Ibrahim et al. (2001) propose a semi-parametric form for the
latent distribution involving a smoothing parameter controling the degree of parametricity in the right tail of
the population survival function, while Zeng et al. (2006) introduce a semi-parametric class of cure models
taking into account a subject-specific frailty. Model (1) can be estimated by maximum likelihood methods
in a frequentist setting (see Tsodikov 2002, 2003). From a Bayesian perspective, Yin and Ibrahim (2005)
assume a piecewise exponential model for the baseline survival function with a tradeoff between model
flexibility and the number of partitions of the time axis. More recently, Bremhorst and Lambert (2016) use
a large number of B-splines to specify the baseline hazard and, following Eilers and Marx (1996), coun-
terbalance the flexibility of the model by using a roughness penalty based on finite differences of adjacent
B-spline coefficients.

The rather complex structure of the posterior distributions in the latter Bayesian frameworks requires
the use of MCMC techniques. For such models, the MCMC toolbox is usually accompanied by a large
computational burden and challenging convergence problems under the original parameterization. A cru-
cial component explaining the inefficiency of rejection sampling techniques is a strong posterior correlation
appearing firstly among latent variables and secondly between latent variables and hyperparameters of the
model, thus having a global impact on convergence speed and autocorrelation. Integrated Nested Laplace
Approximations (INLA) is a sampling-free Bayesian methodology recently introduced in the literature that
allows to obtain marginal posteriors in the class of latent Gaussian models and has been recognized to be an
interesting alternative to standard MCMC methods. In this dimension, Rue et al. (2009) and Martino (2007)
are the pioneering references showing how to perform approximate Bayesian inference in latent Gaussian
models via Laplace approximations.

While INLA has been shown to work well in a large variety of applications like stochastic volatility
models Martino et al. (2011a), generalized dynamic linear models Ruiz-Cárdenas et al. (2012) and spatio-
temporal disease mapping models Schrödle and Held (2011), there seems to be little work related to sur-
vival analysis or penalized B-spline models. Among the contributions on the subject, we can cite Fong et al.
(2010) who combine INLA and O’Sullivan splines in a nonparametric smoothing setting. Martino et al.
(2011b) investigate the use of INLA with the R-INLA package (www.r-inla.org) by considering a Cox
model where the baseline hazard has a parametric or semi-parametric specification. Also, Jiang et al. (2014)
study the effect of environmental radiation on cancer by using a cure fraction mixture survival model with
a Weibull distribution for event times.

We investigate how Laplace approximations can be extended and combined with penalized B-splines in
the context of a semi-parametric promotion time cure model. Bridging the gap between Lapace’s method
and regression splines brings a twofold advantage. First, it provides a fast computational approach to ap-
proximate posterior distributions and second, the spline dimension allows for a flexible specification of
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the baseline distribution yielding smooth estimates of survival quantities. Another crucial point is that in
contrast to the classic INLA approach which focuses mainly on posterior marginal univariate distributions,
our methodology permits to compute reliable approximations to the posterior joint distributions of latent
variables including regression parameters, with the implication that set estimators can be derived even for
complicated functions of latent variables such as the baseline or conditional population survival functions.

Accordingly, the end user will be endowed with a powerful and rapid tool for making inference in the
promotion time cure model. Furthermore, while the code design underlying INLA assumes a one-to-one
connection between data points and a subset of the latent field, implying that the dimension of the latter
grows with the sample size n, our modeling strategy choice is more efficient as it involves a latent field of a
dimension unaffected by the number of observations. Hence, given that the number of B-splines is fixed (to
a large value and counterbalanced by a roughness penalty) in the P-spline approach Eilers and Marx (2010),
the latent field dimension grows only with the number of regressors in the model and not with n.

This manuscript is organized as follows. In Section 2, the Laplace-P-spline promotion time cure model
is defined and the gradient and Hessian of the log-likelihood are computed to obtain a Gaussian approxima-
tion of the conditional posterior distribution of the latent field. A strategy is proposed to explore the posterior
distribution of the hyperparameter vector and the joint posterior of latent field elements are derived. The
construction of credible intervals for the baseline and population survival functions is also addressed here. In
Section 3, the merits of the proposed methodology will be assessed by extensive simulations with different
scenarios regarding the percentages of cured individuals and right censored subjects. Coverage properties
of credible intervals will also be considered. In Section 4, we apply the model to two real datasets and
Section 5 concludes with a discussion.

2. Laplace-P-spline promotion time model

2.1. Flexible modeling of the baseline hazard

Following Rosenberg (1995), the log-hazard corresponding to the baseline survival function S 0(t) in (1)
is specified as a linear combination of cubic B-splines h0(t) = exp

(
θT b(t)

)
, where b(·) = (b1(·), . . . , bK(·))T

is a cubic B-spline basis obtained by taking equidistant knots on the compact set [0, tu], with tu the upper
bound of the follow-up and θ = (θ1, . . . , θK)T is the vector of B-spline coefficients. Under this specification,
the baseline survival function in (1) can be approximated as follows

S 0(t) = exp
(
−

t∫
0

exp
(
θT b(s)

)
ds

)

≈ exp
(
−

j(t)∑
j=1

exp
(
θT b(s j)

)
∆ j

)
, (2)

where the integral (having no analytic solution) is approximated by the rectangle method with [0, tu] parti-
tioned into J (say 300) small equal width intervals, i.e. J j = [ϕ j−1, ϕ j] with 0 = ϕ0 < ϕ1 < · · · < ϕJ = tu,
where s j and ∆ j respectively denote the midpoint and width of J j and j(t) is an index returning the interval
containing t.

2.2. Latent field and priors

The latent field ξ = (θ1, . . . , θK , β0, . . . , βp, γ1, . . . , γl) ∈ RH has dimension H = K + (p + 1) + l and
gathers all the latent variables of the model: it contains the B-spline coefficients

{
θk : k = 1, . . . ,K

}
, the
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regression coefficients
{
βm : m = 0, . . . , p

}
used to model the expected number of carcinogenic cells and

the regression parameters
{
γs : s = 1, . . . , l

}
in the Cox model describing the incubation time of a given

cell. The key idea behind P-splines Eilers and Marx (1996) is to use a fixed large number of B-spline basis
functions and to counterbalance the flexibility by introducing a roughness penalty on finite differences of
adjacent B-spline coefficients. The Bayesian analogue Lang and Brezger (2004) translates the roughness
penalty into a multivariate normal prior distribution for the spline coefficients θ|λ ∼ NK(0, λ−1P−1), with
P = DT

r Dr +εIK where Dr is a (K−r)×K matrix yielding rth order differences when applied on a K−vector,
and λ is a non-negative roughness penalty parameter. For an arbitrary small ε

(
say ε = 10−6), the diagonal

perturbation εIK ensures that P is full rank. Then, the prior for the full latent field given λ can be written as

ξ|λ ∼ NH
(
µξ,Σξ(λ)

)
, Σξ(λ) =

(
λ−1P−1 0

0 Σβ,γ

)
,

where NH(·, ·) denotes a multivariate Gaussian distribution of dimension H, the vector µξ attributes a zero
mean to the B-spline coefficients and a potential informative prior mean on the regression coefficients with
(prior) positive-definite covariance matrix Σβ,γ. Whenever a priori knowledge on central tendency or cor-
relation measures is available for the regression coefficient vector, it can be incorporated into the prior ξ|λ
through the mean and covariance structure. The hyperparameters of the model are given by η = (λ, δ)
as, following Jullion and Lambert (2007), we use a robust specification for the roughness penalty prior
λ|δ ∼ Gamma

(
ν/2, (νδ)/2

)
with an uninformative proper distribution on parameter δ ∼ Gamma(aδ, bδ). The

latter reference shows that when aδ = bδ are set to a small value (say 10−4), the estimated curve is not
sensitive to the choice of ν (here set equal to 3).
2.3. Posterior and Laplace approximation

Let Di = (ti, τi, xi, zi) denote the observables for unit i, with ti the failure or censoring time, τi a di-
chotomous event indicator and xi, zi the covariates. The log-likelihood function of the promotion time

cure model is `(ξ;D) =
n∑

i=1

{
τi log hp(ti|xi, zi) + log S p(ti|xi, zi)

}
, where D =

⋃n
i=1Di and hp(·|x, z) is the

conditional population hazard function, hp(t|x, z) = φ(x) exp(zTγ) S 0(t)exp(zTγ)h0(t). Using the B-spline
specification of the baseline hazard, we can write more compactly `(ξ;D) ≈

∑n
i=1 gi(ξ). The scalar-valued

function gi : RH → R gives the contribution of the ith unit to the log-likelihood and is given by

gi(ξ) = τi
(
β0 + xT

i β + zT
i γ + θT b(ti) − exp(zT

i γ)
j(ti)∑
j=1

exp
(
θT b(s j)

)
∆ j

)
− exp(β0 + xT

i β)
(
1 − exp

(
−

j(ti)∑
j=1

exp
(
θT b(s j)

)
∆ j

)exp(zT
i γ))

.

The first step of our procedure is to derive the Laplace approximation of the conditional posterior
distribution of the latent variables, namely p(ξ|λ,D) ∝ exp

(∑n
i=1 gi(ξ) − 1

2ξ
T Q(λ)ξ + ξT Q(λ)µξ

)
, where

Q(λ) = Σ−1
ξ (λ) is the precision matrix. One major difference with the theoretical set-up described in Rue

et al. (2009) is the dimension of the latent field assumed there to be larger than the number of observations;
it is usually much smaller here with H << n. With non-Gaussian responses, p(ξ|λ,D) is non-Gaussian and
unknown. To make it tractable, we compute a second-order Taylor expansion of gi(ξ) around some point
ξ(0) ∈ RH . As shown in Appendix A, this enables us to obtain a quadratic form in ξ for the log-likelihood
term and thus a Gaussian approximation of the form

p̃G(ξ|λ,D) ∝ exp
(
−

1
2
ξT

(
Q(λ) − ∇2gξ(0)

)
ξ + ξT

(
∇gξ(0) − ∇

2gξ(0)ξ(0) + Q(λ)µξ
))
, (3)
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where ∇gξ(0) and ∇2gξ(0) are the gradient and the Hessian of the log-likelihood function evaluated at ξ(0). The

posterior mean and precision matrix in that approximation are shown to be ξ(1) =
(
Q(λ)−∇2gξ(0)

)−1(
∇gξ(0) −

∇2gξ(0)ξ(0) + Q(λ)µξ
)

and Q(λ)(1) =
(
Q(λ) − ∇2gξ(0)

)
respectively. Next, we repeat the Taylor expansion

around ξ(1) and continue to implement this iterative process in a Newton-Raphson type algorithm to con-
verge towards a Gaussian approximation centered around the posterior mode of p(ξ|λ,D). Note that in each
iteration, the inversion of a large dimensional matrix of the form Q(λ) − ∇2g is required. This is achieved
by Householder transformations (Householder, 1958; Golub and Van Loan, 2012), a numerically stable tool
for matrix inversion that achieves a QR decomposition through a sequence of orthogonal transformations of
the input matrix.

2.4. Exploring the posterior of the hyperparameter vector

The next step consists in exploring the posterior distribution of the hyperparameter vector

p(η|D) ∝
L(ξ;D)p(ξ|λ)p(λ|δ)p(δ)

p(ξ|λ,D)
, (4)

where L(ξ;D) is the likelihood function. In order to avoid identifiability issues, we follow Bremhorst and
Lambert (2016) and fix the last B-spline coefficient ξK = θK to a large value (say 10), denoted c. This forces
the baseline survival function S 0(·) to be virtually zero at the end of the follow-up. Taking this constraint
into account and using the Gaussian approximation scheme proposed in Section 2.3, we can approximate
(4) as follows

p̃(η|D) =
L(ξ;D)p(ξ|λ)p(λ|δ)p(δ)|ξ=ξ∗cc(λ)

p̃G(ξ−K |ξK = c, λ,D)|ξ−K=ξ∗c(λ)
, (5)

where ξ∗c(λ) ∈ RH−1 is the conditional posterior mean of the Gaussian approximation given ξK = c, and
ξ∗cc(λ) ∈ RH corresponds to the vector ξ∗c(λ) to which we add the constraint c at position K. These two
quantities are derived in Appendix B. All the factors in (5) have mathematically closed forms and can be
extensively written as

p̃(η|D) ∝ exp
( n∑

i=1

gi(ξ∗cc(λ)) −
1
2

(
ξ∗cc(λ) − µξ

)T
Q(λ)

(
ξ∗cc(λ) − µξ

))
|Q(λ)|

1
2 |Σ∗c(λ)|

1
2

× λ
ν
2−1δ

ν
2 +aδ−1 exp

(
− δ(bδ + νλ/2)

)
. (6)

Note that δ can be integrated out from (6) to obtain the following approximated marginal posterior density
of the penalty parameter

p̃(λ|D) ∝ exp
( n∑

i=1

gi(ξ∗cc(λ)) −
1
2

(
ξ∗cc(λ) − µξ

)T
Q(λ)

(
ξ∗cc(λ) − µξ

))
|Q(λ)|

1
2 |Σ∗c(λ)|

1
2λ

ν
2−1

(
bδ + νλ/2

)−(ν/2+aδ)
. (7)

In addition, the conditional posterior of δ is given by δ|λ,D ∼ Gamma(ν/2 + aδ, bδ + νλ/2) and does not
directly depend on the data. Next, our aim is to find a sub-region in the domain of p̃(η|D) that supports
most of the posterior probability mass. In that endeavor, we use an equidistant grid ℵλ = {λ j}

m1
j=1 of size

m1 = 10 in the domain of p̃(λ|D) that supports approximately 95% of the posterior mass. Then, for each
point λ j ∈ ℵλ, we construct a regular grid of length m2 = 5 with starting and ending values corresponding
to the 2.5th and 97.5th percentiles respectively of the Gamma(ν/2+aδ, bδ+νλ j/2) distribution. This enables
us to construct a grid ℵλ,δ =

(
λ(m), δ(m))M

m=1 ∈ R2
++ with M = m1 × m2 points that will be used to compute

approximations to the posterior distributions of the latent field elements.
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2.5. Posterior multivariate distribution of the latent field
In Sections 2.3 and 2.4, we have seen that the conditional posterior distribution of the latent field for a

given ξK = c and λ can be approximated by a Gaussian density. By abuse of notation we have p̃G(ξ−K |ξK =

c, λ,D) = p̃G(ξ−K |λ,D) = NH−1
(
ξ∗c(λ),Σ∗c(λ)

)
.

The posterior joint distribution of the latent field ξ−K can be written as

p(ξ−K |D) =

∫ +∞

0

∫ +∞

0
p(ξ−K , λ, δ|D) dλ dδ

=

∫ +∞

0

∫ +∞

0
p(ξ−K |λ,D) p(λ, δ|D) dλ dδ. (8)

Given our grid coordinates and their associated weights ∆m = ∆λ(m) × ∆δ(m) being the area of the parallelo-
grams in the grid, we can approximate (8) by numerical integration

p̃(ξ−K |D) =
∑

m

p̃G(ξ−K |λ
(m),D) p̃(λ(m), δ(m)|D) ∆m. (9)

The weights of the Gaussian densities in the sum can be normalized

ωm =
p̃(λ(m), δ(m)|D) ∆m∑
m p̃(λ(m), δ(m)|D) ∆m

,

to improve the approximation to the approximate joint posterior distribution of ξ−K , yielding

p̂(ξ−K |D) =
∑

m

ωm NH−1
(
ξ∗c(λ(m)),Σ∗c(λ(m))

)
. (10)

Equation (10) is a multivariate Gaussian mixture density with mean and covariance matrix analytically
known to be (see e.g. Frühwirth-Schnatter 2006) E(ξ−K |D) =

∑
m ωmξ

∗
c(λ(m)) and V(ξ−K |D) =

∑
m ωmΣ∗c(λ(m))

+
∑

m ωm
(
ξ∗c(λ(m)) − E(ξ−K |D)

)(
ξ∗c(λ(m)) − E(ξ−K |D)

)T
, respectively. These quantities can be used to com-

pute pointwise estimates and approximate credible intervals for latent field elements. In the next section we
show how to derive credible intervals for complex functionals of the latent field.

2.6. Credible intervals
The flexibility of the Laplace-P-spline model can be exploited to compute pointwise credible intervals

for complicated functions of the latent field and thus go beyond a marginal analysis. Construction of joint
credible bands for subsets of the latent field is also discussed in Sørbye and Rue (2011). In this section, we
focus on the derivation of pointwise credible intervals for the baseline survival function S 0(t) and for the
population survival function given in (1). The “Delta method” will serve as the main mechanism to derive
approximate credible intervals. Using a log(− log(·)) transform of the baseline survival function, we obtain

G0(θc|t) = log
(
− log S 0(t)

)
= log

( j(t)∑
j=1

exp
(
θT b(s j)

)
∆ j

)
, (11)

where θc = (θ1, . . . , θK−1) and θK = c as the last B-spline coefficient is fixed for identifiability purposes in
the cure promotion time model. Using the strategy presented in Section 2.3, one has a normal approximation
to the conditional posterior of ξ, namely p̃G(ξ|λ,D) = NH

(
ξ∗(λ),Σ∗(λ)

)
. Taking into account the constraint

on the last B-spline coefficient θK = c, we recover the following conditional posterior distribution for the
vector θc,

p̃G(θc|λ,D) = NK−1
(
µθc(λ),Σθc(λ)

)
, (12)

where µθc(λ) = (ξ∗c,1(λ), . . . , ξ∗c,K−1(λ)) and Σθc(λ) is a K − 1 dimensional square matrix corresponding to
the first K − 1 rows and columns of Σ∗c(λ).
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Using similar techniques as in Section 2.5, we can show that the approximated joint posterior distribution
for the spline coefficients is

p̂(θc|D) =
∑

m

ωmNK−1
(
µθc(λ(m)),Σθc(λ(m))

)
. (13)

We thus recover in (13) a multivariate Gaussian mixture for which the mean and covariance matrix are
analytically known (see Section 2.5). Let us denote by θm

c,0 = µθc(λ(m)) the mean of mixture component m.
Using a first-order Taylor expansion of G0(·|t) around θm

c,0, one gets

G0,m(θc|t) ≈ G0(θm
c,0|t) + (θc − θm

c,0)T∇θcG0(θm
c,0|t), (14)

where ∇θcG0(·|t) denotes the gradient of G0 with respect to θc. Combining (13) with (14) suggests to approx-
imate the marginal posterior of G0,m(θc|t) by the following univariate normal distribution (G0,m(θc|t)|D) ∼
N1

(
G0(θm

c,0|t),∇θcG0(θm
c,0|t)

T Σθc(λ(m))∇θcG0(θm
c,0|t)

)
. Accordingly, the posterior density of G0(θc|t) across

all mixture components can in turn be approximated by the mixture of Gaussian densities
(
G0(θc|t)|D

)
≈∑

m ωmN1
(
G0(θm

c,0|t),∇θcG0(θm
c,0|t)

T Σθc(λ(m))∇θcG0(θm
c,0|t)

)
. A (1 − α) × 100% credible interval can be ob-

tained numerically by finding C such that∫
C

p
(
G0(θc|t)|D

)
dG0(θc|t) = 1 − α. (15)

To construct credible intervals for the population survival function given in (1) with a given profile of
covariates, the procedure is the same except that the function of interest has the following form after a
log(− log(·)) transform

G0(ξc|x, z, t) = β0 + xTβ + log
(
1 − exp

(
−

j(t)∑
j=1

exp
(
θT b(s j)

)
∆ j

)exp(zTγ))
,

where ξc = (θ1, . . . , θK−1, β0, . . . , βp, γ1, . . . , γl). Using a first-order Taylor expansion of G0 about the mean
of each mixture component ξm

c,0 = ξ∗c(λ(m)), it can be shown using the same arguments as before that(
G0(ξc|x, z, t)|D

)
≈

∑
m

ωmN1
(
G0(ξm

c,0|x, z, t),∇ξc
G0(ξm

c,0|x, z, t)
T Σ∗c(λ(m))∇ξc

G0(ξm
c,0|x, z, t)

)
. (16)

2.7. Cure prediction
Another quantity of interest in the promotion time cure model is the probability that a subject is cured

given that (s)he has survived until a certain point in time t, say. Mathematically, one has

P(T = +∞|T ≥ t, x, z) = exp
(
− exp(β0 + xTβ)S 0(t)exp(zTγ)

)
. (17)

Again, taking a log(− log(·)) transform and using a first-order Taylor expansion, it can be shown that the
resulting approximation to the posterior distribution is analogous to (16), the only difference being in the
gradient. All the gradients required to compute the credible intervals given above have been computed with
analytic forms provided in Appendix C.

3. Simulation study
The aim of this section is to implement a simulation study to assess the statistical performance of the

Laplace-P-spline approach (cf. Section 2) in the promotion time cure model. The simulation setting is
exactly the same as in Bremhorst and Lambert (2016) when the follow-up is sufficiently long except that
we choose different cure and censoring rates, as well as more B-splines in the basis as enabled by the
numerical efficiency of our method. Our methodology can also be applied when the follow-up period is not
sufficiently long, provided that we account for identifiability issues. Indeed, as suggested in Bremhorst and
Lambert (2016), when the follow-up of any susceptible subject is not long enough to observe its failure,
then covariate effects are identifiable under the condition that the covariates are not simultaneously present
in the probability to be cured and in the proportional hazards model parts.

7



The regressors consist in normal variates xi1 = zi1 ∼ N(0, 1), i = 1, . . . , n and discrete covariates
following a Bernoulli distribution xi2 = zi2 ∼ Bern(0.5), i = 1, . . . , n to which we subtract 0.5 to obtain
mean-centered covariates. The baseline distribution to generate latent event times is chosen to be a Weibull
with mean 8 and variance 17.47. The regression coefficients in the Cox PH model are set to γ1 = 0.40
and γ2 = −0.40, while the coefficients β0, β1 and β2 are calibrated in order to get two different percentages
for the proportion of cured subjects, namely around 20% and 30%. Finally, censoring is either governed
by a uniform distribution on [20, 25] or by a Weibull with shape parameter 3 and scale parameter 25. We
redirect the reader to Bremhorst and Lambert (2016), Section 5.1 for more details concerning the generation
of latent event times and censoring times. We use the Laplace-P-spline model with the above covariates and
25 cubic B-splines in [0, tu] where the upper bound of the follow-up is fixed to tu = 25. A third order
penalty on the coefficients of adjacent B-splines is used to counterbalance their flexibility. Furthermore, the
last B-spline coefficient is fixed to θK = 10 to translate the “sufficiently long follow-up hypothesis” in cure
models, thereby avoiding identifiability problems. The simulations were performed on S = 500 replicates
of sample size n = 300 and n = 600 with results reported in Tables 1 and 2. We report the integrated
mean square error (IMSE), the bias, the empirical standard error (ESE) and the root mean square error
(RMSE) of the posterior (mixture) mean taken as a pointwise estimator of the regression coefficients in the
cure probability and survival parts. The coverage probabilities of the 90% and 95% credible intervals are
also given. We observe a negligible bias across the different cure and censoring settings. In addition, the
estimated coverage probabilities are reasonably close to the nominal values of 90% and 95% in each setting.
We also notice that, as expected, the ESE and RMSE decrease with sample size.

Table 1. Simulation results for S = 500 replicates and sample size n = 300. Setting 1: Censor-
ing times generated from a uniform U(20, 25) distribution; Setting 2: Censoring times generated
from a Weibull(3, 25) distribution. Cure fraction is in column 1, true parameter values in column 4.

Cure Setting IMSE Parameters Bias CV90% CV95% ESE RMSE
β0 = 0.75 0.022 90.4 95.4 0.101 0.103
β1 = 0.80 0.035 89.8 94.0 0.119 0.124

1 0.023 β2 = −0.50 -0.039 89.4 93.8 0.175 0.179
γ1 = 0.40 -0.056 89.0 93.6 0.146 0.156
γ2 = −0.40 0.050 89.0 93.2 0.218 0.223

20% β0 = 0.75 0.016 90.8 95.4 0.112 0.113
β1 = 0.80 0.045 91.8 96.0 0.137 0.144

2 0.030 β2 = −0.50 -0.036 93.0 97.2 0.200 0.203
γ1 = 0.40 -0.071 90.4 93.6 0.173 0.187
γ2 = −0.40 0.047 92.4 97.0 0.248 0.252
β0 = 0.30 0.010 89.4 94.6 0.092 0.092
β1 = 1.00 0.034 89.6 95.0 0.123 0.127

1 0.017 β2 = −0.75 -0.015 89.8 94.2 0.173 0.173
γ1 = 0.40 -0.057 88.6 94.6 0.143 0.154
γ2 = −0.40 0.042 88.8 95.8 0.210 0.214

30% β0 = 0.30 -0.001 91.2 94.8 0.103 0.103
β1 = 1.00 0.047 91.2 95.6 0.136 0.143

2 0.025 β2 = −0.75 -0.032 91.2 96.8 0.194 0.197
γ1 = 0.40 -0.072 89.0 94.0 0.175 0.189
γ2 = −0.40 0.038 92.6 95.8 0.242 0.245
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Table 2. Simulation results for S = 500 replicates and sample size n = 600. Setting 1: Censor-
ing times generated from a uniform U(20, 25) distribution; Setting 2: Censoring times generated
from a Weibull(3, 25) distribution. Cure fraction is in column 1, true parameter values in column 4.

Cure Setting IMSE Parameters Bias CV90% CV95% ESE RMSE
β0 = 0.75 0.016 88.4 94.2 0.069 0.071
β1 = 0.80 0.029 91.0 95.4 0.076 0.081

1 0.010 β2 = −0.50 -0.016 91.0 94.2 0.119 0.119
γ1 = 0.40 -0.054 87.4 93.2 0.099 0.112
γ2 = −0.40 0.039 92.0 95.8 0.143 0.148

20% β0 = 0.75 0.009 91.6 96.6 0.074 0.074
β1 = 0.80 0.033 89.2 94.8 0.099 0.104

2 0.014 β2 = −0.50 -0.020 89.6 95.6 0.140 0.141
γ1 = 0.40 -0.054 88.0 94.4 0.120 0.131
γ2 = −0.40 0.037 89.6 95.6 0.173 0.177
β0 = 0.30 0.002 90.0 95.0 0.064 0.064
β1 = 1.00 0.021 90.6 94.0 0.087 0.089

1 0.010 β2 = −0.75 -0.013 90.0 94.6 0.123 0.123
γ1 = 0.40 -0.037 88.6 93.8 0.104 0.110
γ2 = −0.40 0.028 90.2 95.4 0.147 0.149

30% β0 = 0.30 0.001 90.6 94.8 0.074 0.074
β1 = 1.00 0.030 90.0 95.2 0.099 0.104

2 0.015 β2 = −0.75 -0.014 90.8 95.8 0.140 0.140
γ1 = 0.40 -0.055 85.8 92.6 0.125 0.137
γ2 = −0.40 0.030 89.4 94.0 0.179 0.181

Coverage estimates of 90% credible intervals for the baseline survival function are reported in Table 3
with an asterisk as superscript when the estimated coverage is incompatible with the nominal value at the
95% level. Globally, the estimated coverage probability across all the quantiles is close to the nominal value
of 90% in the different settings. Furthermore, the poor coverage that is observed in the 5% quantile when
n = 300 improves with growing sample size.

Table 3. Coverage estimates of 90% credible intervals using first-order Taylor approximations for
the baseline survival function at selected quantiles (5%, 15%, 35%, 50%, 65%, 75%, 85%, 95%) of
T under the promotion time cure model. Setting 1: Censoring times generated from a uniform
U(20, 25) distribution; Setting 2: Censoring times generated from a Weibull(3, 25) distribution.

n=300 Cure Cens. Setting 5% 15% 35% 50% 65% 75% 85% 95%
20% 20% 1 90.6 91.6 89.8 88.2 89.0 88.4 88.6 88.0
20% 23% 2 87.8 91.0 88.4 89.0 89.4 91.2 90.4 92.0
30% 30% 1 87.8 89.0 91.0 91.4 90.6 90.0 88.2 87.2∗

30% 33% 2 82.6∗ 88.6 88.4 89.0 88.6 89.4 88.0 90.8
n=600 Cure Cens. Setting 5% 15% 35% 50% 65% 75% 85% 95%

20% 20% 1 90.4 92.8∗ 88.4 90.4 91.2 91.4 88.8 88.4
20% 23% 2 87.6 89.0 88.8 89.8 87.0∗ 87.8 85.2∗ 88.0
30% 30% 1 91.8 92.6 90.0 89.8 91.0 91.8 90.2 90.4
30% 33% 2 86.6∗ 91.0 88.8 87.2∗ 86.4∗ 87.6 88.2 88.6
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In Fig.1, the solid line is the target baseline survival distribution for the susceptible corresponding to
the Weibull with mean 8 and standard deviation 4.18. The gray curves are estimates of S 0(t) under each
replicate and the dashed curve corresponds to the pointwise median of the 500 estimated baseline survival
functions. Globally, we can say that the Laplace-P-spline approach provides accurate estimates of the
baseline distribution with little variability around the target.
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Fig. 1. Estimation of the baseline distribution S 0(t) for S = 500 replications, (one gray curve per dataset)
and sample size n = 600. In the left column the censoring rate is governed by aU(20, 25) distribution and
in the right column it is governed by aWeibull(3, 25) distribution. The solid line is the true function and
the dashed line is the pointwise median of the 500 estimated curves.

In Table 4, we report the coverage estimates of 90% credible intervals for the population survival func-
tion at selected quantiles with the continuous covariate fixed to 0.1 and the binary covariate to 0.5. Again,
the constructed credible intervals show good performances even for the 5% and 95% quantiles.

Table 4. Coverage estimates of 90% credible intervals using first-order Taylor approximations for
the population survival function at quantiles (5%, 15%, 35%, 50%, 65%, 75%, 85%, 95%) of T under
the promotion time cure model when x = 0.1 and z = 0.5. Setting 1: Censoring times generated
from a uniform U(20, 25) distribution; Setting 2: Censoring times from a Weibull(3, 25) distribution.

n=300 Cure Cens. Setting 5% 15% 35% 50% 65% 75% 85% 95%
20% 20% 1 89.8 88.4 90.2 91.8 91.8 89.8 88.6 89.6
20% 23% 2 87.6 89.2 90.0 90.8 91.2 90.8 90.6 92.8∗

30% 30% 1 90.8 90.2 89.0 89.4 90.8 92.2 91.0 90.8
30% 33% 2 90.2 89.4 89.6 89.6 91.0 90.6 90.2 91.4
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For the sake of assessing the algorithmic performance of our approach, we implement a computational
speed comparison with a MCMC algorithm. More precisely, the competitor is taken to be a Metropolis-
within-Gibbs algorithm with blockwise sampling for which we compute a chain of length 23000 and a
burnin of length 3000 to explore the joint posterior of latent field variables. Under the same simulation
settings, we observe a computational speed-up of a factor 15 with the Laplace-P-spline approach. It is also
worth noting that most of the computational intensive tasks in our MCMC algorithm are written in Fortran
language and called via R, while our Laplace-P-spline algorithm is exclusively coded in R language, such
that the mentioned computational gain is conservative and under-evaluated.

4. Real data analysis

4.1. Application to malignant melanoma data

In this section, we illustrate the Laplace-P-spline methodology with the analysis of a malignant melanoma
survival dataset Andersen et al. (1993). The dataset concerns 205 patients affected by skin cancer and oper-
ated for malignant melanoma at Odense University Hospital in Denmark during 1962-1977. The response
of interest is the time (in years) elapsed between operation and death from malignant melanoma. The co-
variates are age at operation (in years), gender (1=M, 0=F), tumor thickness (in mm) and a dichotomous
factor indicating presence of ulceration (1=presence, 0=absence) at baseline. Among the 205 patients,
57 died from malignant melanoma while the remaining 148 are right censored. This dataset was first in-
vestigated using single-factor analysis techniques (Drzewiecki et al. 1980b,a) and a Cox regression model
Drzewiecki and Andersen (1982). More recently, Li and Lin (2009) used the melanoma dataset to illustrate
a semi-parametric mixture model, while Chyong-Mei and Chen-Hsin (2016) implemented it to highlight a
heteroscedastic transformation cure model. We propose to use the promotion time approach in which the
covariates will simultaneously affect the probability of being cured as well as the time to event for suscepti-
ble subjects. The use of the same covariates in the two parts of the model is not problematic when it comes
to inference as a plateau is observed in the Kaplan-Meier curve, suggesting that the follow-up is sufficiently
long.

We use 50 B-splines on [0, tu] and follow a common choice in the literature to specify tu as the largest
observed survival time (here tu = 15.236). The algorithm translated in pure R code takes approximately 15
seconds to obtain estimates for all B-spline coefficients, the standard deviation (sdpost) and 95% quantile-
based credible intervals for the regression coefficients. The first estimation results (not detailed here) suggest
that ulceration has a significant effect on the probability to be cured, while tumor thickness significantly af-
fects the time to event for susceptible subjects. The model is then estimated a second time (see Table 5)
by omitting Age and Gender as they have no significant effect in the model (conditionally on treatment and
ulceration). The results suggest that ulceration has a negative effect on the probability to be cured. Further-
more, tumor thickness at time of surgery is an important factor affecting the time necessary to detect a new
tumor. In fact, a large tumor at baseline may already be a sign of metastatic occurrence such that after an
incomplete removal of cancer cells, a relapse is more likely to occur in a shorter period of time.

Our analysis also investigates to what extent ulceration affects the probability that a patient is cured
given that (s)he has survived until a given time reference t. This conditional probability is estimated in
Table 6 for a median value of tumor thickness (1.94 mm) and approximate 90% credible intervals are also
provided. Fig. 2 gives a graphical representation of the pointwise and set estimates for these probabilities.
We see that in presence of an ulcer, the estimated probability that a patient is cured given that (s)he has
survived until t is smaller than the estimate corresponding to ulcer absence, regardless of the reference time
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values. In addition, we see that the estimated probabilities increase with t, simply corroborating the idea
that the longer a patient has survived (with or without an ulcer), the larger his/her chances of being cured.

Table 5. Posterior mixture mean for each regression parameter using 50 B-splines for the base-
line log-hazard in the reduced model, the 95% quantile-based approximate credible intervals (CI)
and the posterior standard deviation. φ(x) is minus the log of the probability to be cured and
1 − S 0(t)exp(zTγ) represents the time necessary for a cell to produce a detectable tumor mass.

Parameters Estimates CI 95% sdpost

Intercept -1.589 [-2.226; -0.948] 0.326
φ(x) Thickness 0.067 [-0.010; 0.142] 0.039

Ulcer 1.096 [ 0.370; 1.819] 0.370
Thickness 0.111 [ 0.017; 0.201] 0.047

1 − S 0(t)exp(zTγ) Ulcer 0.327 [-0.619; 1.278] 0.484

Table 6. Pointwise estimates and approximate 90% credible intervals for the
conditional probability to be cured given that T ≥ t for t ∈ {2, 4, 6, 8} (in
years) with and without ulceration and for a median value of tumor thickness.

Probability to be cured given that T≥ t
No Ulceration Ulceration

t Estimates CI 90% Estimates CI 90%
2 0.812 [0.697; 0.887] 0.538 [0.404; 0.676]
4 0.855 [0.735; 0.924] 0.631 [0.491; 0.799]
6 0.904 [0.773; 0.961] 0.745 [0.596; 0.912]
8 0.944 [0.793; 0.986] 0.849 [0.690; 0.974]
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Fig. 2. Evolution over time t of the probability to be cured P(T = +∞|T ≥ t,TT = 1.94) for a median
tumor thickness (TT) represented by the solid line for two scenarios, no ulceration (left) and ulceration
(right). The gray surface represents the approximate 90% pointwise credible intervals.

4.2. Application to oropharynx carcinoma data
We implement a second data analysis using data from Kalbfleisch and Prentice (2012) on oropharynx

carcinoma. The dataset comes from a clinical trial achieved by the Radiation Therapy Oncology group
involving patients from six clinics suffering from squamous cell carcinoma located in different sites of
the mouth and throat. There are 195 patients randomly assigned in two arms at the moment of entry in
the study: (1) radiation therapy alone (standard) or (2) radiation therapy with a chemotherapeutic agent
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(special). To highlight the use of our model, we focus on 130 patients (among which 38 are censored) with
cancer located in the pharyngeal tongue and tonsillar fossa part of the mouth. We retain the covariates Age,
Sex (1=M, 0=F), Treatment (1=special or 0=standard) and tumor staging (Tumor) for explaining survival
times. For tumor staging, we follow Lopes and Bolfarine (2012) and categorize the variable as Tumor=0 if
primary tumor and Tumor=1 if massive tumor. As in the previous application, we use 50 B-splines in the
interval ranging from 0 to the largest observed survival time measured in years (4.99).

The main objective of this analysis is to assess the effect of the two types of treatments on survival
times of patients accounting for tumor staging. The estimated Kaplan-Meier curve given in Fig. 3 (left
panel) shows a plateau, indicating the presence of a cured fraction and thus justifying our choice to let the
covariates influence jointly the probability to be cured and the time to event for susceptible patients. In
Table 7, we report the posterior mixture mean, the 90% quantile-based approximate credible interval and
the posterior standard deviation. We see that Tumor is the only variable having a negative and significant
effect on the probability to be cured, such that presence of a massive tumor decreases the chances of being
cured from oropharynx cancer. In addition, Treatment has a significant impact on a recurrence timing, but
not on the probability of its occurence.

Table 7. Posterior mixture mean, 90% quantile-based approximate credible interval (CI)
and posterior standard deviation for each regression parameter of the promotion time model.

Parameters Estimates CI 90% sdpost

Intercept -0.323 [-1.436; 0.788] 0.676
φ(x) Age 0.008 [-0.010; 0.025] 0.011

Sex 0.291 [-0.148; 0.727] 0.266
Tumor 0.510 [ 0.020; 0.998] 0.297
Treatment -0.315 [-0.733; 0.101] 0.253
Age 0.006 [-0.012; 0.022] 0.010

1 − S 0(t)exp(zTγ) Sex -0.704 [-1.253; -0.156] 0.334
Tumor 0.356 [-0.321; 1.031] 0.411
Treatment 0.763 [ 0.231; 1.292] 0.323

In Fig. 3 (right panel), we show the estimated population survival functions when the model is estimated
without Age and Sex and by only accounting for the effects of Tumor and Treatment on, respectively, the
cancer recurrence probability and on its timing for susceptible subjects. Whether we consider a standard or
special treatment, we see that the risk of cancer recurrence only changes with tumor status, with a higher
risk when a massive tumor is present as compared to a primary tumor. In addition, we see that the type of
treatment mainly impacts the speed at which the recurrence arises for susceptible patients.

Finally, Fig. 4 compares the estimated population survival functions obtained with the Laplace-P-
spline model (blue curve) against Kaplan-Meier curves (in black) for each tumor staging and treatment
configuration. In each situation, the Laplace-P-spline model provides survival curves that appear to be
appropriate smoothed versions of the Kaplan-Meier estimates.

5. Discussion

In this paper, we introduced a novel methodology for fast Bayesian inference in semi-parametric cure
survival models by coupling P-splines with Laplace approximations. Our approach opens up promising per-
spectives for inference in cure survival models as it enables to obtain pointwise and set estimators for non-
trivial functions of latent variables with a drastic computational speed-up as compared to existing MCMC
methods.
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Fig. 3. (Left panel) Kaplan-Meier estimated curve from the oropharynx dataset. A cross indicates a
censored patient. (Right panel) Estimated population survival functions for different tumor-treatment con-
figurations.

Even though the Laplace approximation mechanisms presented in this work share some similarities with
the classic INLA approach Rue et al. (2009), our methodology is sharply contrasted with the latter in many
respects. In particular, our modeling strategy involves a specification of the prior of the roughness penalty
parameter that is robust to the choice of hyperparameters Jullion and Lambert (2007). In the standard INLA
approach, that concern is not addressed with the implication that posterior estimation can be sensitive to-
wards the hyperparameter prior chosen by the user. In addition, our work goes beyond the treatment of
univariate posterior marginal distributions by deriving reliable approximations to the joint posterior distri-
butions of latent variables for which the mean and covariance matrix have known analytic forms.

Another major difference is that the dimension of our latent field only grows with the number of re-
gressors and not with sample size, impacting directly the underlying algorithmic efficiency when dealing
with large datasets. A practical limitation may arise when dealing with a hyperparameter vector of large
dimension. This might be the case for instance in additive regression models, where the number of rough-
ness penalty parameters is equal to the number of smooth functions to be estimated, implying a much larger
computational cost for the grid strategy recommended in Section 2.4. However, even for a large number of
hyperparameters, we expect our approach to be much faster than existing MCMC techniques, which would
require long computation times in such situations. A future research direction would be to explore efficient
techniques to deal with models involving a large-dimensional hyperparameter vector. We also plan to extend
our methodology to the class of mixture cure survival models, to additive models and to multi-dimensional
smoothing.
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d’attraction interuniversitaires (PAI P7/06) for funding the project. The authors also thank Vincent Bremhorst
for his perceptive and valuable comments.

14



0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Primary tumor and standard treatment

Time (in years)

E
st

im
at

ed
 p

op
ul

at
io

n 
su

rv
iv

al

Estimated pop. survival 

Kaplan−Meier

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Primary tumor and special treatment

Time (in years)
E

st
im

at
ed

 p
op

ul
at

io
n 

su
rv

iv
al

Estimated pop. survival

Kaplan−Meier

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Massive tumor and standard treatment

Time (in years)

E
st

im
at

ed
 p

op
ul

at
io

n 
su

rv
iv

al

Estimated pop. survival

Kaplan−Meier

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Massive tumor and special treatment

Time (in years)

E
st

im
at

ed
 p

op
ul

at
io

n 
su

rv
iv

al

Estimated pop. survival 

Kaplan−Meier

Fig. 4. Estimated population survival functions from the Laplace-P-spline model (blue) versus Kaplan-
Meier curves (black) and their 95% confidence interval (dashed) for different tumor status and treatment.

Conflict of interest

The authors declare no conflict of interests.

Appendix A. Taylor expansion of gi(ξ) for Laplace approximation

The first step is to derive the Gaussian approximation of p(ξ|λ,D) around its mode. The latter posterior
density is written as

p(ξ|λ,D) ∝ L(ξ;D)p(ξ|λ)

∝ exp
(
`(ξ;D) −

1
2
ξT Q(λ)ξ + ξT Q(λ)µξ

)
∝ exp

( n∑
i=1

gi(ξ) −
1
2
ξT Q(λ)ξ + ξT Q(λ)µξ

)
. (18)
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When the data are Gaussian, p(ξ|λ,D) is also Gaussian but in practice we may not be restricted to Gaussian
data and more complex distribution patterns can appear for the conditional posterior of the latent field. To
make p(ξ|λ,D) tractable, the idea is to use a second-order Taylor approximation of gi(ξ) around a point
ξ(0) ∈ RH as follows

gi(ξ) ≈ gi(ξ(0)) + (ξ − ξ(0))T∇gi(ξ)|ξ=ξ(0) +
1
2

(ξ − ξ(0))T∇2gi(ξ)|ξ=ξ(0)(ξ − ξ(0)), (19)

where the gradient and Hessian of gi(ξ) are given by

∇gi(ξ)|ξ=ξ(0) =



∂
∂θ1

gi(ξ)
...

∂
∂θK

gi(ξ)
∂
∂β0

gi(ξ)
...

∂
∂βp

gi(ξ)
∂
∂γ1

gi(ξ)
...

∂
∂γl

gi(ξ)


ξ=ξ(0)

∇2gi(ξ)|ξ=ξ(0) =



∂2

∂θ∂θT gi(ξ)︸        ︷︷        ︸
K×K

∂2

∂θ∂βT gi(ξ)︸        ︷︷        ︸
K×(p+1)

∂2

∂θ∂γT gi(ξ)︸        ︷︷        ︸
K×l

∂2

∂β∂θT gi(ξ)︸        ︷︷        ︸
(p+1)×K

∂2

∂β∂βT gi(ξ)︸        ︷︷        ︸
(p+1)×(p+1)

∂2

∂β∂γT gi(ξ)︸        ︷︷        ︸
(p+1)×l

∂2

∂γ∂θT gi(ξ)︸        ︷︷        ︸
l×K

∂2

∂γ∂βT gi(ξ)︸        ︷︷        ︸
l×(p+1)

∂2

∂γ∂γT gi(ξ)︸         ︷︷         ︸
l×l


ξ=ξ(0)

.

5.1. Computation of the gradient

For the sake of avoiding heavy notation, we define the following scalar quantities

j(ti)∑
j=1

h0(s j)∆ j := ω0i;
j(ti)∑
j=1

h0(s j)bk(s j)∆ j := ωk
0i;

j(ti)∑
j=1

h0(s j)bk(s j)bl(s j)∆ j := ωkl
0i.

Deriving with respect to the B-spline coefficients gives us

∂

∂θk
gi(ξ) = τi

(
bk(ti) − exp(zT

i γ)
j(ti)∑
j=1

h0(s j)bk(s j)∆ j

)

+ exp(β0 + xT
i β) exp(zT

i γ) exp
(
−

j(ti)∑
j=1

h0(s j)∆ j

)exp(zT
i γ)−1

× exp
(
−

j(ti)∑
j=1

h0(s j)∆ j

)(
−

j(ti)∑
j=1

h0(s j)bk(s j)∆ j

)

= τi

(
bk(ti) − exp(zT

i γ)
j(ti)∑
j=1

h0(s j)bk(s j)∆ j

)

− exp(β0 + xT
i β + zT

i γ) exp
(
−

j(ti)∑
j=1

h0(s j)∆ j

)exp(zT
i γ)( j(ti)∑

j=1

h0(s j)bk(s j)∆ j

)
,

16



so finally we have

∂

∂θk
gi(ξ) = τi

(
bk(ti) − exp(zT

i γ)ωk
0i

)
− exp(β0 + xT

i β + zT
i γ) exp

(
− ω0i

)exp(zT
i γ)ωk

0i, k = 1, . . . ,K.

The derivatives with respect to the β coefficients are

∂

∂βm
gi(ξ) = τixim − exp(β0 + xT

i β)
(
1 − exp

(
− ω0i

)exp(zT
i γ)

)
xim, m = 0, . . . , p with xi0 = 1.

To obtain the derivatives with respect to the γ coefficients, we will use the rule

d
dx

au(x) = au(x)log(a)
d
dx

u(x), a > 0.

∂

∂γs
gi(ξ) = τi

(
zis − exp(zT

i γ)zisω0i

)
+ exp(β0 + xT

i β)exp
(
− ω0i)exp(zT

i γ)( − ω0i
)
exp(zT

i γ)zis

and more compactly

∂

∂γs
gi(ξ) = τizis(1 − exp(zT

i γ)ω0i) − exp(β0 + xT
i β + zT

i γ)exp
(
− ω0i

)exp(zT
i γ)ω0izis, s = 1, . . . , l.

5.2. Computation of the Hessian
To compute the Hessian, we require the block matrices given below. Blocks 21, 31 and 32 are obtained by
transposing blocks 12, 13 and 23.

Block11 :
∂2

∂θk∂θl
gi(ξ) k = 1, . . . ,K l = 1, . . . ,K.

Block12 :
∂2

∂θk∂βm
gi(ξ) k = 1, . . . ,K m = 0, . . . , p.

Block13 :
∂2

∂θk∂γs
gi(ξ) k = 1, . . . ,K s = 1, . . . , l.

Block22 :
∂2

∂βm∂βl
gi(ξ) l = 0, . . . , p m = 0, . . . , p.

Block23 :
∂2

∂βm∂γs
gi(ξ) m = 0, . . . , p s = 1, . . . , l.

Block33 :
∂2

∂γs∂γv
gi(ξ) s = 1, . . . , l v = 1, . . . , l.

Block 11

∂2

∂θk∂θl
gi(ξ) = τi

(
− exp(zT

i γ)ωkl
0i

)
− exp(β0 + xT

i β + zT
i γ)

×

(
exp(zT

i γ)exp
(
− ω0i

)exp(zT
i γ)−1exp

(
− ω0i

)(
− ωl

0i)ω
k
0i + exp

(
− ω0i)exp(zT

i γ)ωkl
0i

)
and more compactly for k = 1, . . . ,K and l = 1, . . . ,K we have

∂2

∂θk∂θl
gi(ξ) = −τi exp(zT

i γ)ωkl
0i + exp(β0 + xT

i β + zT
i γ) exp

(
− ω0i

)exp(zT
i γ)(exp(zT

i γ)ωl
0iω

k
0i − ω

kl
0i
)
.
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Block 12

∂2

∂θk∂βm
gi(ξ) = −exp(β0 + xT

i β + zT
i γ) exp

(
− ω0i

)exp(zT
i γ)ωk

0ixim, k = 1, . . . ,K m = 0, . . . , p, xi0 = 1.

Block 13

∂2

∂θk∂γs
gi(ξ) = τi

(
− exp(zT

i γ)zisω
k
0i

)
− ωk

0i

(
exp(β0 + xT

i β + zT
i γ)zis exp

(
− ω0i

)exp(zT
i γ)

+ exp(β0 + xT
i β + zT

i γ) exp
(
− ω0i

)exp(zT
i γ)(
− ω0i

)
exp(zT

i γ)zis

)
and more compactly for k = 1, . . . ,K and s = 1, . . . , l we have

∂2

∂θk∂γs
gi(ξ) = −τi exp(zT

i γ)zisω
k
0i − ω

k
0i exp(β0 + xT

i β + zT
i γ) exp

(
− ω0i

)exp(zT
i γ)

(
zis − ω0i exp(zT

i γ) zis
)
.

Block 22

∂2

∂βm∂βl
gi(ξ) = −exp(β0 + xT

i β)
(
1 − exp

(
− ω0i

)exp(zT
i γ)

)
ximxil, m, l = 0, . . . , p xi0 = 1.

Block 23

∂2

∂βm∂γs
gi(ξ) = exp(β0 + xT

i β)exp
(
− ω0i

)exp(zT
i γ)(
− ω0i

)
exp(zT

i γ)zisxim, in short

∂2

∂βm∂γs
gi(ξ) = −exp(β0 + xT

i β + zT
i γ)exp

(
− ω0i

)exp(zT
i γ)ω0izisxim, m = 0, . . . , p s = 1, . . . , l xi0 = 1.

Block 33

∂2

∂γs∂γv
gi(ξ) = −τi zis exp(zT

i γ)zivω0i − ω0izis

(
exp(β0 + xT

i β + zT
i γ)ziv exp

(
− ω0i

)exp(zT
i γ)

+exp(β0 + xT
i β + zT

i γ) exp
(
− ω0i

)exp(zT
i γ)(
− ω0i

)
exp(zT

i γ)ziv

)
and more compactly

∂2

∂γs∂γv
gi(ξ) = −τi exp(zT

i γ)ω0izisziv − ω0izis exp(β0 + xT
i β + zT

i γ) exp
(
− ω0i

)exp(zT
i γ)

×

(
ziv − ω0i exp(zT

i γ)ziv

)
, s, v = 1, . . . , l.

The Taylor expansion in (19) can be written extensively as follows

gi(ξ) ≈
[
gi(ξ(0)) +

1
2
ξ(0)T
∇2gi(ξ)|ξ=ξ(0)ξ(0) − ξ(0)T

∇gi(ξ)|ξ=ξ(0)

]
+ ξT∇gi(ξ)|ξ=ξ(0)

+
1
2
ξT∇2gi(ξ)|ξ=ξ(0)ξ − ξT∇2gi(ξ)|ξ=ξ(0)ξ(0)

≈ constant + ξT
(
∇gi(ξ)|ξ=ξ(0) − ∇

2gi(ξ)|ξ=ξ(0)ξ(0)
)

+
1
2
ξT∇2gi(ξ)|ξ=ξ(0)ξ
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and defining the short notation
∑n

i=1 ∇gi(ξ)|ξ=ξ(0) := ∇gξ(0) and
∑n

i=1 ∇
2gi(ξ)|ξ=ξ(0) := ∇2gξ(0) , we obtain the

following expression for the sum of the functions gi(·) omitting the constant
n∑

i=1

gi(ξ) = ξT
(
∇gξ(0) − ∇

2gξ(0)ξ(0)
)

+
1
2
ξT∇2gξ(0)ξ. (20)

Introducing (20) into (18), we recover expression (3)

p̃G(ξ|λ,D) ∝ exp
(
−

1
2
ξT

(
Q(λ) − ∇2gξ(0)

)
ξ + ξT

(
∇gξ(0) − ∇

2gξ(0)ξ(0) + Q(λ)µξ
))
. (21)

The above expression is a Gaussian density (up to a multiplicative constant) with mean and covariance
matrix that can be derived as follows. First take the logarithm of (21)

log p̃G(ξ|λ,D) =̇ −
1
2
ξT

(
Q(λ) − ∇2gξ(0)

)
ξ + ξT

(
∇gξ(0) − ∇

2gξ(0)ξ(0) + Q(λ)µξ
)
, (22)

where the symbol =̇ denotes equality up to an additive constant. To obtain the mean, we solve

∇ξlog p̃G(ξ|λ,D) = 0

⇔ −
(
Q(λ) − ∇2gξ(0)

)
ξ +

(
∇gξ(0) − ∇

2gξ(0)ξ(0) + Q(λ)µξ
)

= 0,

so the mean is

ξ(1) =
(
Q(λ) − ∇2gξ(0)

)−1(
∇gξ(0) − ∇

2gξ(0)ξ(0) + Q(λ)µξ
)
.

The precision is obtained as the negative of the Hessian matrix

Q(λ)(1) = −∇2
ξlog p̃G(ξ|λ,D) =

(
Q(λ) − ∇2gξ(0)

)
.

Appendix B. Conditional mean

The vector ξ∗c(λ) ∈ RH−1 is the conditional posterior mean of the Gaussian approximation for a given ξK = c
and should not be confused with ξ∗cc(λ). To obtain ξ∗c(λ), we compute the Gaussian approximation around the
posterior mode of p(ξ|λ,D) as described in Section 2.3 and find a multivariate (H-dimensional) Gaussian
distribution with mean ξ∗(λ) and covariance matrix Σ∗(λ). Then, using classic properties of the Normal
density, we derive the distribution of ξ−K = (ξ1, . . . , ξK−1, ξK+1, . . . , ξH) ∈ RH−1 given the constraint ξK = c.
The resulting distribution is a normal with mean vector ξ∗c(λ) = ξ∗

−K(λ) + Σ̃2,1(λ)Σ̃−1
1,1(λ)

(
c − ξ∗K(λ)

)
and

covariance matrix Σ∗c(λ) = Σ̃2,2(λ) − Σ̃2,1(λ)Σ̃−1
1,1(λ)Σ̃1,2(λ), where Σ̃1,1(λ) = Σ∗K,K(λ), Σ̃1,2(λ) = (Σ̃2,1(λ))T =

(Σ∗K,1(λ), . . . ,Σ∗K,(K−1)(λ),Σ∗K,(K+1)(λ), . . . ,Σ∗K,H(λ)) and Σ̃22(λ) is the matrix Σ∗(λ) without row and column
K. The vector ξ∗cc(λ) ∈ RH corresponds to ξ∗c(λ) to which we add ξK = c at position K, i.e. ξ∗cc(λ) =

(ξ∗c,1(λ), . . . , ξ∗c,K−1(λ), c, ξ∗c,K(λ), . . . , ξ∗c,H−1(λ)), where ξ∗c,i(λ) denotes the ith entry of ξ∗c(λ).

Appendix C. Gradients to compute credible intervals

Gradient associated to the baseline survival function

∇θcG0(θm
c,0|t) =


(∑ j(t)

j=1 h0(s j)∆ j
)−1 ∑ j(t)

j=1 exp
{∑K

k=1 θkbk(s j)
}

b1(s j)∆ j
...(∑ j(t)

j=1 h0(s j)∆ j
)−1 ∑ j(t)

j=1 exp
{∑K

k=1 θkbk(s j)
}

bK−1(s j)∆ j


θc=θm

c,0

.
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Gradient associated to the population survival function

∇ξc
G0(ξm

c,0|x, z, t) =



v(θ,γ)−1exp(zTγ)S 0(t)exp(zTγ)
(∑ j(t)

j=1 h0(s j)b1(s j)∆ j
)

...

v(θ,γ)−1exp(zTγ)S 0(t)exp(zTγ)
(∑ j(t)

j=1 h0(s j)bK−1(s j)∆ j
)

1
x1
...

xp

v(θ,γ)−1exp(zTγ)S 0(t)exp(zTγ)
(∑ j(t)

j=1 h0(s j)∆ j
)
z1

...

v(θ,γ)−1exp(zTγ)S 0(t)exp(zTγ)
(∑ j(t)

j=1 h0(s j)∆ j
)
zl


ξc=ξm

c,0

,

with v(θ,γ) = 1 − exp
(
−

∑ j(t)
j=1 exp

(∑K
k=1 θkbk(s j)

)
∆ j

)exp
(
zTγ

)
.

Gradient associated to the conditional probability P(T = +∞|T ≥ t, x, z)

∇ξc
G0(ξm

c,0|x, z, t) =



−exp(zTγ)
∑ j(t)

j=1 h0(s j)b1(s j)∆ j
...

−exp(zTγ)
∑ j(t)

j=1 h0(s j)bK−1(s j)∆ j

1
x1
...

xp

−z1exp(zTγ)
∑ j(t)

j=1 h0(s j)∆ j
...

−zlexp(zTγ)
∑ j(t)

j=1 h0(s j)∆ j


ξc=ξm

c,0

.
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