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Abstract

Cure survival models are used when one desires to explicitly acknowledge that an un-
known proportion of the studied population will never experience the event-of-interest.
An extension of the promotion time cure model enabling to include time-varying covari-
ates as regressors when modelling (simultaneously) the probability and the timing of the
monitored event is presented. Our proposal enables to handle non monotone population
hazard function without specific parametric assumption on the baseline hazard. This
extension is motivated and illustrated on data from the German Socio-Economic Panel
(GSOEP) by studying the transition to second and third births in West Germany.

Keywords: Bayesian P-splines; Cure survival model; Fertility studies; Frailty ; Pro-
motion time model ; Time-varying covariates.

1 Introduction

In classical survival analysis under a sufficiently long follow-up time, the event of interest
is assumed to be, later or sooner, observed for each individual under study, leading to a
proper population survival function (i.e. limt→+∞ Sp(t) = 0). In fertility studies, when
studying the transition to second birth for example, this assumption is not reasonable.
Indeed, it is well-known that an unknown proportion of one-child mothers will never have
a second child for personal or medical reasons. Cure survival models define an improper
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population survival function with a limiting value (limt→+∞ Sp(t) = p > 0) correspond-
ing to the probability of being cured. This class of models enables to disentangle the
subject characteristics influencing the probability to experience the event-of-interest from
those influencing its timing. The first cure survival model, named the mixture cure model
as the global population was seen as a mixture of cured and susceptible sub-populations,
was proposed by Boag (1949) and Berkson and Gage (1952):

Sp(t) = p+ (1− p)Su(t), (1)

where p denotes the probability to be cured and Su(t) the proper survival function
of susceptible individuals. During the last decades, the mixture cure model has been
extensively studied in the statistical literature, see among others Kuk and Chen (1992);
Taylor (1995); Peng and Dear (2000); Sy and Taylor (2000); Li and Taylor (2002); Zhang
and Peng (2007); Lu (2010); Wang et al. (2012); Zhang et al. (2013); Zhou et al. (2016)
and López-Cheda et al. (2017).

In the late nineties, a new family of cure survival models was developed: the promo-
tion time cure model (Yakovlev and Tsodikov, 1996; Tsodikov, 1998; Chen et al., 1999).
This model, first presented to analyze survival data in cancer studies, argues that the
observed time-to-event time is defined as the minimum time for one of N ∼P(θ) (Pois-
son distributed) latent factors to become detectable. These latent factors (Y1, . . . , YN )
are assumed to be directly active at the beginning of the follow-up, independent and
identically distributed (with a proper CDF F (t) independent of N). In the realm of
fertility studies a latent factor might be interpreted as a potential decisive argument to
decide to have an additional child and the ‘time for its detection’ as the time required
for it to be convincing (Bremhorst et al., 2016).

The population survival, hazard and density functions of the promotion time model
can be shown to be

Sp(t|θ, F ) = exp (−θF (t)) ; hp(t|θ, F ) = θf(t) ; fp(t|θ, F ) = hp(t|θ)Sp(t|θ), (2)

where f(t) = ∂F (t)
∂t is the latent density. If no latent factor is active at the beginning of

the follow-up (i.e. if N = 0), the subject is cured and the cure fraction is given by

P [N = 0] = exp(−θ) = lim
t→+∞

Sp(t|θ, F ). (3)

Independent baseline covariates, denoted by x (including an intercept) and z (without
intercept), may enter, for example, the model through a log-link on parameter θ and
through a Cox model for F (t), respectively:

θ(x) = exp(αTx), (4)

F (t|z) = 1− S0(t)exp(β
T z). (5)

Tsodikov (2002) proposed, in a frequentist framework, a nonparametric estimation of
the baseline survival function S0(t), while Yin and Ibrahim (2005), using a piecewise
exponential distribution, and Bremhorst and Lambert (2016), using P-splines, suggested
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a flexible specification of S0(t) in a Bayesian framework, see Gressani and Lambert (2018)
for fast inference in that Bayesian setting. Recently, several extensions of the promotion
time model were proposed in the literature, see for example Liu and Shen (2009); Kim
et al. (2009); Lopes and Bolfarine (2012); Li and Lee (2017) and Bremhorst et al. (2019).

Our article is motivated by the analysis of data from the German Socio-Economic
Panel (Wagner et al., 2007) studying the transition to second and third births. Some of
the women/family characteristics, such as the educational attainments of the mother and
of her partner for example, may vary over time. Therefore, regression models enabling
to deal with categorical time-varying covariates need to be specified. Unfortunately,
the probability to have an additional child cannot be directly connected to time-varying
covariates in the promotion time model since that chance is a one-to-one function of
the mean number of activated latent factors, assumed to be fixed (and unknown) for a
given woman directly at the beginning of the follow-up study. Chi and Ibrahim (2006)
proposed an extension of that family of models to handle such covariates by allowing the
latent factors to turn active at any time during the follow-up. However, the assumptions
of their extension imply that the population hazard function is monotonically increasing
with time which can be unrealistic in specific settings such as fertility studies.

Brown and Ibrahim (2003), Chen et al. (2004) and Kim et al. (2013) developed joint
models for longitudinal and cure survival data in the context of the promotion time
model. Brown and Ibrahim (2003) proposed a longitudinal model for the immunologic
response to vaccination over time, specified the latent hazard as a function of the trajec-
tory of the immunologic marker and modelled the probability of observing the monitored
event using baseline covariates only. Chen et al. (2004) and Kim et al. (2013) suggested
that the (continuous) longitudinal biomarker has an impact on the probability of being
cured only through the random effect of the longitudinal model.

In none of the abovementioned references are time-varying covariates directly in-
cluded as regressors when modelling the event risk. In the present article, we propose
an extension of the promotion time model allowing categorical time-varying covariates
to have (simultaneously) an impact on the probability and on the timing of the event-
of-interest.

The paper is organized as follows: Section 2 begins with an illustrative example
motivating the proposed extension of the promotion time model dealing with categor-
ical time-varying covariates and ends with the theoretical notations and properties of
the model. The Bayesian model specification and the MCMC algorithm are described
in Section 3. Section 4 is devoted to a simulation study assessing the accuracy of the
methodology. Two analyses on real data from the German Socio-Economic Panel study-
ing the transition to second and third births are presented in Section 5. A discussion
concludes the paper.
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0 τ2 = 5N2 ~ P( ω θ2 )

L2 = Sp ( 5 | ω , θ2 , F )
0 τ3 = 2N3 ~ P( ω θ3 )

L3 = fp ( 2 | ω , θ3 , F )

Figure 1: Likelihood contribution for a woman with two variations of a single time-varying categorical
covariate (her education level for example) influencing the probability of having an additional child. As
an example, θ1 may denote the expected mean number of potential decisive arguments for a less educated
one-child woman to have a second child after her first delivery, while θ2 and θ3 may denote that expected
mean number directly after getting a secondary school diploma or a university degree, respectively. The
unobserved (inter-subject) heterogeneity in the underlying risk is quantified by a multiplying random
effect ω with mean 1.0.

2 Extension of the promotion time model

2.1 Motivation

For simplicity, the principles underlying the extended promotion time model are ex-
plained on an example, pictured in Figure 1, dealing with a single woman and her
educational attainment assumed to affect the probability of pregnancy (but not its tim-
ing). Assume that a woman gave birth to her first child at 16 when she was still a
student at the secondary school. She is, therefore, reported as a less educated one-child
woman. As motivated by the promotion time model, it is assumed that she is directly
exposed to N1 ∼P(ω θ1) potential decisive arguments to decide to have a second child,
where ω is a random effect (with density function g(ω) and mean 1.0) accounting for the
unobserved (inter-subject) heterogeneity in the underlying risk. After τ1 years (2.5, say),
she graduated from secondary school without getting a new child. The contribution of
this first period to the conditional likelihood is Sp(τ1|ω, θ1, F ) and her level of education
is updated to medium educated. The proposed extension of the promotion time model
assumes that when the characteristics of the woman change, the N1 preceding available
potential decisive arguments to initiate a second pregnancy are replaced by N2 new ones
where N2 ∼P(ω θ2). Five years (τ2 = t2 − t1 = 5) after secondary school, she gets a
university degree, again without intermediate pregnancy. The contribution of the com-
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pleted period to the conditional likelihood is therefore Sp(τ2|ω, θ2, F ). As assumed by
our proposed extension of the promotion time model, the available potential decisive
arguments, corresponding to this second period, to decide to have a second child are
replaced by N3 new ones with N3 ∼P(ω θ3). Two years later (τ3 = 2), she gave birth
to her second child. The contribution to the conditional likelihood of this final event is
fp(τ3|ω, θ3, F ). Thus, the contribution to the marginal likelihood of this woman is given
by

Lbirth =

∫ +∞

0
Sp(τ1|ω, θ1, F )Sp(τ2|ω, θ2, F )fp(τ3|ω, θ3, F )g(ω)dω.

Assume, now, that another woman gets a university degree τ1 years after entering the
study (i.e. after the birth of her first child). Moreover, assume that τ2 years later, she
left the study without getting a second child. Then, her contribution to the marginal
likelihood is given by

Lright cens. =

∫ +∞

0
Sp(τ1|ω, θ2, F )Sp(τ2|ω, θ3, F )g(ω)dω.

2.2 General setting

For clarity of exposition, we first assume, in Section 2.2.1, that (time-dependent) co-
variates only affect the probability of being cured. That restriction will be dropped in
Section 2.2.2 by allowing such covariates to also have an impact on the event timing.

2.2.1 Effect of time-varying covariates on cure probability

Let Xi = {xi1(ti0), . . . ,xiJi(ti(Ji−1))} be the history of the vector of covariates influ-
encing the cure probability of subject i (i = 1, . . . , I), where xi1(ti0) denotes the co-
variate values at the beginning of the first period in the follow-up. As soon as one of
the covariates changes, the covariate vector needs to be updated. Assume that those
variations occurred at (Ji − 1) occasions ti1, . . . , ti(Ji−1) such that ti0 = 0 < ti1 <
. . . < ti(Ji−1) < tiJi = ti ≤ +∞ yielding the following sequence of covariate vectors
xi1(ti0),xi2(ti1), . . . ,xiJi(ti(Ji−1)). For j = 1, . . . Ji, let τij = tij − ti(j−1), be the time
spent by the ith subject in his/her jth covariate configuration xij(ti(j−1)) and assume

the following regression model θij = exp
(
αTxij

(
ti(j−1)

))
for the expected mean num-

ber of latent factors for subject i at the beginning of the jth covariate configuration
xij(ti(j−1)). The population survival and hazard functions of the extended promotion
time model are, respectively, given by
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Sext
p (t|ωi,Fi, F ) =

ji(t)−1∏
j=1

Sp(τij |ωi, θij , F )

Sp

t− ji(t)−1∑
j=1

τij

∣∣∣∣ωi, θiji(t), F


= exp

−ωi

ji(t)−1∑
j=1

θijF (τij) + θiji(t)F

t− ji(t)−1∑
j=1

τij


 ; (6)

hextp (t|ωi,Fi, F ) =
−d
(
log
(
Sext
p (t|ωi,Fi, F )

))
dt

= hp

t− ji(t)−1∑
j=1

τij

∣∣∣∣ωi, θiji(t), F


= ωiθiji(t)f

t− ji(t)−1∑
j=1

τij

 , (7)

where Fi = {Xi, tij : j = 0, . . . , Ji} is the set of the follow-up history of subject i,
ji(t) = max {j|t < tij , j = 1, . . . , Ji},

∏0
j=1(·) = 1 and

∑0
j=1(·) = 0.

Note that the survival function defined in (6) is an improper survival function and its
limit given by

lim
t→+∞

Sext
p (t|ωi,Fi, F ) = exp

−ωi
Ji−1∑

j=1

θijF (τij) + θiJi

 > 0 (8)

defines the conditional probability that subject i is cured.
Given the follow-up history Fi of subject i, if we assume that he/she belongs to the
susceptible sub-population after the last update of his/her covariate configuration, while
his/her status (susceptible or cured) was unknown during the first Ji − 1 periods of
his/her follow-up, his/her survival and hazard functions are, respectively, defined as

Sext
u (t|ωi,Fi, F ) =

{
Sext
p (t|ωi,Fi, F ) if t ≤ ti(Ji−1)
Sext
p

(
ti(Ji−1)|ωi,Fi, F

)
Su (τit|ωi, θiJi , F ) if t > ti(Ji−1)

;

hextu (t|ωi,Fi, F ) =

 hextp (t|ωi,Fi, F ) if t ≤ ti(Ji−1)
Sp(t|ωi,θiJi ,F )

Sp(t|ωi,θiJi ,F )−exp[−θiJi ]
hp(τit|ωi, θiJi , F ) if t > ti(Ji−1)

,

where τit = t−
∑Ji−1

j=1 τij and Su(t|ω, θ, F ) =
Sp(t|ω,θ,F )−exp[−ωθ]

1−exp[−ωθ] is the susceptible survival
function of the classical promotion time model. Integrating out the unobservable het-
erogeneity ωi, the marginal population survival and hazard functions are, respectively,
given by

Sext
p (t|Fi, F ) = Eωi

[
Sext
p (t|ωi,Fi, F )

]
; hextp (t|Fi, F ) = Eωi

[
hextp (t|ωi,Fi, F )

]
, (9)
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while the expressions for a susceptible subject in the last period are

Sext
u (t|Fi, F ) = Eωi

[
Sext
u (t|ωi,Fi, F )

]
; hextu (t|Fi, F ) = Eωi

[
hextu (t|ωi,Fi, F )

]
. (10)

These expressions will be found useful in the application of Section 5 to compare the
evolution of the hazard function at the population level (mixing ’cured’ and susceptible
subjects) with its behavior over time in the subgroup of susceptible subjects, see Figures
5 and 6. Their baseline values can be obtained by setting each covariate at its reference
value.

2.2.2 Effect of time-varying covariates on event timing

In the previous section, the history of the covariate vector of subject i influencing his/her
probability to be cured was used to split the follow-up into Ji periods of respective
length τij (j = 1, . . . , Ji). Since the time-varying covariates influencing the probabil-
ity of being cured may differ from those influencing the event timing, one needs to
determine the history of the covariate vector entering the model through the latent dis-
tribution F (t) during each of the Ji periods discussed in Section 2.2.1: it yields Zij =
{zij1(tij0), . . . ,zijLij (tij(Lij−1))}, where ti(j−1) = tij0 < . . . < tij(Lij−1) < tijLij = tiJi
denote the changing times of zi’s within period j (j = 1, . . . Ji) for subject i. Using this
new set of covariates, the extended population survival function defined in (6) becomes:

Sext
p (t|ωi,Fi) =

ji(t)−1∏
j=1

Sp(τij |ωi, θij , Fij)

Sp

t− ji(t)−1∑
j=1

τij

∣∣∣∣ωi, θiji(t), Fiji(t)
 , (11)

where Fi : {Xi, ti0, tij ,Zij , tijl : j = 1, . . . , Ji; l = 0, . . . , Lij} is the set of the follow-
up history of the ith subject and Fij is specified according to the Andersen-Gill model
(Andersen and Gill, 1982; Fleming and Harrington, 1991; Andersen et al., 1993):

Fij(t|Zij , tij0, . . . , tijLij ) = 1− Sij(t|Zij , tij0, . . . , tijLij )

= 1− exp

− Lij∑
l=1

exp
(
βTzijl

(
tij(l−1)

))
Hijl

 , (12)

where Hijl =
∫ min(t,tijl)
tij(l−1)

h0(u)du. If Lij = 1, (12) defines the classical Cox proportional

hazards model. As suggested by Bremhorst and Lambert (2016), in the context of the
promotion time model, the logarithm of the baseline hazard function, log (h0(t)), can be
modelled using a linear combination of (a large number K of) cubic B-splines :

h0(t) = exp

(
K∑
k=1

bk(t)φk

)
,

where {bk(.), k = 1, . . . ,K} denotes the cubic B-splines basis associated to a predefined
number of equidistant knots on [0,maxij(τij)]. As proposed by Eilers and Marx (1996,
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2010), a roughness penalty on rth order finite differences of adjacent B-spline parameters
(λ1
∑

k(∆
rφk)

2, where λ1 is the penalty parameter) is subtracted from the log-likelihood
to ensure the smoothness of the baseline hazard function.

2.3 Likelihood and identification issues

Denote by δi the event indicator for subject i and let Φ be the set of all model parameters.
In a right censored setting, the likelihood is obtained by integrating out the unobserved
individual random effects from the complete data likelihood:

L (Φ|F , δ) =
I∏
i=1

Eωi

[(
Sext
p (ti|ωi,Fi)

)1−δi (f extp (ti|ωi,Fi)
)δi]

=
I∏
i=1

(Lωi (H (ti|Fi)))
1−δi

(
−L (1)

ωi
(H (ti|Fi))

)δi
, (13)

where f extp (ti|ωi,Fi) = −dSext
p (ti|ωi,Fi)

dt is the population density function associated to

(11), H (ti|Fi) = −Eωi

[
log
(
Sext
p (ti|ωi,Fi)

)]
, Lω and L

(1)
ω respectively denote the

Laplace transform and the first derivative of the Laplace transform of the individual
random effect density g(ω).

The unobserved inter-subject heterogeneity in the event (conditional) probability is
quantified by ω and assumed to have a Power Variance Function (PVF) density function
g(ω) (Hougaard, 1986). The Laplace transform and the first derivative of the Laplace
transform are, respectively, given by

Lω(s) = exp

[
η̃

exp (ξ) (1− η̃)

(
1−

(
1 +

exp (ξ + µ) s

η̃

)1−η̃
)]

;

L (1)
ω (s) = − exp (µ)

(
1 +

exp (ξ + µ) s

η̃

)−η̃
Lω (s) , (14)

where µ, ξ, η ∈ R and η̃ = exp(η)
1+exp(η) , see Aalen (1992).

This flexible family of distributions contains the gamma (when µ = 0 and η → +∞),
the inverse Gaussian (when µ = η = 0) and the positive stable (when µ → +∞ and

exp(ξ) = η̃(1− η̃)−1/η̃ exp
(
µ(η̃−1 − 1)

)
as limiting cases (Duchateau and Janssen, 2008,

Section 4.5).
In the proposed extension of the promotion time model, ω can be seen as a frailty term

in a survival framework (Clayton, 1978; Liang et al., 1995; Hougaard, 1995; Govindara-
julu et al., 2011). To ensure identifiability of the random effect distribution parameters,
one usually constrains the mean frailty to be one, or, alternatively, the mean of the log
frailty to be zero. In our setting, we decided to set log (Eω[ω]) = µ = 0.

A crucial assumption to ensure identifiability in cure survival models (when only
baseline covariates are taken into account) is to impose the zero tail constraint on the
latency part of the model (Taylor, 1995; Zeng et al., 2006). Practically, it is assumed
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that the latent distribution F (·) in the promotion time model is 1.0 beyond the last
event time. When the latent distribution is specified using B-splines, Bremhorst and
Lambert (2016) suggest to fix the last spline coefficient φK to a large enough value (say,
10) to force S(t) to smoothly decrease to 0 by the end of the follow-up, see Lambert
and Bremhorst (2019) for a broader perspective on identification issues. In practice, this
sufficiently long follow-up assumption looks reasonable if the Kaplan Meier estimate of
the survival function shows a plateau in the right tail of the distribution.

In the proposed extension of the promotion time model, the identification will be
ensured by assuming that some subjects are observed for a sufficiently long time τij
with the same combination of covariate values xij in the cure probability specification in
(4) and (6). In practice, the sufficiently long assumption will be considered reasonable
if τ0 > τ1, where τ0 denotes the maximum time spent within a covariate configuration
without having had the event-of-interest and τ1 the maximum observed event time within
a covariate configuration. However, when τ0 is much larger than τ1, the estimation
of the spline parameters can be numerically instable since no information is available
to estimate the spline parameters supported by knots located in the interval [τ1, τ0 =
maxij(τij)]. Therefore, all the spline parameters associated to knots located over τ1, the
maximum observed failure time within a covariate configuration, are set to an arbitrary
large value (10, say) and not only the last one as previously suggested.

3 Bayesian inference

3.1 Prior distributions

As suggested by Lang and Brezger (2004) in the Bayesian framework, the penalty intro-
duced by Eilers and Marx (1996, 2010) to force smoothness (here, in the baseline hazard)
is translated into a multivariate normal prior distribution for the spline parameters:

φ = (φ1, . . . , φK) ∼ NK(0, (λ1P)−1),

where λ1 is the penalty parameter, P = D>D + εIk is a full rank matrix for some small
quantity ε (10−6, say) and D is the rth order difference matrix.

A robust prior distribution is considered for the penalty parameter λ1 (Jullion and
Lambert, 2007):

λ1|λ2 ∼ G

(
ν

2
,
νλ2
2

)
; λ2 ∼ G

(
aλ2 = 10−4, bλ2 = 10−4

)
,

where G (a, b) denotes a Gamma distribution with mean a/b. Jullion and Lambert (2007)
showed that whatever the chosen noninformative prior distribution for ν, no relevant
information can be obtained from its posterior distribution since it is close to the uniform.
Therefore, fixing ν = 2, for example, will not influence the shape of the estimated hazard
function.

Non-informative normal prior distributions are considered for all regression param-
eters and the PVF distribution parameters η and ξ in (14). Prior knowledge, when
available, can be injected through specific priors.
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3.2 Posterior sampling using MCMC

Using Bayes’ theorem, the joint posterior distribution is given by

π(Φ|F , δ) = L(Φ|F , δ)π(φ|λ1)π(λ1|λ2)π(λ2)π(α)π(β)π(ξ)π(η). (15)

Only the conditional posterior distribution of the penalty parameters λ1 and λ2 belong
to a known family of distribution :

λ1|λ2,φ,F , δ ∼ G

(
ν +K

2
,
νλ2
2
φ>Pφ

)
; λ2|λ1,F , δ ∼ G

(
aλ2 +

ν

2
, bλ2 +

νλ1
2

)
.

Therefore, a Metropolis-within-Gibbs algorithm will be used to sample from the joint
posterior distribution. The proposals for the spline parameters (φ) and the regression
parameters related to the probability of the event (α) and its timing (β) are generated
in multivariate Metropolis steps while univariate ones are used for the PVF distribu-
tion parameters. As suggested by Haario et al. (2001) and by Atchadé and Rosenthal
(2005), for each Metropolis step, the standard deviation of the proposal distribution
is updated during the burnin period to reach the targetted acceptance rate (44% and
23% in the univariate and multivariate cases, respectively), see Roberts and Rosenthal
(2001). Reparametrizing the conditional posterior distribution, using a rough frequen-
tist estimation of the posterior correlation structure of the parameters, could reduce
the autocorrelation in the posterior chains (Lambert, 2007). Moreover, the convergence
of the chain could be speeded up by a clever choice of the initial value of the model
parameters, the mode of the joint posterior distribution in (15), for example. It can
be computed using a non-linear optimizer with as a by-product minus the inverse of
the Hessian matrix for further use as the variance-covariance matrices in the preceding
(multivariate) Metropolis steps.

4 Simulation study

The behaviour of the extended promotion time model, dealing with categorical time-
varying covariates defined in (11), combined with the Bayesian inference techniques
described in Section 3 are assessed through an extensive simulation study. Two different
proportions of cured individuals (25% and 50%) without and with (15% of) random right
censoring among the susceptible population were considered. The simulation results are
based on R = 500 replications of sample size n = 500 and n = 1000 with an average
of 1.5 or 3 covariate changes per subject in the cure probability model (cf. Section 2.2),
leading to 16 different settings. For each of them, the baseline distribution S0(t) of the
Andersen-Gill model, defined in (12), is specified as a Weibull distribution with mean
8.0 and standard deviation 4.18. For numerical purposes, the maximum time spent
by a subject in the jth covariate configuration xj (j = 1, . . . , J) was set to 25.0. If the
simulated time exceeds 25.0 under the last covariate configuration xJ , the corresponding
subject is considered cured. This is not a restriction since less than 0.1% of the events
are expected to occur after that time under the chosen Weibull distribution.
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Three independent covariates will simultaneously influence the probability of be-
ing cured and the distribution of the event timing for susceptible subjects: one time-
varying binary covariate (W1 ∼ Bernoulli(0.5) at the beginning of the follow-up), one
fixed binary (W2 ∼ Bernoulli(0.5)) and one fixed continuous (W3 ∼ N(0, 0.25)) covari-
ates. If any, the variation times t1, . . . , tJ−1 of the time-dependent covariate W1 are
controlled using an exponential distribution with rate ψ. The values of the regression
parameters α = (α0, α1, α2, α3) and of ψ in Table 2 are tuned to reach the desired
percentage of cured individuals, while the expected number of changes per subject in
the time-varying W1 is denoted by E(J). One additional time-varying binary covariate
(W4 ∼ Bernoulli(0.5) at the beginning of the follow-up and independent of W1,W2,W3)
with L ∼ P(2) (Poisson distributed) variations within each covariate configuration xj
is assumed in the Andersen-Gill model describing the event timing for the susceptible
sub-population. In each setting, the changing times of W4 (tj1, . . . , tjL for j = 1, . . . , J),
if any, are controlled using an exponential distribution with mean 10.0 and the values
of the regression parameters β = (β1, β2, β3, β4), in the Andersen-Gill model, are set to
(−0.5, 0.7, 0.5,−0.4).

The results presented in Table 1 and in Figures 2, 3 and 4 are based on one posterior
chain of length 70 000 including a burnin period of length 35 000. Convergence diagnos-
tics tools such as those proposed in Geweke (1992) are used to assess the convergence of
the MCMC chain.

Table 1 reports the coverage probabilities of the 95% credible intervals for all regres-
sion parameters (α and β) under each of the 16 different simulation settings. Except
for β4 (the regression parameter associated to the time-varying categorical covariate
influencing only the timing of the event for susceptible subjects), the coverage prob-
abilities are all close to the 95% nominal value whatever the simulation setting, even
with a moderate sample size (n = 500) and a high percentage of right censoring (65%).
Figure 2 shows the errors (evaluated as the posterior median minus the true value) of
the regression parameters β in the Andersen-Gill model, related to the timing of the
event for susceptible subjects. The fourth row suggests a small negative bias for β4
usually associated to slightly undercovering credible intervals (cf. Table 1). A small
negative bias, unaffected by the proportion of cured subjects, decreasing with sample
size and increasing with the amount of right censored observations (in the susceptible
population), is also revealed for the intercept α0 (the first row of Figure 3). However, as
mentioned previously, since the coverage probabilities of α0 always coincide with their
nominal value, it suggests that the uncertainty and the plausible values for that intercept
are properly quantified. The other regression parameters are estimated without bias.

As expected, Figures 2 and 3 also indicate that the uncertainty in the parameter
estimates increases with the proportion of cured individuals and with the percentage of
random right censored susceptible subjects, but decreases with sample size.

The baseline distribution is estimated without bias as illustrated in Figure 4 for
datasets of sample size n = 500 with an average of 3 covariate changes per subject in
the cure probability model. Not surprisingly, compared to settings where no susceptible
subject are censored, a growth in the uncertainty is observed when right censoring is
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introduced. From non-reported results, one can also conclude that the uncertainty of
the baseline distribution estimates decreases with sample size.

Finally, the simulation results suggest that the number of covariate changes per
subject in the cure probability model does not markedly affect the accuracy of the
model parameter estimates.

Table 1: Simulation results for R = 500 replicates: coverage probabilities (in %) of the 95% credible
intervals of each regression parameter. The true values of the regression parameters α (tuned to reach
the target percentage of cured individuals) are given in Table 2 while the true values of the regression
parameters β are set to (-0.5,0.7,0.5,-0.4).

Probability Timing
n E(J) Cured Censored α0 α1 α2 α3 β1 β2 β3 β4

500

1.5

25% 25% 94.8 93.4 94.4 95.0 94.8 93.4 96.0 92.6
25% 40% 95.2 96.2 92.8 94.8 96.0 92.2 93.4 89.6
50% 50% 97.6 94.2 97.0 95.6 93.4 96.2 93.0 94.0
50% 65% 95.0 94.2 93.8 95.2 92.2 93.8 93.2 89.0

3

25% 25% 95.4 94.8 95.6 94.6 92.6 95.4 93.4 91.6
25% 40% 93.6 91.8 93.8 92.4 91.8 94.8 92.4 89.2
50% 50% 97.8 95.6 94.6 93.6 92.6 94.4 95.0 91.2
50% 65% 95.6 94.4 93.0 95.4 92.2 92.4 92.0 90.6

1000

1.5

25% 25% 97.0 95.2 93.8 95.2 94.8 93.6 95.0 93.2
25% 40% 95.8 95.0 94.6 94.4 95.6 94.6 93.6 91.4
50% 50% 97.0 96.0 95.6 94.4 93.0 95.6 94.4 91.8
50% 65% 96.0 94.4 94.0 96.2 92.2 92.4 95.2 88.4

3

25% 25% 96.0 95.2 95.2 94.6 95.6 94.4 93.2 87.4
25% 40% 96.0 95.0 95.2 94.2 94.6 93.8 92.8 84.8
50% 50% 97.2 95.6 94.4 95.6 94.0 94.8 93.6 90.0
50% 65% 96.6 95.0 94.2 94.4 94.6 92.2 93.4 87.0

Table 2: True values for the regression parameter vector α influencing the probability of the event and
for the rate parameter ψ controlling the number of contributions J per subject to the likelihood.

E(J) Cured Censored α0 α1 α2 α3 ψ

1.5

25% 25% 0.25 -0.50 0.40 0.60 0.033
25% 40% 0.30 -0.50 0.40 0.60 0.050
50% 50% -0.20 -0.40 -0.40 0.60 0.024
50% 65% -0.10 -0.40 -0.40 0.60 0.128

3

25% 25% 0.15 -0.50 -0.50 0.60 0.077
25% 40% 0.25 -0.40 -0.40 0.60 0.128
50% 50% -0.60 -0.50 -0.50 0.60 0.059
50% 65% -0.40 -0.50 -0.40 0.60 0.115
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Figure 2: Simulation results for R = 500 replicates: Boxplots of the errors of the regres-
sion parameter estimates (the posterior medians) in the regression model for the timing
of the event for susceptible subjects under each of the 16 simulation settings (see Table
1). Grey boxes: E(J) = 1.5. White boxes: E(J) = 3.
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Figure 3: Simulation results for R = 500 replicates: Boxplots of the errors of the regres-
sion parameter estimates (the posterior medians) influencing the probability of being
cured. Grey boxes: E(J) = 1.5. White boxes: E(J) = 3.
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Figure 4: Simulation results for R = 500 replicates: estimates of the baseline distribution
S0(t) (one gray curve per data set), sample size n = 500 and an average of 3 likelihood
contributions per subject with 25% (row 1) and 50% (row 2) of cured individuals. The
solid line corresponds to the true function and the dashed line is the pointwise median
of the 500 estimated curves. Left : All right censored individuals are cured. Right : 15%
of the susceptible subjects are right censored.

5 Application to fertility studies

The German Socio-Economic Panel (GSOEP) is a representative panel for Germany.
More information on this survey, launched in 1984 and updated on an annual basis
since then, can be found in Wagner et al. (2007). Using version v31.0, Bremhorst et al.
(2016) studied the transition to second (resp. third) birth. Only one child (resp. two
child) German women living in West Germany who were still of childbearing age (17-49
years) between 1984 and 2013 were considered in the sample. The main interest of the
authors was to study the effect of the educational attainments of the women and of their
partners on the probability and on the timing of an additional child. In their analyses,
the educational levels were frozen at the onset of the process (i.e. directly after the first or
second birth) since time-dependent covariates cannot enter the probability of the event in
the promotion time model. Using our proposed extension of the promotion time model,
results accounting for possible evolution of the mother and father educational levels are
reported in this section. As in Bremhorst et al. (2016), the educational attainments are
divided into three categories : low (less than a vocational training degree), medium (at
most vocational training degree), and high (a university or a college degree). Regarding
the partner’s educational level, an additional category named no partner was introduced
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for single women. Given that a degree cannot be lost, cases where a decreasing level
of education were reported were deleted from the sample. The final sample contains
1352 women (resp. 1128) of whom 48% (resp. 19%) reported having had a second (resp.
third) child.

Age at first birth and the calendar period at the beginning of the follow-up (for
identification purposes) are considered as independent baseline continuous covariates.
Moreover, the time elapsed between the first two births and the sex composition of prior
kids will also enter the model for third birth. All independent variables will influence
simultaneously the probability and the timing of getting a new child.

It should however be noted that although one would expect that a high age at first
birth would have a stronger negative effect on the probability of having a second or
third child for low-educated women than for highly educated ones (assuming that highly
educated women regularly postpone childbirth in order to advance in their career, while
women with a low level of education who postpone parenthood are a select group, possi-
bly with impaired abilities to have children), in our particular application, the interaction
terms between age at first birth and mother’s education were not found to be statisti-
cally significant and are, therefore, not considered in the final model. The descriptive
statistics for the covariates are presented in Tables 3, 4 and 5. For the partner’s educa-
tion level, it should be noted that a divorce or break up with her co-residential partner
is considered as a change in the covariate (then, updated to no partner). The numerical
results presented in Tables 6 and 7 are based on one posterior chain of length 150 000
including a burnin of length 50 000. For given initial values, our code required about 8
minutes to produce that long chain for the second birth dataset, and about one minute
less for the third birth data. Convergence of the chains was checked by an examination
of the trace plots and using the z-score of the Geweke convergence diagnostics (Geweke,
1992).

Table 3: Descriptive statistics for the number J of changes in the education level for the 48% of one-
child (n = 1352) and 19% of two-child (n = 1128) mothers (and their possible partner) reported to have
had an extra child before censoring.

Number J of changes in
Mother’s education level

Extra child 0 1 2 Total

Second child 95.6% 4.2% 0.2% 100%
Third child 97.9% 2.1% 0.0% 100%

Number J of changes of partners
or in Partner’s education level

Extra child 0 1 2 3 4 5 Total

Second child 81.3% 15.2% 2.5% 0.6% 0.2% 0.2% 100%
Third child 83.1% 12.6% 3.4% 0.5% 0.3% 0.1% 100%
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Table 4: Descriptive statistics of the categorical covariates at the end of the follow-up for the 48%
of one-child (n = 1352) and 19% of two-child (n = 1128) mothers reported to have had an extra child
before censoring.

Mother’s education
Extra child Low Medium High Total

Second child 15.5% 68.2% 16.3% 100%
Third child 12.8% 70.7% 16.5% 100%

Partner’s education level
Extra child Low Medium High No partner Total

Second child 8.4% 51.8% 17.8% 22.0% 100%
Third child 8.0% 49.9% 21.0% 21.1% 100%

Sex of the first two kids
for 3-child mothers

2 boys 2 girls Boy & girl Total

25.3% 25.4% 49.3% 100%

Table 5: Descriptive statistics of the baseline continuous covariates for the 48% of one-child (n = 1352)
and 19% of two-child (n = 1128) mothers reported to have had an extra child before censoring.

Mean Median SD

Calendar period
Second child 1998 1999 8.04
Third child 2000 2001 8.39

Age at 1st birth
Second child 28.3 28.0 4.93
Third child 27.4 27.0 4.58

Time between
first 2 kids 3.44 2.83 2.27

5.1 Second birth

Without using cure survival models and with time-constant covariates, Kreyenfeld (2002)
and Bartus et al. (2013) studied the transition to second birth in West Germany and
in Hungary, respectively. Both analyses pointed out that high educated women space
the first and the second births closer together than women with lower education. The
interpreation was that, compared to low educated women, those who have a university or
a college degree generally tend to have their first child later and are, therefore, closer to
the end of their reproductive span, which reduces the waiting time to the second birth.
Using the promotion time cure model with covariates set at their values directly after
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Table 6: Second birth. Estimate of the posterior median and of the posterior standard deviation for
each regression parameter using MCMC. (Signif. codes : * = 0.1 ; ** = 0.05 ; *** = 0.01)

Probability Timing
Est sdpost Est sdpost

Intercept 0.441 0.203 – –
Education

Low -0.468 0.195 ** 0.344 0.217
Medium (Ref.) 0.000 0.000
High 1.076 0.324 *** -0.921 0.339 ***

Partner’s education
No partner -1.116 0.200 *** 0.230 0.225
Low -0.012 0.257 -0.061 0.288
Medium (Ref.) 0.000 0.000
High 0.233 0.195 0.253 0.212

Calendar Period (std) 0.105 0.088 -0.092 0.102
Age at first birth (std) -0.636 0.128 *** 0.264 0.129 **

first birth, Bremhorst et al. (2016) concluded that the effect of the education level of
West German women on the timing of a second birth was not (statistically) significant
(at the 5 percent credibility level), see Table 3 in that paper.

The inclusion of time-varying covariates in our extended promotion time model
(cf. Section 2) for the second birth leads to other conclusions, see Table 6. Indeed,
while the (significantly) increasing trend in parameter estimates (from −0.468 to 1.076)
suggests (like in the basic promotion model) that the probability to have a second child
increases with the mother’s education level, we found in addition that a woman with a
high education level willing to have a second child tends to wait (significantly) longer
than others to experience her pregnancy (see the −0.921 estimate in the right part of
the table). On the other hand, and as expected, while the probability to have a second
child (significantly) decreases with the mother’s age at first birth, the time to the second
child (significantly) decreases with that age for a mother deciding to have an extra one.
Finally, while the education level of partners does not (significantly) affect the proba-
bility and the timing of a second delivery, their absence not surprisingly (significantly)
decreases the chance of a family extension.

Figure 5 pictures the population baseline hazard function (left) and the baseline
hazard function of susceptible women (right) with their 95% pointwise credible intervals.
These baseline values are obtained by setting each covariate at its reference value in
Equations (9) and (10).

Since the population is a mixture of susceptible and non-susceptible women, it was
expected that the instantaneous risk of having a second child is smaller for the whole
population than for susceptible women. It should be noted that the shapes of the two
functions slightly differ: the baseline hazard function for susceptible women peaks 3.5
years after the last update of their education level or of their partner (or after the first
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Figure 5: Second birth - Fitted baseline population hazard (left) and fitted baseline hazard for suscep-
tible women (right) with 95% pointwise credible intervals.

birth if no change occurred in their education levels), then tends to slightly decrease
afterwards. On the other hand, the population hazard function shows a peak sooner
(3 years after after the update of the parent education levels or after the first birth if
no change occurred in their education levels) and decreases thereafter. A more detailed
explanation of the differences between the population and the susceptible hazards is
available in Bremhorst et al. (2016).

5.2 Third birth

Figure 6: third birth - Fitted baseline population hazard (left) and fitted baseline hazard for susceptible
women (right) with 95% pointwise credible intervals.
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Table 7: Third birth. Estimate of the posterior median and of the posterior standard deviation for
each regression parameter using MCMC. (Signif. codes : * = 0.1 ; ** = 0.05 ; *** = 0.01)

Probability Timing
Est sdpost Est sdpost

Intercept -1.367 0.268 – –
Sex. comp. of prior kids

Two boys 0.313 0.292 -0.261 0.309
Boy & Girl (Ref.) 0.000 0.000
Two girls 0.213 0.286 -0.147 0.293

Education
Low 0.479 0.371 -0.072 0.385
Medium (Ref.) 0.000 0.000
High 0.087 0.370 0.070 0.382

Partner’s education
No partner -0.241 0.350 0.765 0.411 *
Low 0.295 0.498 0.072 0.541
Medium (Ref.) 0.000 0.000
High 1.056 0.354 *** 0.166 0.352

Calendar Period (std) -0.026 0.146 -0.202 0.146
Age at first birth (std) -0.875 0.205 *** 0.251 0.194
Time between first 2 kids (std) -0.557 0.144 *** 0.232 0.148

Table 7 presents the posterior median (as point estimate) and the posterior standard
deviation of each regression parameter in the extended promotion time model (cf. Section
2) fitted on the data for third birth. This time, the education level of the mother does not
have any significant effect on the probability or the timing of a third pregnancy. However,
having a highly educated partner significantly increases the probability of having a third
child (but not its timing). As expected, significant negative effects were found for the
mothers’s age at first birth and for the time elapsed between the first two births on the
third birth probability. The absence of any significant effect on the pregnancy timing
might be explained by a lack of power following from the small number of observed third
births.

Figure 6 shows that the population hazard function remains rather small after the
last update of the parent education levels or after the second birth if no change in
education levels occurred, while the hazard function of the susceptible mothers increases
directly after it.

6 Discussion

This paper was motivated by the the desire to include time-varying categorical covari-
ates in cure survival models. Our extension of the promotion time model enables to
simultaneously include such covariates in the regression sub-models for the probability
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of the monitored event and its timing for susceptible subjects. A random effect with a
flexible parametric distribution, the Power Variance Function distribution (containing
the gamma and the inverse Gaussian as particular cases), is also added to account for
the unobserved heterogeneity. This new model family enables to handle non monotone
population hazard functions and does not require restrictive or arbitrary parametric as-
sumptions for the baseline hazard. It is assumed that the changing times of the (categor-
ical) covariates are exactly known leading to a piecewise constant time-varying covariate
framework. Introducing continuous (non piecewise constant) time-varying covariates di-
rectly as regressors in the probability model is not straightforward and would require
further research. Chi and Ibrahim (2006) already proposed such a model, but their as-
sumptions lead to a monotonically increasing population hazard function, which can be
unrealistic in many contexts, including fertility studies. An extensive simulation study
revealed that (nearly) all the regression parameters were properly estimated using our
Bayesian strategy: biases were non significant with a frequentist coverage of Bayesian
credible intervals coherent with their nominal value. The exception concerns regres-
sion parameters associated to a time-varying covariate only influencing the event timing
for susceptible individuals. Then, a moderate bias was revealed together with slightly
undercovering credible intervals. However, no bias was found for the model parameter
estimates of time-varying covariates with a simultaneous impact on the probability and
on the timing of the event for susceptible subjects. Therefore, when using this model, we
suggest to enter time-varying covariates simultaneously in the two regression sub-models
as done in the application. Further research is required to understand the cause of this
moderate bias.

Regarding the demographic context, Bremhorst et al. (2016) studied the effects of the
educational attainments of women and their partners, fixed at previous birth, on second
and third parity progressions. Using our model extension, the possible progression in
the mother and partner educational levels during the follow-up can now be taken into
account. As a main result, the opposite of the ‘work-accelerated childbearing assumption’
suggested by Nı́ Bhrolcháin (1986); Kreyenfeld (2002) and Bartus et al. (2013) was
revealed for women with a high education level living in West Germany. Indeed, our
analysis not only pointed that highly educated woman were significantly more likely to
have a second kid, but also less hurried than others to have their second pregnancy
when that decision is taken. It should be contrasted to the corresponding statistically
non significant effect in Bremhorst et al. (2016) where the education attainment was
fixed at its value directly after the first birth, thereby ignoring the possibility that these
women were still studying. A possible further study could be devoted to the analysis
of the effects of (time-varying) women/family characteristics on the probability and the
timing of a first pregnancy.
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