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Abstract: The shared frailty model is a popular tool to analyze correlated right-censored
time-to-event data. In the shared frailty model, the latent frailty is assumed to be shared
by the members of a cluster and is assigned a parametric distribution, typically a gamma
distribution due to its conjugacy. In the case of interval-censored time-to-event data, the
inclusion of frailties results in complicated intractable likelihoods. Here, we propose a �exible
frailty model for analyzing such data by assuming a smooth semiparametric form for the
conditional time-to-event distribution and a parametric or a �exible form for the frailty
distribution. The results of a simulation study suggest that the estimation of regression
parameters is robust to misspeci�cation of the frailty distribution (even when the frailty
distribution is multimodal or skewed). Given su�ciently large sample sizes and number
of clusters, the �exible approach produces smooth and accurate posterior estimates for the
baseline survival function and for the frailty density, and can correctly detect and identify
unusual frailty density forms. The methodology is illustrated using dental data from the
Signal Tandmobiel R© Study.
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1 Introduction

Interval-censored time-to-event data arise frequently in longitudinal studies, where the event
of interest is only known to have occurred between the two consecutive visits. A number
of parametric, semi-parametric and non-parametric approaches have already been proposed
to analyze such data (Peto, 1973; Turnbull, 1976; Komárek et al., 2005; Zhang and Da-
vidian, 2008); including extensions of Cox's proportional hazards (PH) model, the most
popular regression model for time-to-event data (Finkelstein, 1986; Cai and Betensky, 2003;
Çetinyürek-Yavuz and Lambert, 2011). In the Cox PH model, the observations are assumed
to be independent. However, this may not be true in certain situations where the observed
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responses are clustered or subject to multiple measurements. A number of approaches gen-
eralizing Cox's PH model to handle correlated interval-censored data has been proposed in
the literature. Marginal approaches based on generalised estimating equations (GEE) have
been presented for the Cox model (Goggins and Finkelstein, 2000; Kim and Xue, 2002; Kor
et al., 2013). However, marginal approaches usually do not allow inferences on the relation-
ship or association between the event times. Alternatively, heterogeneity between clusters
due to unknown or unobservable risk factors can be accounted for by the introduction of a
frailty component in a conditional Cox PH model.

Frailty is a term describing (common) excess risk of failure among individuals in the same
cluster. For right-censored time-to-event data, Vaupel et al. (1979) were the �rst to introduce
the concept of frailty assuming a gamma distribution (due to the conjugacy property).
The frailty model has been thoroughly studied since then by many authors in an attempt
to model the heterogeneity between the clusters or account for the e�ect of unobserved
covariates (Clayton, 1978; Clayton and Cuzick, 1985; Aalen, 1988). Other parametric frailty
distributions such as lognormal, uniform, Weibull, positive stable or inverse Gaussian have
also been considered (Vaupel and Yashin, 1983; Hougaard, 1984, 1986). However, most
softwares limit the choice of the frailty distribution to lognormal and gamma distributions
(Therneau, 2012); see for example coxph in package survival in R (R Development Core
Team, 2012). A detailed summary of the frailty model can be found in Hougaard (2000).

Frailty models have also been adapted to handle interval-censored data. Bellamy et al.
(2004); Goethals et al. (2009) assumed a Weibull model for the unobserved event times to
obtain a closed form for the marginal likelihood using a lognormal or a gamma distribution
for the frailty. Zuma and Lurie (2005); Zuma (2007) presented the use of EM algorithm
to analyze correlated interval-censored data arising from an HIV study, considering the
failure times and the frailty terms as missing in a PH model with a constant baseline hazard
and gamma frailty. Zuma and Lurie (2005) also compared the parameter estimates from
the EM algorithm with those obtained using a Bayesian approach. Similarly, Lam et al.
(2010) proposed to use the EM algorithm with a robust estimator of the covariance matrix
to adjust for the possible misspeci�cation of the parametric baseline hazard function in
a gamma frailty model. Henschel et al. (2009) proposed a gamma or lognormal frailty
model assuming a piecewise constant baseline hazard in a Bayesian framework via a data
augmentation approach. Wen and Chen (2013) presented a gamma frailty PH model with
bivariate mixed case interval-censored data using a semiparametric maximum likelihood
approach.

An important limitation of the above papers is represented by the parametric assumptions
made for the baseline hazard and the frailty distribution for computational convenience.
However, commonly assumed distributions may be too restrictive in practice to model the
within-cluster heterogeneity (Shih and Louis, 1995). It has been shown that the regression
parameter estimates are robust to the choice of random e�ect distribution in speci�c contexts
(Klein et al., 1992), but are sensitive to that choice in other frameworks such as in GLMM
(Agresti et al., 2004; Chen et al., 2002). The choice of frailty distribution has received very
little attention in the clustered interval-censored data setting (Komárek and Lesa�re, 2008;
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Goethals et al., 2009; Henschel et al., 2009) because it is still a challenge using frequentist
methods. For these reasons, we aim to present a shared frailty PH model with �exible forms
for the time-to-event distribution and possibly also for the frailty distribution following Eilers
and Marx (1996); Lambert and Eilers (2009) in a Bayesian framework.

The rest of the paper is organized as follows. In Section 2, we introduce the shared frailty
PH model. Our strategies for the speci�cation of a smooth baseline density from interval-
censored data and of a �exible frailty distribution are explained. Section 3 is devoted to
the Bayesian inference. Section 4 contains the details and results of an extensive simulation
study. The methodology is illustrated with a dataset from the Signal Tandmobiel R© study
in Section 5. A discussion of the results concludes the paper.

2 Shared frailty model

The frailty model is used to explore the e�ect of risk factors (covariates) on time until
the event of interest occurs in the presence of unexplained heterogeneity in the population.
Suppose that there are G independent clusters, each containing ng sub-units. Let tgj denote
the (continuous) time until the event of interest occurs, and let xgj denote the p×1 covariate
vector for unit j in cluster g. To model the correlated event times, we assume that tgj follows
a shared frailty PH model given by

λ(tgj | xgj , bg) = λ0(tgj)bg exp(x′gjβ), (2.1)

where λ(tgj |xgj , bg) is the conditional hazard function for unit j in cluster g for a given
covariate vector xgj and regression coe�cients β = (β1, ..., βp)

T , conditional on the frailty
bg speci�c to cluster g. Given the shared frailty PH model, the conditional survival function
is

S(tgj | xgj , bg) = S0(tgj)
bg exp(x′

gjβ), (2.2)

where S0(tgj) denotes the baseline survival function for unit j in cluster g. The bgs g =
1, . . . , G are the actual values of a sample of density hb. This model is a shared frailty model
because the individuals in cluster g are assumed to share a common frailty bg. The survival
times are assumed to be conditionally independent given the shared frailty. Individuals with
frailty bg<1 are said to be less frail and thus will tend to survive longer despite having the
same covariate pattern. Conversely, individuals with frailty bg>1 are more frail, for reasons
unexplained by the given covariates, and will have an increased risk of failure. Since bg has
a multiplicative e�ect on the hazard function, it can easily be seen that frailty represents
the cumulative e�ect of one or more omitted covariates (Wienke, 2010). The inclusion of
the frailty term in the PH model enables us to obtain estimates of standard errors adjusted
for the possible e�ect of within-cluster correlation (Kim and Xue, 2002).

2.1 Notation

We use f0 to denote the probability density function corresponding to the baseline survival
function S0(.). The baseline survival and hazard functions can be written in terms of f0(.)
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as S0(tgj) = 1−
∫ tgj

0 f0(s)ds and λ0(tgj) = f0(tgj)/S0(tgj).

Assume that the event time tgj is not observed exactly, but that the times of the last
negative test result, lgj , and of the �rst positive test result, rgj , are available. Then, tgj is
only known to lie within an interval (lgj , rgj) included in the support (a, b) leading to interval-
censored data {(lgj , rgj) : j = 1, . . . , ng; g = 1, . . . , G}. All the observations are contained in
an interval (a, tcens) ⊂ (a, b), where tcens denotes the end of the study follow-up. Note that
rgj = b when no right limit is available (right-censored).

For the sake of computational simplicity, we use the log-frailty zg = log(bg) and shall refer
to it as log-frailty hereafter. Let zg have a density h(z) with standard deviation α.

2.2 Flexible speci�cation of the baseline distribution

In order to estimate the baseline survival function S0(tgj) in (2.2), we �rst approximate the
underlying density using penalized B-splines (P-splines). We assume some familiarity with
P-splines from the reader. If not, information can be found in Eilers and Marx (1996, 2010);
Lang and Brezger (2004).

We start by partitioning (a, tcens) into I (more than 100, say) small bins of equal width ∆i

with midpoints ui (i = 1, 2, ...I) (Ii = (ai−1, ai)). Consider the B-spline basis {bk(·; q)}Kk=1

of degree q associated to a rich grid of K pre-speci�ed equidistant K knots and evaluated
at the midpoints ui of the small bins. The probability πi of observing tgj in small bin Ii is

πi =

∫
Ii

f0(t)dt ≈ f0(ui)∆i. (2.3)

Following Eilers and Marx (1996), we assume that the πis change smoothly over time. A
possible formulation for π = (π1; . . . ; πI) is the polytomous logistic regression model

πi = ζ × eηi

eη1 + eη2 + ...+ eηI
, (2.4)

where ηi =
∑

k φkbk(ui), φ is a vector of spline coe�cients and ζ denotes 1−S0(tcens). Given
that πi(φ) = πi(φ+ c) for any constant c, an identi�ability constraint is imposed on spline
coe�cients φk such that

∑I
i exp (ηi) = 1. The density f0(ui) is estimated by πi/ ∆i using

Equations (2.3) and (2.4).

If K is too small, we might potentially miss important features in the density. If it is too
large, our density estimate will be too wiggly (i.e. capturing all irrelevant features of the
data). In practice, we recommend to take a reasonably large value for K (say between 20
and 30). As we take a generous number of B-splines, it is important to avoid over�tting.
Eilers and Marx (1996) suggest handling such an issue by penalizing the log-likelihood using
a roughness penalty when drawing inference. In a Bayesian setting, the roughness penalty is
translated into a prior distribution for the spline parameters. The details appear in Section
3. P-splines were already used in many di�erent contexts; see for example Eilers and Marx
(1996); Eilers (2007) in a frequentist framework and Lang and Brezger (2004); Lambert
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and Eilers (2005); Lambert (2007, 2013) and Çetinyürek-Yavuz and Lambert (2011) in a
Bayesian framework.

2.3 Flexible speci�cation of the frailty distribution

The conventional approach for frailty models is to assume that h(z) follows a known para-
metric distribution, for instance a normal distribution. Alternatively, one could choose to
work with �exible forms and use the data to estimate the density. In this spirit, we in-
vestigate the use of P-splines to specify the frailty distribution along the same lines as in
Section 2.2. By standardizing the log-frailties using z∗g =

zg−ν
α , such that expected value of

z∗g , E(z∗g), is zero, and variance of z∗g , V (z∗g), is 1, it is reasonable to assume that all z∗g take a
value in a standard range, say I = (−6, 6). This interval is partitioned into I∗(> 100 ) small
bins I∗i = (a∗i−1, a

∗
i ) of equal width ∆∗, with midpoints u∗i ; (i = 1, 2, ...I∗). The probability

of z∗g being in small bin I∗i is π∗i =
∫
I∗i
h∗(z∗)dz(∗), where π∗ is modeled as a combination of

B-splines, as follows:

π∗i =
exp (η∗i )

exp (η∗1) + exp (η∗2) + ...+ exp (η∗I )
, (2.5)

where η∗i =
∑

κ φ
∗
κb
∗
κ(u∗i ) and {b∗κ(·; q)}κ

∗

κ=1 is the B-spline basis. The same identi�ability
constraint is imposed on the spline coe�cients φ∗ as on φ.

The speci�cation of the log-frailty density di�ers from the previous one for the baseline
density f0(.) (see Section 2.2). Indeed, the log-frailty terms are not subject to censoring;
hence, there is no need for a ζ parameter as in (2.4). For identi�ability reasons, the mean
of log-frailty zg is �xed to zero. Moreover, z∗g is also constrained to have a variance of 1.

3 Inference

3.1 Likelihood

The likelihood contribution of an individual with interval-censored event times (lgj , rgj) is
expressed as the di�erence of the values of survival functions at lgj and rgj . Then, the
likelihood of the shared frailty model from interval-censored data is

L(φ, ζ,β, z) =
∏
g

∏
j

[S(lgj | zg, xgj)− S(rgj | zg, xgj)]. (3.1)

The marginal likelihood of the shared frailty model from interval-censored data cannot be
evaluated analytically, except in the special case of a gamma frailty distribution Goethals
et al. (2009). Therefore, we adopt a Bayesian approach for inference.
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3.2 Prior and posterior distributions

The Bayesian approach requires the speci�cation of prior distributions for the model pa-
rameters. We start by introducing the prior distributions related to the baseline density
speci�cation.

A Bayesian version of the P-spline approach of Eilers and Marx (1996) is presented by Lang
and Brezger (2004) for additive models and extensions by replacing di�erence penalties with
their stochastic analogues. In a Bayesian setting, the role of the roughness penalty, τ , is taken
over by the prior distribution on the �nite (rth) order di�erences of the spline coe�cients as
(∆rφk|τ) ∼ N(0, τ−1). As a result, the joint prior for the B-spline coe�cients corresponds
to a multivariate normal distribution as p(φ|τ) ∝ τK/2 exp

{
− τ

2φ
′Pφ

}
, with mean 0 and

variance - covariance matrix P−1 where we suggest taking P = D′rDr + εI, where Dr is an
rth- order di�erence matrix. The inverse variance τ plays the role of the penalty parameter
in the penalized likelihood of the frequentist setting. A noninformative hyperprior with large
variance is usually advocated for τ , for example, a gamma distribution G(υ1=1, υ2=0.0001)
with mean υ1/υ2 and variance υ1/υ

2
2 (Lang and Brezger, 2004), leading to almost di�use

priors. Alternative priors are suggested in Jullion and Lambert (2007); Scheipl and Kneib
(2009). This idea has been successfully used in many contexts (see e.g. Lambert and Eilers
(2009); Lang and Brezger (2004); Lambert (2007)). An improper prior is considered for
the regression parameters β. Moreover, a uniform prior on (0,1) is taken for ζ. However,
we choose to work with ξ = log [ζ/(1− ζ)]. The consequent prior density for ξ is thus
proportional to ζ(1 − ζ) = exp(ξ)

(1+exp(ξ))2
. In a Bayesian implementation of a frailty model,

the log-frailty terms are treated as unknown parameters and assigned a prior h(z). Thanks
to the location-scale transformation, one can use equidistant knots on I = (−6, 6), where
most of the probability mass lies. This allows one to estimate the standard deviation of
the log-frailty. Typically, the standard deviation of the log-frailty, α, is assigned a large
variance inverse Gamma prior. In the subsequent sections, after presenting the speci�c prior
distributions for each model, the posterior distributions for the frailty are presented in two
parts: the parametric frailty and the �exible frailty model formulations.

3.2.1 Parametric frailty model

The log-frailty terms could be assumed, for example, to be independent Gaussian (zg|α) ∼
N(0, α2). Given the shared frailty PH model and the conditional independence assumption,
the joint posterior of the model parameters can be written as

p (φ, τ, ξ,β, z, α | D) ∝ L(φ, ζ,β, z)× p(φ|τ)× p(τ)× p(ξ)× p(β)

×


G∏
g=1

p(zg|α)

× p(α), (3.2)

given the available data (D), where L(φ, ζ,β, z) is given by (3.1).

In the parametric frailty model, only the conditional posterior distribution for τ is of a famil-
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iar type: τ |D ∼ G
(
K + υ1,

(
φ′(m)Pφ(m)

)
/2 + υ2

)
. The conditional posterior distributions

for the other model parameters are not of familiar type. Therefore they will be explored
using a Markov chain Monte Carlo (MCMC) algorithm (see Section 3.3).

3.2.2 Flexible frailty model

Like for the spline coe�cients for the baseline density, the joint prior for the B-spline coe�-
cients corresponds to a multivariate normal distribution p(φ∗|τ∗) ∝ (τ∗)κ/2 exp

{
− τ∗

2 φ
∗′P ∗φ∗

}
,

with mean 0 and variance-covariance matrix P ∗−1 where P ∗ = D∗′D∗ + εI∗ is a full-rank
matrix for some small quantity ε (say 10−6). For τ∗, a noninformative hyperprior (Gamma
distribution) with large variance is assumed. The log-frailty terms are assumed to have a
nonparametric density, h∗(z∗), which is constructed via (2.5) where h∗(z∗) is a zero mean
and unit variance density.

The joint posterior of the model parameters for the shared frailty PH model with a �exible
frailty distribution can be written as

p (φ, τ, ξ,β, z∗,φ∗, τ∗, α | D) ∝ L(φ, ζ,β, z)× p(φ|τ)× p(τ)× p(ξ)× p(β)

×


G∏
g=1

h∗(z∗|φ∗)

× p(α)× p(φ∗|τ∗)× p(τ∗) (3.3)

where L(φ, ζ,β, z) is given by (3.1).

Mean zero and unit variance constraint for the frailty distribution is made possible by
subtracting a strong penalty of the form ψ × [(E(z∗g) − 0)2 + (var(z∗g) − 1)2] from the log-
likelihood (where ψ is a large positive quantity, say 1000, see Lambert (2013)).

The conditional posterior distributions for τ and τ∗ are of familiar type:

τ |D ∼ G
(
K + υ1,

(
φ′(m)Pφ(m)

)
/2 + υ2

)
and τ∗|D ∼ G

(
κ+ υ1,

(
φ∗(m)

′P ∗φ∗(m)

)
/2 + υ2

)
.

Unfortunately, the conditional posterior distribution of other model parameters are not of
familiar type, and hence, will be sampled using MCMC (see Section 3.3).

3.3 Exploring the posterior via MCMC

For both frailty models, parameter ζ is restricted to have a value on [0,1] and α is de�ned
to be positive; therefore the Metropolis steps for updating those parameters are performed
after logit and log transformations, respectively.

3.3.1 Parametric frailty model

Let ϑ = (φ, τ, ξ,β, z, α) be the vector of parameters of length H(= K + 1 + 1 + p+G+ 1
and p denote the number of regression parameters. The samples

{
ϑ(m) : m = 1, ....,M

}
will

be drawn from the joint posterior p(ϑ|D) using a Metropolis-within-Gibbs algorithm.
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3.3.2 Flexible frailty model

Let ϑ = (φ, τ, ξ,β, z∗,φ∗, τ∗, α) be the vector of parameters of length H(=K + 1 + 1 +
p + G + κ + 1 + 1) and p denote the number of regression parameters. MCMC samples{
ϑ(m) : m = 1, ....,M

}
will be drawn from the joint posterior p(ϑ|D) using a Metropolis-

within-Gibbs algorithm.

3.3.3 MCMC steps

By running the chains for M iterations (long enough to achieve convergence) and ignoring
the �rst few thousand iterations (say nb) as an appropriate burn-in period, chains of length
(M − nb) are obtained and thinned (by factor 50 for the spline coe�cients due to large
auto-correlations). Finally, the resulting (M − nb)/50 iterations can be seen as a random
sample from the joint posterior. Point estimates and corresponding credible regions can be
calculated based on these random samples.

There are several ways to improve the mixing and the convergence of the chains. Starting
the chains at good initial values speeds up convergence. Usually, these can be obtained from
restricted frequentist models. Furthermore, the mixing of the chains can be improved by
using a Metropolis algorithm on a re-parametrized posterior (Lambert, 2007). For optimal
use of the Metropolis algorithm, it is also recommended to tune the acceptance probability to
approximately 0.44 in one-dimensional space decreasing to 0.23 in high-dimensional spaces
(Gelman et al., 1996; Roberts and Rosenthal, 2001). Good acceptance rates can be achieved
via a careful choice of standard deviation δh in the generation of proposals in the univariate
Metropolis algorithm. For more details on how to improve mixing and convergence, see the
Supplement.

4 Simulation study

In order to assess the performance of our modeling strategies, we have performed a series
of simulations with various numbers of clusters and cluster sizes under varying interval-
censoring schemes. Besides aiming to accurately estimate the regression coe�cients and the
standard deviation of the log-frailty, we also aim to obtain good estimates of the survival
and frailty density functions. In line with these objectives, we considered three scenarios
for the frailty density (referred to as "Unimodal", "Bimodal" or "Skewed"; see dashed
lines for the assumed frailty distributions in Figure 1). The results are obtained from
300 replications with four di�erent values for the number of clusters G (i.e. 20, 50, 100
and 200), each of which has di�erent sizes ng (i.e. 4, 6, 10, 20 and 50). It should be
noted here that large (resp. small) values of G are combined with small (resp. large)
values for ng. Three di�erent values (0.8, 1.2, and 1.5) were considered for the standard
deviation of the frailty. Six di�erent scenarios corresponding to di�erent interval widths
(0.5σ, 1.0σ and 1.3σ) and two di�erent amounts of right-censoring (10% and 35%) were used.
A balanced binary treatment covariate (X1 = 0 for control subject; X1 = 1 for a subject in
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the intervention group) is used with a corresponding regression coe�cient chosen as log(2)(∼=
0.6931). After generating the frailty terms from the speci�ed distribution, given the value of
the frailty and the covariate we assumed a PH frailty model with a Weibull baseline hazard,
λ0(t) = 5t4/705. For each scenario the performances of three estimation strategies named-
"Imputation", "Gaussian" and "Semiparametric" are compared. "Imputation" replaces the
interval-censored data by the interval midpoints and �ts a Cox PH model with a lognormal or
gamma frailty. "Gaussian" assumes a �exible baseline survival function for interval-censored
data and a lognormal frailty density. "Semiparametric" estimates both the baseline survival
and the frailty density using Bayesian P-splines. We considered the compact interval (0,120)
as (an approximation to) the support of the target Weibull distribution. The observed range
of the considered distribution, (0, tcens), changing for di�erent amounts of right-censoring,
was divided into small bins of width 1 (∼= 0.7σ). Cubic B-splines associated to 12 equidistant
knots on (0, tcens) and a third order penalty were used. A chain of length M=120 000
(including a burn-in period of nb=54 000 runs) was constructed to explore the posterior
distribution of the model parameters.

4.1 Performance in parameter estimation

Although the posterior samples from Bayesian estimation using MCMC contain lots of infor-
mation, we need to use point estimators to summarize the samples and to enable frequentist
comparisons. For this reason we use the mean/median of several quantities of interest. Point
estimates for β, ζ, τ and α were calculated using the mean of the generated MCMC sample;
(1−α)×100% credible interval can be estimated using the α/2 and (1−α/2) sample quan-
tiles of the chain. The proportions of so-de�ned credible intervals (one for each of the S data
sets) containing the true value of the parameter of interest were reported as an estimate of
the corresponding coverage. The �tted baseline density f̂s for the sth data set corresponds
to the MCMC estimate 1

M−nb

∑M
m=nb

f̃ (m) of the posterior mean of the estimated baseline
density. The baseline survival is obtained using the estimated baseline density. These quan-
tities can be used to derive a point estimate for the mean, standard deviation and some
selected quantiles. Further we report on 5%, 15%, 25%, 35%, 50%, 60%, 75%, 85% and
88% quantiles of the baseline survival function. It should however be noted that for some
amounts of right censoring, we cannot get the estimates for baseline survival functions at
some quantiles since the density is not observed beyond tcens. The frequentist properties
of these Bayesian estimators are measured in terms of relative bias (Rbias), empirical stan-
dard errors (ESE) and root mean squared error (RMSE). However only relative biases are
reported here. If β (say) is the parameter of interest, then the relative bias is de�ned as

100
( ¯̃
β−β
β

)
where ¯̃

β is the mean of the estimates for β over the S data sets.

Only part of the results of the simulation study is presented in Tables 1-4 for the sake of
brevity. In Table 1, the results for regression coe�cient and standard deviation for frailty
are summarized when the generated frailty is unimodal (Left: α=0.8, right: α=1.2). The
regression coe�cients β are properly estimated (Rbias < 4%) with the �exible and the
Gaussian frailty models, yielding similar point estimates and 90% credible intervals (except
when ncl=20 with 10 observations per cluster). An increase in sample size results in smaller
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credible intervals. Moreover, the coverages of 90% and 80% credible intervals are very close
to their nominal values. However, the performance of both frailty models deteriorates in the
estimation of the standard deviation of the frailty, α, for small cluster sizes (ni=4 and 6),
or when the number of clusters is small (ncl=20). In all settings for both models, the frailty
standard deviation is underestimated with low to medium relative bias (between -2% and
-11%). The performances of a setting with a larger standard deviation for the log-frailty
(α=1.2) are very similar to the setting with α=0.8 except that the estimation of the standard
deviation of the log-frailty improves (Rbias < 5%).

Tables 2 presents the results for the "Bimodal" setting with di�erent standard deviations
for the log-frailty (left: α=0.8, right: α=1.2). One can notice that the relative biases in the
estimation of the regression coe�cients are very small (< 3%), except again when ncl=20
and ni=10 (≈ 7%). The coverages of 90% and 80% credible intervals are very close to
their nominal values. Like in the unimodal setting, the models with �exible frailty and the
Gaussian frailty produce very similar regression coe�cient estimates. When we consider the
estimation of frailty standard deviation, the performances of the �exible and of the Gaussian
frailty speci�cations are similar except when ni is very small: with four observations per
cluster the estimation of α produces large relative bias estimates. A similar scenario with
a larger mean interval width (1.0σ) was also considered (not presented here): the larger
interval width did not a�ect the results. However, when considering a similar scenario with
mean interval width (1.0σ=15) and a larger frailty standard deviation α=1.2 (right of Table
2), the estimation improves. All relative bias estimates are below 5% and the coverages are
similar for the �exible and the Gaussian frailty models. This progress in the estimation of
α is probably due to the separability of the two modes of the frailty distribution when α
is larger. It is also noticeable that the estimation of α is more performant with a smaller
bias (less than 5%). The coverages of 90% and 80% intervals tend to be larger than the
nominal values. It should be noted that the performances of the two frailty models are similar
although the �exible frailty model has more parameters to estimate. The performance of the
models in a setting similar to Table 2 but with a larger frailty standard deviation (α=1.5)
was also explored (though it is not presented here). The relative bias is less than 5% for
β and less than 6% for α. The coverage for α in the semiparametric model is larger than
for the Gaussian model. In the bimodal scenario, the value of the frailty standard deviation
is an important factor for the separation of two modes of the mixture distribution. The
relative bias and coverages do not change when the amount of right-censoring increases.
However, a larger percentage of right-censoring results in larger credible intervals.

The results from more challenging settings, ("Skewed" setting), are presented in Table 3.
The performances in the estimation of β are quite similar for the �exible and the Gaussian
frailty models with relative biases smaller than 4% in all cases. The relative biases are also
very small for α (less than 5%). The coverages of the credible intervals tend to be larger
than their nominal values in the �exible frailty speci�cation when the number of clusters
is small. As sample size increases, the width of credible intervals decreases and coverages
become closer to their nominal values. A similar setting with a greater α=1.5 revealed
similar results (not presented here). Another simulation setting similar to Table 3 was also
run to see the e�ect of larger amount of right-censoring (35%): the obtained results (not
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shown) are consistent with those in Table 3. A number of sensitivity analyses were also
carried out to assess the robustness of the results to the prior distributions for penalty
parameters τ , τ∗ and standard deviation of log-frailty, α. The results are not sensitive to
the choice of hyper-parameters in the "non-informative" prior distributions.

The performances of midpoint imputation using a gamma or a lognormal frailty were also
compared for all simulated datasets. Except when the widths of the intervals are small
(0.5σ), midpoint imputation should be used with caution. Indeed, for a mean interval width
1.0σ, midpoint imputation resulted in relative bias of around 5-10% for the regression coe�-
cient, β, and the frailty standard deviation, α. When the mean interval width increases, the
relative biases also increase for both model parameters. Assuming a gamma or a lognormal
does not make any di�erence in the estimation of the regression coe�cient, while assuming
a lognormal frailty seems preferable when it comes to estimating the standard deviation of
the log-frailty. The results are not presented here for the sake of brevity.

To sum up all results so far, we can conclude that the �exible frailty and the Gaussian
frailty models perform similarly in the estimation of β. Their performance in the estimation
of α depends on di�erent factors (sample size, number of clusters and frailty variance).
However, the deterioration in the estimation of α does not impact upon the estimation of
β. Therefore, if one is only interested in the estimation of regression coe�cients and does
not hope to obtain insights from the shape of the frailty distribution, a shared frailty PH
model with a �exible baseline hazard and a parametric frailty distribution is probably an
adequate choice.

4.2 Curve �tting performance

One of our aims is to investigate the ability of the proposed �exible frailty model to estimate
the shape of the frailty density. The quality of curve �t is explored for di�erent numbers
of clusters, cluster sizes, and interval widths, di�erent amounts of right-censoring and three
shapes for the frailty density (see the dashed curves in each of the columns in Figure 1).
For each frailty scenario, we present here only �ve di�erent settings for the sake of brevity;
see Figure 1. From each simulation setting, we simulate 50 datasets and estimate the
frailty density. The �rst row in the �gure corresponds to a setting with 20 clusters and 10
observations per cluster (n=200). The third row comes from a setting with n=200 and 50
clusters. The second, fourth and �fth rows correspond to settings with a sample size of 1000
with increasing number of clusters (ncl=20 and ng=50; ncl=50 and ng=20; ncl=100 and
ng=10, respectively).

Under the Gaussian frailty scenario (column 1 of Figure 1), the features of the frailty den-
sity are properly captured by the �exible frailty model. Under more challenging scenarios
(column 2: bimodal; column 3: skewed), the ability of the �exible model (in capturing the
features of the frailty density) depends on the number of clusters, cluster sizes and frailty
standard deviation. When the number of clusters is small (ncl=20) or when the number
of data items per cluster is insu�cient (ng=4), the shape of the frailty density cannot be
properly estimated. It improves with the number of clusters, with satisfactory results even
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Figure 1: Estimated frailty density aggregated over 50 replications under �ve di�erent set-
tings for three scenarios
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in the challenging "bimodal" frailty scenario (when ncl=50). When the number of clusters
and cluster size are small, the estimated frailty density resembles a unimodal normal dis-
tribution. This is a consequence of the 3rd order di�erence penalty used in the estimation
of the frailty density. Even with a large number of clusters, a cluster size of less than six
might yield a standard normal density. For an accurate representation of the frailty density
one needs a large number of clusters of medium to large sizes. The bimodal nature of the
frailty density has been well captured with large sample sizes, the largest uncertainty oc-
curring around the modes. It is important to note that the regularization of the estimated
frailty density to a Gaussian distribution (for small sample sizes) does not distort the esti-
mation of the regression coe�cients: the regression coe�cient estimates remained robust to
misspeci�cation of the frailty density.

The baseline survival function is properly approximated in many scenarios. We also found
that the estimations of the baseline survival densities in the shared frailty PH model are
similar to Çetinyürek-Yavuz and Lambert (2011) for comparable settings (ignoring frailty
model parameters). However, the performance of the baseline survival functions is a�ected
by the number of clusters and cluster sizes. When the cluster sizes are small, then the
estimates of the survival curve at selected quantiles tend to be more biased. These results
are presented partially for the sake of brevity (only from the �exible model). In many
simulation settings, semiparametric and lognormal frailty speci�cations resulted in very
similar estimates for the survival function.

5 Application: Signal Tandmobiel R© Study

We illustrate the aforementioned methodology with data from the Signal Tandmobiel R©

Study. The data used here is available in the R package bayesSurv and contains mainly
the information on emergence timing and caries experience reported as interval-censored
observations with intervals of approximate length one year. For more details on the design
of the study, see Vanobbergen et al. (2000). Adequate knowledge of timing and patterns of
tooth emergence is useful for diagnosis and treatment planning in pediatric dentistry and
orthodontics. It is anticipated that boys and girls have di�erent tooth emergence distribu-
tions. For this reason, the covariate gender (0=boys, 1=girls) was included in the model.
Additionally it was of interest to dentists to see whether the distribution of emergence time
of a permanent tooth changes when its primary predecessor experiences or does not expe-
rience caries. Therefore, a binary score, dmf, was associated to each permanent tooth to
indicate whether it was preceded by a decayed primary tooth. The response variable for a
particular child reports age (in years) at emergence of each premolar (teeth 14, 15, 24, 25,
34, 35, 44, 45): the data will be analyzed jointly and treated as clustered data. This enables
us not only to quantify the impact of di�erent covariates on the emergence time, but also
to study the relationship between the emergence times of di�erent teeth.

A random sample of 150 boys and 150 girls is used for inference, resulting in a dataset of
n=2400 with ncl = 300 clusters. For a better �t, we shifted the time origin to �ve years
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Figure 2: Signal Tandmobiel R© data: Estimated frailty density

of age which is clinically the minimal emergence time for permanent teeth. We replaced
tgj by tgj-5 in the model speci�cation. We used 15 knots from -6 to 6 and a third order
di�erence penalty. All computations are performed using an R code that calls a Fortran
function for the MCMC. The joint posterior for the �exible frailty model was sampled using
MCMC, yielding a chain length of 154 000 thinned by 50:1 ratio. Sampling of the 350
parameters required approximately 7 hours. Five frailty models were �tted to the data:
The �rst one includes only dmf, the second dmf and gender, and the third dmf, gender
and their interaction. The fourth model extends the third model by including the horizontal
symmetry and its interaction with gender. It has been shown by Leroy et al. (2003) that there
is horizontal symmetry with respect to teeth emergence: the same emergence distributions
can be assumed for horizontally symmetric positions. Thus three dummy variables were
created: Man4, Max5 and Man5, for mandibular �rst premolars (teeth 34,44), maxillary
second premolars (teeth 15,25) and mandibular second premolars (teeth 35,45), respectively.
The fourth model includes the main e�ects and their interactions of Man4, Max5 and Man5

with gender, respectively. For the �rst four models, the estimated frailty density was bimodal
or trimodal (see Fig. 2). This suggested that important covariates were missing. Finally,
in the �fth model the interactions of dmf with Man4, Max5 and Man5 and the three-way
interactions of gender, dmf and horizontal symmetry were also included. The estimated
frailty density for the �fth model turned out to be unimodal. For the sake of brevity, we
only present the estimates from Model 1 and 5. The estimated survival curves based on
model 5 are shown in Figure 3. As the main interest in this analysis was the e�ect of dmf
on emergence, we provide the plots of the estimated survival curves for dmf=0 and dmf> 0
for boys and girls and the four pairs of horizontally symmetric teeth based on Model 5
(see Figure 3). The �gures show that the di�erence between children with dmf=1 (> 0)
and dmf=0 is larger for boys than for girls and that the emergence process starts later for
boys. Moreover, subjects who have had caries on the primary predecessor signi�cantly tend
to have the permanent successor earlier for maxillary teeth. It can also be noticed that
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there is almost no di�erence for mandibular teeth between teeth with and without caries
on the primary predecessor. Usually, the emergence process is late for second premolars
when compared to �rst premolars. Our conclusions and �gures are in line with Komárek
and Lesa�re (2007) although we use a completely di�erent modeling approach to analyze
the data. The estimates from a naive shared frailty PH model using midpoint imputation
and assuming a lognormal frailty is also presented in Table 5. The 90% con�dence intervals
are relatively similar to the 90% credible intervals for most of the regression coe�cients in
Model 5, while the estimates of the regression coe�cients are smaller than with the proposed
models. It is also noticeable that the width of the intervals are smaller in the naive approach,
based on mid-point imputation.

The convergence of the chains was checked using several diagnostic measures (Cowles and
Carlin, 1996). The traces of all model parameters were examined critically. Moreover,
autocorrelation coe�cients was also computed and plotted. Geweke and Heidelberger-Welch
diagnostics also support convergence(Geweke, 1992; Heidelberger and Welch, 1983). We
also ran �ve chains with overdispersed starting points to check the convergence(Gelman and
Rubin, 1992). The Gelman-Rubin statistics were found to be at most 1.01 for all β (15
coe�cients in total), 1.00 for ζ, and 1.01 for α. These checks suggest convergence of the
MCMC algorithm. More details on the data are available in the Supplement.

6 Discussion

In this paper, we have presented rather general Bayesian approaches to address an important
class of models, the shared frailty PH model for clustered interval-censored data. Inference
ignoring the correlation between observations can be misleading. The main consequence
of ignoring the frailty is a reduction in the standard errors, which might lead to wrongly
signi�cant �ndings. The contribution of this paper revolves around building �exible Bayesian
models for clustered interval-censored data.

On the other hand, it has been indicated in the literature in di�erent contexts that the
misspeci�cation of the random e�ect distribution can in�uence the estimation of quantities
of primary interest, like the �xed e�ects. To circumvent such misspeci�cation, we have
suggested modeling the distribution of the frailty in a �exible way using P-splines. The
biggest advantage of using a �exible speci�cation for the density of frailty arise when its shape
is of speci�c interest. If it is considered as a nuisance, assuming a simpler lognormal frailty
would be an adequate solution to draw conclusions related to other model parameters, such
as regression coe�cients and variance of the frailty. Indeed, it was shown in the simulation
study that the regression parameter estimates in a shared frailty PH model are robust to the
misspeci�cation of the frailty density. However the use of a �exible form for the frailty does
not cause any loss in the precision of the regression parameter estimates when compared to
the simpler parametric frailty model. Both models provide a possibility of visualizing the
baseline density and survival functions.



16 Aysun Çetinyürek Yavuz and Philippe Lambert

5 6 7 8 9 10 11 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Maxilla 4, Girls

Age (years)

su
rv

iv
al

dmf=0
dmf=1

5 6 7 8 9 10 11 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Maxilla 4, Boys

Age (years)

su
rv

iv
al

dmf=0
dmf=1

5 6 7 8 9 10 11 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Mandible 4, Girls

Age (years)

su
rv

iv
al

dmf=0
dmf=1

5 6 7 8 9 10 11 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Mandible 4, Boys

Age (years)

su
rv

iv
al

dmf=0
dmf=1

5 6 7 8 9 10 11 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Maxilla 5, Girls

Age (years)

su
rv

iv
al

dmf=0
dmf=1

5 6 7 8 9 10 11 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Maxilla 5, Boys

Age (years)

su
rv

iv
al

dmf=0
dmf=1

5 6 7 8 9 10 11 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Mandible 5, Girls

Age (years)

su
rv

iv
al

dmf=0
dmf=1

5 6 7 8 9 10 11 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Mandible 5, Boys

Age (years)

su
rv

iv
al

dmf=0
dmf=1

Figure 3: Signal Tandmobiel R© Study data: Estimated survival curves based on Model 5 -
dmf=0 versus dmf=1
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(0.70-0.90)

0.1
95

86
1.18

(1.03-1.33)
-2.0

81
74

1.21
(1.10-1.35)

1.1
97

92

200
4

800
0.63

(0.38-0.88)
-21.0

54
48

0.81
(0.71-0.89)

0.6
93

82
1.22

(1.04-1.42)
2.0

86
76

1.26
(1.13-1.39)

4.7
83

72
6

1200
0.79

(0.72-0.86)
-1.1

95
87

0.80
(0.72-0.87)

0.4
96

92
1.17

(1.04-1.27)
-2.4

93
79

1.23
(1.15-1.33)

3.2
92

81
10

2000
0.79

(0.73-0.86)
-1.3

90
81

0.80
(0.75-0.87)

0.5
97

92
1.17

(1.07-1.26)
-2.4

87
80

1.23
(1.16-1.30)

2.4
93

85
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Table 3: The mean, relative bias (Rbias in %), 90% credible intervals and corresponding
empirical coverages (EC) for β and α with 10% of right-censoring and a mean width of
1.0σ for a varied number of clusters and cluster sizes under a "Skewed" frailty density with
standard deviation of α=1.2 in S=300 replications

Semiparametric Gaussian
β=0.693 β=0.693

ncl ng N Mean 90% CI Rbias EC EC Mean 90% CI Rbias EC EC
(%) 90 80 (%) 90 80

20
10 200 0.71 (0.46-1.01) 2.4 92 81 0.71 (0.43-1.01) 2.4 92 81
20 400 0.70 (0.51-0.87) 1.0 94 85 0.70 (0.51-0.87) 0.9 94 86
50 1000 0.70 (0.57-0.82) 0.5 91 80 0.70 (0.57-0.82) 0.4 90 81

50

4 200 0.70 (0.41-1.01) 0.9 91 79 0.70 (0.41-1.01) 0.8 91 79
6 300 0.70 (0.48-0.94) 1.3 91 84 0.70 (0.48-0.94) 1.4 91 84
10 500 0.70 (0.48-0.88) 0.5 88 76 0.70 (0.49-0.89) 0.5 89 76
20 1000 0.69 (0.55-0.84) 0.1 88 80 0.69 (0.56-0.83) 0.1 87 80

100
4 400 0.70 (0.46-0.91) 0.3 89 77 0.69 (0.48-0.92) 0.1 89 76
6 600 0.69 (0.51-0.88) -0.6 87 80 0.69 (0.51-0.87) -0.9 90 80
10 1000 0.69 (0.56-0.81) -0.5 91 82 0.69 (0.55-0.81) -0.7 91 81

200
4 800 0.70 (0.57-0.83) 0.4 90 83 0.69 (0.56-0.81) -0.4 90 81
6 1200 0.68 (0.56-0.80) -1.8 88 76 0.68 (0.55-0.80) -2.4 89 78
10 2000 0.69 (0.61-0.76) -0.5 86 77 0.69 (0.61-0.76) -0.7 90 82

α=1.2 α=1.2
ncl ng N Mean 90% CI Rbias EC EC Mean 90% CI Rbias EC EC

(%) 90 80 (%) 90 80

20
10 200 1.20 (0.83-1.63) -0.2 93 81 1.18 (0.83-1.59) -2.0 89 79
20 400 1.16 (0.86-1.46) -3.0 96 90 1.14 (0.88-1.45) -4.6 94 89
50 1000 1.15 (0.87-1.44) -3.8 95 88 1.14 (0.88-1.42) -4.9 94 84

50

4 200 1.17 (0.83-1.51) -2.9 91 79 1.15 (0.84-1.50) -4.1 87 75
6 300 1.19 (0.94-1.47) -0.7 94 83 1.17 (0.93-1.46) -2.1 93 82
10 500 1.18 (0.96-1.41) -1.3 94 85 1.17 (0.96-1.39) -2.2 92 83
20 1000 1.18 (1.00-1.36) -1.9 96 88 1.18 (1.00-1.36) -1.9 96 86

100
4 400 1.18 (0.97-1.39) -1.5 91 84 1.18 (0.96-1.39) -1.7 91 83
6 600 1.19 (1.01-1.38) -1.2 92 83 1.18 (1.02-1.39) -1.2 92 82
10 1000 1.17 (1.00-1.32) -2.4 90 83 1.18 (1.03-1.33) -1.5 94 82

200
4 800 1.17 (1.03-1.32) -2.7 80 68 1.20 (1.09-1.35) 0.3 91 84
6 1200 1.16 (1.03-1.31) -3.0 84 73 1.19 (1.07-1.32) -0.9 94 82
10 2000 1.17 (1.07-1.26) -2.8 88 74 1.19 (1.10-1.28) -0.9 92 85

Table 4: Relative bias (Rbias in %), empirical standard errors (ESE) and root mean squared
error (RMSE) for baseline survival at selected quantiles (5%, 15%, 25%, 35%, 50%, 60%,
75%, 85% and 88%) of T for 10% right-censoring, a mean interval width of 1.0σ ≈ 15
and frailty standard deviation α = 1.2 for a sample of size n=200 and n=1000 in S=300
replications (using the semiparametric frailty model)

ncl=20,ng=10 ncl=20,ng=50 ncl=50,ng=4 ncl=50,ng=20
Frailty Rbias (%) ESE RMSE Rbias (%) ESE RMSE Rbias (%) ESE RMSE Rbias (%) ESE RMSE

Uni.

S(39) 0.1 0.014 0.521 -0.1 0.01 0.52 -0.1 0.017 0.521 -0.3 0.008 0.519
S(49) 0.5 0.034 0.446 0.1 0.025 0.442 0.4 0.037 0.445 -0.6 0.019 0.438
S(55) 1.1 0.051 0.382 0.3 0.038 0.375 1.0 0.052 0.379 -1.0 0.029 0.367
S(59) 1.8 0.062 0.329 0.5 0.047 0.324 1.9 0.061 0.333 -1.3 0.035 0.318
S(65) 4.6 0.074 0.299 1.0 0.058 0.294 5.7 0.071 0.297 -1.9 0.043 0.295
S(69) 8.7 0.077 0.312 1.3 0.061 0.315 10.6 0.073 0.303 -2.8 0.044 0.314
S(75) 22.7 0.073 0.365 5.4 0.057 0.389 28.3 0.070 0.361 -1.2 0.04 0.398
S(80) 48.1 0.064 0.421 26.4 0.051 0.442 61.0 0.064 0.407 16.3 0.035 0.453
S(81) 55.4 0.062 0.431 35.0 0.050 0.447 70.7 0.063 0.413 23.8 0.034 0.455

Bimodal

S(39) 0.1 0.019 0.523 -0.4 0.017 0.519 -0.1 0.016 0.521 -0.4 0.012 0.519
S(49) 0.2 0.050 0.444 -1.9 0.044 0.434 -0.9 0.038 0.435 -0.8 0.032 0.435
S(55) 0.3 0.075 0.379 -1.2 0.066 0.375 -1.8 0.053 0.367 -0.8 0.047 0.372
S(59) 0.8 0.091 0.343 -1.4 0.082 0.332 -2.2 0.063 0.324 -1.1 0.058 0.325
S(65) 4.4 0.108 0.305 -3.8 0.099 0.296 -0.5 0.073 0.292 -3.7 0.069 0.289
S(69) 11.5 0.112 0.315 -5.4 0.100 0.339 4.9 0.075 0.311 -5.7 0.070 0.330
S(75) 38.7 0.109 0.363 10.1 0.096 0.395 28.9 0.071 0.365 8.2 0.067 0.389
S(80) 93.2 0.102 0.384 65.5 0.095 0.402 79.6 0.066 0.385 60.9 0.065 0.403
S(81) 110.4 0.100 0.389 84.8 0.094 0.415 95.7 0.065 0.393 79.4 0.065 0.411

Skew.

S(39) 0.3 0.018 0.523 -0.5 0.015 0.517 -0.2 0.017 0.520 -0.5 0.012 0.517
S(49) 0.6 0.047 0.447 -1.4 0.040 0.433 -1.1 0.040 0.436 -1.5 0.029 0.433
S(55) 1.0 0.072 0.385 -2.1 0.061 0.367 -2.4 0.057 0.366 -2.3 0.043 0.362
S(59) 1.6 0.090 0.336 -2.9 0.075 0.324 -3.4 0.068 0.314 -3.3 0.053 0.317
S(65) 5.3 0.109 0.311 -6.2 0.089 0.303 -3.1 0.078 0.300 -7.2 0.063 0.297
S(69) 12.4 0.114 0.317 -8.5 0.089 0.334 1.2 0.079 0.319 -10.1 0.063 0.329
S(75) 38.6 0.109 0.356 4.4 0.085 0.399 22.6 0.073 0.366 1.5 0.059 0.398
S(80) 89.9 0.098 0.389 53.6 0.083 0.417 69.4 0.067 0.400 48.9 0.057 0.453
S(81) 105.7 0.095 0.390 70.9 0.083 0.418 84.4 0.066 0.403 65.6 0.057 0.455
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Table 5: The Signal Tandmobiel R© Study data: Parameter estimates and 90% con�dence
(or credible) intervals for the e�ect of covariates and frailty standard deviation

Naive Cox PH with Frailty Gaussian Frailty Semiparametric Frailty
β 90% CI β 90% Cred. Int. β 90% Cred. Int.

Model 1 dmf 0.30 (0.17;0.43) 0.32 ( 0.17 ; 0.46) 0.34 ( 0.18 ; 0.48)
sd(frailty) 1.92 NA 1.52 ( 1.37 ; 1.68) 1.48 ( 1.35 ; 1.65)

Model 5 Girl 0.84 (0.59;1.09) 1.47 ( 0.90 ; 2.08) 1.32 (0.69 ; 1.89)
dmf 0.69 (0.39;0.99) 0.92 ( 0.57 ; 1.28) 0.92 (0.55 ; 1.28)
Girl - dmf -0.81 (-1.25;-0.38) -1.02 (-1.56 ;-0.57) -1.01 (-1.52 ;-0.48)
Mandibular 4 0.15 (-0.10;0.40) 0.29 ( 0.01 ; 0.56) 0.28 (-0.01 ; 0.57)
Maxillary 5 -1.66 (-1.95;-1.38) -1.80 (-2.12 ;-1.47) -1.68 (-2.01 ;-1.36)
Mandibular 5 -1.76 (-2.05;1-.47) -1.94 (-2.27 ;-1.63) -1.83 (-2.16 ;-1.49)
Girl - mandibular 4 0.07 (-0.29;0.42) 0.05 (-0.37 ; 0.47) 0.03 (-0.39 ; 0.45)
Girl - maxillary 5 -0.22 (-0.61;0.18) -0.42 (-0.85 ; 0.03) -0.41 (-0.84 ; 0.04)
Girl - mandibular 5 -0.01 (-0.40;0.38) -0.18 (-0.61 ; 0.27) -0.17 (-0.61 ; 0.28)
dmf - mandibular 4 -0.28 (-0.67;0.10) -0.45 (-0.89 ; 0.01) -0.44 (-0.91 ; 0.03)
dmf - maxillary 5 -0.37 (-0.78;0.04) -0.52 (-1.00 ;-0.07) -0.49 (-0.96 ; 0.00)
dmf - mandibular 5 -0.77 (-1.22;-0.32) -1.00 (-1.50 ;-0.49) -0.96 (-1.48 ;-0.44)
Girl - dmf - mandibular 4 0.38 (-0.18;0.93) 0.52 (-0.10 ; 1.18) 0.51 (-0.17 ; 1.20)
Girl - dmf - maxillary 5 1.01 (0.41;1.61) 1.15 ( 0.42 ; 1.80) 1.09 ( 0.41 ; 1.75)
Girl - dmf - mandibular 5 0.88 (0.24;1.52) 1.14 ( 0.41 ; 1.84) 1.04 ( 0.30 ; 1.80)
sd(frailty) 3.58 NA 2.80 ( 2.55 ; 3.07 ) 2.24 ( 2.01 ; 2.53 )
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2 Institut de Statistique, Université catholique de Louvain, Louvain la Neuve, Belgium
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E-mail: cetinyurek@yahoo.com.

Abstract: This document contains supplementary materials for the article of the same
title submitted for publication to the Statistical Modelling: An international journal.

Key words: Interval-censoring; shared frailty; Bayesian; P-splines

1 Introduction

This document contains supplementary materials for the article of the same title submitted
for publication to Statistical Modelling: An international journal. Notation not defined in
this document is defined as in the main paper. Section 2 presents some details about the
MCMC, e.g. the frequentist density estimation procedure from interval-censored data and
some strategies for improving mixing and convergence of the chains, that are not addressed
in the main paper. Section 3 provides further information on an extensive simulation study
while Section 3.1 presents some sensitivity analysis for the considered prior distributions.
Section 4 provides some details a data set from Signal Tandmobiel R© study.

2 MCMC

MCMC is an important tool for estimating statistical models. However, especially with com-
plex problems, MCMC can require massive computing resources and converge too slowly.
In the following sections, we present various useful approaches in order to improve mixing
and convergence of the chains.
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2.1 Initialization

Starting the chains at good initial values fasten convergence. Usually, these could be ob-
tained from restricted frequentist models as described in the following. The initial state of

the chain ϑ(0) =
(
φ(0), τ(0), ξ(0), β(0), z(0), α(0)

)T
is chosen as follows: First, a value for φ(0)

can be obtained using the frequentist density estimation procedure (described in detail in
Section 2.2) (Çetinyürek-Yavuz and Lambert, 2011). Then, we define τ(0) as the value of τ
yielding the smallest BIC for different values taken in a grid. ζ(0) is taken as the proportion
of pseudo-counts corresponding to small bins located below tcens. In accordance with the
estimation of the spline coefficients, we start by ignoring possible covariate effects: β(0) = 0.
We can obtain z(0) from a gamma frailty model applied on data resulting from mid-point
imputation, where the estimated variance is used for α(0).

For the nonparametric specification of the frailty, the initial values of the chain ϑ are chosen
along the same lines as described for the parametric frailty model, except for (φ∗

(0), τ
∗
(0)).

For obtaining an initial estimate of the frailty density, we also applied the same frequentist
procedure as described in Section 2.2. However, as frailty is not observed directly, initial
values for the latent frailty terms need to be obtained. It is made in two steps: we first
fit a parametric (gamma or log-normal) frailty model using midpoint imputation for the
interval-censored data. Then, using the estimated frailty terms as if they were actually
observed, a value for φ∗

(0) can be obtained from the frequentist procedure after obtaining an
approximation for the density of z∗(0). Similarly, τ∗(0) is defined as the value of τ∗ evaluated
on a grid yielding the smallest BIC.

2.2 Frequentist estimation of baseline density

Initial values of the spline coefficients and penalty parameters can be obtained using the
naive frequentist models. In this spirit, we shall explain a frequentist density estimation
procedure from time-to-event data when the covariates and the possible heterogeneity are
ignored (β = 0, bg = 1 (or z = 0)). We start by partitioning the support of t into small bins
(more than 100 small bins of equal width) for obtaining an accurate estimate of the density
for time-to-event data. Then, following an approach similar to Eilers and Marx (1996) we
calculate the number of observations in each small bin, namely the pseudo-counts. These
pseudo-counts, which are calculated from the C matrix of the composite link model defined
in Eilers and Marx (1996), are later used to build the density estimate. The relationship
between the intervals (lgj , rgj) and the small bins is provided by a GxIxng array C = [cgji]
such that cgji = 1 if the ith small bin Ii ⊂ (lgj , rgj) and 0 otherwise. In this spirit, for cluster
g, each element of a row in the C matrix is divided by the sum of the elements in that row
(Cgj. =

∑
iCgji). The so-obtained numbers, Wgji = Cgji/Cgj., provide the contribution of

the concerned observation in cluster g (e.g. a patient for a multicenter clinical trial) for
each small bin partitioning (a, tcens). Then, the contributions of each observation for the
ith small bin, Ii, are summed over all observations (W..i =

∑
g

∑
j Wgji) and rounded to the

nearest integer value yi in order to get the pseudo-count for that small bin. Note that πi
denotes the probability to have an event time in Ii, then the likelihood for these pseudo-
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counts is proportional to
∏I

i π
yi
i . Alternatively, the well known link between the Poisson

and the multinomial distributions suggests to assume that the pseudo-counts, yi, have a
Poisson distribution with mean µi = πiy+ conditional on the total number of observations
y+ =

∑I
i yi. Using a rich B-spline basis as regressors in a log-linear model for the mean,

one obtains the likelihood

L(φ|y) =

N∑
i=1

yi log(µi)−
N∑
i=1

µi,

where log (µi) = ηi =
∑K

k=1 φkbk(ui). Then, by subtracting the 2nd order penalty (say) and
a small ridge penalty from L(φ|y), one obtains the penalized log likelihood function

Lp(φ|y, τ) = L(φ|y)− τ

2
φ′Pφ,

where φ′D′Dφ =
∑

k (φk − 2φk−1 + φk−2)
2 and P = D′D + εI. The function Lp can be

optimized by solving the score equations BT (y − µ) = τPφ, using iteratively reweighted
least squares (IRWLS): iteratively solve (for φ)

(BT W̃B + τP )φ = BT W̃ (y − µ̃) +BT W̃Bφ̃,

where W̃ is a diagonal matrix with elements µi(φ̃) and φ̃ and µ̃ are current approximations
to the solution. The variance-covariance matrix for the estimated spline coefficients φ is
given by (at convergence),

Σ0 = (BTWB + τP )−1. (2.1)

More detailed information can be found in Eilers and Marx (1996). Information criteria such
as AIC or BIC could be used for choosing the initial optimal (plausible) value of the penalty
parameter τ . In our experience, BIC is preferable to AIC as AIC tends to undersmooth the
target curve, which was also mentioned by other authors (Strasak et al., 2009).

2.3 Automatic tuning of the algorithm

Good acceptance rates can be achieved via a careful choice of the standard deviation δh in
the generation of proposals in a Metropolis algorithm. For an optimal use of Metropolis
algorithm, it is recommended to tune the acceptance probability to approximately 0.44 in
one dimensional space decreasing to 0.23 in high dimensional spaces (Gelman et al., 1996;
Roberts and Rosenthal, 2001). Let δ denote the tuning parameter of interest. The value of
δ at iteration m+ 1 can be adjusted using the value at iteration m using (with η = 0.44)

√
δm+1 = h

(√
δm + γm

(
α(θ(h),θ(h−1))− η

))
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with

h(x) =


ε if x < ε
x if x ∈ (ε, A)
A if x > A

where ε is a very small number (say 0.0001) and A a large one (say 10000). If the targeted
acceptance level is not achieved, these constants should be changed. The series {γm} is a
non-increasing sequence of positive real numbers such that |γm − γm−1| ≤ m−1. Possible
choices for γm are 10

m or 1
m . Practically, the MCMC algorithm is run for a few hundred

iterations with the δm’s automatically updated to achieve the targeted acceptance rate
(Atchadé and Rosenthal, 2005). Then, the last value of δm in the so-generated chain can
be used in a non-adaptive version of the modified Metropolis algorithm to produce the long
chain(s) that will be used for inference.

2.4 Reparametrizing the posterior

The mixing of the chain could be improved by using a Metropolis algorithm on a re-
parametrized posterior (Lambert, 2007). In this sense, one can use an approximation to the
2nd order dependence structure of the conditional posterior. The variance covariance ma-
trix, Σ0, of the penalized maximum likelihood estimator of the spline parameters φ could
be calculated for a fixed and reasonably chosen value of the roughness penalty parameter
τ . Then, the posterior can be re-parametrized using ϕ (Equation 2.1) with φ = φ0 + Lϕ
where L denotes the lower triangular matrix obtained from the Cholesky decomposition of
Σ0. Then, the univariate Metropolis algorithm described before can be employed on the
re-parametrized posterior. This also fastens convergence.

3 Simulation Study

Our data generation and simulation strategy contain the following steps:

1. Firstly, we generate the log-frailty terms zg from one of the specified frailty distribu-
tions.

2. Then the values of the covariate, xgj are generated.

3. Afterwards, given the values of frailty terms and the covariate, the observations tgj
(g = 1, ..., G; j = 1, ..., ng) are generated using the selected proportional hazards frailty
model.

4. Each observation tgj is converted into an interval of width wgj , where wgj is generated
from a Gamma distribution with a mean equal to the targeted mean width (0.5σ, 1.0σ
and 1.3σ) and a variance equal to one fifth of the mean. The interval corresponding
to tgj was finally defined as (Lgj , Rgj)=(tgj − ugj . wgj , tgj + ugj . wgj) where ugj is
randomly generated from a uniform distribution on (0,1).
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5. For each simulated data set, initial values for the spline parameters were obtained
using the strategy described in Section 2.2.

6. We sample the posterior for the parameters of interest using MCMC (see Section 3.3).

7. Steps 1-6 were repeated for all data sets (S = 300 times) to obtain the Monte Carlo
estimates for the quantities of interest.

3.1 Sensitivity analysis

Following the advice from the referees, some of the simulation studies have been run again
with different prior specifications, namely Gamma (2,0.01) for the penalty parameters, and
inverse-gamma(1,1) and inverse-gamma(2,1) for the standard deviation of the frailty. The
detailed results are presented in the tables below. The results in Tables 1 and 2 can be
compared to the results in the main paper. Table 1 and Table 2 presents two different
sensitivity analysis with different prior distribution specifications, namely Gamma (2,0.01)
prior for the penalty parameters, and inverse-gamma(1,1) and inverse-gamma(2,1) priors
for the standard deviation of the frailty.

• The unimodal setting with α=0.8 can be compared to left half of Table 1 (main paper)
for the given sample sizes.

• The bimodal setting with α=0.8 can be compared to left half of Table 2 (main paper)
for the given sample sizes.

• The bimodal setting with α=1.2 can be compared to right half of Table 2 (main paper)
for the given sample sizes.

• The skewed setting with α=1.2 can be compared to Table 3 (main paper) for the
given sample sizes.

It reveals that changes in prior specification have a limited impact on bias and coverage
of credible intervals for the regression parameters, with occasionally a slight improvement
(over our standard prior) in the estimation of the standard deviation of the log-frailty. It
should also be stressed here that sensitivity analyses were performed for the smallest sample
sizes where the chosen prior has the biggest potential impact.

4 Application: Signal Tandmobiel R© Study

The Signal Tandmobiel R© data set results from a longitudinal prospective dental study
performed in Flanders (northern Belgium) between 1996 and 2001, using 4468 randomly
selected children attending the first year of primary school at the beginning of the study.
Then annual dental examinations were performed on the selected cohort by one of 16 trained
dentists.
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Table 1: Sensitivity analysis I: The mean, relative bias (Rbias in %), 90% credible inter-
vals and corresponding empirical coverages (EC) for β and α in S=300 replications using
Gamma(2,0.001) prior for penalty parameters τ and τ∗, Inverse-gamma(1,1) prior for stan-
dard deviation of frailty α

Semiparametric Gaussian
β=0.693 β=0.693

Distribution α ncl ng N Mean 90% CI Rbias(%) EC90 EC80 Mean 90% CI Rbias(%) EC90 EC80

Unimodal 0.8

20 10 200 0.75 (0.51-0.98) 8.4 90 80 0.75 (0.51-0.99) 8.6 91 80
50 4 200 0.75 (0.46-1.03) 8.5 89 77 0.75 (0.46-1.04) 8.7 89 77
50 6 300 0.74 (0.52-0.95) 6.7 91 78 0.74 (0.52-0.95) 6.8 89 77
100 4 400 0.71 (0.51-0.91) 2.4 89 78 0.71 (0.51-0.91) 2.7 90 78

Bimodal 0.8
20 10 200 0.76 (0.51-1.06) 9.9 86 80 0.76 (0.50-1.05) 9.1 86 80
50 4 200 0.75 (0.49-1.04) 8.3 89 79 0.76 (0.48-1.05) 8.0 88 79
50 10 500 0.71 (0.55-0.88) 3.1 93 84 0.71 (0.55-0.87) 2.9 92 84

Bimodal 1.2

20 10 200 0.71 (0.42-1.02) 2.9 90 81 0.71 (0.40-1.01) 2.1 90 81
50 4 200 0.72 (0.37-1.00) 4.5 88 75 0.73 (0.37-1.02) 4.7 89 75
50 6 300 0.72 (0.48-0.96) 3.6 91 82 0.71 (0.46-0.95) 2.4 90 82
100 4 400 0.71 (0.51-0.93) 2.4 90 80 0.71 (0.49-0.93) 2.9 90 80

Skewed 1.2

20 10 200 0.73 (0.45-1.02) 5.2 92 81 0.73 (0.45-1.01) 5.4 91 81
50 4 200 0.72 (0.39-1.01) 3.5 90 77 0.72 (0.39-1.02) 3.5 90 79
50 6 300 0.72 (0.48-0.96) 3.4 91 77 0.72 (0.47-0.96) 3.4 90 77
100 4 400 0.70 (0.48-0.91) 0.4 88 81 0.69 (0.46-0.92) 0.1 89 80

α α
Distribution α ncl ng N Mean 90% CI Rbias(%) EC90 EC80 Mean 90% CI Rbias(%) EC90 EC80

Unimodal 0.8

20 10 200 0.87 (0.67-1.12) 8.3 94 87 0.85 (0.65-1.11) 6.2 93 86
50 4 200 0.84 (0.68-1.06) 4.5 94 86 0.83 (0.68-1.07) 4.0 93 85
50 6 300 0.83 (0.65-1.01) 3.5 95 85 0.82 (0.65-1.00) 2.7 94 84
100 4 400 0.80 (0.65-0.95) 0.1 94 84 0.80 (0.65-0.95) 0.5 92 82

Bimodal 0.8
20 10 200 0.76 (0.51-1.06) -5.5 86 80 0.88 (0.70-1.06) 9.8 96 86
50 4 200 0.69 (0.55-0.88) -7.7 84 76 0.84 (0.66-1.04) 5.4 95 86
50 10 500 0.77 (0.65-0.87) -3.3 95 93 0.82 (0.70-0.94) 2.9 99 91

Bimodal 1.2

20 10 200 1.28 (0.89-1.47) 7.8 91 83 1.27 (0.91-1.57) 6.2 93 83
50 4 200 1.27 (0.98-1.57) 5.8 92 83 1.25 (0.98-1.55) 4.1 92 82
50 6 300 1.12 (0.95-1.30) -6.3 94 85 1.23 (1.03-1.45) 2.9 96 90
100 4 400 1.23 (1.04-1.43) 2.4 92 86 1.23 (1.04-1.43) 2.5 93 84

Skewed 1.2

20 10 200 1.27 (0.96-1.65) 5.5 94 88 1.23 (0.93-1.61) 2.9 94 87
50 4 200 1.25 (0.96-1.60) 4.0 92 84 1.22 (0.94-1.56) 1.9 92 83
50 6 300 1.23 (0.95-1.52) 2.4 91 81 1.20 (0.93-1.49) 0.3 88 81
100 4 400 1.21 (1.00-1.45) 1.0 92 83 1.20 (0.99-1.42) -0.3 92 81

Table 2: Sensitivity analysis II: The mean, relative bias (Rbias in %), 90% credible intervals
and corresponding empirical coverages (EC) for β and α in S=300 replications using Gamma
(2,0.001) prior for penalty parameters τ and τ∗, Inverse-gamma(2,1) prior for standard
deviation of frailty α

Semiparametric Gaussian
β=0.693 β=0.693

Distribution α ncl ng N Mean 90% CI Rbias(%) EC90 EC80 Mean 90% CI Rbias(%) EC90 EC80

Unimodal 0.8

20 10 200 0.75 (0.49-1.03) 8.6 87 77 0.75 (0.49-1.02) 8.8 86 77
50 4 200 0.74 (0.46-1.02) 7.0 89 80 0.74 (0.46-1.02) 7.1 88 80
50 6 300 0.72 (0.52-0.95) 4.1 91 82 0.72 (0.52-0.96) 4.3 91 83
100 4 400 0.71 (0.53-0.91) 1.9 89 81 0.71 (0.53-0.91) 2.1 90 80

Bimodal 0.8
20 10 200 0.74 (0.46-1.01) 7.3 89 73 0.74 (0.45-1.01) 6.7 87 73
50 4 200 0.74 (0.45-1.02) 6.2 88 76 0.74 (0.45-1.04) 6.6 88 76
50 10 500 0.72 (0.55-0.89) 3.4 89 80 0.71 (0.55-0.90) 3.2 89 80

Bimodal 1.2
50 4 200 0.72 (0.40-1.05) 3.3 89 79 0.72 (0.39-1.05) 3.4 90 80
50 6 300 0.72 (0.47-0.99) 3.4 89 78 0.71 (0.46-0.99) 2.2 88 78
100 4 400 0.69 (0.49-0.90) -0.1 91 84 0.69 (0.48-0.90) -0.2 91 83

Skewed 1.2

20 10 200 0.72 (0.45-1.00) 4.1 92 82 0.72 (0.45-1.00) 4.2 91 82
50 4 200 0.70 (0.41-1.01) 1.7 91 83 0.70 (0.42-1.02) 1.7 91 84
50 6 300 0.70 (0.47-0.95) 1.1 91 82 0.70 (0.47-0.95) 1.1 91 81
100 4 400 0.68 (0.46-0.90) -1.5 89 77 0.68 (0.46-0.89) -1.6 88 78

α α
Distribution α ncl ng N Mean 90% CI Rbias(%) EC90 EC80 Mean 90% CI Rbias(%) EC90 EC80

Unimodal 0.8

20 10 200 0.82 (0.60-1.07) 2.3 96 86 0.81 (0.59-1.05) 1.6 92 85
50 4 200 0.76 (0.59-1.01) -4.4 93 78 0.76 (0.59-1.01) -4.5 90 77
50 6 300 0.78 (0.62-0.96) -2.0 93 89 0.79 (0.63-0.97) -1.7 95 83
100 4 400 0.78 (0.65-0.94) -2.6 96 89 0.78 (0.66-0.93) -2.0 95 87

Bimodal 0.8
20 10 200 0.71 (0.57-0.86) -11.6 91 82 0.81 (0.64-1.01) 1.4 99 92
50 4 200 0.63 (0.34-0.83) -21.6 72 59 0.81 (0.64-0.99) 1.1 97 90
50 10 500 0.76 (0.66-0.87) -5.2 96 90 0.81 (0.70-0.92) 0.8 98 94

Bimodal 1.2
20 10 200 1.20 (0.94-1.47) 0.4 95 89 1.19 (0.95-1.46) -0.5 93 88
50 4 200 1.09 (0.90-1.26) -9.3 88 76 1.19 (0.98-1.40) -0.6 94 89
50 6 300 1.21 (1.03-1.41) 0.6 94 83 1.21 (1.03-1.40) 0.8 94 88

Skewed 1.2

20 10 200 1.16 (0.87-1.54) -3.1 94 86 1.14 (0.86-1.51) -4.6 93 83
50 4 200 1.14 (0.88-1.43) -5.0 94 80 1.13 (0.88-1.40) -6.1 88 79
50 6 300 1.17 (0.91-1.40) -2.6 93 85 1.15 (0.90-1.36) -4.1 90 81
100 4 400 1.18 (0.97-1.39) -2.7 90 78 1.17 (0.97-1.39) -2.7 90 78
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Atchadé, Y.F. and Rosenthal, J.S. (2005). On adaptive Markov chain Monte Carlo algo-
rithms. Bernoulli, 11 (5), 815–828.
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