
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/331989081

Aromatic plants of East Asia to enhance natural enemies towards biological

control of insect pests. A review

Article  in  Entomologia Generalis · March 2019

DOI: 10.1127/entomologia/2019/0625

CITATIONS

2
READS

242

4 authors:

Some of the authors of this publication are also working on these related projects:

Termitofuel View project

Interaction between piercing-sucking insects and their host plants : focus on salivary proteome and feeding behavior View project

Séverin Hatt

Kyoto University

35 PUBLICATIONS   231 CITATIONS   

SEE PROFILE

Qingxuan Xu

University of Liège

24 PUBLICATIONS   62 CITATIONS   

SEE PROFILE

Frédéric Francis

University of Liège

427 PUBLICATIONS   4,800 CITATIONS   

SEE PROFILE

Naoya Osawa

Kyoto University

78 PUBLICATIONS   1,050 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Séverin Hatt on 26 March 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/331989081_Aromatic_plants_of_East_Asia_to_enhance_natural_enemies_towards_biological_control_of_insect_pests_A_review?enrichId=rgreq-6184d497965373ce212590474493e542-XXX&enrichSource=Y292ZXJQYWdlOzMzMTk4OTA4MTtBUzo3NDA2NDYxNTEyODI2OTRAMTU1MzU5NTIxMTkzMQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/331989081_Aromatic_plants_of_East_Asia_to_enhance_natural_enemies_towards_biological_control_of_insect_pests_A_review?enrichId=rgreq-6184d497965373ce212590474493e542-XXX&enrichSource=Y292ZXJQYWdlOzMzMTk4OTA4MTtBUzo3NDA2NDYxNTEyODI2OTRAMTU1MzU5NTIxMTkzMQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Termitofuel-2?enrichId=rgreq-6184d497965373ce212590474493e542-XXX&enrichSource=Y292ZXJQYWdlOzMzMTk4OTA4MTtBUzo3NDA2NDYxNTEyODI2OTRAMTU1MzU5NTIxMTkzMQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Interaction-between-piercing-sucking-insects-and-their-host-plants-focus-on-salivary-proteome-and-feeding-behavior?enrichId=rgreq-6184d497965373ce212590474493e542-XXX&enrichSource=Y292ZXJQYWdlOzMzMTk4OTA4MTtBUzo3NDA2NDYxNTEyODI2OTRAMTU1MzU5NTIxMTkzMQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-6184d497965373ce212590474493e542-XXX&enrichSource=Y292ZXJQYWdlOzMzMTk4OTA4MTtBUzo3NDA2NDYxNTEyODI2OTRAMTU1MzU5NTIxMTkzMQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Severin_Hatt?enrichId=rgreq-6184d497965373ce212590474493e542-XXX&enrichSource=Y292ZXJQYWdlOzMzMTk4OTA4MTtBUzo3NDA2NDYxNTEyODI2OTRAMTU1MzU5NTIxMTkzMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Severin_Hatt?enrichId=rgreq-6184d497965373ce212590474493e542-XXX&enrichSource=Y292ZXJQYWdlOzMzMTk4OTA4MTtBUzo3NDA2NDYxNTEyODI2OTRAMTU1MzU5NTIxMTkzMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Kyoto_University?enrichId=rgreq-6184d497965373ce212590474493e542-XXX&enrichSource=Y292ZXJQYWdlOzMzMTk4OTA4MTtBUzo3NDA2NDYxNTEyODI2OTRAMTU1MzU5NTIxMTkzMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Severin_Hatt?enrichId=rgreq-6184d497965373ce212590474493e542-XXX&enrichSource=Y292ZXJQYWdlOzMzMTk4OTA4MTtBUzo3NDA2NDYxNTEyODI2OTRAMTU1MzU5NTIxMTkzMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qingxuan_Xu3?enrichId=rgreq-6184d497965373ce212590474493e542-XXX&enrichSource=Y292ZXJQYWdlOzMzMTk4OTA4MTtBUzo3NDA2NDYxNTEyODI2OTRAMTU1MzU5NTIxMTkzMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qingxuan_Xu3?enrichId=rgreq-6184d497965373ce212590474493e542-XXX&enrichSource=Y292ZXJQYWdlOzMzMTk4OTA4MTtBUzo3NDA2NDYxNTEyODI2OTRAMTU1MzU5NTIxMTkzMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Liege?enrichId=rgreq-6184d497965373ce212590474493e542-XXX&enrichSource=Y292ZXJQYWdlOzMzMTk4OTA4MTtBUzo3NDA2NDYxNTEyODI2OTRAMTU1MzU5NTIxMTkzMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Qingxuan_Xu3?enrichId=rgreq-6184d497965373ce212590474493e542-XXX&enrichSource=Y292ZXJQYWdlOzMzMTk4OTA4MTtBUzo3NDA2NDYxNTEyODI2OTRAMTU1MzU5NTIxMTkzMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Frederic_Francis?enrichId=rgreq-6184d497965373ce212590474493e542-XXX&enrichSource=Y292ZXJQYWdlOzMzMTk4OTA4MTtBUzo3NDA2NDYxNTEyODI2OTRAMTU1MzU5NTIxMTkzMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Frederic_Francis?enrichId=rgreq-6184d497965373ce212590474493e542-XXX&enrichSource=Y292ZXJQYWdlOzMzMTk4OTA4MTtBUzo3NDA2NDYxNTEyODI2OTRAMTU1MzU5NTIxMTkzMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Liege?enrichId=rgreq-6184d497965373ce212590474493e542-XXX&enrichSource=Y292ZXJQYWdlOzMzMTk4OTA4MTtBUzo3NDA2NDYxNTEyODI2OTRAMTU1MzU5NTIxMTkzMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Frederic_Francis?enrichId=rgreq-6184d497965373ce212590474493e542-XXX&enrichSource=Y292ZXJQYWdlOzMzMTk4OTA4MTtBUzo3NDA2NDYxNTEyODI2OTRAMTU1MzU5NTIxMTkzMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Naoya_Osawa?enrichId=rgreq-6184d497965373ce212590474493e542-XXX&enrichSource=Y292ZXJQYWdlOzMzMTk4OTA4MTtBUzo3NDA2NDYxNTEyODI2OTRAMTU1MzU5NTIxMTkzMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Naoya_Osawa?enrichId=rgreq-6184d497965373ce212590474493e542-XXX&enrichSource=Y292ZXJQYWdlOzMzMTk4OTA4MTtBUzo3NDA2NDYxNTEyODI2OTRAMTU1MzU5NTIxMTkzMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Kyoto_University?enrichId=rgreq-6184d497965373ce212590474493e542-XXX&enrichSource=Y292ZXJQYWdlOzMzMTk4OTA4MTtBUzo3NDA2NDYxNTEyODI2OTRAMTU1MzU5NTIxMTkzMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Naoya_Osawa?enrichId=rgreq-6184d497965373ce212590474493e542-XXX&enrichSource=Y292ZXJQYWdlOzMzMTk4OTA4MTtBUzo3NDA2NDYxNTEyODI2OTRAMTU1MzU5NTIxMTkzMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Severin_Hatt?enrichId=rgreq-6184d497965373ce212590474493e542-XXX&enrichSource=Y292ZXJQYWdlOzMzMTk4OTA4MTtBUzo3NDA2NDYxNTEyODI2OTRAMTU1MzU5NTIxMTkzMQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf


1 
 

Aromatic plants of East Asia to enhance natural enemies towards 

biological control of insect pests. A review 

 

Séverin HATT
1,2*

, Qingxuan XU
3
, Frédéric FRANCIS

4
, Naoya OSAWA

1
 

 

This paper has been published in Entomologia Generalis: 

https://www.schweizerbart.de/papers/entomologia/detail/38/90582/Aromatic_plants_of_East_

Asia_to_enhance_natural_enemies_towards_biological_control_of_insect_pests_A_review 

 

To cite: 

 

Hatt S., Xu Q., Francis F., Osawa N. (2019). Aromatic plants of East Asia to enhance natural 

enemies towards biological control of insect pests. A review. Entomologia Generalis, 38(4), 

275–315. DOI: 10.1127/entomologia/2019/0625 

 

 

1 
Kyoto University, Faculty of Agriculture, Laboratory of Forest Ecology, Kitashirakawa-

oiwake, Sakyoku, Kyoto 606-8502, Japan  

2 
University of Liege, 7 Place du 20-Août, 4000 Liege, Belgium  

3
 Beijing Academy of Agriculture and Forestry Sciences, Institute of Plant and Environment 

Protection, Laboratory of Applied Entomology Research, 11 Shu-guang-hua-yuan middle Rd., 

Haidian District, Beijing, 100097, China 

4
 University of Liege, Gembloux Agro-Bio Tech, Terra Research and Teaching Center, 

Functional and Evolutionary Entomology, 2 Passage des Déportés, 5030 Gembloux, Belgium 

 

*Corresponding author: severin.hatt.77e@st.kyoto-u.ac.jp (+81-(0)75-753-6080) 

 

 

 

 

 

 

 

 

 

 

https://www.schweizerbart.de/papers/entomologia/detail/38/90582/Aromatic_plants_of_East_Asia_to_enhance_natural_enemies_towards_biological_control_of_insect_pests_A_review
https://www.schweizerbart.de/papers/entomologia/detail/38/90582/Aromatic_plants_of_East_Asia_to_enhance_natural_enemies_towards_biological_control_of_insect_pests_A_review
mailto:severin.hatt.77e@st.kyoto-u.ac.jp


2 
 

Abstract 

 

Introducing flowering plants in fields may attract and benefit predators and parasitoids of 

insect pests and potentially enhance biological control. Through a vote counting analysis, the 

present review aims at evaluating whether aromatic plants of East Asia could be used in this 

purpose. A systematic search of the scientific literature was conducted and 64 papers 

published worldwide were identified, considering 32 aromatic plant species. A significant 

number of studies reported that Apiaceae aromatic plants attract and benefit insect predators. 

Constrasting results were found for parasitoids, as well as with plant species from other 

families (mostly Asteraceae and Lamiaceae). These results are discussed by considering plant 

and insect traits. Moreover, there are not a significant number of studies reporting an 

enhancement of biological control in crop or fruit trees adjacent to aromatic plants. However, 

the number of studies was limited, highlighting the need for further field-based research in 

various types of agricultural landscapes. 

 

Keywords: Syrphidae; Coccinellidae; Chrysopidae; parasitoid; nectar; pollen; volatile; 

functional trait; intercropping; insectary plant 
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1. Introduction 

 

Simplification of agricultural landscape and high in-field management intensity are major 

causes of biodiversity loss in farmed environment (Bengtsson et al. 2005; Gamez-Virués et al. 

2015) and may consequently be responsible for disturbances in ecosystem functioning 

(Tscharntke et al. 2005; Cardinale et al. 2012). Hence, there is a rising interest for increasing 

plant diversity in agroecosystems to enhance the delivery of multiple ecosystem services, 

among others the natural regulation of insect pests by their natural enemies (i.e., predators, 

parasitoids) (Hatt et al. 2018; Muneret et al. 2018). At the farm scale, mixing crops (i.e., 

intercropping), crop with non-crop plants (i.e., cover cropping) and introducing trees (i.e., 

agroforestry) are practices to increase plant diversity within fields (Malézieux et al. 2009; 

Médiène et al. 2011). Additionally, semi-natural habitats can be managed at field margins by 

sowing wildflower strips, planting hedgerows and maintaining woodlots (Holland et al. 2016; 

Uyttenbroeck et al. 2016). Increasing plant diversity at the local scale is recognized to support 

populations of natural enemies while reducing the abundance of insect pests and their 

damages to crops (Letourneau et al. 2011). A reason is that spatial diversification would offer 

shelters and food resources to natural enemies (Gurr et al. 2017). Especially, several natural 

enemies are flower visitors which feed on pollen and nectar to enhance their longevity and 

fecundity (Wäckers and Van Rijn 2012). Nevertheless, simply sowing flowering plants may 

not support natural enemies. Flowering plants must be attractive (Farré-Armengol et al. 2013), 

bloom at the time when natural enemies need their resources (Fiedler and Landis 2007), these 

resources must be accessible (Van Rijn and Wäckers 2016) and be of high nutritional quality 

(Lu et al. 2014). Hence, interest for trait-based studies have arose in order to understand how 

insects interact with plants with the aim of predicting ecosystem services delivery (Gardarin et 

al. 2018; Perovic et al. 2018). 
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In Europe, the agri-environmental policy subsidies the sowing of wild flower species in fields 

or at field margins to conserve insects (Haaland et al. 2011). Additionally research, also 

conducted in North America and New Zealand, assessed the ability of flowering strips to 

enhance natural enemies towards biological control of insect pests (Berndt et al. 2006; 

Blaauw and Isaacs 2015; Tschumi et al. 2016; Hatt et al. 2017a, 2017b). In East Asia, agri-

environmental policies are scarcer but being developed these last years (Nomura et al. 2013; 

Zhang et al. 2015). However in China notably, the pressure on land for producing enough 

biomass for a very large population may hinder dedicating productive arable lands to plants 

that are not consumed (Liu et al. 2013). Meanwhile in these regions, small scale farming 

associated with very biodiverse landscapes has a long tradition. In China, terraces, multi-

layers home gardens, as well as intercropping and agroforestry systems, have shaped 

agricultural landscapes through time (Min and He 2014). In Japan, the traditional satoyama 

agricultural landscape ‗is composed of several habitat types, including paddy fields, 

secondary forests, secondary grasslands, ponds, and streams‘ (Katoh et al. 2009) and 

intercropping has been a main agricultural practice to control pests in these landscapes before 

the adoption of chemical pesticides (McGreevy 2012). Finally, Maeul is the equivalent of 

such landscapes in Korea (Kim and Hong 2011). The modernization of agriculture from the 

mid-twentiest century has led to an important rural exodus and as a result, many of these 

agroecosystems have been gradually abandoned (McGreevy 2012). However, today‘s need of 

developing sustainable agricultural systems has renewed the interest for these managed 

landscapes and the ecosystem services they can deliver (Liu et al. 2013; Takeuchi et al. 2016; 

Wu et al. 2016), among others the support of natural enemies and the regulation of insect 

pests (Taki et al. 2013; Tabuchi et al. 2014). Some research specifically focused on how to 

manage plant diversity at the field/farm scale. A careful management of weeds in rice fields 

surrounded by wood patches was for example recommended to prevent the development of 
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mirid bugs (Hemiptera: Miridae) (Takada et al. 2012). Meanwhile nectar producing plants 

were introduced adjacent to rice fields to enhance the biological control of rice planthoppers 

(Hemiptera: Delphacidae) by parasitoids (Gurr et al. 2016). Nectar plants were selected in 

consultations with farmers, who―in the case reported from China―chose sesame Sesamum 

indicum (Pedaliaceae) and soybean Glycine max (Fabaceae) (i.e., setting intercropping 

systems based on economically viable flowering plants). In this same vein, flowering 

aromatic plants could be considered.  

‗Aromatic plants‘ is not a clearly botanically defined group of plants, but are commonly 

viewed as those plants cultivated and consumed for their chemical properties (i.e., phenolic 

acids, flavonoids and aromatic compounds like terpenoids, steroids, alkaloids and organic 

cyanides), providing them olfactory attributes used in food, medicine and plant protection 

(Schippmann et al. 2002; Gahukar 2012). These potential uses distinguish aromatic plants 

from other wildflower plants, in that they can provide economic benefits to farmers. However, 

could they also be used as insectary plants (i.e., ‗flowering plant which attracts and possibly 

maintains, with its nectar and pollen resources, a population of natural enemies which 

contribute to biological pest management on crops‘, Parolin et al. 2012)? Because there is no 

specific definition of aromatic plants to our knowledge, aromatic plants have been identified 

from any other plants through a systematic search of published research that studied various 

properties of plants considered as being aromatic plants (see Methods). 

By focussing on aromatic plants growing in East Asia, the aim of the present paper is to 

review the scientific literature published worldwide (not only in East Asia) which reported 

interactions between these aromatic plants and natural enemies of insect pests. More 

specifically, the present review aims at answering the following questions: what are the 

aromatic plant species that attract and benefit natural enemies, and enhance biological control 

of pests when sown in fields? Are there common trends among plant and insect families? Are 
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there differences between predators and parasitoids? A trait-based approach is proposed to 

discuss the reviewed results. This overview is expected to help practitioners to select the 

appropriate species to sow in fields and scientists to identify the needs for further research.  

 

2. Methods 

 

2.1 Systematic search of the literature 

 

2.1.1 Identification of aromatic plants 

The search of literature was conducted by using Web of Science Core Collection (version 

5.25.1). A first search was conducted on 6 October 2017 to identify the aromatic plants 

studied in East Asia. The following terms were used: ("aromatic plant*" OR "aromatic herb*" 

OR "aromatic tree" OR "aromatic shrub" OR "aromatic grass*" OR "aromatic forb" OR 

"aromatic flower*"). The search was restricted to studies from China, Taiwan, Korea and 

Japan by adding these countries/regions in the query and additional options allowed retrieving 

only peer-reviewed articles written in English. This search selected 158 papers and based on 

their abstracts, or in case of doubts the full papers, 190 aromatic plant species were identified 

(Tab. S1). Three additional aromatic species, known to grow in East Asia from our knowledge 

and personal observations, were added to the list: Anethum graveolens (L.) (Lamiaceae), 

Calendula officinalis (L.) (Asteraceae) and Coriandrum sativum (L.) (Lamiaceae). 

 

2.1.2 Identification of papers studying natural enemy - aromatic plant interactions  

A second search was conducted on 11-12 October 2017 to identify the papers that studied 

interactions between the listed aromatic species and natural enemies of insect pests (i.e., 

predatory ladybeetles (Coleoptera: Coccinellidae), hoverflies (Diptera: Syrphidae), lacewings 
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(Neuroptera: Chrysopidae) and parasitoids). 193 queries were successively introduced by 

using the following terms: ["aromatic species" AND (coccinellid* OR ladyb* OR syrphid* 

OR hoverfly OR chrysopidae OR lacewing OR "hymenopter* wasp" OR parasitoid)], where 

‗aromatic species‘ was one of the listed plants. Additional options allowed retrieving only 

peer-reviewed articles written in English. From these searches, 244 unique papers were 

obtained, to which nine relevant papers to our knowledge were added.  

 

2.1.3 Selection of relevant papers  

From their abstracts, or in case of doubts the full papers, a selection was made based on the 

following criteria. First, papers had to be research articles. Review papers were excluded 

because they are based on other studies. Second, they had to assess a paired interaction 

between an aromatic plant and an insect natural enemy. Studies addressing for instance the 

effect of a plant on a natural enemy through its pest/prey-host (tritrophic interaction) were 

excluded. Indeed, pests/prey-hosts on plants can be responsible for herbivore induced plant 

volatiles that affect natural enemy behaviour (Zhu and Park 2005) whereas the present review 

aims at identifying aromatic insectary plants (i.e., directly enhancing natural enemies). Third, 

they had to specify at least the family taxa of the insect natural enemy. Studies only 

specifying ‗predator‘ as functional group were excluded but some studies mentioning only 

‗parasitoids‘ were conserved when they were considered relevant. Fourth, in the specific case 

of intercropping studies, the aromatic species had to be the associated plant. Studies where the 

aromatic plant was the main crop were rejected. It resulted in a selection of 64 papers, 

involving 32 aromatic plant species, constituting the core of studies used for the present 

review (Table S2). 
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2.2 Description of the selected papers 

 

In the event that a single paper reported several tests, all instances were considered, hereafter 

termed ‗responses‘. For each reponse, the family and species names of the aromatic plants and 

of the natural enemies, as well as natural enemy functional group (predator, parasitoid), were 

noted. The responses were classified according to the indicator used to assess the interaction 

between natural enemies and plants, following Wäckers and Van Rijn (2012). One response 

was described by one indicator only. Indicators evaluating the attractiveness of plants were 

whether the natural enemy (1) chose the plant (i.e., the whole plant or parts of it), (2) visited 

its flowers, (3) chose the plant based on its volatiles only (i.e., the whole plant or parts of it in 

laboratory conditions using olfactometer), (4) consumed plant resources and (5) the 

morphometric compatibility between the natural enemy and the plant. Indicators assessing the 

benefits for natural enemies were natural enemy (6) longevity and (7) fecundity. Finally 

indicators assessing the enhancement of biological control were (8) pest parasitisation or 

predation, and (9) whether the natural enemy colonizes an associated crop in the case of 

intercropping. The score ‗1‘ was given when a significant positive effect was reported (higher 

attractiveness, flower visit, consumption of the plant pollen and/or nectar, morphometric 

compability, increased longevity or fecundity of the natural enemy, parasitisation or predation 

of pests, or increased colonization of the adjacent crop), and a ‗0‘ in case of negative or 

neutral effect. This scoring method allowed to get binary data to perform statistical analyses 

(see below) and highlighted the potential positive effects of aromatic plants versus non- or 

negative effects. Negative effects were negligible here, as they represented less than 0.03% of 

the obtained responses (8 out of 314 responses). Both absolute (when compared to a control) 

and relative (when compared to other plant species) effects were considered, but only absolute 

effects were kept when a study assessed both. For studies numbering plant choices or flower 
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visitations without conducting statistical analyses, only the main conclusions (i.e., the most 

attractive or visited plant species according to the authors of the study) were kept. Finally, the 

type of experiment (field, greenhouse, laboratory) and the country in case of field experiment 

were described. 

 

2.4 Statistical analyses 

 

Studies (i.e., responses) were grouped according to the indicator used: (i) studies assessing 

attractiveness of plants to natural enemies (indicators 1 to 5), (ii) studies assessing benefits for 

natural enemies (indicators 6 and 7) and (iii) studies assessing an enhancement of biological 

control (indicators 8 and 9). First, Exact Bernouilli tests (P < 0.05) were used to assess 

whether, for each group of indicators, there is a significant number of studies showing a 

positive effect (i.e., attractiveness, benefits, enhancement of biological control, respectively). 

Second, Generalized Linear Models (GLM) with binomial error distribution (logit link 

function) were fitted to identify which variables affect attractiveness, benefits for natural 

enemies and enhancement of biological control. Explanatory variables, introduced in the 

models as fixed factors, were (i) plant family, (ii) insect functional group (predator, 

parasitoid), (iii) predator family (for predators) or parasitoid family (for parasitoids), as well 

as interactions between plant family and the other variables. The models were tested using 

likelihood ratio tests (P < 0.05). Third, when a significant effect was reported for a variable, 

Exact Bernouilli tests (P < 0.05) were used on each of the variable component (e.g., on each 

plant family or each parasitoid family). Analyses were performed by using R (v. 3.4.1) 

software (R Core Team 2017).  
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3. Results 

 

3.1 Selected papers 

 

3.1.1 Aromatic plants 

The 32 selected species of aromatic plants belonged to eight different families. The most 

studied (number of responses / number of papers) were Lamiaceae (19 species, 112/23), 

followed by Apiaceae (three species, 99/34), Asteraceae (three species, 74/20), Fabaceae (two 

species, 14/6), Brassicaceae (one species, 8/2), Rosaceae (one species, 3/2), Solanaceae (one 

species, 3/3) and Pinaceae (one species, 1/1). All the species are flowering herbaceous plants, 

except for Pinus massoniana (Lamb.) (Pinaceae) which is a tree plant. The most studied plant 

species were Coriandrum sativum (L.) (Apiaceae) (40/22), Anethum graveolens (L.) 

(Apiaceae) (32/15), Centaurea cyanus (L.) (Asteraceae) (32/13), Tagetes patula (L.) 

(Asteraceae) (28/10), Foeniculum vulgare (L.) (Apiaceae) (27/12) and Ocimum basilicum (L.) 

(Lamiaceae) (26/6), totalizing together more than 60 % of all the responses through 49 

different papers. 

 

3.1.2 Insect natural enemies 

For natural enemies, Coccinellidae (nine species, 75/23) were the most studied predators, 

followed by Chrysopidae (five species, 56/10) and Syrphidae (four species, 50/16). The most 

studied predatory species were Episyrphus balteatus (Diptera: Syrphidae) (16/4), 

Ceraeochrysa cubana (Neuroptera: Chrysopidae) (16/2), Harmonia axyridis (Coleoptera: 

Coccinellidae) (15/5), Coccinella septempunctata (Coleoptera: Coccinellidae) (12/4) and 

Chrysoperla externa (Neuroptera: Chrysopidae) (12/3), totalizing together more than 50 % of 

responses (when the species name of the insect was specified) through 14 papers. Braconidae 
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(10 species, 41/16) were the most studied parasitoids, followed by Ichneumonidae (four 

species, 21/9), Trichommatidae (three species, 17/4), Encyrtidae (three species, 13/4), 

Eulophidae (three species, 10/3), Platygastridae (one species, 10/2), Figitidae (one species, 

6/1), Mymaridae (four species, 4/2), Scelionidae (one species, 4/1) and Bothrideridae (one 

species, 1/1). The most studied parasitoid species were Trissolcus basalis (Hymenoptera: 

Platygastridae) (10/2), Microplitis mediator (Hymenoptera: Braconidae) (7/4), Cotesia 

glomerata (Hymenoptera: Braconidae) (6/2), Trybliographa rapae (Hymenoptera: Figitidae) 

(6/1), Trichogramma carverae (Hymenoptera: Trichogrammatidae) (6/1) and Edovum puttleri 

(Hymenoptera: Eulophidae) (2/5), totalizing together more than 50 % of the responses (when 

the species name of the insect was specified) through 12 papers. 

 

3.1.3 Indicators and experimental methodologies 

Assessing visitation of flowers by natural enemies (58/13) was the most used approach to 

evaluate plant attractiveness to natural enemies. Most assessments of flower visitations were 

conducted in fields (e.g., Martínez-Uña et al., 2013; Tavares et al., 2015) and few in 

laboratories (Wanner et al. 2006), while Van Rijn and Wäckers (2016) did both. Assessments 

of plant choices (44/7) (without specifying flower visitations) were conducted by trapping 

natural enemies in sown monospecific plots (Frank et al. 2008; Tang et al. 2013) or by using 

potted plants (Sivinski et al. 2011) in fields, and in laboratories through for example ‗release-

recapture experiment‘ in cages (Batista et al. 2017). In order to understand the mechanisms 

involved in plant attractiveness and resource consumption, plant traits were isolated and 

confronted to natural enemies. Choice tests evaluated plant volatile attractiveness (27/14) by 

using H-tube (Song et al. 2017) or Y-tube (as described by Belz et al., 2013) olfactometers. 

The whole plant was mostly used to conduct the choice tests (16/8), but sometimes only the 

flower parts were considered (6/3), and rarely the leaf parts only (3/3). Two responses 
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compared flower volatiles to leaf volatiles resulting in neutral effects (Foti et al. 2017). Also, 

the morphometric compatibility (11/2) between the shape of the inflorescence (corolla width 

and depth) and the head of the insects was measured (Vattala et al. 2006; Nave et al. 2016). 

Some studies went further by establishing the consumption of floral resources (nectar and/or 

pollen) by natural enemies (30/10). Insects were for example dissected to count ingested 

pollens (Laubertie et al. 2012; D‘Ávila et al. 2016; Resende et al. 2017), consumed fructose 

from nectar was detected with the anthrone test (Laubertie et al. 2012), insects were weighted 

before and after consumption of pollen or nectar (Wäckers 2004; Nilsson et al. 2011), or 

plants were marked with an isotope that was found back in insects (Pollier et al. 2016). 

Benefits of consuming flower resources were evaluated by measuring natural enemy 

longevity or survival (45/17) and fecundity (15/7). Measurements were mostly performed in 

laboratories; only Begum et al. (2006) performed experiments in a greenhouse. Measuring 

longevity consisted in counting the number of days insects lived in the presence of flowers, 

compared to a control (e.g., Furtado et al., 2016; Walton and Isaacs, 2011). For fecundity, 

number of oviposited eggs of predators (Laubertie et al. 2012; Togni et al. 2016; Batista et al. 

2017; Resende et al. 2017) and number of parasitised eggs and/or emerged adults of 

parasitoids (Begum et al. 2006; Witting-Bissinger et al. 2008; Foti et al. 2017) were counted. 

Parasitisation (4/3) was used as an indicator of biological control enhancement. Host eggs 

fixed on cards (Balmer et al. 2014) or host larvae placed on plants (Géneau et al. 2013) were 

offered to parasitoids and the number of parasitised individuals were counted after a time 

delay. A molecular approach also consisted in identifying parasitoid DNA through PCR from 

larvae collected in fields (Juric et al. 2015). Assessing the abundance of natural enemies 

found in crops or fruit trees intercropped with―or sown adjacent to―aromatic plants was a 

more indirect indicator of biological control enhancement in fields (80/12) (e.g., Ramalho et 

al., 2012; Wan et al., 2015; Winkler et al., 2010; Zhang et al., 2017). 
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Figure 1. Ratio of the number of successes on the total number of responses reporting an (A) 

attractiveness of aromatic plants on pest natural enemies and (B) benefits provided by 

aromatic plants on pest natural enemies, according to plant families. The ratio given in 

brackets corresponds to the number of responses/number of papers. Exact Bernouilli test. * P 

<0.05; *** P <0.001; NS: non-significant. 

 

 

3.2 Natural enemy – aromatic plant interactions 

 

3.2.1 General effects of aromatic plants on predators and parasitoids 

Exact Bernouilli tests show that there is a significant number of studies reporting the 

attractiveness of aromatic plants to natural enemies (mean = 0.62; P < 0.001), but it is not the 

case for the benefits provided (mean = 0.55; P = 0.26). GLM and χ² analyses show that 

attractiveness of aromatic plants significantly varies among plant families, insect functional 

groups and parasitoid families (Tab. 1). Exact Bernouilli tests performed on predators and 

parasitoids separately show that a significant number of studies reported the attractiveness of 

aromatic plants to predators (mean = 0.74; P < 0.001) but not to parasitoids (mean = 0.52; P = 

0.377). When parasitoid families are considered separately, Exact Bernouilli tests indicate that 

there is not a significant number of studies reporting aromatic plant attractiveness to any of 

the families (Tab. S3). Furthermore, GLM and χ² analyses indicate that benefits for natural 
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enemies of consuming floral resources vary among plant families and parasitoid families (Tab. 

1). However, similarly to attractiveness, no significant results of Bernouilli tests have been 

found when considering each parasitoid family separately (Tab. S3). 

 

3.2.2 Positive effects of Apiaceae  

Exact Bernouilli tests performed on each family of plants show that a significant number of 

studies reported an attractiveness of Apiaceae aromatic plants to natural enemies (Fig. 1a) and 

increased benefits for natural enemies when they feed on them (Fig. 1b). Anethum graveolens, 

C. sativum and F. vulgare are the three Apiaceae aromatic species considered in the present 

review. There are also among the most studied plants of the present selection.  

Regarding predators, ladybeetles and hoverflies were the most studied natural enemies to test 

the attractiveness of Apiaceae species while the benefits Apiaceae provide in terms of 

longevity and fecundity were mostly explored on lacewings. Studies showed that Apiaceae 

flowers were significantly more visited than those of other plant families by ladybeetles and 

hoverflies in fields, and by hoverflies in laboratory (Tab. 2). Volatiles from Apiaceae were 

found to significantly attract predators: the ladybeetles H. axyridis to A. graveolens (Adedipe 

and Park 2010), Cycloneda sanguinea (Coleoptera: Coccinellidae) to C. sativum (Togni et al. 

2016) and the lacewing Chrysoperla externa (Neuroptera: Chrysopidae) to C. sativum 

(Salamanca et al. 2015). However, it remains to assess if volatiles of Apiaceae aromatic plants 

also attract hoverflies. The pollen of these three Apiaceae species can be consumed by 

Coleomegilla maculata (Colleoptera: Coccinellidae) (D‘Ávila et al. 2016) and an increased 

longevity, but not fecundity, of C. sanguinea was observed when it fed on C. sativum (Togni 

et al. 2016). In this last study, fecundity increased when aphids were added to C. sanguinea 

diet, recalling that ladybeetles need prey food for laying eggs (Lundgren 2009). Conversely 

fecundity, in addition to longevity, of the lacewing C. externa significantly increased when it 
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consumed pollens of the three Apiaceae species (Resende et al. 2017), which is consistent 

with C. externa biology (i.e., its dependence on plant-based diet at the adult stage). Moreover, 

it suggests that pollens of these Apiaceae contain sufficient carbohydrates, that are macro 

nutrients which significantly affect lacewing fecundity (Venzon et al. 2006). The longevity of 

the hoverfly E. balteatus was increased when it fed on C. sativum or F. vulgare (Van Rijn and 

Wäckers 2016) but its fecundity was not the highest when it fed on C. sativum compared to 

other plants (Laubertie et al. 2012). According to these authors, quality of floral resource 

rather than quantity of nectar and pollen ingested determines E. balteatus fitness. However, 

criteria defining a high quality of nectar and pollen for hoverflies remain limitedly known to 

our knowledge. 

Regarding parasitoids, Braconidae and Ichneumonidae were found to visit Apiaceae flowers 

and to consume their nectar which led to an increased longevity (Tab. 3) (e.g., C. glomerata 

with A. graveolens, Wanner et al. 2006). However, when parasitoids are considered together 

as one functional group, there are not a significant number of studies reporting the 

attractiveness of aromatic plants and the provision of benefits. Instead, contrasted results were 

reported depending on plant species, parasitoid family or parasitoid species (Tab. 1 and 3). 

For example, Eulophidae (Hymenoptera) species Edovum puttleri and Pediobius foveolatus 

were both attracted by nectary volatiles of A. graveolens (Patt et al. 1999), they both 

consumed A. graveolens nectar but only P. foveolatus consumed C. sativum nectar (Patt et al. 

1997). Patt et al. suggested a morphometrical incompatibility as the partly hidden nectaries of 

C. sativum prevented E. puttleri to feed on this flower. Trybliographa rapae (Hymenoptera: 

Figitidae) also did not feed on C. sativum nectar, but in this case because it was repelled by 

coriander volatiles; however it fed on A. graveolens even if it was not especially attracted by 

A. graveolens volatiles (Nilsson et al. 2011). A last example is Trichogramma exiguum 
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(Hymenoptera: Trichogrammatidae), which longevity was significantly increased when it fed 

on F. vulgare, nevertheless it was not the case of its fecundity (Witting-Bissinger et al. 2008).  

 

Table 1. Effect (increased attractiveness, benefits and biological control enhancement) of 

aromatic plants on natural enemies according to the plant family, the insect group (predator or 

parasitoid) and the insect family. Likelihood ratio tests on GLMs with binomial error 

distribution. Degree of freedom (df), χ²-values and P-values are provided. * P<0.05; ** 

P<0.01; *** P<0.001. A dash indicates that it was not possible to perform the analysis. 

 

  df χ²  P-value 

Attract natural enemies  
   

Plant family 7 54.5 < 0.001 *** 

Insect group 1 9.01 0.003 ** 

Predator family 2 2.14 0.343 

Parasitoid family 9 27.8 0.001 ** 

Plant family : Insect group 5 10.1 0.072 

Plant family : Predator family 6 9.89 0.129 

Plant family : Parasitoid family 8 6.31 0.612 

    
Benefit natural enemies  

   
Plant family 4 13.5 0.009 ** 

Insect group 1 1.03 0.311 

Predator family 2 0.53 0.768 

Parasitoid family 6 12.8 0.047 * 

Plant family : Insect group 2 3.45 0.178 

Plant family : Predator family 1 6.49 0.011 * 

Plant family : Parasitoid family 2 2.36 0.306 

    
Enhance biological control  

   
Plant family  3 2.72 0.437 

Insect group 1 0.66 0.418 

Predator family 2 3.14 0.209 

Parasitoid family 1 < 0.001 1 

Plant family : Insect group 3 3.89 0.273 

Plant family : Predator family 5 14.8 0.011 * 

Plant family : Parasitoid family  - - - 

 

 

3.2.3 Contrasted effects among the other plant families 

Regarding aromatic plants from families other than Apiaceae, Exact Bernouilli tests show that 

there is nor a significant number of studies reporting an attractiveness of these plants to 
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natural enemies (Fig. 1a), neither a significant number of studies reporting increased benefits 

for natural enemies when they feed on them (Fig. 1b). 

Concerning predators, few studies reported that Asteraceae C. cyanus and T. patula were 

more visited relatively to other species by ladybeetles and hoverflies in fields (Tab. 2). Still, 

the ladybeetle H. axyridis was found to be attracted by T. patula volatiles (Song et al. 2017) 

and the hoverfly E. balteatus to feed on C. cyanus flowers which increased its longevity (Van 

Rijn and Wäckers 2016). For Lamiaceae, totally 11 plant species were tested. Six of them 

were significantly more visited by hoverflies compared to other plants (Tab. 2). The lacewing 

C. cubana had different behavior from a species to another: it was significantly more attracted 

by O. basilicum than by Mentha piperita (L.) (Lamiaceae) or Melissa officinalis (L.) 

(Lamiaceae), the consumption of O. basilicum flowers increased its longevity but not its 

fecundity, while it was not the case with the other plant species (Batista et al. 2017). Few 

studies tested the interactions between ladybeetles and Lamiaceae. Harmonia axyridis was 

attracted by the volatiles of Ajuga reptans (L.) (Lamiaceae) (Adedipe and Park 2010) and 

Hippodamia convergens (Coleoptera: Coccinellidae) lived longer when it fed on Monarda 

fistulosa (L.) (Lamiaceae) (Walton and Isaacs 2011). With plants from other families, H. 

axyridis and Propylea quatuordecimpunctata (Coleoptera: Coccinellidae) were attracted by 

the Rosaceae Rosa multiflora (Thunb.) in fields (Finlayson et al. 2010). Also, C. 

septempunctata, Coccinella transversoguttata (Coleoptera: Coccinellidae) and H. convergens 

consumed the pollen of the Fabaceae Medicago sativa (L.) (Davidson and Evans 2010) 

making alfalfa a potential source of non-prey food for ladybeetles in fields.  

The preference of parasitoids when choosing plants was assessed on three Asteraceae and six 

Lamiaceae aromatic species in fields (Sivinski et al. 2011; Tang et al. 2013). These 

observations highlight that only Ichneumonidae generally chose these species, except 

Ageratum houstonianum (Mill.) (Asteraceae) and Monarda punctata (L.) (Lamiaceae). 
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Conversely Braconidae chose none of them and Encyrtidae only Ocimum citriodorum (Vis.) 

(Lamiaceae). However, various other observations conducted in laboratory showed positive 

interactions between several Braconidae species and Lamiaceae or Asteraceae plants (Tab. 3). 

For example, Microplitis mediator (Hymenoptera: Braconidae) was attracted by the volatiles 

of both Origanum vulgare (L.) (Lamiacae) and C. cyanus (Belz et al. 2013) and the 

consumption of C. cyanus nectar increased its longevity (Géneau et al. 2012). Diaeretiella 

rapae (Hymenoptera: Braconidae) consumed C. cyanus nectar (Pollier et al. 2016) and C. 

glomerata consumed O. vulgare nectar (but not Heterospilus prosopidis [Hymenoptera: 

Braconidae]) (Wäckers 2004). Aphidius colemani (Hymenoptera: Braconidae) lived longer 

when feeding on M. fistulosa (Walton and Isaacs 2011) as well as C. glomerata when feeding 

on O. vulgare (Wanner et al. 2006). These results gathered from several papers recall that 

interactions in controlled conditions may not necessarily be observed in fields where other 

environmental variables may affect parasitoid behaviour. Also, assessments at the species 

level are needed because contrasted results may occur between insects belonging to a same 

family.  

 

3.3 Enhancing biological control 

 

Exact Bernouilli test shows that there is not a significant number of studies reporting an 

enhancement of biological control when aromatic plants are sown adjacent to crops (mean = 

0.42; P = 0.949). GLM and χ² analyses indicate that the enhancement of biological control by 

aromatic plants is not affected by the tested variables; only a significant interaction between 

plant family and predator family is observed (Tab. 1). Indeed Coccinellidae and Chrysopidae 

have been found more abundant in crops adjacent to Apiaceae (C. sativum, F. vulgare) 

(Ramalho et al. 2012; Salamanca et al. 2015; Jankowska and Wojciechowicz-Żytko 2016), 
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while Syrphidae have been found more abundant in crops adjacent to Asteraceae (T. patula) 

and Lamiaceae (O. basilicum, Satureja hortensis (L.)) (Song et al. 2013; Jankowska and 

Wojciechowicz-Żytko 2016). Almost all studies were conducted in fields; only Salamanca et 

al. (2015) conducted an experiment in a greenhouse and Géneau et al. (2013) assessed the 

parasitism of  M. mediator in laboratory conditions. The majority of studies used the presence 

of natural enemies in the main crop as an indirect proxy to assess the enhancement of 

biological control by aromatic plants. Parasitism from parasitoids was only evenly measured 

(Tab. 4). 
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Table 2. Effect of aromatic plant species on predators. Studies are sorted by indicators related to attractiveness (if the predator chose the plant, 

visited its flowers, chose its volatiles, consumed its resources, has a morphetrical compatibility with the flower) and benefits (longevity, 

fecundity). The ratio between brackets is the number of responses / number of paper in case of similar effects among or within papers for a given 

plant species-insect species/family interaction. A dash indicates that the information was not specified in the paper. 

 
  

Plant family 

  

Plant species 

  

Insect family 

  

Insect species 

  

Effect Exp. 

type 

  

Type of 

effect 

  

References 

    (+) (O/-) 

Chose plant         

 Lamiaceae Melissa officinalis (L.) Chrysopidae Ceraeochrysa cubana  ◊ Lab Relative (Batista et al. 2017) 

  Mentha piperita (L.) Chrysopidae Ceraeochrysa cubana  ◊ Lab Relative (Batista et al. 2017) 

  Ocimum basilicum (L.) Chrysopidae Ceraeochrysa cubana ◊  Lab Relative (Batista et al. 2017) 

 Rosaceae Rosa multiflora (Thunb.) Coccinellidae Harmonia axyridis ◊  Field Absolute (Finlayson et al. 2010) 

   Coccinellidae Propylea quatuordecimpunctata ◊  Field Absolute (Finlayson et al. 2010) 

          

Visited flower         

 Apiaceae Anethum graveolens (L.) Coccinellidae - ◊ (2/2) ◊ Field Relative (Al-Doghairi and Cranshaw 1999; 

Kopta et al. 2012; Tavares et al. 

2015) 

   Syrphidae - ◊ (2/2)  Field Relative (Al-Doghairi and Cranshaw 1999; 

Kopta et al. 2012) 

   Syrphidae Toxomerus marginatus ◊  Field Relative (Tavares et al. 2015) 

  Coriandrum sativum (L.) Coccinellidae - ◊ (2/2)  Field Relative (Ambrosino et al. 2006; Tavares et 

al. 2015) 

   Syrphidae - ◊ (3/3)  Field Relative (Al-Doghairi and Cranshaw 1999; 

Colley and Luna 2000; Ambrosino 

et al. 2006) 

   Syrphidae Episyrphus balteatus ◊  Lab Relative (Van Rijn and Wäckers 2016) 

   Syrphidae Sphaerophoria rueppellii ◊  Field Relative (Martínez-Uña et al. 2013) 

   Syrphidae Sphaerophoria scripta ◊  Field Relative (Martínez-Uña et al. 2013) 

   Syrphidae Sphaerophoria spp. ◊  Field Relative (Barbir et al. 2015) 

   Syrphidae Toxomerus marginatus ◊  Field Relative (Tavares et al. 2015) 

  Foeniculum vulgare (L.) Coccinellidae - ◊ (3/3)  Field; 

Lab 

Relative; 

Absolute 

(Maingay et al. 1991; Al-Doghairi 

and Cranshaw 1999; Kopta et al. 
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Plant family 

  

Plant species 

  

Insect family 

  

Insect species 

  

Effect Exp. 

type 

  

Type of 

effect 

  

References 

    (+) (O/-) 

2012) 

   Syrphidae - ◊ (4/4)  Field Relative; 

Absolute 

(Maingay et al. 1991; Colley and 

Luna 2000; Kopta et al. 2012; Van 

Rijn and Wäckers 2016) 

   Syrphidae Episyrphus balteatus ◊ 

 

Lab Relative (Van Rijn and Wäckers 2016) 

 Asteraceae Calendula officinalis (L.) Syrphidae -  ◊ Field Relative (Colley and Luna 2000) 

   Syrphidae Episyrphus balteatus  ◊ Field Relative (Carreck and Williams 2002)  

   Syrphidae Sphaerophoria scripta ◊  Field Relative (Carreck and Williams 2002)  

  Centaurea cyanus (L.) Chrysopidae -  ◊ Field Relative (Fitzgerald and Solomon 2004) 

   Coccinellidae - ◊ (2/2)  Field Relative (Fitzgerald and Solomon 2004; 

Kopta et al. 2012) 

   Coccinellidae Coccinella septempunctata  ◊ Field Relative (Barbir et al. 2015) 

   Syrphidae -  ◊ (2/2) Field Relative; 

Absolute 

(Kopta et al. 2012; Van Rijn and 

Wäckers 2016) 

   Syrphidae Episyrphus balteatus  ◊ Field Relative (Carreck and Williams 2002) 

   Syrphidae Sphaerophoria scripta  ◊ Field Relative (Carreck and Williams 2002) 

   Syrphidae Sphaerophoria spp.  ◊ Field Relative (Barbir et al. 2015) 

  Tagetes patula (L.) Coccinellidae -  ◊ Field Relative (Kopta et al. 2012) 

   Coccinellidae Heliotaurus ruficolis  ◊ Field Relative (Barbir et al. 2015) 

   Syrphidae -  ◊ Field Relative (Colley and Luna 2000; Kopta et 

al. 2012) 

   Syrphidae Sphaerophoria spp.  ◊ Field Relative (Barbir et al. 2015) 

 Lamiaceae Agastache rugosa (Kuntze) Syrphidae - ◊  Field Relative (Colley and Luna 2000) 

  Ajuga reptans (L.) Syrphidae - ◊  Field Relative (Al-Doghairi and Cranshaw 1999) 

  Lavandula angustifolia 

(Mill.) 

Syrphidae - ◊  Field Relative (Al-Doghairi and Cranshaw 1999) 

  Mentha piperita (L.) Syrphidae - ◊  Field Relative (Al-Doghairi and Cranshaw 1999) 

  Mentha spicata (L.) Syrphidae - ◊  Field Absolute (Maingay et al. 1991) 

  Stachys officinalis (L.) Syrphidae - ◊  Field Relative (Al-Doghairi and Cranshaw 1999) 

 Rosaceae Rosa multiflora (Thunb.) Syrphidae - ◊  Field Absolute (Jesse et al. 2006) 
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Plant family 

  

Plant species 

  

Insect family 

  

Insect species 

  

Effect Exp. 

type 

  

Type of 

effect 

  

References 

    (+) (O/-) 

          

Chose volatiles         

 Apiaceae Anethum graveolens (L.) Coccinellidae Harmonia axyridis ◊  Lab Absolute (Adedipe and Park 2010) 

  Coriandrum sativum (L.) Chrysopidae Chrysoperla externa ◊  Lab Absolute (Salamanca et al. 2015) 

   Coccinellidae Cycloneda sanguinea ◊  Lab Absolute (Togni et al. 2016) 

 Asteraceae Tagetes patula (L.) Coccinellidae Harmonia axyridis ◊  Lab Relative (Song et al. 2017) 

 Brassicaceae Brassica juncea (L.) Chrysopidae Ceraeochrysa cubana  ◊ Lab Absolute (da Silva et al. 2016) 

   Chrysopidae Chrysoperla externa  ◊ Lab Absolute (da Silva et al. 2016) 

   Coccinellidae Cycloneda sanguinea ◊  Lab Absolute (da Silva et al. 2016) 

 Lamiaceae Ajuga reptans (L.) Coccinellidae Harmonia axyridis ◊  Lab Absolute (Adedipe and Park 2010) 

  Nepeta cataria (L.) Coccinellidae Harmonia axyridis  ◊ Lab Relative (Song et al. 2017) 

 Solanaceae Capsicum annuum (L.) Coccinellidae Cycloneda sanguinea  ◊ Lab Absolute (Oliveira and Pareja 2014) 

          

Established consumption        

 Apiaceae Anethum graveolens (L.) Chrysopidae Chrysoperla externa ◊  Lab Absolute (Resende et al. 2017) 

   Coccinellidae Coleomegilla maculata ◊ (2/1)  Lab Absolute (D‘Ávila et al. 2016) 

  Coriandrum sativum (L.) Chrysopidae Chrysoperla externa ◊  Lab Absolute (Resende et al. 2017) 

   Coccinellidae Coleomegilla maculata ◊ (2/1)  Lab Absolute (D‘Ávila et al. 2016) 

   Syrphidae Episyrphus balteatus ◊  Lab Absolute (Laubertie et al. 2012) 

  Foeniculum vulgare (L.) Chrysopidae Chrysoperla externa ◊  Lab Absolute (Resende et al. 2017) 

   Coccinellidae Coleomegilla maculata ◊ (2/1)  Lab Absolute (D‘Ávila et al. 2016) 

 Asteraceae Calendula officinalis (L.) Syrphidae Episyrphus balteatus ◊  Lab Absolute (Laubertie et al. 2012) 

 Fabaceae Medicago sativa (L.) Coccinellidae Coccinella septempunctata ◊  Field Absolute (Davidson and Evans 2010) 

   Coccinellidae Coccinella transversoguttata ◊  Field Absolute (Davidson and Evans 2010) 

   Coccinellidae Hippodamia convergens ◊  Field Absolute (Davidson and Evans 2010) 
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Plant family 

  

Plant species 

  

Insect family 

  

Insect species 

  

Effect Exp. 

type 

  

Type of 

effect 

  

References 

    (+) (O/-) 

Morphometric compatibility 

 Apiaceae Foeniculum vulgare (L.) Chrysopidae Chrysoperla carnea ◊  Lab Absolute (Nave et al. 2016) 

 Lamiaceae Lavandula stoechas (L.) Chrysopidae Chrysoperla carnea ◊  Lab Absolute (Nave et al. 2016) 

          

Fecundity         

 Apiaceae Anethum graveolens (L.) Chrysopidae Chrysoperla externa ◊  Lab Absolute (Resende et al. 2017) 

  Coriandrum sativum (L.) Chrysopidae Chrysoperla externa ◊  Lab Absolute (Resende et al. 2017) 

   Coccinellidae Cycloneda sanguinea  ◊ Lab Absolute (Togni et al. 2016) 

   Syrphidae Episyrphus balteatus  ◊ Lab Relative (Laubertie et al. 2012) 

  Foeniculum vulgare (L.) Chrysopidae Chrysoperla externa ◊  Lab Absolute (Resende et al. 2017) 

 Asteraceae Calendula officinalis (L.) Syrphidae Episyrphus balteatus  ◊ Lab Relative (Laubertie et al. 2012) 

 Lamiaceae Melissa officinalis (L.) Chrysopidae Ceraeochrysa cubana  ◊ Lab Absolute (Batista et al. 2017) 

  Mentha piperita (L.) Chrysopidae Ceraeochrysa cubana  ◊ Lab Absolute (Batista et al. 2017) 

  Ocimum basilicum (L.) Chrysopidae Ceraeochrysa cubana  ◊ (2/1) Lab Absolute (Batista et al. 2017) 

          

Longevity         

 Apiaceae Anethum graveolens (L.) Chrysopidae Chrysoperla externa ◊  Lab Absolute (Resende et al. 2017) 

  Coriandrum sativum (L.) Chrysopidae Chrysoperla externa ◊  Lab Absolute (Resende et al. 2017) 

   Coccinellidae Cycloneda sanguinea ◊  Lab Absolute (Togni et al. 2016) 

   Syrphidae Episyrphus balteatus ◊ ◊ Lab Absolute; 

Relative 

(Laubertie et al. 2012; Van Rijn 

and Wäckers 2016) 

  Foeniculum vulgare (L.) Chrysopidae Chrysoperla externa ◊  Lab Absolute (Resende et al. 2017) 

   Syrphidae Episyrphus balteatus ◊  Lab Absolute (Van Rijn and Wäckers 2016) 

 Asteraceae Centaurea cyanus (L.) Syrphidae Episyrphus balteatus ◊  Lab Absolute (Van Rijn and Wäckers 2016) 

  Calendula officinalis (L.) Syrphidae Episyrphus balteatus  ◊ Lab Relative (Laubertie et al. 2012) 

 Fabaceae Medicago sativa (L.) Syrphidae Episyrphus balteatus ◊  Lab Absolute (Van Rijn and Wäckers 2016) 

 Lamiaceae Melissa officinalis(L.) Chrysopidae Ceraeochrysa cubana  ◊ (2/1) Lab Absolute (Batista et al. 2017) 

  Mentha piperita (L.) Chrysopidae Ceraeochrysa cubana  ◊ (2/1) Lab Absolute (Batista et al. 2017) 
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Plant family 

  

Plant species 

  

Insect family 

  

Insect species 

  

Effect Exp. 

type 

  

Type of 

effect 

  

References 

    (+) (O/-) 

  Monarda fistulosa (L.) Coccinellidae Hippodamia convergens ◊  Lab Absolute (Walton and Isaacs 2011) 

    Ocimum basilicum (L.) Chrysopidae Ceraeochrysa cubana ◊ (2/1) ◊ (2/1) Lab Absolute (Batista et al. 2017) 

 

Table 3. Effect of aromatic plant species on parasitoids. Studies are sorted by indicators related to attractiveness (if the predator chose the plant, 

visited its flowers, chose its volatiles, consumed its resources, has a morphometrical compatibility with the flower) and benefits (longevity, 

fecundity). The ratio between brackets is the number of responses / number of papers in case of similar effects among or within papers for a 

given plant species-insect species/family interaction. A dash indicates that the information was not specified in the paper. 

 
  

Plant family 

  

Plant species 

  

Insect family 

  

Insect species 

  

Effect Exp. type 

  

Type of 

effect 

  

Reference 

    (+) (O/-) 

Chose plant         

 Asteraceae Ageratum houstonianum 

(Mill.) 

Braconidae -  ◊ Field Absolute (Tang et al. 2013) 

   Encyrtidae -  ◊ Field Absolute (Tang et al. 2013) 

   Ichneumonidae -  ◊ Field Absolute (Tang et al. 2013) 

   Trichogrammatidae -  ◊ Field Absolute (Tang et al. 2013) 

  Centaurea cyanus (L.) Braconidae -  ◊ Field Absolute (Tang et al. 2013) 

   Encyrtidae -  ◊ Field Absolute (Tang et al. 2013) 

   Ichneumonidae - ◊  Field Absolute (Tang et al. 2013) 

   Trichogrammatidae -  ◊ Field Absolute (Tang et al. 2013) 

  Tagetes patula (L.) Braconidae -  ◊ Field Absolute (Tang et al. 2013) 

   Encyrtidae -  ◊ Field Absolute (Tang et al. 2013) 

   Ichneumonidae - ◊  Field Absolute (Tang et al. 2013) 

   Trichogrammatidae -  ◊ Field Absolute (Tang et al. 2013) 

 Lamiaceae Mentha haplocalyx (Bricq.) Braconidae    ◊ Field Absolute (Tang et al. 2013) 

   Encyrtidae -  ◊ Field Absolute (Tang et al. 2013) 

   Ichneumonidae - ◊  Field Absolute (Tang et al. 2013) 
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Plant family 

  

Plant species 

  

Insect family 

  

Insect species 

  

Effect Exp. type 

  

Type of 

effect 

  

Reference 

    (+) (O/-) 

   Trichogrammatidae -  ◊ Field Absolute (Tang et al. 2013) 

  Monarda punctata (L.) Braconidae -  ◊ Field Absolute (Sivinski et al. 2011) 

   Chalcidoidea - ◊  Field Absolute (Sivinski et al. 2011) 

   Ichneumonidae -  ◊ Field Absolute (Sivinski et al. 2011) 

  Nepeta cataria (L.) Braconidae -  ◊ Field Absolute (Tang et al. 2013) 

   Encyrtidae -  ◊ Field Absolute (Tang et al. 2013) 

   Ichneumonidae - ◊  Field Absolute (Tang et al. 2013) 

   Trichogrammatidae -  ◊ Field Absolute (Tang et al. 2013) 

  Ocimum basilicum (L.) Braconidae -  ◊ Field Absolute (Tang et al. 2013) 

   Encyrtidae -  ◊ Field Absolute (Tang et al. 2013) 

   Ichneumonidae - ◊  Field Absolute (Tang et al. 2013) 

   Trichogrammatidae -  ◊ Field Absolute (Tang et al. 2013) 

  Ocimum citriodorum (Vis.) Braconidae -  ◊ Field Absolute (Tang et al. 2013) 

   Encyrtidae - ◊  Field Absolute (Tang et al. 2013) 

   Ichneumonidae - ◊  Field Absolute (Tang et al. 2013) 

   Trichogrammatidae -  ◊ Field Absolute (Tang et al. 2013) 

  Satureja hortensis (L.) Braconidae -  ◊ Field Absolute (Tang et al. 2013) 

   Encyrtidae -  ◊ Field Absolute (Tang et al. 2013) 

   Ichneumonidae - ◊  Field Absolute (Tang et al. 2013) 

   Trichogrammatidae -  ◊ Field Absolute (Tang et al. 2013) 

 Pinaceae Pinus massoniana (D.Don) Bothrideridae Dastarcus 

helophoroides 

◊  Lab Absolute (Li et al. 2016) 

 Solanaceae Capsicum annuum (L.) Mymaridae Anagrus atomus  ◊ Lab Relative (Agboka et al. 2003) 

          

Visited flower         

 Apiaceae Anethum graveolens (L.) Braconidae Cotesia glomerata ◊  Lab Relative (Wanner et al. 2006) 

    - ◊  Field Relative (Al-Doghairi and Cranshaw 

1999) 
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Plant family 

  

Plant species 

  

Insect family 

  

Insect species 

  

Effect Exp. type 

  

Type of 

effect 

  

Reference 

    (+) (O/-) 

   Ichneumonidae - ◊  Field Relative (Kopta et al. 2012) 

  Foeniculum vulgare (L.) Ichneumonidae - ◊  Field Relative (Kopta et al. 2012) 

 Asteraceae Centaurea cyanus (L.) Ichneumonidae -  ◊ Field Relative (Kopta et al. 2012) 

  Tagetes patula (L.) Ichneumonidae -  ◊ Field Relative (Kopta et al. 2012) 

 Lamiaceae Mentha piperita (L.) Braconidae - ◊  Field Relative (Al-Doghairi and Cranshaw 

1999) 

  Origanum vulgare (L.) Braconidae Cotesia glomerata  ◊ Lab Relative (Wanner et al. 2006) 

          

Chose volatiles         

 Apiaceae Anethum graveolens (L.) Eulophidae Edovum puttleri ◊  Lab Absolute (Patt et al. 1999) 

    Pediobius foveolatus ◊  Lab Absolute (Patt et al. 1999) 

   Figitidae Trybliographa rapae   ◊ Lab Absolute (Nilsson et al. 2011) 

  Coriandrum sativum (L.) Figitidae Trybliographa rapae   ◊ Lab Absolute (Nilsson et al. 2011) 

 Asteraceae Centaurea cyanus (L.) Braconidae Microplitis mediator ◊  Lab Relative (Géneau et al. 2013) 

    Microplitis mediator ◊  Lab Absolute (Belz et al. 2013) 

  Tagetes patula (L.) Platygastridae Trissolcus basalis ◊  Lab Absolute (Foti et al. 2017) 

    Trissolcus basalis  ◊ Lab Relative (Foti et al. 2017) 

 Brassicaceae Brassica juncea (L.) Braconidae Aphidius colemani ◊  Lab Absolute (da Silva et al. 2016) 

 Fabaceae Medicago sativa (L.) Ichneumonidae Bathyplectes 

curculionis  

 ◊ Lab Absolute (Jacob and Evans 2001) 

 Lamiaceae Ocimum basilicum (L.) Platygastridae Trissolcus basalis ◊  Lab Absolute (Foti et al. 2017) 

    Trissolcus basalis  ◊ Lab Relative (Foti et al. 2017) 

  Origanum vulgare (L.) Braconidae Heterospilus 

prosopidis 

◊  Lab Absolute (Wäckers 2004) 

    Microplitis mediator ◊  Lab Absolute (Belz et al. 2013) 

   Figitidae Trybliographa rapae   ◊ Lab Absolute (Nilsson et al. 2011) 

   Ichneumonidae Pimpla turionellae ◊  Lab Absolute (Wäckers 2004) 

 Solanaceae Capsicum annuum (L.) Trichogrammatidae Trichogramma 

ostriniae 

 ◊ Lab Absolute (Yong et al. 2007) 
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Plant family 

  

Plant species 

  

Insect family 

  

Insect species 

  

Effect Exp. type 

  

Type of 

effect 

  

Reference 

    (+) (O/-) 

          

Established consumption        

 Apiaceae Anethum graveolens (L.) Braconidae Cotesia glomerata ◊  Lab Absolute (Wanner et al. 2006) 

   Eulophidae Edovum puttleri ◊  Lab Relative (Patt et al. 1997) 

    Pediobius foveolatus ◊  Lab Relative (Patt et al. 1997) 

   Figitidae Trybliographa rapae  ◊  Lab Absolute (Nilsson et al. 2011) 

   Ichneumonidae Diadegma 

semiclausum 

◊  Field Absolute (Winkler et al. 2009b) 

  Coriandrum sativum (L.) Eulophidae Edovum puttleri  ◊ Lab Relative (Patt et al. 1997) 

    Pediobius foveolatus ◊  Lab Relative (Patt et al. 1997) 

   Figitidae Trybliographa rapae   ◊ Lab Absolute (Nilsson et al. 2011) 

  Foeniculum vulgare (L.) Eulophidae Edovum puttleri ◊  Lab Relative (Patt et al. 1997) 

 Asteraceae Centaurea cyanus (L.) Braconidae Diaeretiella rapae ◊ (2/1) 

 

Lab; Field Absolute (Pollier et al. 2016) 

 Lamiaceae Mentha spicata (L.) Eulophidae Edovum puttleri  ◊ Lab Absolute (Patt et al. 1997) 

  Origanum vulgare (L.) Braconidae Cotesia glomerata ◊ ◊ Lab Absolute (Wäckers 2004; Wanner et 

al. 2006) 

    Heterospilus 

prosopidis 

 ◊ Lab Absolute (Wäckers 2004) 

   Ichneumonidae Pimpla turionellae ◊  Lab Absolute (Wäckers 2004) 

          

Morphometric compatibility        

 Apiaceae Coriandrum sativum (L.) Braconidae Microctonus 

hyperodae 

◊  Lab Relative (Vattala et al. 2006) 

  Foeniculum vulgare (L.) Braconidae Apanteles 

xanthostigma  

◊  Lab Absolute (Nave et al. 2016) 

    Chelonus elaeaphilus  ◊  Lab Absolute (Nave et al. 2016) 

   Encyrtidae Ageniaspis fuscicollis  ◊  Lab Absolute (Nave et al. 2016) 

   Eulophidae Elasmus flabellatus  ◊  Lab Absolute (Nave et al. 2016) 

 Lamiaceae Lavandula stoechas (L.) Braconidae Apanteles 

xanthostigma  

◊  Lab Absolute (Nave et al. 2016) 
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Plant family 

  

Plant species 

  

Insect family 

  

Insect species 

  

Effect Exp. type 

  

Type of 

effect 

  

Reference 

    (+) (O/-) 

    Chelonus elaeaphilus  ◊  Lab Absolute (Nave et al. 2016) 

   Encyrtidae Ageniaspis fuscicollis  ◊  Lab Absolute (Nave et al. 2016) 

   Eulophidae Elasmus flabellatus  ◊  Lab Absolute (Nave et al. 2016) 

          

Fecundity         

 Apiaceae Foeniculum vulgare (L.) Trichogrammatidae Trichogramma 

exiguum 

 ◊ Lab Absolute (Witting-Bissinger et al. 

2008) 

 Asteraceae Tagetes patula (L.) Platygastridae Trissolcus basalis  ◊ Lab Absolute (Foti et al. 2017) 

 Brassicaceae Brassica juncea (L.) Trichogrammatidae Trichogramma 

carverae 

 ◊ (2/1) Greenhouse Absolute (Begum et al. 2006) 

 Lamiaceae Ocimum basilicum (L.) Platygastridae Trissolcus basalis ◊  Lab Absolute (Foti et al. 2017) 

          

Longevity         

 Apiaceae Anethum graveolens (L.) Braconidae Cotesia glomerata ◊  Lab Absolute (Wanner et al. 2006) 

   Encyrtidae Copidosoma aretas  ◊ ◊ Lab Absolute (Baggen and Gurr 1998; 

Sigsgaard et al. 2013) 

   Figitidae Trybliographa rapae  ◊  Lab Absolute (Nilsson et al. 2011) 

   Mymaridae Gonatocerus ashmeadi ◊  Lab Absolute (Irvin et al. 2007) 

    Gonatocerus fasciatus  ◊ Lab Absolute (Irvin et al. 2007) 

    Gonatocerus 

triguttatus 

◊  Lab Absolute (Irvin et al. 2007) 

  Coriandrum sativum (L.) Braconidae Microctonus 

hyperodae 

◊  Lab Absolute (Vattala et al. 2006) 

   Encyrtidae Copidosoma koehleri ◊  Lab Absolute (Baggen and Gurr 1998) 

   Scelionidae Trissolcus basalis ◊  Lab Absolute (Rahat et al. 2005) 

   Trichogrammatidae Trichogramma 

carverae 

 ◊ (2/1) Greenhouse Absolute (Begum et al. 2006) 

  Foeniculum vulgare (L.) Braconidae Cotesia congregata ◊  Lab Absolute (Witting-Bissinger et al. 

2008) 

    Psyttalia concolor ◊  Lab Absolute (Furtado et al. 2016) 

   Trichogrammatidae Trichogramma ◊  Lab Absolute (Witting-Bissinger et al. 
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Plant family 

  

Plant species 

  

Insect family 

  

Insect species 

  

Effect Exp. type 

  

Type of 

effect 

  

Reference 

    (+) (O/-) 

exiguum 2008) 

 Asteraceae Centaurea cyanus (L.) Braconidae Microplitis mediator ◊  Lab Absolute (Géneau et al. 2012) 

   Ichneumonidae Diadegma fenestrale ◊  Lab Absolute (Géneau et al. 2012) 

  Tagetes patula (L.) Platygastridae Trissolcus basalis ◊ (2/1)  Lab Absolute (Rahat et al. 2005) 

 Brassicaceae Brassica juncea (L.) Trichogrammatidae Trichogramma 

carverae 

 ◊ (2/1) Greenhouse Absolute (Begum et al. 2006) 

 Lamiaceae Calamintha nepeta (L.) Savi Braconidae Psyttalia concolor  ◊ Lab Absolute (Furtado et al. 2016) 

  Monarda fistulosa (L.) Braconidae Aphidius colemani ◊  Lab Absolute (Walton and Isaacs 2011) 

  Ocimum basilicum (L.) Scelionidae Trissolcus basalis ◊  Lab Absolute (Rahat et al. 2005) 

  Origanum vulgare (L.) Braconidae Cotesia glomerata ◊  Lab Absolute (Wanner et al. 2006) 

    Rosmarinus officinalis (L.) Braconidae Psyttalia concolor   ◊ Lab Absolute (Furtado et al. 2016) 

 

Table 4. Effect of aromatic plant species on biological control enhancement by predators and parasitoids. The presence of natural enemies in the 

main crop associated to an aromatic plant species is the main indirect proxy to evaluate an enhancement of biological control. Parasitism rate by 

parasitoids is evenly provided. The ratio between brackets is the number of responses / number of papers in case of similar effects among or 

within papers for a given plant species-insect species/family interaction. A dash indicates that the information was not specified in the paper. 

 
  Plant family 

(aromatic) 

Plant species (aromatic) 

  

Main crop 

  

Insect family 

  

Insect species 

  

Effect Country 

  

Reference 

    (+) (O/-) 

PREDATORS         

Found in intercrop        

 Apiaceae Coriandrum sativum (L.) Brassica oleracea (L.) Syrphidae -  ◊ (2/1) Japan (Morris and Li 2000) 

   Daucus carota (L.) Coccinellidae - ◊  Poland (Jankowska and 

Wojciechowicz-Żytko 2016) 

    Syrphidae - ◊  Poland (Jankowska and 

Wojciechowicz-Żytko 2016) 

   Lactuca sativa (L.) Syrphidae -  ◊ Spain (Pascual-Villalobos et al. 2006) 

   Rosa hybrida  (L.) Chrysopidae Chrysoperla externa ◊  Brazil (Salamanca et al. 2015) 
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  Plant family 

(aromatic) 

Plant species (aromatic) 

  

Main crop 

  

Insect family 

  

Insect species 

  

Effect Country 

  

Reference 

    (+) (O/-) 

  Foeniculum vulgare (L.) Gossypium hirsutum 

(L.) 

Chrysopidae Chrysoperla carnea ◊  Brazil (Ramalho et al. 2012) 

    Coccinellidae Cycloneda sanguinea ◊  Brazil (Ramalho et al. 2012) 

 Asteraceae Ageratum houstonianum 

(Mill.) 

Pyrus pyrifolia 

(Burm.) 

Chrysopidae Chrysopa formosa  ◊ China (Wan et al. 2015) 

    Chrysopidae Chrysoperla sinica  ◊ China (Wan et al. 2015) 

    Coccinellidae Coccinella 

septempunctata 

 ◊ China (Wan et al. 2015) 

    Coccinellidae Harmonia axyridis  ◊ China (Wan et al. 2015) 

    Coccinellidae Propylaea 

quatuordecimpunctata 

◊  China (Wan et al. 2015) 

  Centaurea cyanus (L.)  Pyrus pyrifolia 

(Burm.) 

Chrysopidae Chrysopa formosa  ◊ China (Wan et al. 2015) 

    Chrysopidae Chrysoperla sinica  ◊ China (Wan et al. 2015) 

    Coccinellidae Coccinella 

septempunctata 

 ◊ China (Wan et al. 2015) 

    Coccinellidae Harmonia axyridis  ◊ China (Wan et al. 2015) 

    Coccinellidae Propylaea 

quatuordecimpunctata 

◊  China (Wan et al. 2015) 

  Tagetes patula (L.) Brassica oleracea (L.) Coccinellidae - ◊  India (Muthukumar and Sharma 

2009) 

   Malus domestica 

(Miller) 

Chrysopidae Chrysopa formosa ◊  China (Song et al. 2013) 

    Chrysopidae Chrysoperla sinica ◊  China (Song et al. 2013) 

    Coccinellidae Coccinella 

septempunctata 

◊  China (Song et al. 2013) 

    Coccinellidae Harmonia axyridis ◊  China (Song et al. 2013) 

    Coccinellidae Propylaea 

quatuordecimpunctata 

◊ China (Song et al. 2013) 

    Syrphidae Episyrphus balteatus ◊  China (Song et al. 2013) 

   Pyrus pyrifolia 

(Burm.) 

Chrysopidae Chrysopa formosa  ◊ China (Wan et al. 2015) 

    Chrysopidae Chrysoperla sinica ◊  China (Wan et al. 2015) 



 

31 
 

  Plant family 

(aromatic) 

Plant species (aromatic) 

  

Main crop 

  

Insect family 

  

Insect species 

  

Effect Country 

  

Reference 

    (+) (O/-) 

    Coccinellidae Coccinella 

septempunctata 

 ◊ China (Wan et al. 2015) 

    Coccinellidae Harmonia axyridis  ◊ China (Wan et al. 2015) 

    Coccinellidae Propylaea 

quatuordecimpunctata 

◊ China (Wan et al. 2015) 

 Fabaceae Cassia tora (L.) Camellia sinensis (L.) Chrysopidae - ◊  China (Zhang et al. 2017) 

    Coccinellidae -  ◊ China (Zhang et al. 2017) 

  Medicago sativa (L.) Brassica oleracea (L.) Coccinellidae - ◊  India (Muthukumar and Sharma 

2009) 

   Camellia sinensis (L.) Chrysopidae -  ◊ China (Zhang et al. 2017) 

    Coccinellidae -  ◊ China (Zhang et al. 2017) 

   Gossypium hirsutum 

(L.) 

Chrysopidae - ◊  Australia (Mensah 1999) 

    Coccinellidae - ◊  Australia (Mensah 1999) 

 Lamiaceae Leonurus artemisia (Lour.) Camellia sinensis (L.) Chrysopidae -  ◊ China (Zhang et al. 2017) 

    Coccinellidae -  ◊ China (Zhang et al. 2017) 

  Mentha haplocalyx (Bricq.) Camellia sinensis (L.) Chrysopidae -  ◊ China (Zhang et al. 2017) 

    Coccinellidae -  ◊ China (Zhang et al. 2017) 

   Pyrus pyrifolia 

(Burm.) 

Chrysopidae Chrysopa formosa  ◊ China (Wan et al. 2015) 

    Chrysopidae Chrysoperla sinica ◊  China (Wan et al. 2015) 

    Coccinellidae Coccinella 

septempunctata 

 ◊ China (Wan et al. 2015) 

    Coccinellidae Harmonia axyridis  ◊ China (Wan et al. 2015) 

    Coccinellidae Propylaea 

quatuordecimpunctata 

◊ China (Wan et al. 2015) 

  Nepeta cataria (L.) Pyrus pyrifolia 

(Burm.) 

Chrysopidae Chrysopa formosa  ◊ China (Wan et al. 2015) 

    Chrysopidae Chrysoperla sinica ◊  China (Wan et al. 2015) 

    Coccinellidae Coccinella 

septempunctata 

 ◊ China (Wan et al. 2015) 

    Coccinellidae Harmonia axyridis  ◊ China (Wan et al. 2015) 
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  Plant family 

(aromatic) 

Plant species (aromatic) 

  

Main crop 

  

Insect family 

  

Insect species 

  

Effect Country 

  

Reference 

    (+) (O/-) 

    Coccinellidae Propylaea 

quatuordecimpunctata 

◊ China (Wan et al. 2015) 

  Ocimum basilicum (L.) Malus domestica 

(Miller) 

Chrysopidae Chrysopa formosa ◊  China (Song et al. 2013) 

    Chrysopidae Chrysoperla sinica ◊  China (Song et al. 2013) 

    Coccinellidae Coccinella 

septempunctata 

◊  China (Song et al. 2013) 

    Coccinellidae Harmonia axyridis ◊  China (Song et al. 2013) 

    Coccinellidae Propylaea 

quatuordecimpunctata 

◊  China (Song et al. 2013) 

    Syrphidae Episyrphus balteatus ◊  China (Song et al. 2013) 

   Pyrus pyrifolia 

(Burm.) 

Chrysopidae Chrysopa formosa ◊  China (Wan et al. 2015) 

    Chrysopidae Chrysoperla sinica ◊  China (Wan et al. 2015) 

    Coccinellidae Coccinella 

septempunctata 

 ◊ China (Wan et al. 2015) 

    Coccinellidae Harmonia axyridis  ◊ China (Wan et al. 2015) 

    Coccinellidae Propylaea 

quatuordecimpunctata 

◊ China (Wan et al. 2015) 

  Ocimum citriodorum (Vis.) Pyrus pyrifolia 

(Burm.) 

Chrysopidae Chrysopa formosa ◊  China (Wan et al. 2015) 

    Chrysopidae Chrysoperla sinica ◊  China (Wan et al. 2015) 

    Coccinellidae Coccinella 

septempunctata 

 ◊ China (Wan et al. 2015) 

    Coccinellidae Harmonia axyridis  ◊ China (Wan et al. 2015) 

    Coccinellidae Propylaea 

quatuordecimpunctata 

◊ China (Wan et al. 2015) 

  Satureja hortensis (L.) Daucus carota (L.) Coccinellidae - ◊  Poland (Jankowska and 

Wojciechowicz-Żytko 2016) 

    Syrphidae - ◊  Poland (Jankowska and 

Wojciechowicz-Żytko 2016) 

   Pyrus pyrifolia 

(Burm.) 

Chrysopidae Chrysopa formosa  ◊ China (Wan et al. 2015) 

    Chrysopidae Chrysoperla sinica  ◊ China (Wan et al. 2015) 
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  Plant family 

(aromatic) 

Plant species (aromatic) 

  

Main crop 

  

Insect family 

  

Insect species 

  

Effect Country 

  

Reference 

    (+) (O/-) 

    Coccinellidae Coccinella 

septempunctata 

 ◊ China (Wan et al. 2015) 

    Coccinellidae Harmonia axyridis  ◊ China (Wan et al. 2015) 

    Coccinellidae Propylaea 

quatuordecimpunctata 

◊ China (Wan et al. 2015) 

          

PARASITOIDS        

Found in intercrop        

 Apiaceae Anethum graveolens (L.) Brassica oleracea (L.) Ichneumonidae Diadegma 

semiclausum 

◊  The 

Netherlands 

(Winkler et al. 2010) 

 Asteraceae Centaurea cyanus (L.) Brassica oleracea (L.) Ichneumonidae Diadegma spp.  ◊ Switzerland (Juric et al. 2015) 

          

Parasitisation         

 Asteraceae Centaurea cyanus (L.) Brassica oleracea (L.) Braconidae Microplitis mediator  ◊ Switzerland (Balmer et al. 2014) 

            ◊ ◊ Switzerland (Géneau et al. 2012, 2013) 



 

34 
 

4. Discussion 

 

4.1 The role of functional traits in attracting and benefiting natural enemies 

 

4.1.1 Apiaceae aromatic plants 

A significant number of studies showed that Apiaceae aromatic plants attract natural enemies 

and the consumption of their floral resources leads to an increased longevity and/or fecundity 

(especially predators). Anethum graveolens, C. sativum and F. vulgare are all classified as 

‗flowers with open nectar‘ by Müller (1881) cited in the BIOLFLOR database of plant traits 

(Kolz et al. 2002). In this database, it is specified that ‗beetles, flies, syrphids, wasps, medium 

tongued bees‘ are the main pollinators of these flowering species. The present results confirm 

this assessment for several flower visitors but highlight that it depends on the insect species in 

the case of the hymenopteran wasps. The relation between corolla morphology and resource 

consumption by insects is assessed through the morphometrical compatibility between the two. 

For example, the mouthparts of Chrysoperla carnae (Neuroptera: Chrysopidae) and the 

corolla width of F. vulgare were found to be compatible, which suggests that this lacewing 

species has the ability to feed on its nectar (Nave et al. 2016). Nave et al. reported similar 

findings for several parasitoid species to C. sativum and F. vulgare (Tab. 3). Morphometrical 

compatibility can also be measured by relating insect fitness with flower morphology. Van 

Rijn and Wäckers (2016) reported that Apiaceae plants have the lowest flower depth and 

provide the highest longevity to E. balteatus, compared to Asteraceae and Fabaceae. They 

concluded that ‗fitness, as well as flower choice, is resulting from the accessibility of the 

nectar as defined by the morphology of flowers‘. Accessibility to pollen, especially when 

nectar is not accessible, can also significantly affect fitness of E. balteatus, especially its 

fecundity (Laubertie et al. 2012). More generally, flowers with deep corolla may not be 
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exploitable by zoophagous hoverflies as the proboscis of most of these species is relatively 

short (Gilbert 1985). It is also the case of ladybeetles which main mouthparts are short 

mandibles (Lundgren 2009).   

In addition to corolla morphology, color is an important trait involved in plant attractiveness. 

Anethum graveolens and F. vulgare have yellow flowers while C. sativum is mainly white, 

which may also explain the attractiveness of predators in the selected experiments. Indeed, 

yellow, and in some extent white, are known to be attractive to hoverflies (Sutherland et al. 

1999; Laubertie et al. 2006; Lunau 2014) and the ladybeetle H. axyridis (Mondor and Warren 

2000; Adedipe and Park 2010). For lacewings, recent findings showed that C. carnea was not 

sensitive to any color in fields (Koczor et al. 2017) and it may vary among species for 

parasitoids (Hatt et al. 2017c).  

Volatile composition emitted by the plants is another trait involved in attractiveness, as the 

several retrieved studies show (Tab. 2 and 3). Various volatile compounds produced by 

Apiaceae have been identified, among them terpenes (e.g., α-Pinene, linalool, carvone, p-

Cymene, estragole and t-anethole) (Nehlin et al. 1996; Thiéry and Marion-Poll 1998; Gross et 

al. 2009). These compounds are not specific to Apiaceae plants (Foti et al. 2017) and some 

natural enemies are sensitive to them, like the predator E. balteatus (Verheggen et al. 2008) or 

the parasitoid D. rapae (Kos et al. 2012). Monitoring the blend composition of A. graveolens, 

C. sativum and F. vulgare, and relating them to natural enemy bahaviour, would allow 

confirming the role of terpenes in the attractiveness of natural enemies to these aromatic 

plants.  

 

4.1.2 Other aromatic plants 

Asteraceae and Lamiaceae were the most studied plants after Apiaceae. There are not a 

significant number of studies showing that Asteraceae, Lamiaceae, or any other family of 
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aromatic plants attract natural enemies and provide them benefits in terms of longevity and 

fecundity. Many Asteraceae and Lamiaceae are classified as ‗flowers with totally hidden 

nectar‘ by Müller (1881) cited in the BIOLFLOR database (Kolz et al. 2002). Asteraceae 

considered in the present review (i.e., A. houstonianum, C. officinalis, C. cyanus, T. patula) 

have relatively deep corolla (Adrienne et al. 1985; Winkler et al. 2009a; Van Rijn and 

Wäckers 2016), with nectaries ‗at the base of the narrow tubular corollas of the disc flowers‘ 

(Patt et al. 1997). This morphology prevents the accessibility of nectar to visitors with short 

mouthparts, which may partly explain the limited attractiveness of these plant species to the 

studied natural enemies and consequently the limited benefits they provide to them. However, 

Jervis (1998) highlighted that not all the species of parasitoids have short mouth parts and 

among those with elongated mouth parts are species of Braconidae and Ichneumonidae. 

Moreover, some plant species like C. cyanus and T. patula (Rahat et al. 2005; Van Rijn and 

Wäckers 2016) offer extrafloral nectar allowing a diversity of nectar feeders to benefit from 

this resource despite their hidden floral nectaries (Bugg et al. 1989; Wäckers 2004; Géneau et 

al. 2012, 2013). Regarding Lamiaceae, it must be recalled that some species do not have 

hidden nectaries: lavender such as Lavandula stoechas (L.) is classified as ‗hymenoptera 

flowers‘ which is consistent with Nave et al. (2016) who reported the morphometric 

compatibility of four parasitoid species with this flower. This variability in corolla 

morphology and the availability of nectar partly explain the variability of the results obtained 

between studies (Tab. 3). 

Several studies reported the attractiveness of volatiles from Lamiaceae and Asteraceae species 

to some parasitoids and the ladybeetle H. axyridis (Tab. 2 and 3). Interestingly, volatile 

compounds were identified. Phenylpropanoid estragole and terpenoids (including linalool, 

(E)-a-bergamotene, c-amorphene and b-copaene) were identified as the dominant components 

of O. basilicum volatiles and terpinolene, (Z)-3-hexen-1-ol, (Z)-3-hexenyl acetate and 
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benzeneacetaldehyde as the main components of T. platula‘s (the whole plants were used so 

the extracted volatiles were a mix of floral and vegetative compounds) (Foti et al. 2017). Foti 

et al. moreover showed an antennal response of the parasitoid T. basalis to (Z)-3-hexenyl 

acetate specifying the importance of this compound in the attractiveness of O. basilicum. With 

a similar approach, D-limonene and terpinolene were identified as major components of both 

T. patula and Nepeta cataria (L.) (Lamiaceae) volatiles and D-limonene at low concentration, 

but not terpilonene alone, attracted the ladybeetle H. axyridis (Song et al. 2017). These studies 

are recent, hence continuing the identification of the volatile compounds from aromatic plants 

involved in the attractiveness of natural enemies would help, along with the knowledge on 

other functional traits, to identify the plant species that may be used to support predators and 

parasitoids, and potentially enhance biological control in agricultural fields. 

 

4.2 Enhancing biological control  

 

4.2.1 The role of prey/host identity 

Asteraceae and Lamiaceae were the most studied aromatic plants (Tab. 4). Their ability to 

favour the presence of predators was especially studied in pear Pyrus pyrifolia (Burm.) 

(Rosaceae) (Wan et al. 2015), apple Malus domestica (Miller) (Rosaceae) (Song et al. 2013) 

and tea Camellia sinensis (L.) (Theaceae) (Zhang et al. 2017) plantations in China. Compared 

to clean tillage in pear orchards, Asteraceae A. houstonianum and C. cyanus enhanced the 

abundance of the ladybeetle P. quatuordecimpunctata (in this study: syn. P. japonica), while 

T. platula along with the Lamiaceae Mentha haplocalyx (Bricq.), N. cataria, O. basilicum and 

O. citriodorum, supported the lacewing Chrysoperla sinica (Neuroptera: Chrysopidae) and 

both Ocimum sp. increased Chrysopa formosa (Neuroptera: Chrysopidae) (Wan et al. 2015). 

In this same study, none of the tested aromatic plants favoured ladybeetles H. axyridis and C. 
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septempunctata. Conversely, the same predatory species, along with the hoverfly E. balteatus, 

were enhanced in apple trees adjacent to T. platula and O. basilicum compared to naturally 

developed grass plants (Song et al. 2013). These studies show that H. axyridis and C. 

septempunctata are differently affected by the aromatic plants when they are in apple orchard 

infested by aphids (Aphis citricola [Hemiptera: Aphididae]) or pear orchards infested by 

mealybugs (Pseudococcus comstocki [Hemiptera: Pseudococcidae]). It suggests that not only 

the chosen aromatic plant but also the crop and/or the prey species affect the abundance of 

these ladybeetles. Harmonia axyridis and C. septempunctata can both colonize orchard 

ecosystems (Vandereycken et al. 2012) (even if they have their own habitat preferences, 

Osawa, 2011). Regarding their feeding preferences, Lucas et al. (1997) showed that both H. 

axyridis and C. septempunctata prey more on A. citricola than on a non-aphid prey. Moreover, 

H. axyridis life cycle is known to be related to aphid population dynamic (Osawa 2000). This 

preference for aphids may partly explain the presence of ladybeetles in the apple orchards 

infested by aphids. Finally, Song et al. (2017) showed that the combination of volatiles from T. 

platula and aphid-infested apple trees was particularly attractive to H. axyridis, suggesting 

that both an attractive aromatic plant and a preferred prey may be determinant to attract 

natural enemies in agroecosystems. 

 

4.2.2 The role of environmental factors 

Apiaceae were studied in fields associated with a diversity of crops (Tab. 4). Especially C. 

sativum was associated with four different cultivated species and variable results were found 

concerning the abundance of predators in these crops. It may be surprising since a number of 

studies showed that predators are attracted by C. sativum volatiles, visit its flowers, consume 

its resources and, for some of them, get benefits in terms of longevity and fecundity (Tab. 2). 

Pascual-Villalobos et al. (2006) studying lettuce Lactuca sativa (L.) (Asteraceae) reported 
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experimental protocol limitations (i.e., treatment plots were too close) to explain that 

predatory hoverflies were found both in control plots and in plots bordered with C. sativum. 

Morris and Li (2000) also pointed that C. sativum blooming duration was not long enough 

(only three weeks in their experiment) to significantly support hoverflies in adjacent cabbage 

Brassica oleracea (L.) (Brassicaceae). Moreover, inconsistent effect through years may occur 

(Balmer et al. 2014), which highlights uncertainties in the efficiency of aromatic plants to 

enhance biological control when associated to crops. In fields, environmental factors varying 

though time such as climatic conditions or the landscape composition can affect the yearly 

abundance and diversity of insects (Vandereycken et al. 2013; Schneider et al. 2015). The 

temporal overlap between the occurrence of prey/hosts and their natural enemies may also be 

disrupted (Evans et al. 2013) with detrimental consequences on the expected service of 

biological control (Welch and Harwood 2014; Cohen and Crowder 2017). Additionally, 

landscape composition at a given time can affect the abundance and diversity of pests, natural 

enemies and biological control in fields (Chaplin-Kramer et al. 2011; Veres et al. 2013), with 

existing interactions between the local management (e.g., sowing of flowering plants) and the 

landscape heterogeneity (Jonsson et al. 2015). None of the reviewed studies considered the 

effect of the landscape composition and configuration when evaluating the introduction of 

aromatic plants in intercropping systems to enhance biological control, despite this landscape 

effect may be responsible for the variability of results observed in fields (Tscharntke et al. 

2005; Isaacs et al. 2009). 

 

5. Conclusions and perspectives 

 

The present review shows that Apiaceae A. graveolens, C. sativum and F. vulgare aromatic 

species attract and benefit a diversity of natural enemies, mostly predators. However, further 
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studies assessing applications in fields towards biological control of insect pests are needed. 

Concerning Asteraceae and Lamiaceae species, contrasting results among plant and insect 

species ask for caution when these species are chosen to be sown in fields. The other plant 

families (i.e., Brassicaceae, Fabaceae, Pinaceae, Rosaceae, Solanaceae) have been only evenly 

studied. Further research could consider a diversity of plant species belonging to these 

families and evaluate the interactions between them and natural enemies by using the same 

kind of indicators reviewed here. Still, species proposing large amount of pollens, such as the 

Fabaceae M. sativa, are promising to support pollen feeders like ladybeetles but also 

hoverflies. 

Aromatic plants are known to be fragant and odours produced by plants are one of the traits 

involved in the attraction of insects. Volatiles are produced by different organs of the plant 

(i.e., flowers, leaves) and most of studies used the whole plant to assess the attractiveness of 

volatiles. Using flowers or leaves only (Yong et al. 2007; Adedipe and Park 2010; Belz et al. 

2013), and even comparing the attractiveness of flowers to the attractiveness of leaves (Foti et 

al. 2017), provides useful information to understand the role of volatiles in natural enemy-

flowering plant interactions. Moreover, the present review shows that, despite many studies 

tested the attractiveness of aromatic plant volatiles to insects, few went further by identifying 

what are the chemical compounds involved, the effect of compound associations and the 

effects of their concentrations. Hence, the recent studies of Foti et al. (2017) and Song et al. 

(2017) could pave the way for future research. 

Whereas the present review focused on natural enemies, attention must be paid to verify that 

the selected aromatic plants do not support pests that would also feed on flower resources. 

Indeed Winkler et al. (2009a) showed that A. graveolens and F. vulgare support the longevity 

of Plutella xylostella (Lepidoptera: Plutellidae) and that O. vulgare supports the longevity of 

both P. xylostella and Pieris rapae (Lepidoptera: Pieridae), which are pests of various 



 

41 
 

Brassicaceae crops. Baggen and Gurr (1998) also showed that the fecundity of Phthorimaea 

operculella (Lepidoptera: Gelechiidae), a pest of potatoes (Solanum tuberosum L.; 

Solanaceae), was enhanced when it fed on C. sativum flowers. Relatively few studies 

conducted such assessments, compared to those studying natural enemies. Moreover, it is 

needed to know if the benefits pest species could get from flowering plants would result in 

higher infestations of crops and damages in adjacent fields. Indeed, aromatic plants attractive 

to pests could also serve as trap crops, and if they are not suitable for the survival of their 

larvae, they could even be seen as dead-end trap crops (Shelton and Badenes-Perez 2006). 

Alternatively, aromatic plants could also repel pests or mask the odours of their host plant, 

thus protecting the target crop without natural enemy control (Thiery and Visser 1986). 

Finally, aromatic plants could host alternative prey or hosts that would attract and support 

natural enemies when prey are scarce in adjacent crops (i.e., aromatic plants as banker plants, 

Huang et al. 2011). 

The present review highlights a recent interest for sowing aromatic plants in fields towards 

biological control of insect pests in East Asia, especially in China (Tab. 4). However, only a 

limited number of plant species have been studied and a long list of species deserves to be 

considered (Tab. S1). A priority could be given to those being commonly used as food and/or 

medicine by people in these regions. Indeed, social relevance and economic viability of 

diversified cropping systems and landscapes are the keys to encourage and consolidate the 

development of a sustainable agriculture (Hatt et al. 2016).  
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