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ABSTRACT The interpretation of pulmonary function tests (PFTs) to diagnose respiratory diseases is built on expert 

opinion that relies on the recognition of patterns and the clinical context for detection of specific diseases. In this study, we 

aimed to explore the accuracy and interrater variability of pulmonologists when interpreting PFTs compared with artificial 

intelligence (AI)-based software that was developed and validated in more than 1500 historical patient cases. 

120 pulmonologists from 16 European hospitals evaluated 50 cases with PFT and clinical information, resulting in 6000 

independent interpretations. The AI software examined the same data. American Thoracic Society/European Respiratory 

Society guidelines were used as the gold standard for PFT pattern interpretation. The gold standard for diagnosis was 

derived from clinical history, PFT and all additional tests. 

The pattern recognition of PFTs by pulmonologists (senior 73%, junior 27%) matched the guidelines in 74.4±5.9% of the 

cases (range 56-88%). The interrater variability of κ=0.67 pointed to a common agreement. Pulmonologists made correct 

diagnoses in 44.6±8.7% of the cases (range 24-62%) with a large interrater variability (κ=0.35). The AI-based software 

perfectly matched the PFT pattern interpretations (100%) and assigned a correct diagnosis in 82% of all cases (p<0.0001 

for both measures). 

The interpretation of PFTs by pulmonologists leads to marked variations and errors. AI-based software provides more 

accurate interpretations and may serve as a powerful decision support tool to improve clinical practice. 

This article has supplementary material available from erj.ersjournals.com 

This study is registered at ClinicalTrials.gov with identifier number NCT03264417. 
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Introduction 

Pulmonary function tests (PFTs) are our primary tool to evaluate the function of the respiratory system [1]. In 

practice, the interpretation is based on expert opinion, and involves the recognition of a pattern (obstructive, 

restrictive, mixed and normal) and the grading of its severity according to international guidelines [2—4]. To arrive 

at the final diagnosis the results of PFTs are combined with patient information, symptoms and, possibly, the results 

of other tests, such as imaging, blood analysis, biopsies and exercise tests [5, 6]. 

In 2005, an American Thoracic Society/European Respiratory Society (ATS/ERS) task force designed a simplified 

algorithm to assess lung function in clinical practice [2]. However, when these recommended guidelines were 

translated into software for diagnostic decision support, it led to only 38% of correct disease predictions. Adding 

patient characteristics into such an algorithm improved the accuracy to 68%, highlighting a vast potential for 

automated diagnostic labelling when combining PFTs with clinical information [7]. In fact, the Belgian Pulmonary 

Function Study (BPFS) demonstrated that expert panels could reach 77% accuracy when predicting the diagnosis 

based on PFTs and clinical history alone [8]. Although one may doubt if a computer algorithm carries any added 

value to a group of experts, the question of whether it may help individual readers is yet to be answered. 

The number of successful applications of artificial intelligence (AI) is quickly rising. Supported by various 

outstanding achievements in the field and because of its unlimited potential to deal with big data, high expectations 

are also emerging for healthcare. For instance, one study demonstrated the ability of an AI algorithm to identify and 

classify skin cancer with similar expertise as 21 board-certified dermatologists [9]. Another study reached the same 

level of performance when analysing retinal fundus images for the identification of diabetic retinopathy [10]. 

Moreover, there are multiple examples from radiology in detecting traces of breast and lung cancer [11, 12]. 

Notwithstanding these technical superiorities of AI-based systems, translation into clinical practice with broad 

acceptance has been very challenging [13—15]. As PFTs are entirely standardised and used worldwide [16], they 

are ideally suited for the development of AI algorithms for test interpretation and diagnostics. PFTs provide an 

extensive series of numeric outputs, easily controllable by computers, yet the patterns are not always easily 

perceptible or appropriately recognised by the human eye. Moreover, the example of automated interpretation for 

ECGs, which is widely adopted and standardised in most equipment, highlights its potential use. 

In this study, we hypothesised that AI can improve the clinical reading of PFTs and overcome the variable test 

interpretation of individual pulmonologists. We explored the accuracy and interrater variability of pulmonologists 

when interpreting patterns of PFTs, and when suggesting a specific category of respiratory disease diagnosis based 

on limited clinical information and PFTs. In addition, we compared the pulmonologists' performance with that of 

AI-based software developed and validated in more than 1500 historical cases. 
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Methods 

STUDY DESIGN 

120 pulmonologists from 16 hospitals in five European countries participated in this multicentre non-

interventional study. They independently evaluated complete PFTs (pre- and/or post-bronchodilator spirometry, 

whole-body plethysmography for lung volumes and airway resistance, and diffusing capacity) and limited clinical 

information (smoking history, cough, sputum and dyspnoea) of 50 randomly selected patients, admitted to the 

University Hospital Leuven (Leuven, Belgium) for a respiratory problem. Evaluation sessions were performed in 

each hospital in the period from August 15, 2017 to December 13, 2017. All pulmonologists independently 

examined different patient cases according to a pre-established protocol by providing: 1) PFT pattern 

interpretation: obstructive, restrictive, mixed or normal pattern; 2) choice of one of nine preferred diagnostic 

categories: asthma, chronic obstructive pulmonary disease (COPD), other obstructive disease (OBD) (including 

bronchiectasis, bronchiolitis and cystic fibrosis), interstitial lung disease (including idiopathic pulmonary fibrosis, 

non-specific interstitial pneumonitis and sarcoidosis), pulmonary vascular disease (including pulmonary 

hypertension, embolism and vasculitis), neuromuscular disease (including paralysis of the diaphragm, poliomyelitis 

and myopathy), thoracic deformity (including pneumectomy, lobectomy, chest wall problems and kyphoscoliosis), 

healthy and other diseases; and 3) confidence in their decision on a Likert scale: from 1 point (“absolutely not 

sure”) to 5 points (“absolutely sure”) (an example is shown in supplementary figures S1 and S2). Finally, 4) the 

same patient files were examined by in-house developed AI-based software for PFT interpretation and diagnostic 

suggestion. 

STUDY POPULATION 

The study included a random sample of 50 subjects prospectively collected at the outpatient clinic of University 

Hospital Leuven in August 2017. All enrolled subjects were Caucasians aged >18 years who had performed a 

complete PFT and provided clinical information. The gold standard diagnosis was derived from clinical history, PFT 

and all necessary additional tests, and finally confirmed by an expert panel in Leuven. This ad hoc expert panel 

consisted of three experienced clinicians that reviewed all baseline and clinical follow-up data to agree on a final 

gold standard diagnosis out of the nine categories. Consensus was reached for all these cases. Baseline 

characteristics are shown in table 1, covering a wide range of respiratory diseases that may present with an 

abnormal PFT. Other conditions (such as lung cancer, cardiovascular disease, and ear, nose and throat problems) 

were excluded from the test sample (n=3). The Ethics Committee of the University Hospital Leuven approved the 

study protocol (approval S60619; August 4, 2017). The study design can be found at ClinicalTrials.gov (identifier 

NCT03264417). All included patients provided informed consent for the use of their data (approval S60243; June 

23, 2017). 

 

http://erj.ersjournals.com/lookup/doi/10.1183/13993003.01660-2018.figures-only%23fig-data-supplementary-materials
https://clinicaltrials.gov/
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AI SOFTWARE 

The development of software for automated reading of PFTs was performed in R language and its machine learning 

framework. The software used the same lung function data as input as presented to the pulmonologists (absolute 

values, percent predicted of normal reference values and z-scores; also shown in supplementary figure S1) 

combined with patient characteristics, age, pack-years, sex and body mass index. For pattern interpretations, the 

PFT algorithm was in line with ATS/ERS strategies [2]. However, the engine for complex diagnostic categorisation 

had to be developed and a machine learning approach was adopted. 

 

TABLE 1 Population characteristics of the 50 subjects whose lung function was evaluated in the study 

 Asthma COPD OBD NMD TD ILD PVD Healthy 

Subjects 8 11 4 3 5 10 4 5 

Male/ 5/3 8/3 3/1 2/1 4/1 6/4 3/1 3/2 

female         

Age years 57 64 53 65 60 70 80 64 

 (27-70) (38-77) (34-77) (48-72) (52-68) (51-83) (62-81) (38-74) 

FEV1 -0.57 -1.41 -2.97 -2.47 -2.76 -0.65 0.17 0.24 

z-score (-2.70-
0.73) 

(-3.95-
0.41) 

(-4.05--
1.39) 

(-2.87--
1.97) 

(-2.94--
1.77) 

(-2.74-
1.01) 

(-2.23-
0.78) 

(-0.01-1.63) 

FVC -0.41 0.70 -2.51 -2.58 -2.68 -0.97 0.66 0.11 

z-score (-1.86-
2.00) 

(-2.48-
2.07) 

(-4.37- -
0.48) 

(-2.85--
1.93) 

(-2.79- -
2.30) 

(-3.42-
0.79) 

(-1.83-
1.59) 

(-0.06-1.22) 

FEV1/FVC -1.01 -2.54 -2.51 -0.41 -0.83 0.85 -0.90 0.32 

z-score (-2.79-
0.29) 

(-4.86--
1.54) 

(-4.37- -
0.48) 

(-0.60-
0.07) 

(-1.41-
1.47) 

(-0.25-
2.05) 

(-1.10--
0.53) 

(-0.26-0.50) 

TLC 0.01 1.55 0.17 -2.23 -2.98 -2.54 -0.29 -0.13 

z-score (-1.04-
2.39) 

(-1.49-
2.80) 

(-0.74-
1.20) 

(-3.01--
2.17) 

(-5.05--
1.10) 

(-4.96--
1.00) 

(-1.53-
0.11) 

(-0.43-1.50) 

RV z-score -0.02 1.10 2.24 -0.95 -1.50 -2.45 -0.79 -0.99 

 (-2.81-
4.49) 

(-1.59-
6.24) 

(1.38-
3.22) 

(-1.08- -
0.19) 

(-2.98-
1.67) 

(-4.20--
1.35) 

(-2.34-
0.16) 

(-2.42-3.14) 

DLCO -0.84 -2.77 -1.89 -2.08 -2.44 -2.91 -2.80 -0.67 

z-score (-1.96-
1.25) 

(-4.39- -
0.54) 

(-3.98- -
0.67) 

(-2.30--
1.74) 

(-4.77--
1.98) 

(-4.30--
0.06) 

(-4.17--
2.33) 

(-2.37- -
0.29) KCO 0.09 -2.05 -0.17 0.53 0.18 -1.09 -2.02 -0.32 

z-score 
(-0.93-
1.48) 

(-2.93- -
0.27) 

(-1.94-
1.95) 

(0.48-0.55) 
(-1.86-
1.73) 

(-2.04-
1.27) 

(-3.53- -
1.17) 

(-1.34--0.07) 

 

Data are presented as n or median (range). COPD: chronic obstructive pulmonary disease; OBD: other obstructive disease; NMD: 

neuromuscular disease; TD: thoracic deformity; ILD: interstitial lung disease; PVD: pulmonary vascular disease; FEV1: forced 

expiratory volume in 1 s; FVC: forced vital capacity; TLC: total lung capacity; RV: residual volume; DLCO: diffusing capacity of the 

lung for carbon monoxide; Kco: transfer coefficient of the lung for carbon monoxide. 

The machine learning model was built using data from 1430 subjects used in our previous work to ensure a broad 

variety of data [7, 8, 17]. This data came from two cohorts: 1) BPFS, a prospective cohort study that enrolled a clinical 

population-based sample (n=851) of all successive undiagnosed patients admitted for the first time to one of the 33 

participating Belgian hospitals due to respiratory symptoms [8], and 2) a retrospectively collected PFT data cohort of 

patients followed at the outpatient clinic of the University Hospital Leuven based on predefined established diagnoses 

(neuromuscular disease (n=112), chest/pleural wall problems, including pneumectomy and lobectomy (n=64), 

http://erj.ersjournals.com/lookup/doi/10.1183/13993003.01660-2018.figures-only%23fig-data-supplementary-materials
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pulmonary vascular disease (n=76), OBD (n=100), COPD (n=47), asthma (n=40), healthy (n=50) and interstitial lung 

disease (n=90)).  

Briefly, all subjects were Caucasians aged between 18 and 85 years who had performed a complete PFT (including post-

bronchodilator spirometry, whole-body plethysmography for lung volumes and airway resistance, and diffusing 

capacity). The final diagnosis was established with all additional tests deemed necessary by the responsible clinician, 

the patients' history and PFTs. Subsequently, it was validated by an ad hoc installed expert panel (BPFS) or by the 

clinical expert panel taking care of the patients in follow-up (Leuven data). The expert discussions of the BPFS were 

organised during the local meetings of physicians, at which all individual cases were presented to obtain a final 

diagnosis by consensus. In case there was disagreement, voting was used for a final gold standard diagnosis and, if 

needed, a secondary diagnosis [8]. For the retrospective PFT data collection of patients followed at the University 

Hospital Leuven, corresponding medical records were verified on the final diagnosis. For the few cases in which there 

was doubt about the diagnosis, the PFT data were not extracted and these cases were rejected. Internal 10-fold cross-

validation tuned the machine learning model, with the best model resulting in a diagnostic accuracy of 74%. To obtain 

an unbiased estimate of accuracy and validate findings, the model was run at the Leuven pulmonary service on a 

randomly selected sample of 136 subjects. The model demonstrated a consistent diagnostic accuracy of 76% [17]. 

Probabilistic output for each of the diagnostic categories obtained by the machine learning model was summarised in a 

report (supplementary figure S3). 

PULMONARY FUNCTION TESTS 

All PFTs were performed with standardised equipment by respiratory technicians (MasterLab; Jäger, Würzburg, 

Germany), according to ATS/ERS criteria [18]. Spirometry data, as well as plethysmography and single-breath diffusing 

capacity data, were given as absolute values, but also expressed as percent predicted of normal reference values and as 

z-scores [19-21]. In the current prospective study, these data were presented to the AI software and pulmonologists, 

the latter also having access to the corresponding flow-volume loops, plethysmography and diffusing capacity 

manoeuvres. 

STATISTICAL ANALYSIS 

Statistical analysis was performed using R version 3.3.3 (Foundation for Statistical Computing, Vienna, Austria). Figures 

were produced using Prism version 6 (GraphPad, La Jolla, CA, USA). The interobserver agreements were assessed using 

Fleiss' κ for multiple raters on categorical data. Interpretative strategies for lung function tests from the ATS/ERS task 

force were used as the gold standard to define a correct lung function pattern [2]. Preferred diagnostic category, by 

pulmonologists or software, was considered as correct if it corresponded to the gold standard diagnosis made 

historically by the expert panel based on all data. For both measures, i.e. PFT pattern interpretation and diagnostic 

category suggestion, accuracy was defined as the percentage of correctly labelled cases. The t-test and Mann-Whitney 

U-test were used to evaluate differences between groups with normal and non-parametric distribution, respectively. 

The Kruskal-Wallis test was used to determine the statistical difference between multiple groups. The one-sample t-test 

was used to assess the difference of AI performance and the average accuracy of pulmonologists. Results are presented 

as mean with standard deviation or as median with range. 

http://erj.ersjournals.com/lookup/doi/10.1183/13993003.01660-2018.figures-only%23fig-data-supplementary-materials
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Results 

There were 120 pulmonologists who all together made 6000 evaluations of PFTs with clinical information. The 

pulmonologist group consisted of more senior members (n=88, established pulmonologists) than junior members 

(n=32, pulmonologists in training). A minimum number of five pulmonologists per centre was needed to participate. 

PFT PATTERN INTERPRETATIONS 

Applying the ATS/ERS interpretative strategies for PFTs revealed that the population consisted of 18 patients with an 

obstructive pattern, 10 patients with a restrictive pattern and 22 patients with a normal lung function pattern, while 

there were no subjects with a mixed pattern. The interpretations of 118 pulmonologists (data were missing from two) 

matched with the reference PFT pattern in 74.4±5.9% of the 50 cases, ranging from 56% to 88% per individual. The 

identification of a restrictive pattern was more difficult (positive predictive value 59% and sensitivity 75%) compared 

with normal and obstructive patterns (table 2). Even though a mixed pattern was not present, 376 (6%) cases were 

interpreted as mixed. A κ=0.67 signified a considerable interrater variability or disagreement between different 

pulmonologists. When the accuracy between different centres was compared, no significant differences in correct 

detections were found (p=0.06) (figure 1a). There were no significant differences between university and non-

university centres (p=0.06) or between senior and junior readers (p=0.49). Interestingly, out of the 285 misclassified 

normal patterns falsely labelled into an obstructive pattern, 216 (76%) were on the four cases having a forced 

expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) ratio the above lower limits of normal but still below the 

0.7 fixed cut-off. 

PREFERRED DIAGNOSTIC CATEGORIES 

For an individual pulmonologist, it was rather difficult to assign a correct preferred diagnostic category based on 

complete PFT data and clinical information. The mean accuracy of 6000 evaluations was only 44.6±8.7%, and it ranged 

from 39% to 51% per centre and from 24% to 62% per individual pulmonologist (figure 1b). A low κ score of 0.35 was 

indicative of a common disagreement between pulmonologists. Interestingly, age or clinical experience of the 

examiners did not influence the mean accuracy (seniors 45±4.2% versus juniors 43.6±4.8%; p=0.46). Likewise, results 

were neither different between hospitals (p=0.44) nor affected by hospital type (university 44.1±9.4% versus non-

university 45.2±7.8%; p=0.47) or by country (p=0.26). 

Due to a higher sensitivity, patterns of healthy subjects (true positive rate 71%) and subjects with COPD (true positive 

rate 65%) were more often identified on lung function than any of the other categories. Patient cases of less prevalent 

conditions, without a straightforward pattern (“fingerprint”) on lung function, were more difficult for the 

pulmonologists (thoracic deformity and neuromuscular disease, true positive rate 25%; asthma, true positive rate 

20%). A detailed statistical group comparison is shown in table 3 and supplementary figure S4. 

http://erj.ersjournals.com/lookup/doi/10.1183/13993003.01660-2018.figures-only%23fig-data-supplementary-materials
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CONFIDENCE IN DECISION MAKING 

Rarely, pulmonologists were “absolutely not sure” (in 2.7% of cases) or “not sure” (11.5%) when suggesting the 

preferred diagnostic category. Most commonly they were “sure” (36.5%) and “absolutely sure” (16%) in their 

decisions. Higher confidence in diagnostic suggestion was observed in decisions that were correct ( p<0.0001) 

compared with the incorrect decisions. However, high confidence did not necessarily lead to correct diagnosis. From all 

“sure” and “absolutely sure” records, only 51.8% of the diagnoses were correct (supplementary figures S5 and S6). 

 

TABLE 2 Confusion matrix with counts of all correctly and incorrectly labelled subjects per pulmonary function test 
(PFT) pattern 

 Pulmonologist pattern Total Subjects 

Obstructi
ve 

Restrictive Normal Mixed 

Reference pattern    

Obstructive 1636 196 180 112 2124 18 
Restrictive 34 883 14 24

9 
1180 10 

Normal 285 424 1872 15 2596 22 

Mixed 0 0 0 0 0 0 

Total 1955 1503 2066 376 5900  

Subjects (averaged)# 17 13 17 3  50 

Specificity % 92 87 94    

Sensitivity % 77 75 72    

PPV % 84 59 91    

NPV % 88 93 81    

 

 

Data are presented as n, unless otherwise stated. PPV: positive predictive value; NPV: negative predictive value. Boxed rows show 

true reference PFT patterns, while boxed columns show patterns labelled by pulmonologists. There are 4391 (74.4%) correctly given 

interpretations (true positive in bold). #: averaged number of subjects for each pattern given by each pulmonologist. 

http://erj.ersjournals.com/lookup/doi/10.1183/13993003.01660-2018.figures-only%23fig-data-supplementary-materials
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FIGURE 1 Comparison of correct detections per each participating centre. a) Pulmonary function test pattern 
interpretation. No significant difference between centres (p=0.06). b) Preferred diagnostic category. No 
significant difference between centres (p=0.44). Centres are anonymised. Box-and-whisker plots show median 
with interquartile range (box) and range (whiskers); the mean is indicated by “+”. 

COMPARISON WITH THE AI SOFTWARE 

The in-house developed AI-based software perfectly matched the pattern interpretations of the ATS/ERS 

guidelines (100%). Software response was 0.2 s, giving immediate and consistent interpretations. Moreover, it 

assigned a correct diagnostic category in 82% of the cases, which was greatly superior to the average 44.6% 

accuracy of the pulmonologists (p<0.0001) (figure 2). It also proved to be highly sensitive in recognising COPD, 

neuromuscular disease, interstitial lung disease and healthy subjects. Concerning positive predictive value, the 

software showed powerful results for the majority of the respiratory disease diagnoses (figure 3 and table 4). 

Both the sensitivity and positive predictive value of the AI-based algorithm were superior to expert-based 

diagnostic category allocation in each of the eight disease groups (figure 3). AI lacked sensitivity for the OBD 

group, which was recouped by the very high positive predictive value. 
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Discussion 

In this study, we explored the accuracy and consistency between pulmonologists when interpreting PFT 

patterns and providing a preferred diagnostic category. PFT pattern interpretations matched the ATS/ERS 

guidelines in 74.4% of cases with an interrater variability of κ=0.67, demonstrating that such a fundamental 

task is prone to mistakes and disagreements. PFTs combined with limited clinical information were difficult for 

pulmonologists as the only tool for reaching an accurate diagnostic category (accuracy of 44.6% and significant 

variability of κ=0.35). However, our advanced AI-based software for the automated clinical reading of PFTs 

perfectly interpreted (100%) PFT patterns and pointed to the correct diagnostic category in 82% of all cases. 

Consequently, it outperformed the pulmonologists in both tasks by 34% and 84%, respectively, which 

demonstrates that individual pulmonologists do not sufficiently capture the information available in PFTs. 

Facilitating clinical practice with decision support systems is not a new idea and it has been shown that the 

majority (64%) of such systems do improve the performance of individual clinicians [22]. Nowadays, we 

regularly use them to interpret ECGs, to analyse mammogram irregularities or as reminders for drug 

prescription [23, 24]. Although automated analyses of PFTs have been evaluated previously [25, 26], none has 

become a clinical reality. First, there is an obvious difficulty in reaching a preferred diagnosis without knowing 

the clinical context [27, 28]. Second, there is a lack of clear international diagnostic guidelines to label 

respiratory diseases based on PFTs, with controversial and often arbitrary choices of cut-offs to label 

abnormality. This implies that not all pulmonologists are using the same interpretative strategies in their daily 

routine [29, 30]. For example, a typical conflict is often seen in the first interpretative step: should we take the 

lower limits of normal or fixed 0.7 cut-off for the FEV1/FVC ratio [31]. 

TABLE 3 Confusion matrix with counts of all correctly and incorrectly labelled subjects by the pulmonologists 
per each diagnostic category 

 Pulmonologist diagnosis Total Subjects 
Asthm
a 

COPD OBD NMD TD ILD PVD Healthy Other 

Reference 

diagnosis 

           

Asthma 189 82 141 23 49 4 5 395 72 960 8 
COPD 157 859 154 4 6 28 49 22 41 1320 11 

OBD 77 139 162 13 15 5 6 45 18 480 4 
NMD 1 2 7 90 156 70 3 4 27 360 3 

TD 10 103 56 68 152 133 7 15 56 600 5 
ILD 2 9 5 58 168 533 167 205 53 1200 10 

PVD 2 55 27 8 18 75 266 11 18 480 4 

Healthy 21 24 10 6 9 7 49 426 48 600 5 

Other 0 0 0 0 0 0 0 0 0 0 0 

Total 459 1273 562 270 573 855 552 1123 333 6000  

Subjects 
(averaged)# 

3.8 10.6 4.7 2.3 4.8 7.1 4.6 9.4 2.8  50 

Specificity % 90 81 86 93 86 87 89 76    

Sensitivity % 20 65 34 25 25 44 55 71    

PPV % 41 67 29 33 27 62 48 38    

NPV % 76 80 89 91 85 76 92 93     

Data are presented as n, unless otherwise stated. COPD: chronic obstructive pulmonary disease; OBD: other obstructive 

disease; NMD: neuromuscular disease; TD: thoracic deformity; ILD: interstitial lung disease; PVD: pulmonary vascular 
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disease; PPV: positive predictive value; NPV: negative predictive value. Boxed rows show true reference diagnostic category, 

while boxed columns show diagnosis labelled by the pulmonologists. There are 2667 (44.6%) correctly suggested diagnoses 

(true positive in bold). #: averaged number of subjects for each diagnostic category given by each pulmonologist. 

 

FIGURE 2 Comparison of results obtained by pulmonologists versus results achieved by the artificial intelligence 
(AI) software. Correct detections are significantly (p<0.0001) higher for the AI software (improvement of 34% 
for pulmonary function test pattern interpretation and 84% for diagnostic category detection). Error bars 
indicate standard deviation 

 

 

 
Undoubtedly, this will explain some of the differences between the interpretations of pulmonologists, but it also 

highlights a more general concern. Different recommendations on which cut-offs to use will reclassify individual 

patients from healthy to diseased and vice versa, while in real life the disease processes will present as a 

continuum around pre-fixed values. The strength of complete PFTs lies in the variety and multitude of tests in 

order to recognise disease-specific patterns, regardless of these fixed cut-off points. 

 
 
FIGURE 3 Performance of pulmonologists in comparison with the artificial intelligence software for each disease 
category. COPD: chronic obstructive pulmonary disease; NMD: neuromuscular disease; ILD: interstitial lung 
disease; PVD: pulmonary vascular disease; TD: thoracic deformity; OBD: other obstructive disease. a) Sensitivity 
(i.e. true positive/(true positive+false negative)) shows how many relevant subjects (from a specific group) 
were correctly identified. b) Positive predictive value (i.e. true positive/(true positive+false positive)) shows 
how many labelled subjects rightly belonged to the specific group. 
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Using AI, we approached each disease as having a unique fingerprint on the PFT. As such, AI identifies subtle 

and defining characteristics that are challenging for humans to detect, and incorporates them into a powerful 

discriminating diagnostic algorithm. In our case, the AI system takes complete input data and maps them into 

a high-dimensional space. As a result of a large number of known disease cases, with known magnitudes and 

patterns between all input data, AI will construct the most optimal hyperplanes that categorise new 

examples. Once presented with the data of a new patient, AI maps them into the same high-dimensional space 

and predicts to which category they belong. Such a multidimensional approach exceeds human capabilities to 

observe the same data in terms of accuracy. Fundamentally, the AI algorithm is no longer dependent on the 

arbitrary cut-offs, but is a purely patient data-driven knowledge system. In fact, with the increase in 

computing resources, modern AI algorithms have entirely moved away from rule-based systems and 

currently adopt a probabilistic approach. Our study confirms that a unique data-driven fingerprint of each 

disease often exists in the PFTs. 

A fascinating characteristic of AI-based software is its ability to improve over time by being exposed to new 

and more difficult cases. In other words, the developed software may improve (as do physicians) by learning 

from mistakes and gaining experience. It is too ambitious to expect the software to be correct in 100% of 

cases, as some respiratory diseases do not show characteristic lung function abnormalities. Particularly for 

early disease stages or combined complex disease processes, disease-specific characteristics may be hidden. 

As the current accuracy of the AI software is situated within the range that clinical expert panels reached 

during the BPFS [8], there is probably little room for improvement.  

However, it also indicates that a computer can process all necessary information as effectively as a group of 

experts (not the individual), yet at a much higher speed and with 100% consistency for the same data input. 
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The further usefulness of the AI software will be demonstrated if it decreases the time to final diagnosis, 

reduces the number of tests needed for a final diagnosis and, if by standardising PFT interpretation, a number 

of misdiagnoses can be avoided. 

 

TABLE 4 Confusion matrix with counts of all correctly and incorrectly labelled subjects by the artificial 
intelligence (AI) software per each diagnostic category 

 

AI software diagnosis 

Subjects 
Asthma COPD OBD NMD TD ILD PVD Healthy Other 

Reference 
diagnosis 

          

Asthma 6 1 0 0 0 0 0 1 0 8 
COPD 0 11 0 0 0 0 0 0 0 11 
OBD 1 2 1 0 0 0 0 0 0 4 
NMD 0 0 0 3 0 0 0 0 0 3 
TD 0 0 0 2 3 0 0 0 0 5 
ILD 0 0 0 0 0 9 0 1 0 10 
PVD 0 1 0 0 0 0 3 0 0 4 
Healthy 0 0 0 0 0 0 0 5 0 5 
Other 0 0 0 0 0 0 0 0 0 0 

Total 7 15 1 5 3 9 3 7 0 50 

Specificity % 97 88 100 95 100 100 100 95   

Sensitivity% 75 100 25 100 60 90 75 100   

PPV % 86 73 100 60 100 100 100 71   

NPV % 95 100 93 100 95 97 97 100   

Data are presented as n, unless otherwise stated. COPD: chronic obstructive pulmonary disease; OBD: other 

obstructive disease; NMD: neuromuscular disease; TD: thoracic deformity; ILD: interstitial lung disease; PVD: 

pulmonary vascular disease; PPV: positive predictive value; NPV: negative predictive value. Boxed rows show true 

reference diagnostic category, while boxed columns show diagnosis labelled by the AI software. There are 41 (82%) 

correctly suggested diagnoses (true positive in bold). 
 

 

Comparable with the human examiner marking their confidence on a Likert scale, AI expresses its certainty as 

a probability of a patient belonging to one of the disease categories. In the situations where AI made a wrong 

diagnostic suggestion, it should be noted that it never attributed a high probability to this diagnosis. More 

specifically, probability barely exceeded 50% in two out of the nine mislabels and it was <50% in the seven 

other cases. Surprisingly, the use of the COPD Assessment Test for the quantification of symptoms in the BPFS 

study did not contribute to further improving the accuracy of our AI software. This suggests that most 

respiratory diseases present with similar non-specific symptoms such as cough and dyspnoea. It is tempting 

to speculate that more input, e.g. more extensive history taking, and tests like exhaled nitric oxide fraction, 

forced oscillometry and/or blood/radiological markers, could enhance its future potential. In particular, for 

diseases such as asthma that can present with a normal PFT, the added value of such tests when integrated 

into our AI-based software is obvious. 

A limitation of the current study is that we underestimated the accuracy of the pulmonologists by limiting the 

amount of clinical data to suggest a preferred diagnosis. In reality, a diagnosis is reached by a synergy of 

multiple factors, including expanded history, clinical examination, imaging and blood sampling.  

The real-life situation may therefore yield better outcomes. Additionally, the test sample we used may not 

entirely reflect the prevalence of diseases that pulmonologists confront in daily clinical practice. It is clear 

that we only explored the maximum output that could be reached from PFTs and clinical information, 

representative of the first diagnostic encounter. Furthermore, we did not formally test the level of agreement 
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within the ad hoc expert panel to define the final diagnosis. Although the experts relied on all available test 

information, one may speculate that providing the AI interpretation would have favoured their initial 

agreement. A final limitation is that the risk of misinterpretation and misdiagnosis increases if tests are 

poorly performed [32]. However, sufficient quality of the tests is needed for both human and computer 

interpretations. 

To conclude, our data indicate that interpretation of PFTs and the suggestion of primary respiratory disease 

diagnosis by pulmonologists is highly variable. The AI-based software has superior performance and may 

provide a powerful decision support tool for clinicians. The significance of such technology in improving 

clinical practice will drive real-life acceptance by the medical community. 

 

ACKNOWLEDGEMENTS: We thank all the pulmonologists, pulmonary function technicians, patients and 
hospitals who participated in the study for providing and analysing data. 

AUTHOR CONTRIBUTIONS: All authors critically revised the manuscript and approved the final version. All 
authors organised evaluation sessions in hospitals, examined patient files and interpreted results. M. 
Topalovic performed the data acquisition, analysis, interpretation as well as contributed to the study design 
and wrote the manuscript. N. Das contributed to data acquisition. W. Janssens takes responsibility for the 
content of the manuscript, contributed to the study design, and assisted in the data analysis, interpretation 
and writing of the manuscript. 

THE PULMONARY FUNCTION STUDY INVESTIGATORS: R. De Pauw, C. Depuydt, C. Haenebalcke, S. 
Muyldermans, V. Ringoet, D. Stevens (AZ Sint-Jan Hospital, Bruges, Belgium); S. Bayat, J. Benet, E. Catho, J. 
Claustre, A. Fedi, M.A. Ferjani, R. Guzun, M. Isnard, S. Nicolas, T. Pierret, C. Pison, S. Rouches, B. Wuyam (CHU 
Grenoble Alpes, Grenoble, France); J.L. Corhay, J. Guiot, K. Ghysen, L. Renaud, A. Sibille (University Hospital, 
Liege, Belgium); H. De La Barriere, C. Charpentier, S. Corhut, K.A. Hamdan, M. Schlesser, G. Wirtz (Centre 
Hospitalier de Luxembourg, Luxembourg, Luxembourg); E. Alabadan, G. Birsen, P.R. Burgel, A. Chohra, C. 
Hamard, B. Lemarié, M.N. Lothe, C. Martin, A.C. Sainte-Marie, L. Sebane (Cochin Hospital, Paris, France); Y. 
Berk, B. de Brouwer, R. Janssen, J. Kerkhoff, A. Spaanderman, M. Stegers, A. Termeer, I. van Grimbergen, A. van 
Veen, L. van Ruitenbeek, L. Vermeer, R. Zaal, M. Zijlker (Canisius Wilhelmina Hospital, Nijmegen, The 
Netherlands); J. Aumann, K. Cuppens, D. Degraeve, K. Demuynck, B. Dieriks, K. Pat, L. Spaas, R. Van 
Puijenbroek, K. Weytjens, J. Wynants (Jessa Hospital, Hasselt, Belgium); V. Adam, B.J. Berendes, E. Hardeman, 
P. Jordens, E. Munghen, K. Tournoy, P. Vercauter (Onze-Lieve-Vrouw Hospital, Aalst, Belgium); T. Alame, M. 
Bruyneel, M. Gabrovska, I. Muylle, V. Ninane, D. Rozen, P. Rummens. S. Van Den Broecke (Saint-Pierre 
Hospital, Brussels, Belgium); A. Froidure, S. Gohy, G. Liistro, T. Pieters, C. Pilette, F. Pirson (Université 
Catholique de Louvain, Brussels, Belgium); H. Kerstjens, M. Van den Berge, N. Ten Hacken, M. Duiverman, D. 
Koster (University Medical Center Groningen, Groningen, The Netherlands); B. Vosse, L. Conemans, M. Maus, 
M. Bischoff, M. Rutten, D. Agterhuis, R. Sprooten (Maastricht University Medical Center, Maastricht, The 
Netherlands); B. Beutel, A. Jerrentrup, A. Klemmer, C. Viniol, C. Vogelmeier (University Medical Center, 
Marburg, Germany); H. Bode, C. Dooms, D. Gullentops, W. Janssens, K. Nackaerts, D. Rutens, E. Wauters, W. 
Wuyts (University Hospital Leuven, Leuven, Belgium); E. Derom, S. Dobbelaere, S. Loof, G. Serry, B. Putman, L. 
Van Acker, Y. Vandeweygaerde (Ghent University Hospital, Ghent, Belgium); M. Criel, M. Daenen, R. 
Gubbelmans, S. Klerkx, E. Michiels, M. Thomeer, A. Vanhauwaert (Hospital Oost-Limburg, Genk, Belgium). 



Published in : European Respiratory Journal (2019), vol. 53, n°4 
DOI: 10.1183/13993003.01660-2018 
Status : Postprint (Author’s version)  

 

 

 

CONFLICT OF INTEREST: M. Topalovic has nothing to disclose. N. Das has nothing to disclose. P-R. Burgel 
reports personal fees from AstraZeneca, Boehringer Ingelheim, Chiesi, Novartis, Teva and Vertex, outside the 
submitted work. M. Daenen has nothing to disclose. E. Derom has nothing to disclose. C. Haenebalcke reports 
personal fees from Novartis, Chiesi, GSK and AstraZeneca, outside the submitted work. R. Janssen has nothing 
to disclose. H.A.M. Kerstjens has nothing to disclose. G. Liistro has nothing to disclose. R. Louis reports grants 
and personal fees from GSK and Novartis, personal fees from AstraZeneca, and grants from Chiesi, outside the 
submitted work. V. Ninane has nothing to disclose. C. Pison has nothing to disclose. M. Schlesser has nothing 
to disclose. P. Vercauter has nothing to disclose. C.F. Vogelmeier reports personal fees from Almirall, Cipla, 
Berlin-Chemie/Menarini, CSL Behring and Teva, grants and personal fees from AstraZeneca, Boehringer 
Ingelheim, Chiesi, GSK, Grifols, Mundipharma, Novartis and Takeda, grants from German Federal Ministry of 
Education and Research (BMBF) Competence Network Asthma and COPD (ASCONET), Bayer Schering 
Pharma AG, MSD and Pfizer, outside the submitted work. E. Wouters reports personal fees for board 
membership from Nycomed and Boehringer, grants from AstraZeneca and GSK, and personal fees for lectures 
from AstraZeneca, GSK, Novartis and Chiesi, outside the submitted work. J. Wynants has nothing to disclose. 
W. Janssens has nothing to disclose. 

SUPPORT STATEMENT: This work was supported by the Vlaams Agentschap Innoveren & Ondernemen 
(VLAIO, government body, 2016-2018). The funder had no role in study design and conduct of the study; 
collection, management, analysis and interpretation of the data; preparation, review or approval of the 
manuscript; and decision to submit the manuscript for publication. Funding information for this article has 
been deposited with the Crossref Funder Registry. 

 

References 

1. Crapo RO. Pulmonary-function testing. N Engl J Med 1994; 331: 25-30. 

2. Pellegrino R, Viegi G, Brusasco V, et al. Interpretative strategies for lung function tests. Eur Respir J 

2005; 26: 948-968. 

3. Reddel HK, Bateman ED, Becker A, et al. A summary of the new GINA strategy: a roadmap to asthma 

control. 

4. Eur Respir J 2015; 46: 622-639. 

5. Vogelmeier CF, Criner GJ, Martinez FJ, et al. Global Strategy for the Diagnosis, Management, and 

Prevention of Chronic Obstructive Lung Disease 2017 Report: GOLD Executive Summary. Eur Respir J 

2017; 49: 1700214. 

6. Galie N, Humbert M, Vachiery JL, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of 

pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary 

Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): 

Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International 

Society for Heart and Lung Transplantation (ISHLT). Eur Respir J 2015; 46: 903-975. 

7. Martinez FJ, Chisholm A, Collard HR, et al. The diagnosis of idiopathic pulmonary fibrosis: current 

and future approaches. Lancet Respir Med 2017; 5: 61-71. 

8. Topalovic M, Laval S, Aerts JM, et al. Automated interpretation of pulmonary function tests in adults 

with respiratory complaints. Respiration 2017; 93: 170-178. 

9. Decramer M, Janssens W, Derom E, et al. Contribution of four common pulmonary function tests to 

diagnosis of patients with respiratory symptoms: a prospective cohort study. Lancet Respir Med 2013; 1: 

705-713. 

https://www.crossref.org/services/funder-registry/
https://www.crossref.org/services/funder-registry/


Published in : European Respiratory Journal (2019), vol. 53, n°4 
DOI: 10.1183/13993003.01660-2018 
Status : Postprint (Author’s version)  

 

 

 

10. Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep 

neural networks. Nature 2017; 542: 115-118. 

11. Ting DSW, Cheung CY, Lim G, et al. Development and validation of a deep learning system for 

diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with 

diabetes. JAMA 2017; 318: 2211-2223. 

12. Ehteshami Bejnordi B, Veta M, Johannes van Diest P, et al. Diagnostic assessment of deep learning 

algorithms for detection of lymph node metastases in women with breast cancer. JAMA 2017; 318: 2199-

2210. 

13. Thrall JH, Li X, Li Q, et al. Artificial intelligence and machine learning in radiology: opportunities, 

challenges, pitfalls, and criteria for success. J Am Coll Radiol 2018; 15: 504-508. 

14. Armstrong S. The computer will assess you now. BMJ 2016; 355: i5680. 

15. Fridsma DB. Health informatics: a required skill for 21st century clinicians. BMJ 2018; 362: k3043. 

16. The Lancet. Artificial intelligence in health care: within touching distance. Lancet 2018; 390: 2739. 

17. Culver BH, Graham BL, Coates AL, et al. Recommendations for a standardized pulmonary function 

report. An official American Thoracic Society technical statement. Am J Respir Crit Care Med 2017; 196: 

1463-1472. 

18. Topalovic M, Das N, Troosters T, et al. Applying artificial intelligence on pulmonary function tests 

improves the diagnostic accuracy. Eur Respir J 2017; 50: Suppl. 61, OA3434. 

19. Miller MR, Crapo R, Hankinson J, et al. General considerations for lung function testing. Eur Respir J 

2005; 26: 153-161. 

20. Quanjer PH, Stanojevic S, Cole TJ, et al. Multi-ethnic reference values for spirometry for the 3-95-yr 

age range: the global lung function 2012 equations. Eur Respir J 2012; 40: 1324-1343. 

21. Quanjer PH, Tammeling G, Cotes J, et al. Lung volumes and forced ventilatory flows. Eur Respir J 

1993; 6: Suppl. 16, 5-40. 

22. Stanojevic S, Graham BL, Cooper BG, et al. Official ERS technical standards: Global Lung Function 

Initiative reference values for the carbon monoxide transfer factor for Caucasians. Eur Respir J 2017; 50: 

1700010. 

23. Garg AX, Adhikari NK, McDonald H, et al. Effects of computerized clinical decision support systems 

on practitioner performance and patient outcomes: a systematic review. JAMA 2005; 293: 1223-1238. 

24. Filippi A, Sabatini A, Badioli L, et al. Effects of an automated electronic reminder in changing the 

antiplatelet drug-prescribing behavior among Italian general practitioners in diabetic patients: an 

intervention trial. Diabetes Care 2003; 26: 1497-1500. 

25. Willems JL, Abreu-Lima C, Arnaud P, et al. The diagnostic performance of computer programs for 

the interpretation of electrocardiograms. N Engl J Med 1991; 325: 1767-1773. 

26. Hankinson JL. Automated pulmonary function testing: interpretation and standardization. Ann 

Biomed Eng 1981; 9: 633-643. 

27. Krumpe P, Weigt G, Martinez N, et al. Computerized rapid analysis of pulmonary function test: use 

of a least mean squares correlation for interpretation of data. Comput Biol Med 1982; 12: 295-307. 

28. Berry CE, Wise RA. Interpretation of pulmonary function test: issues and controversies. Clin Rev 

Allergy Immunol 2009; 37: 173-180. 



Published in : European Respiratory Journal (2019), vol. 53, n°4 
DOI: 10.1183/13993003.01660-2018 
Status : Postprint (Author’s version)  

 

 

 

29. Enright P. Flawed interpretative strategies for lung function tests harm patients. Eur Respir J 2006; 

27: 1322-1323. 

30. Miller MR, Quanjer PH, Swanney MP, et al. Interpreting lung function data using 80% predicted and 

fixed thresholds misclassifies more than 20% of patients. Chest 2011; 139: 52-59. 

31. Visentin E, Nieri D, Vagaggini B, et al. An observation of prescription behaviors and adherence to 

guidelines in patients with COPD: real world data from October 2012 to September 2014. Curr Med Res 

Opin 2016; 32: 1493-1502. 

32. Quanjer PH, Enright PL, Miller MR, et al. The need to change the method for defining mild airway 

obstruction. Eur Respir J 2011; 37: 720-722. 

33. Leuppi JD, Miedinger D, Chhajed PN, et al. Quality of spirometry in primary care for case finding of 

airway obstruction in smokers. Respiration 2010; 79: 469-474. 

 

 


