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Complex computer simulators are increasingly used

across fields of science as generative models tying @ Ta ke the adversaria| training Setup Of GANS
t f derlying th t imental : : . :
prramE T D1 oD Seerne o T O 2 Replace the generator network with a scientific simulator.

observations. Inference in this setup is often
difficult, as simulators rarely admit a tractable @ BypaSS the non_differentia blllty Wlth REI N FO RCE
density or likelihood function. We introduce
Adversarial Variational Optimization (AVO),
a likelihood-free inference algorithm for
fitting a non-differentiable generative model.
We adapt the training procedure of generative
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adversarial networks by replacing the differentiable
generative network with a domain-specific simulator.
We solve the resulting non-differentiable minimax d(x: )
problem by minimizing variational upper bounds of
the two adversarial objectives. Effectively, the
procedure results in learning a proposal
distribution over simulator parameters, such
that the JS divergence between the marginal
distribution of the synthetic data and the
empirical distribution is minimized. We
evaluate and compare the method with simulators

producing both discrete and continuous data. La(P)
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Likelihood-free inference ' l ' Tricks of the trade

Variational optimization/REINFORCE.

Minimize variational upper bounds
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Inference: o Likelihood function p(x|@) is intractable REINFORCE eStImateS' WhICh Only reqUIreS
e Inference based on estimator p(z|6) 0 forward evaluations of the simulator g.
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In scientific simulators, the likelihood of observations | — After taining » This effectively results in minimizing

x given model parameters @ is implicitly defined as 0.5- JSD(p,(x), q(x]2p)),
p(x|6) = / p(x|z, 0)p(z|0)dz. where g(x[9)) = [ p(x[6)q(6]e))d6

| L - R; regularization (Mescheder et al, 2018).
This makés T mtractable to evaluate. 0.0- . . | | | . Penalty added to U, to improve convergence.
Our goal is to estimate the parameters 8* that -3 -2 -1 0 1 2 3 4 .
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(empirical) data distribution p,(x) and the implicit oa- 1o
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The case of particle physics. The Standard Model limited by the sub-optimality of an ad hoc s -
defines an implicit distribution p(x|@) from which summary statistic. L= Bot, R T Bot.

high-dimensional observables can be simulated
Given data collected from Nature, we want to fit the
model parameters 0.
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