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Abstract

Complex computer simulators are increasingly used
across fields of science as generative models tying
parameters of an underlying theory to experimental
observations. Inference in this setup is often
difficult, as simulators rarely admit a tractable
density or likelihood function. We introduce
Adversarial Variational Optimization (AVO),
a likelihood-free inference algorithm for
fitting a non-differentiable generative model.
We adapt the training procedure of generative
adversarial networks by replacing the differentiable
generative network with a domain-specific simulator.
We solve the resulting non-differentiable minimax
problem by minimizing variational upper bounds of
the two adversarial objectives. Effectively, the
procedure results in learning a proposal
distribution over simulator parameters, such
that the JS divergence between the marginal
distribution of the synthetic data and the
empirical distribution is minimized. We
evaluate and compare the method with simulators
producing both discrete and continuous data.

Likelihood-free inference

In scientific simulators, the likelihood of observations
x given model parameters θ is implicitly defined as

p(x|θ) =

∫
p(x|z,θ)p(z|θ)dz.

This makes it intractable to evaluate.
Our goal is to estimate the parameters θ∗ that
minimize the JSD divergence between the
(empirical) data distribution pr(x) and the implicit
model p(x|θ) :

θ∗ = arg min
θ

JSD(pr(x), p(x|θ)).

Examples. Particle physics, population genetics,
epidemiology, climate science, cosmology.

L = −1

4
FµνF

µν

+ i ψ̄Dψ + h.c.

+ ψ̄iyijψjφ + h.c.

+ |Dµφ|2 − V (φ)

The case of particle physics. The Standard Model
defines an implicit distribution p(x|θ) from which

high-dimensional observables can be simulated.
Given data collected from Nature, we want to fit the

model parameters θ.

tl ;dr.

1 Take the adversarial training setup of GANs.
2 Replace the generator network with a scientific simulator.
3 Bypass the non-differentiability with REINFORCE.
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Not differentiable!
~p(x ∣ θ) ⇔ z~p(z), = g(z; θ)x̂ x̂

Ld(φ) = Ex∼pr(x) [− log(d(x;φ))] + Ex̂∼p(x|θ) [− log(1− d(x̂;φ))]

Lg(θ) = Ex̂∼p(x|θ) [log(1− d(x̂;φ))]

Illustration (particle physics)

Particle detector alignment. (Top and second
rows) : Detector response for the detector offset
θ = 0 vs θ = 1 These plots highlight the difficulty
in observing a difference between samples from one
or the other parameter setting. (Bottom) : Training.

In AVO, the discriminator adapts to the inference
problem, regardless of its difficulty. It is not
limited by the sub-optimality of an ad hoc
summary statistic.

Tricks of the trade

Variational optimization/REINFORCE.
Minimize variational upper bounds

Ud(φ) = Eθ∼q(θ|ψ)[Ld(φ)]

Ug(ψ) = Eθ∼q(θ|ψ)[Lg(θ)]

defined by a proposal distribution q(θ|ψ).

I Gradients ∇ψUg are obtained with
REINFORCE estimates, which only requires
forward evaluations of the simulator g .

I This effectively results in minimizing

JSD(pr(x), q(x|ψ)),

where q(x|ψ)) =
∫
p(x|θ)q(θ|ψ)dθ.

R1 regularization (Mescheder et al, 2018).
Penalty added to Ud to improve convergence.

R1(φ) = Ex∼pr(x)
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